

Experimental Low-Latency Device-Independent Quantum Randomness

Yanbao Zhang,^{1,*} Lynden K. Shalm,^{2,*} Joshua C. Bienfang,³ Martin J. Stevens,² Michael D. Mazurek,² Sae Woo Nam,² Carlos Abellán,^{4,†} Waldimar Amaya,^{4,†} Morgan W. Mitchell,^{4,5} Honghao Fu,⁶ Carl A. Miller,^{6,3} Alan Mink,^{3,7} and Emanuel Knill^{2,8}

¹*NTT Basic Research Laboratories and NTT Research Center for Theoretical Quantum Physics, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan*

²*National Institute of Standards and Technology, Boulder, Colorado 80305, USA*

³*National Institute of Standards and Technology, Gaithersburg, MD 20899, USA*

⁴*ICFO-Institut de Ciències Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain*

⁵*ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain*

⁶*Department of Computer Science, Institute for Advanced Computer Studies, and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA*

⁷*Theiss Research, La Jolla, CA 92037, USA*

⁸*Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA*

Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of 512 random bits with an average experiment time of less than 5 min per block and with a certified error bounded by $2^{-64} \approx 5.42 \times 10^{-20}$.

A fundamental feature of quantum mechanics is that measurements of a quantum system can have random outcomes even when the system is in a definite, pure state. By definition, pure states are completely uncorrelated with every other physical system, which implies that the measurement outcomes are intrinsically unpredictable by anyone outside the measured quantum system's laboratory. The unpredictability of quantum measurements is exploited by conventional quantum random number generators (QRNGs) [1] for obtaining random bits whose distribution is ideally uniform and independent of other systems. The use of such QRNGs requires trust in the underlying quantum devices [2]. A higher level of security is attained by device-independent quantum random number generators (DIQRNGs) [3, 4] based on loophole-free Bell tests, where the randomness produced can be certified even with untrusted quantum devices that may have been manufactured by dishonest parties. The security of a DIQRNG relies on the physical security of the laboratory to prevent unwanted information leakage, and on the trust in the classical systems that record and process the outputs of quantum devices for randomness generation.

Since the idea of DIQRNGs was introduced in Colbeck's thesis [3], many DIQRNG protocols have been developed—for a review see [5]. These protocols generally exploit quantum non-locality to certify entropy

but differ in device requirements, Bell-test configurations, randomness rates, finite-data efficiencies, and the security levels achieved. We can classify protocols by whether they are secure in the presence of classical or quantum side information, in other words, by whether they are classical- or quantum-proof.

The first experimentally accessible DIQRNG protocol was given and implemented by Pironio *et al.* [6] with a detection-loophole-free Bell test using entangled ions. They certified 42 bits of classical-proof entropy with error bounded by 0.01, where, informally, the error can be thought of as the probability that the protocol output does not satisfy the certified claim. This required about one month of experiment time. To improve this result required the advent of loophole-free Bell tests and much more efficient protocols. Such a protocol and experimental implementation with an optical loophole-free Bell test was given by Bierhorst *et al.* [7] and obtained 1024 classical-proof random bits with error 10^{-12} in 10 min. There have been three demonstrations of quantum-proof DIQRNGs, all with photons. The first two were subject to the locality and freedom-of-choice loopholes [8]. They obtained 4.6×10^7 random bits with error 10^{-5} in 111 h [9], and 6.2×10^5 random bits with error 10^{-10} in 43 min [10], respectively. The third was loophole-free and obtained 6.2×10^7 random bits with error 10^{-5} in 96 h [11].

The quantum-proof experiments described above aimed for good asymptotic rates. To approach the asymptotic rate requires a very large number of trials to certify a large amount of entropy. However, many if not most applications of certified randomness require only short blocks of fresh randomness. To address these

* Y. Z. (yanbaoz@gmail.com) and L. K. S. contributed equally to this work.

† Current address: Quside Technologies S.L., C/Esteve Terradas 1, Of. 217, 08860 Castelldefels (Barcelona), Spain

applications, we consider instead a standardized request for 512 random bits with error $2^{-64} \approx 5.42 \times 10^{-20}$ and with minimum delay, or latency, between the request and delivery of bits satisfying the request. In this work, we consider only the contribution of experiment time to latency. The previous quantum-proof DIQRNG implemented with a loophole-free Bell test [11] would have required at least 24.1 h to satisfy the standardized request—see Sect. V of the Supplemental Material (SM).

In this letter, we reduce the latency required to produce 512 device-independent and quantum-proof random bits with error 2^{-64} by orders of magnitude. For this purpose, here we implement a quantum-proof protocol developed in the companion paper (CP) [12] with a loophole-free Bell test. Unlike other demonstrations of quantum-proof DIQRNGs, we conservatively account for adversarial bias in the setting choices, and we show repeated fulfillment of the standardized request. We obtain five successive blocks of 512 random bits with error 2^{-64} and with an average experiment time of less than 5 min per block.

Overview of theory. We give a high-level description of the features of our protocol. For formal definitions and technical details, see the CP [12]. Our protocol is based on repeated (but not necessarily independent or identical) trials of a loophole-free CHSH Bell test [13], consisting of a source S and two measurement stations A and B (see Fig. 2). In each trial, the source attempts to distribute a pair of entangled photons to the stations, the protocol randomly chooses binary measurement settings X and Y for the stations, the corresponding measurements are performed, and the binary outcomes A and B are recorded. We call $Z = XY$ and $C = AB$ the input and output of the trial, respectively.

An end-to-end randomness generation protocol starts with a request for k random bits with error ϵ . The user then chooses a positive quantity σ (the entropy threshold for success) and positive errors $\epsilon_\sigma, \epsilon_x$ (the entropy error and the extractor error, respectively) whose sum is no more than ϵ . The quantity σ chosen by the user must satisfy the inequality $\sigma \geq k + 4 \log_2(k) + 4 \log_2(2/\epsilon_x^2) + 6$. This inequality is sufficient to guarantee that, if the outputs of the experiment can be proven to have entropy at least σ , then k random bits can be extracted. (The randomness extractor that we use for this purpose is Trevisan’s extractor [14] as implemented by Mauerer, Portmann and Scholz [15]. We refer to it as the TMPS extractor—see Sect. II of the SM.) The user also needs to decide the maximum number n of Bell-test trials to run. For simplicity, we temporarily assume that a fixed number n of trials will be executed, but in the implementation as described in a later section we exploit the ability to stop early.

After fixing the parameters defined in the previous paragraph, n Bell-test trials are sequentially executed, and the inputs and outputs are recorded as $\mathbf{Z} = (Z_i)_{i=1}^n$ and $\mathbf{C} = (C_i)_{i=1}^n$, where Z_i and C_i are the input and output of the i ’th trial. The upper-case symbols \mathbf{C}, C_i ,

\mathbf{Z} and Z_i are treated as random variables, and their values are denoted by the corresponding lower-case symbols. Let E denote the “environment” of the experiment, including any quantum side information that could be possessed by an adversary. The entropy of the outputs \mathbf{C} is quantified by the quantum ϵ_σ -smooth conditional min-entropy of \mathbf{C} given $\mathbf{Z}\mathsf{E}$ [16]. We refer to this quantity as the output entropy. The user can estimate the output entropy as described in the next section and check whether that estimate is at least σ . If not, the protocol fails and a binary variable P is set to $P = 0$; otherwise, the protocol succeeds and $P = 1$.

When the protocol succeeds, we apply the TMPS extractor [15] to extract k random bits with error ϵ . The TMPS extractor is a classical algorithm that is applied to the outputs \mathbf{C} as well as a random seed S , and produces a bit string R . The final state of the protocol then consists of the classical variables $RSZP$ and the quantum system E . In the CP [12], we prove that the protocol is ϵ -sound in the following sense: The error ϵ is an upper bound on the product of the success probability and the purified distance [17] between the actual state of $RS\mathsf{Z}\mathsf{E}$ conditional on the success event $P = 1$ and an ideal state of $RS\mathsf{Z}\mathsf{E}$, according to which RS is uniformly random and independent of $\mathsf{Z}\mathsf{E}$. For the protocol to be useful, it is necessary that the probability of success in the actual implementation can be close to 1, a property referred to as completeness. With properly configured quantum devices, it is possible to make this probability exponentially close to 1 by increasing the number of trials executed. Soundness and completeness imply formal security of the protocol.

Estimating entropy. In the CP [12], we develop the approach of certifying entropy by “quantum estimation factors” (QEFs), a general technique that generalizes previous certification techniques against quantum side information [18, 19]. The construction of QEFs requires first defining a notion of models. The “model” for an experiment is the set of all possible final states that can occur at the end of the experiment. A final state can be written as $\rho_{\mathbf{C}\mathsf{Z}\mathsf{E}} = \sum_{\mathbf{cz}} |\mathbf{cz}\rangle\langle\mathbf{cz}| \otimes \rho_{\mathsf{E}}(\mathbf{cz})$, where $\rho_{\mathsf{E}}(\mathbf{cz})$ is the unnormalized state of E given results \mathbf{cz} .

Given the state $\rho_{\mathbf{C}\mathsf{Z}\mathsf{E}}$, we characterize the unpredictability of the outputs \mathbf{c} given the system E and the inputs \mathbf{z} by the sandwiched Rényi power, denoted by $\mathcal{R}_{1+\beta}(\rho_{\mathsf{E}}(\mathbf{cz})|\rho_{\mathsf{E}}(\mathbf{z}))$ where $\beta > 0$ and $\rho_{\mathsf{E}}(\mathbf{z}) = \sum_{\mathbf{c}} \rho_{\mathsf{E}}(\mathbf{cz})$ (see Eq. (S2) of the SM for the explicit expression). A QEF with a positive power β for a sequence of n trials is a non-negative function T of random variables $\mathbf{C}\mathbf{Z}$ such that for all states $\rho_{\mathbf{C}\mathsf{Z}\mathsf{E}}$ in the model, T satisfies the inequality

$$\sum_{\mathbf{cz}} T(\mathbf{cz}) \mathcal{R}_{1+\beta}(\rho_{\mathsf{E}}(\mathbf{cz})|\rho_{\mathsf{E}}(\mathbf{z})) \leq 1.$$

Informally, one main result in the CP [12] is that if at the conclusion of the experiment the variable $\log_2(T)/\beta$ takes a value at least h for some $h > 0$, then the output

entropy (in bits) must be at least $h - \log_2(2/\epsilon_\sigma^2)/\beta$ no matter which particular state in the model describes the experiment. Hence, for estimating entropy it suffices to construct QEFs.

In practice, the model for a sequence of trials is constructed as a chain of models for each individual trial. QEFs then satisfy a chaining property: If $F_i(C_i Z_i)$ is a QEF with power β for the i 'th trial, then the product $\prod_{i=1}^n F_i(C_i Z_i)$ is a QEF with power β for the sequence of n trials. To construct the QEF $T(\mathbf{CZ})$, we use this property. Moreover, since the model for each trial of our experiment is identical, we always take the same QEF for each executed trial. The CP [12] contains general techniques for constructing models and QEFs, and the SM contains the details of constructing models (Sect. I) and QEFs (Sect. IV) for each trial of our experiment.

Experiment. Our setup is similar to those reported in Refs. [7, 20]. A pair of polarization-entangled photons are generated through the process of spontaneous parametric downconversion and then distributed via optical fiber to Alice and Bob (see Fig. 1). At each lab of Alice and Bob, a fast QRNG with parity-bit randomness extraction [21] is used to randomly switch a Pockels cell-based polarization analyzer (see Fig. 2). Alice's polarization measurement angles, relative to a vertical polarizer, are $a = 4.1^\circ$ and $a' = 25.5^\circ$, and Bob's are $b = -a$ and $b' = -a'$. These measurement angles, along with the non-maximally entangled state prepared in Fig. 1, are chosen based on numerical simulations of our setup to achieve an optimal Bell violation. The photons are then detected in each lab using superconducting nanowire single-photon detectors with efficiency greater than 90% [22]. The total system efficiencies for Alice and Bob are $76.2 \pm 0.3\%$ and $75.8 \pm 0.3\%$, allowing the detection loophole to be closed. With the configuration detailed in Fig. 2, we can also close the locality loophole.

In each trial, Alice's and Bob's setting choices X and Y are made with random bits whose deviation from uniform is assumed to be bounded. That is, knowing all events in the past light cone, one should not be able to predict the next choice with a probability better than $0.5 + \epsilon_b$. We call ϵ_b the (maximum) adversarial bias. In particular, it is assumed that the quantum devices used cannot have more prior knowledge of the random setting choices than the adversarial bias for each trial. Specifically, we assume that the adversarial and trial-dependent bias of Alice's and Bob's QRNGs is bounded by $\epsilon_b \leq 1 \times 10^{-3}$. That is, each of the setting choices X and Y has a two-outcome distribution with probabilities in the interval $[0.5 - 1 \times 10^{-3}, 0.5 + 1 \times 10^{-3}]$. The bias assumption is supported in two ways: first by a quantum statistical model of the QRNGs, validated by measurements of the QRNG internal operation [21], and second by the observation that the frequencies of the output bits of each QRNG deviate from 0.5 by less than 6×10^{-5} on average in a run of 21 min of trials.

Protocol implementation. The goal is to obtain $k = 512$ random bits with error $\epsilon = 2^{-64}$. For this, we set

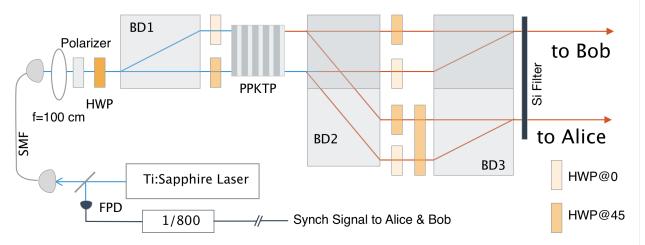


FIG. 1. Diagram of the entangled photon-pair source. A 775-nm-wavelength picosecond Ti:Sapphire laser operating at a 79.3 MHz repetition rate pumps a 20-mm-long periodically-poled potassium titanyl phosphate (PPKTP) crystal, to produce degenerate photons at 1550 nm with a per-pulse probability of 0.0045. The pump is transmitted through a polarization-maintaining single-mode fiber (SMF). The PPKTP crystal is cut for type-II phasematching and placed in a polarization-based Mach-Zehnder interferometer constructed using half-wave plates (HWPs) and three beam displacers (BD1, BD2 and BD3). Tuning the polarization of the pump by a polarizer and HWP allows us to create the non-maximally entangled state $|\psi\rangle = 0.967|HH\rangle + 0.254|VV\rangle$, where H and V denote the horizontally and vertically polarized single-photon states. The photons, along with a synchronization signal, are then distributed via optical fiber to Alice and Bob. The synchronization signal is generated by a fast photodiode (FPD) and divider circuit which divides the pump frequency by 800, and is used as a clock to determine the start of a trial and to time the operation of Alice's and Bob's measurements. This leads to a trial rate of approximately 100 kHz.

$\epsilon_\sigma = 0.8 \times 2^{-64}$ and $\epsilon_x = 0.2 \times 2^{-64}$. To extract $k = 512$ random bits with the TMPS extractor, it suffices to set the entropy threshold to be $\sigma = 1089$. The implementation stages for each instance of the protocol are summarized in Box 1, and more details are available in Sect. III of the SM.

Results. Ideally, the protocol would be applied concurrently with the acquisition of the experimental trials. In this case, the trials were performed three months before the protocol was fully implemented. About 89 min of experimental results were recorded. The results were stored in 1 min blocks containing approximately 6×10^6 trials each. The first 21 min were unblinded for testing the protocol, and the rest were kept in blind storage until the protocol was fully implemented and ready to be used.

From the first 21 min of unblinded results we decided to run five sequential instances of the protocol, and for calibration in each instance we determined to use the 10 min of results preceding to the first trial to be used for randomness accumulation (see Sect. III of the SM for details). We note that the trials for randomness accumulation in one instance can be used also for calibration in the next instance. For the protocol, we loaded the data and divided each 1 min block into 60 subblocks of approximately 1×10^5 trials each. The protocol was then designed to use integer multiples of these subblocks. The

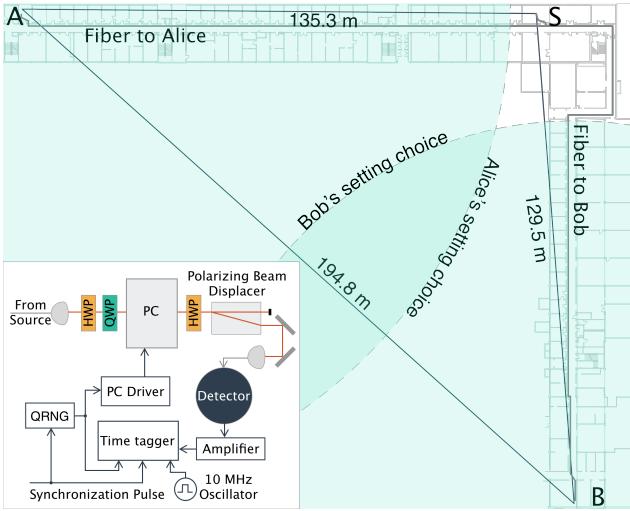


FIG. 2. Locations of Alice (A), Bob (B), and the source (S). Alice and Bob are separated by 194.8 ± 1.0 m (this is slightly further than in Refs. [7, 20]). Faint grey lines indicate the paths that the entangled photons take from the source to Alice and Bob through fiber optic cables. The light-green quarter circles are the 2D projections of the expanding light spheres containing the earliest available information about the random bits used for Alice's and Bob's setting choices at the trial. When Bob finishes his measurement, the radius of the light sphere corresponding to the start of Alice's QRNG has expanded to 127.3 ± 0.5 m, after which it takes an additional 222.3 ± 3.8 ns before the light sphere will intersect Bob's location. Similarly, when Alice completes her measurement, the light sphere corresponding to the start of Bob's QRNG has only reached a radius of 98.3 ± 0.5 m, and it will take 315.5 ± 3.8 ns more to arrive at Alice's station. In this way, the actions of Alice and Bob are spacelike separated. Inset: Alice's and Bob's measurement apparatuses both consist of a Pockels cell (PC), operating at approximately 100 KHz, and a polarizer, constructed using two have-wave plates (HWPs), a quarter-wave plate (QWP) and a polarizing beam displacer, in order to make fast polarization measurements on their respective photons. The measurement setting is controlled by a QRNG, the photon is detected by a high-efficiency superconducting nanowire single-photon detector, and the resulting signal is recorded on a time tagger, where a 10 MHz oscillator is used to keep Alice's and Bob's time taggers synchronized.

first instance of the protocol started producing randomness at the 22nd 1 min block. Each instance started at the first not-yet-used subblock and used the previous 600 subblocks for calibration, then processed subblocks until the running entropy estimate surpassed the threshold σ . In each instance, this happened well before the maximum number of trials n determined at the calibration stage was reached, leading to success of the instance. We then applied the extractor to produce 512 random bits with error 2^{-64} .

The results are summarized in Tab. I. It shows that the experiment time required to fulfill the request for 512 quantum-proof random bits with error 2^{-64} is less than 5 min on average, demonstrating a dramatic im-

Box 1: Overview of protocol implementation

1. Calibration
 - Determine the QEF $F(CZ)$ and its power β used for each executed trial.
 - Fix n —the maximum number of trials.
2. Randomness Accumulation: Run the experiment to acquire up to n trials. After each trial i ,
 - Update the running \log_2 -QEF value $L_i = \sum_{j=1}^i \log_2(F(c_j z_j))$, where c_j and z_j are the observed values of C_j and Z_j .
 - If $(L_i - \log_2(2/\epsilon_\sigma^2))/\beta \geq \sigma$, stop the experiment, set the number of trials actually executed as $n_{\text{act}} = i$, and set the success event $P = 1$.
3. Randomness Extraction: If $P = 1$, then extract k random bits with error ϵ .

TABLE I. Characteristics of the five protocol instances. The number of subblocks is approximately the number of seconds of experiment time required. The entropy rate is estimated by $L_{n_{\text{act}}}/(\beta n_{\text{act}})$, where n_{act} is the actual number of trials executed in an instance, $L_{n_{\text{act}}}$ is the running \log_2 -QEF value at the end of an instance, and β is the power associated with the QEF which is used for each executed trial and determined at the calibration stage. The trial rate in the experiment was approximately 100 kHz.

Instance	$n/10^7$	$n_{\text{act}}/10^7$	Number of sub-blocks	β	Entropy rate/ 10^{-4}
1	5.25	2.32	233	0.010	6.07
2	4.74	3.76	379	0.010	3.78
3	5.92	2.85	287	0.009	5.47
4	6.20	2.83	285	0.009	5.53
5	5.49	2.72	274	0.010	5.20

provement over other quantum-proof protocols and previous experiments. The only experimentally accessible alternative quantum-proof protocol is entropy accumulation as described in Ref. [19]. We found that satisfying the request using theoretical results from Ref. [19], with our experimental configuration and performance, would have required at least 6.108×10^{10} trials, corresponding to 169.7 h of experiment time—see Sect. V of the SM for details.

In conclusion, we demonstrated five sequential instances of the DIQRNG protocol. For joint (or composable) security of the five instances, it suffices that the quantum devices do not retain memory of what happened during the previous instances. Without this as-

sumption, the joint security of the five instances can be compromised as explained in Ref. [23]. In our implementation such problems are mitigated by the definition of soundness in terms of the purified distance rather than the conventional trace distance, but the issues arising in composing protocols like ours need further investigation.

We have emphasized the importance of latency. To produce a fixed block of random bits, latency is simply the time it takes for the protocol to fulfill the request. Above, we have neglected the classical computing time required for calibration and extraction since this can be made relatively small by using faster and more parallel computers. For the current implementation the time costs for calibration and extraction are detailed in Sect. IV and Sect. III of the SM, respectively. The latency for our setup is limited by the rate at which we can implement random setting choices, which in turn is limited by the Pockels cells. Since the source produces pulses at a rate of 79.3 MHz and we can use 10 successive laser pulses as a single trial without reducing the quality of trials, if the Pockels cell limitation can be overcome, the latency could be reduced by a factor of about 80 with

the current entangled photon-pair source.

ACKNOWLEDGMENTS

This work includes contributions of the National Institute of Standards and Technology, which are not subject to U.S. copyright. The use of trade names does not imply endorsement by the U.S. government. The work is supported by the National Science Foundation RAISE-TAQS (Award 1839223); the European Research Council (ERC) projects AQUMET (280169), ERIDIAN (713682); European Union projects QUIC (Grant Agreement no. 641122) and FET Innovation Launchpad UVALITH (800901); the Spanish MINECO projects OCARINA (Grant Ref. PGC2018-097056-B-I00) and Q-CLOCKS (PCI2018-092973), the Severo Ochoa programme (SEV-2015-0522); Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) project (2017-SGR-1354); Fundació Privada Cellex and Generalitat de Catalunya (CERCA program); Quantum Technology Flagship projects MACQSIMAL (820393) and QRANGE (820405); Marie Skłodowska-Curie ITN ZULF-NMR (766402); EMPIR project USOQS (17FUN03).

[1] M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random number generators,” *Rev. Mod. Phys.* **89**, 015004 (2017).

[2] S. Pironio and S. Massar, “Security of practical private randomness generation,” *Phys. Rev. A* **87**, 012336 (2013).

[3] R. Colbeck, *Quantum and Relativistic Protocols for Secure Multi-Party Computation*, Ph.D. thesis, Trinity College, University of Cambridge, Cambridge, UK (2006), arXiv:0911.3814.

[4] R. Colbeck and A. Kent, “Private randomness expansion with untrusted devices,” *J. Phys. A* **44**, 095305 (2011).

[5] A. Acín and L. Masanes, “Certified randomness in quantum physics,” *Nature* **540**, 213–219 (2016).

[6] S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” *Nature* **464**, 1021–1024 (2010).

[7] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, “Experimentally generated random numbers certified by the impossibility of superluminal signaling,” *Nature* **556**, 223–226 (2018).

[8] J. S. Bell, *Speakable and Unspeakable in Quantum Mechanics*, 2nd ed. (Cambridge Univ. Press, Cambridge, UK, 2004).

[9] Yang Liu, Xiao Yuan, Ming-Han Li, Weijun Zhang, Qi Zhao, Jiaqiang Zhong, Yuan Cao, Yu-Huai Li, Luo-Kan Chen, Hao Li, Tianyi Peng, Yu-Ao Chen, Cheng-Zhi Peng, Sheng-Cai Shi, Zhen Wang, Lixing You, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, and Jian-Wei Pan, “High-speed device-independent quantum random number generation without a detection loophole,” *Phys. Rev. Lett.* **120**, 010503 (2018).

[10] Lijong Shen, Jianwei Lee, Le Phuc Tinh, Jean-Daniel Bancal, Alessandro Cer, Antia Lamas-Linares, Adriana Lita, Thomas Gerrits, Sae Woo Nam, Valerio Scarani, and Christian Kurtsiefer, “Randomness extraction from Bell violation with continuous parametric down conversion,” *Phys. Rev. Lett.* **121**, 150402 (2018).

[11] Yang Liu, Qi Zhao, Ming-Han Li, Jian-Yu Guan, Yanbao Zhang, Bing Bai, Weijun Zhang, Wen-Zhao Liu, Cheng Wu, Xiao Yuan, Hao Li, W. J. Munro, Zhen Wang, Lixing You, Jun Zhang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, and Jian-Wei Pan, “Device independent quantum random number generation,” *Nature* **562**, 548–551 (2018).

[12] Yanbao Zhang, Honghao Fu, and Emanuel Knill, “Efficient randomness certification by quantum probability estimation,” (2018), accepted to *Phys. Rev. Research* (see arXiv:1806.04553 for an extended version).

[13] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” *Phys. Rev. Lett.* **23**, 880–884 (1969).

[14] L. Trevisan, “Extractors and pseudorandom generators,” *Journal of the ACM* **48**, 860–79 (2001).

[15] W. Mauerer, C. Portmann, and V. B. Scholz, “A modular framework for randomness extraction based on Trevisan’s construction,” (2012), arXiv:1212.0520, code available on Github.

[16] R. Renner, *Security of Quantum Key Distribution*, Ph.D. thesis, ETH, Zürich, Switzerland (2006), quant-ph/0512258.

[17] M. Tomamichel, *Quantum Information Processing with Finite Resources - Mathematical Foundations*, Springer-

Briefs in Mathematical Physics (Springer Verlag, 2016).

[18] C. A. Miller and Y. Shi, “Universal security for randomness expansion from the spot-checking protocol,” SIAM J. Comput. **46**, 1304–1335 (2017).

[19] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, “Practical device-independent quantum cryptography via entropy accumulation,” Nature Communications **9**, 459 (2018).

[20] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “A strong loophole-free test of local realism,” Phys. Rev. Lett. **115**, 250402 (2015).

[21] Carlos Abellán, Waldimar Amaya, Daniel Mitrani, Valerio Pruneri, and Morgan W. Mitchell, “Generation of fresh and pure random numbers for loophole-free Bell tests,” Phys. Rev. Lett. **115**, 250403 (2015).

[22] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics **7**, 210 (2013).

[23] J. Barrett, R. Colbeck, and A. Kent, “Memory attacks on device-independent quantum cryptography,” Phys. Rev. Lett. **110**, 010503 (2013).

[24] Emanuel Knill, Yanbao Zhang, and Peter Bierhorst, “Quantum randomness generation by probability estimation with classical side information,” (2017), arXiv:1709.06159.

[25] Yanbao Zhang, Emanuel Knill, and Peter Bierhorst, “Certifying quantum randomness by probability estimation,” Phys. Rev. A **98**, 040304(R) (2018).

[26] S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Found. Phys. **24**, 379–85 (1994).

[27] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, “Nonlocal correlations as an information-theoretic resource,” Phys. Rev. A **71**, 022101 (2005).

[28] M. Tomamichel, *A Framework for Non-Asymptotic Quantum Information Theory*, Ph.D. thesis, ETH, Zürich, Switzerland (2012), arXiv:1203.2142 (specific citations are for version 2).

[29] Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner, “Trevisan’s extractor in the presence of quantum side information,” SIAM Journal on Computing **41**, 915–940 (2012).

[30] Xiongfeng Ma, Zhen Zhang, and Xiaoqing Tan, “Explicit combinatorial design,” (2012), arXiv:1109.6147.

[31] W. van Dam, R. D. Gill, and P. D. Grunwald, “The statistical strength of nonlocality proofs,” IEEE Trans. Inf. Theory. **51**, 2812–2835 (2005).

[32] Y. Zhang, E. Knill, and S. Glancy, “Statistical strength of experiments to reject local realism with photon pairs and inefficient detectors,” Phys. Rev. A **81**, 032117/1–7 (2010).

[33] B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. **4**, 93 (1980).

[34] S. N. Bernstein, *Theory of Probability* (Moscow, 1927).

[35] Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, Stefano Pironio, and Valerio Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. **98**, 230501 (2007).

[36] Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani, “Device-independent quantum key distribution secure against collective attacks,” New J. Phys. **11**, 045021 (2009).

SUPPLEMENTAL MATERIAL: EXPERIMENTAL LOW-LATENCY DEVICE-INDEPENDENT QUANTUM RANDOMNESS

I. THEORY BACKGROUND

We consider an experiment which has an input Z and an output C at each trial. For the CHSH Bell-test configuration, the trial input consists of the random setting choices X and Y of Alice and Bob, while the trial output consists of the corresponding outcomes A and B of both parties. That is, $Z = XY$ and $C = AB$. The quantum state of the devices used in a trial is subsumed by the model below but does not appear explicitly. We therefore focus on the visible, classical variables Z and C referred to as the trial results. The possible value that a classical variable takes is denoted by the corresponding lower-case letter. There is an external quantum system E carrying quantum side information. We would like to certify randomness in C with respect to E and conditional on Z . For this, we need to know the correlation between the trial results CZ and the quantum system E . After each trial of the experiment, the joint state of CZ and E is a classical-quantum state

$$\rho_{CZE} = \sum_{cz} |cz\rangle \langle cz| \otimes \rho_E(cz), \quad (S1)$$

where $\rho_E(cz)$ is the sub-normalized state of E given trial results cz . The trace $\text{tr}(\rho_E(cz))$ is the probability of observing the results cz at a trial. In general, we consider the set of all possible classical-quantum states that can occur at the end of the trial. We refer to this set as the “model” \mathcal{C} for the trial. Similarly, we can define the model for a sequence of trials. In this work, the phrase “quantum state,” unless otherwise specified, refers to a normalized quantum state.

We characterize the unpredictability of the output c given the system E and the input z by the sandwiched Rényi power, denoted by $\mathcal{R}_{1+\beta}(\rho_E(cz) \|\rho_E(z))$, which is equal to

$$\text{tr}\left((\rho_E(z)^{-\beta/(2+2\beta)} \rho_E(cz) \rho_E(z)^{-\beta/(2+2\beta)})^{1+\beta}\right), \quad (S2)$$

where $\beta > 0$ is a free parameter and $\rho_E(z) = \sum_c \rho_E(cz)$. Our method relies on a class of non-negative functions $F : cz \mapsto F(cz)$, called “quantum estimation factors” (QEFs). A QEF with power β for a given trial is a non-negative function which satisfies the inequality

$$\sum_{cz} F(cz) \mathcal{R}_{1+\beta}(\rho_E(cz) \|\rho_E(z)) \leq 1 \quad (S3)$$

at all states ρ_{CZE} in the trial model \mathcal{C} . Similarly, we can define a QEF with power β for a sequence of trials given the model governing this sequence. The above inequality is called the QEF inequality.

The concept of a QEF generalizes techniques for certifying randomness against quantum side information used in previous works. The role of QEFs is similar to the role of the weighting terms in the weighted $(1+\epsilon)$ -randomness function of Eq. (6.4) in Ref. [18], and also similar to the role of the quantum systems $D_i \bar{D}_i$ in Eq. (16) of Ref. [19]. QEFs are also closely related to classical “probability estimation factors” (PEFs) as introduced in Refs. [24, 25]. When the quantum system E has the minimum dimension of one, the sub-normalized states $\rho_E(cz)$ and $\rho_E(z)$ specify the probabilities $\mu_E(cz)$ and $\mu_E(z)$ of observing the results cz and z according to a distribution μ_E . The model \mathcal{C} then captures classical side information and specifies a set of probability distributions of CZ given E . In this case, the QEF inequality (S3) simplifies to

$$\sum_{cz} \mu_E(cz) F(cz) \mu_E(c|z)^\beta \leq 1. \quad (S4)$$

If a non-negative function $F : cz \mapsto F(cz)$ satisfies this inequality at all probability distributions in the trial model \mathcal{C} , then F is a PEF with power β for the trial [24, 25].

The model \mathcal{C} for a trial is constructed as follows. Let D be the quantum system of the devices used in the trial. The model \mathcal{C} is induced by a family of input-dependent positive-operator valued measures (POVMs) of D with an input Z that is “free” in the sense that Z is independent of other classical variables and the quantum systems D, E . Before the trial, the joint state of the quantum systems D and E is described by a state ρ_{DE} which may depend on the previous trial results. Let $\mathcal{P}_{D,Z}(C)$ be a family of Z -dependent POVMs of D with outcome C . The specific family $\mathcal{P}_{D,Z}(C)$ of POVMs may depend on the previous trial results. However, each POVM $P_{D,Z}(C)$ in $\mathcal{P}_{D,Z}(C)$ should be consistent with the behavior of the quantum devices at the trial. In the CHSH Bell-test configuration, $Z = XY$, $C = AB$, and the quantum system D can be decomposed into two subsystems D_1 and D_2 held by Alice and Bob respectively.

Hence, the POVM $P_{D,Z}(C)$ has a tensor-product structure over the two subsystems D_1 and D_2 . Furthermore, in a Bell test the non-signaling conditions [26, 27] are satisfied, so the output of a local party is independent of the input of another local party. Therefore, for an arbitrary input $z = xy$ and output $c = ab$ the POVM element is of the form $P_{D_1,x}(a) \otimes P_{D_2,y}(b)$ where $P_{D_1,x}(A)$ and $P_{D_2,y}(B)$ are POVMs. Given any input z , the joint state $\rho_{CE|z}$ of the output C and the system E is induced by performing a measurement $P_{D,z}(C)$ on the initial state ρ_{DE} . That is, for each z

$$\rho_{CE|z} = \sum_c |c\rangle \langle c| \otimes \text{tr}_D (\rho_{DE} (P_{D,z}(c) \otimes \mathbb{1}_E)), \quad (\text{S5})$$

where tr_D is the partial trace over the system D and $\mathbb{1}_E$ is the identity operator on the system E . The set of induced states $\rho_{CE|z}$ satisfying the above physical constraints is denoted by $\mathcal{M}(P_{D,z}(C); E)$. Let $\mathcal{D}(Z)$ be a set of probability distributions of Z at a trial. The specific set $\mathcal{D}(Z)$ may depend on the previous trial results. If the input Z is a free choice with distribution $\nu(Z) \in \mathcal{D}(Z)$ and for each z the state $\rho_{CE|z}$ is in $\mathcal{M}(P_{D,z}(C); E)$, then the final state of the trial results CZ and the quantum system E is given by

$$\rho_{CZE} = \sum_z \nu(z) |z\rangle \langle z| \otimes \rho_{CE|z}. \quad (\text{S6})$$

We construct the model \mathcal{C} governing each trial as the set of states of the above form with an appropriate set $\mathcal{D}(Z)$ of input distributions as specified in the following paragraph. We emphasize that although a sequence of trials may be not independent and identically distributed (i.i.d.), the model governing each trial is the identical \mathcal{C} .

At each trial of our experiment, the input $Z = XY$, where X and Y are selected by QRNGs. The distributions $\nu(X)$ and $\nu(Y)$ are each close to uniform. Specifically, they satisfy $|\nu(x) - 1/2| \leq \epsilon_b$ and $|\nu(y) - 1/2| \leq \epsilon_b$ for all $x, y = 0, 1$. We call ϵ_b the (maximum) adversarial bias of the input random bits. For the model \mathcal{C} , we allow an arbitrary joint distribution $\nu(XY)$ as long as it lies in the convex envelope of joint distributions of two independent binary variables where each variable's distribution satisfies the above bias constraints. It follows that the set $\mathcal{D}(Z)$ of distributions of $Z = XY$ is a convex polytope with 4 extreme points. At these extreme points, the probability distributions are given by (p^2, pq, pq, q^2) , (pq, q^2, p^2, pq) , (pq, p^2, q^2, pq) , and (q^2, pq, pq, p^2) with $p = 1/2 + \epsilon_b$ and $q = 1 - p$, where a distribution $\nu(XY)$ is expressed as a vector $(\nu(X=0, Y=0), \nu(X=1, Y=0), \nu(X=0, Y=1), \nu(X=1, Y=1))$. We denote these four extremal distributions by ν_k , $k = 1, 2, 3, 4$. We note that the convex polytope $\mathcal{D}(Z)$ includes an open neighborhood of joint distributions at the uniform distribution, including correlated ones.

In view of the above construction of the model \mathcal{C} , every state $\rho_{CZE} \in \mathcal{C}$ can be written as a convex combination $\rho_{CZE} = \sum_{k=1}^4 \lambda_k \rho_{CZE}^{(k)}$, where $\lambda_k \geq 0$, $\sum_k \lambda_k = 1$, and the states $\rho_{CZE}^{(k)}$ can be expressed by Eq. (S6) with $\nu(z)$ replaced by $\nu_k(z)$. The model \mathcal{C} then admits a computationally accessible characterization, see Thm. 5 of the companion paper (CP) [12]. Based on this characterization, in Appendix G of the CP [12] we presented an effective algorithm to compute a tight upper bound f_{\max} on the sum $\sum_{cz} F'(cz) \mathcal{R}_{1+\beta}(\rho_E(cz) | \rho_E(z))$ for all states ρ_{CZE} in the model \mathcal{C} and for an arbitrary non-negative function $F' : cz \mapsto F'(cz)$. From the definition of QEFs, one can see that the function $F : cz \mapsto F'(cz) / f_{\max}$ is a QEF with power β for the model \mathcal{C} . In this work, to construct a QEF with power β we choose the non-negative function $F' : cz \mapsto F'(cz)$ to be a PEF with the same power β , because not only are effective methods for constructing PEFs available but also PEFs exhibit unsurpassed finite-data efficiency [24, 25]. See Sect. IV for details on the QEF construction.

II. QUANTUM-PROOF STRONG EXTRACTORS

Let C , S and R be classical variables with the number of possible values denoted by $|C|$, $|S|$ and $|R|$, respectively. Define $m = \log_2(|C|)$, $d = \log_2(|S|)$ and $k = \log_2(|R|)$. When C , S and R are bit strings, m , d and k are their respective length. In the context of an extractor, C is its input, R is its output, and S is the seed, which has a uniform probability distribution and is independent of all other classical variables and quantum systems. An extractor is specified by a function $\mathcal{E} : (C, S) \mapsto R$. Before running the extractor, the joint state of C , S and E is described as $\rho_{CE} \otimes \tau_S$, where $\rho_{CE} = \sum_c |c\rangle \langle c| \otimes \rho_E(c)$ and τ_S is a fully mixed state of dimension 2^d . After running the extractor, the joint state of R , S and E is described as $\rho_{RSE} = \sum_{rs} |rs\rangle \langle rs| \otimes \rho_E(rs)$.

The function \mathcal{E} is called a quantum-proof strong extractor with parameters $(m, d, k, \sigma, \epsilon_x)$ if for every classical-quantum state ρ_{CE} with quantum conditional min-entropy $H_\infty(C|E) \geq \sigma$ bits, the joint distribution of the extractor output $R = \mathcal{E}(C, S)$ and the seed S is close to uniform and independent of E in the sense that the purified distance between ρ_{RSE} and $\tau_{RS} \otimes \rho_E$ is less than or equal to ϵ_x . Here τ_{RS} is a fully mixed state of dimension 2^{d+k} and ρ_E is the marginal state of E according to ρ_{CE} .

The above definition of quantum-proof strong extractors differs from others such as that in Ref. [15] by requiring

small purified distance instead of small trace distance. The definitions of both the purified and trace distances between two quantum states are given in Sect. 3.2 of Ref. [28]. The purified distance can be extended to the previously traced-out quantum systems such as that of the quantum devices used in the protocol. This extendibility helps to analyze the composableity of protocols involving the same quantum devices, see Appendix A of the CP [12] for detailed discussions. We also note that as the purified distance is an upper bound of the trace distance (see Prop. 3.3 of Ref. [28]), the above definition of quantum-proof strong extractors implies the definition in Ref. [15].

To make the extractor work properly, the parameters $(m, d, k, \sigma, \epsilon_x)$ need to satisfy a set of constraints, called “extractor constraints.” The extractor constraints always include that $1 \leq \sigma \leq m$, $d \geq 0$, $k \leq \sigma$, and $0 < \epsilon_x \leq 1$. A specific strong extractor with reasonably low seed requirements is Trevisan’s strong extractor [14], which is proved to be quantum-proof in Ref. [29]. Here we use Trevisan’s strong extractor based on the implementation of Mauerer, Portmann and Scholz [15] that we refer to as the TMPS extractor $\mathcal{E}_{\text{TMPS}}$. To run the TMPS extractor, additional extractor constraints are

$$\begin{aligned} k + 4 \log_2(k) &\leq \sigma - 6 + 4 \log_2(\delta_x), \\ d &\leq w^2 \max \left(2, 1 + \left\lceil \frac{\log_2(k - e) - \log_2(w - e)}{\log_2(e) - \log_2(e - 1)} \right\rceil \right), \end{aligned} \quad (\text{S7})$$

where δ_x is the desired upper bound on the trace distance between ρ_{RSE} and $\tau_{\text{RS}} \otimes \rho_{\text{E}}$, w is the smallest prime larger than $2\lceil \log_2(4mk^2/\delta_x^2) \rceil$, and e is the base of the natural logarithm. To ensure that the purified distance is at most ϵ_x , we set $\delta_x = \epsilon_x^2/2$ according to the relation between the purified and trace distances as stated in Prop. 3.3 of Ref. [28]. We remark that the first extractor constraint in Eq. (S7) is according to the 1-bit extractor based on polynomial hashing, which is directly from Ref. [15], while the second extractor constraint is according to the block-weak design presented in Ref. [15] after considering the improved construction of a basic weak design of Ref. [30].

III. DETAILS OF PROTOCOL IMPLEMENTATION

Our goal is to obtain $k = 512$ random bits with error $\epsilon = 2^{-64}$. To achieve this goal, we set the smoothness error to be $\epsilon_\sigma = 0.8\epsilon \approx 4.34 \times 10^{-20}$ and the extractor error to be $\epsilon_x = 0.2\epsilon \approx 1.08 \times 10^{-20}$. We emphasize that the positive errors ϵ_σ and ϵ_x need to satisfy that $\epsilon_\sigma + \epsilon_x \leq \epsilon$, but their choices are not unique. In order to reduce the number of trials (Eq. (S9) of Sect. IV) and the number of seed bits (Eq. (S7) of Sect. II) required to achieve the goal, we need to choose ϵ_σ and ϵ_x such that $\epsilon_\sigma + \epsilon_x = \epsilon$. Moreover, we observed that with the increase of the splitting ratio $\epsilon_\sigma:\epsilon_x$, the number of trials required decreases while the number of seed bits required increases. The splitting ratio 0.8:0.2 used by us was not optimized; instead it was chosen heuristically such that it does not make the number of trials or the number of seed bits required too large. To satisfy the constraints of the TMPS extractor (see Eq. (S7) of Sect. II), the amount of quantum ϵ_σ -smooth conditional min-entropy to be certified is $\sigma = 1089$ bits. Below we describe the stages required for implementing our protocol.

The first stage of the protocol is calibration based on the results preceding the first trial to be used for randomness accumulation. To determine the number of trials required for a reliable calibration, we study the statistical strength, which is the minimum Kullback-Leibler divergence of the experimental distribution of trial results from the local realistic distributions in a Bell test [31, 32]. As explained in Ref. [25], the latency for producing random bits is determined by the statistical strength: the larger the statistical strength, the lower the latency becomes. From the first 21 min of unblinded results, we found that a stable estimate of the statistical strength needs at least 10 min of results. Consequently, a reliable calibration requires at least 10 min of results preceding the first trial to be used for randomness accumulation in each instance of the protocol. As a result of the calibration stage, we determine a well-performing QEF $F(CZ)$ and its power β used for each executed trial, and fix the maximum number of trials n that can be used for randomness accumulation, see Sect. IV for details.

From the statistical strength determined from the first 21 min of unblinded results, we also estimated that an implementation of our protocol with a high probability of success requires about 8.75 min of trials with the trial rate 100 kHz (see the values at the most left column of Tab. V). Considering that besides the first 21 min of unblinded trials we have about 68 min of trials left for implementing the protocol, we decided ahead of time to aim for five successful instances of the protocol.

The second stage consists of acquiring up to n trials. After each trial i , we update the running \log_2 -QEF value $L_i = \sum_{j=1}^i \log_2(F(c_j z_j))$, where c_j and z_j are the actual values of variables C_j and Z_j observed at the j ’th trial. According to our theory, the output entropy estimated after the i ’th trial is at least $(L_i - \log_2(2/\epsilon_\sigma^2))/\beta$. One advantage of QEFs [12] is that we can stop the experiment early as soon as the running entropy estimate surpasses the threshold σ , that is, $(L_i - \log_2(2/\epsilon_\sigma^2))/\beta \geq \sigma$. If we fail to satisfy this condition after n trials, the protocol fails. Let n_{act} be the actual number of trials executed.

The third and final stage consists of applying the TMPS extractor to the trial outputs. The extractor input is exactly $m = 2n$ bits long and consists of the trial outputs padded with zeros to $2n$ bits if $n_{\text{act}} < n$. The amount of seed required by the extractor is determined by m , k and ϵ_x as instructed in Sect. II. In each instance of the protocol the number of seed bits provided to the extractor is 796322, of which 398161 bits were actually used. In our numerical implementation of the TMPS extractor, the extraction of 512 random bits with error 2^{-64} took about 3 seconds on a personal computer for each protocol instance.

IV. CALIBRATION DETAILS

Before each instance of the protocol we aim to minimize the number of trials required to certify the desired amount of quantum smooth conditional min-entropy. For this, we first determine an input-conditional distribution $\nu(C|Z)$ by maximum likelihood using the calibration data (see Tab. II) and assuming i.i.d. calibration trials. We enforce the requirement that the distribution $\nu(C|Z)$ with $C = AB$ and $Z = XY$ satisfy non-signaling conditions [26] and Tsirelson's bounds [33]. Denote the set of conditional distributions satisfying non-signaling conditions and Tsirelson's bounds by $\mathcal{T}_{C|Z}$, and let the number of calibration trials with inputs $z = xy$ and outputs $c = ab$ be n_{cz} . Then, to obtain $\nu(C|Z)$ we need to solve the following optimization problem:

$$\begin{aligned} & \text{Max}_{\mu(C|Z)} \sum_{cz} n_{cz} \log(\mu(c|z)) \\ & \text{Subject to } \mu(C|Z) \in \mathcal{T}_{C|Z}. \end{aligned} \quad (\text{S8})$$

The objective function is strictly concave and the set $\mathcal{T}_{C|Z}$ is a convex polytope as characterized in Sect. VIII of Ref.[24], so there is a unique maximum, which can be found by convex programming. In our implementation we use sequential quadratic programming. The input-conditional distribution $\nu(C|Z)$ found for each protocol instance using the calibration data is shown in Tab. III. We remark that the above use of the i.i.d. assumption is only for determining the distribution $\nu(C|Z)$ in order to help the following QEF construction.

TABLE II. Counts of measurement settings xy and outcomes ab used for calibration in the protocol.

		Calibration data for Instance 1						Calibration data for Instance 2				
		ab	00	10	01	11	xy	ab	00	10	01	11
xy	ab	00	14828499	20247	21081	39893	00	14829111	20268	21486	40044	
00	10	14700691	150422	16012	45361		10	14700512	150192	15731	45853	
01	11	14685622	16396	165442	44033		01	14685622	16371	164191	43981	
11	00	14506915	191754	205253	3425		11	14510138	191978	203934	3452	

		Calibration data for Instance 3						Calibration data for Instance 4				
		ab	00	10	01	11	xy	ab	00	10	01	11
xy	ab	00	14833584	20397	21730	39366	00	14831299	20421	21461	39383	
00	10	14698516	149471	15704	45686		10	14694430	149505	15765	45042	
01	11	14687682	16329	162921	43488		01	14677655	16275	163939	43348	
11	00	14512332	191118	202908	3439		11	14505754	191564	204731	3432	

		Calibration data for Instance 5				
		ab	00	10	01	11
xy	ab	00	14831005	20234	21422	39750
00	10	14695631	149205	15729	44973	
01	11	14675545	16416	164758	43357	
11	00	14502760	192437	205327	3328	

TABLE III. The input-conditional distributions $\nu(C|Z)$ by maximum likelihood using the calibration data. They are used for determining trial-wise PEFs and QEFs, not to make a statement about the actual distribution when running calibration or randomness accumulation in each instance of the protocol.

The distribution $\nu(C Z)$ for Instance 1				
ab	00	10	01	11
xy				
00	0.994538669905741	0.001359201002169	0.001417406491026	0.002684722601064
10	0.985821748235815	0.010076122672094	0.001071100768434	0.003031028323657
01	0.984879607640748	0.001098577207454	0.011076468756019	0.002945346395779
11	0.973101422088709	0.012876762759493	0.013791426915540	0.000230388236258

The distribution $\nu(C Z)$ for Instance 2				
ab	00	10	01	11
xy				
00	0.994515705036610	0.001358847709653	0.001440882644962	0.002684564608775
10	0.985817745162412	0.010056807583851	0.001054979429726	0.003070467824011
01	0.984965456715605	0.001098349494673	0.010991130965968	0.002945062823755
11	0.973168846092021	0.012894960118257	0.013703878500117	0.000232315289605

The distribution $\nu(C Z)$ for Instance 3				
ab	00	10	01	11
xy				
00	0.994527969039707	0.001367319162871	0.001460067976166	0.002644643821256
10	0.985882962094683	0.010012326107895	0.001051045129976	0.003053666667446
01	0.985062951474202	0.001095311498405	0.010925085541671	0.002916651485723
11	0.973323258322106	0.012835004650500	0.013610748902553	0.000230988124841

The distribution $\nu(C Z)$ for Instance 4				
ab	00	10	01	11
xy				
00	0.994550684213053	0.001368493402282	0.001440000126752	0.002640822257912
10	0.985876463349061	0.010042714266275	0.001057058224524	0.003023764160141
01	0.984968085635641	0.001092870990901	0.011022598704165	0.002916444669293
11	0.973224019770634	0.012836936855908	0.013709501802950	0.000229541570507

The distribution $\nu(C Z)$ for Instance 5				
ab	00	10	01	11
xy				
00	0.994550644169521	0.001356542061317	0.001433498602964	0.002659315166198
10	0.985858226009355	0.010048960221483	0.001057422898793	0.003035390870369
01	0.984914018142560	0.001101986657382	0.011070124629925	0.002913870570133
11	0.973153836105957	0.012862168693984	0.013761812802190	0.000222182397868

Second, we determine the QEF and its power to be used at each executed trial for certifying randomness. For this, we assume that the quantum devices used are honest. Specifically, we assume that the trial results in the data to be analyzed are i.i.d. with the input-conditional distribution $\nu(C|Z)$ found above and with the uniform input distribution, that is, $p(z) = 1/4$ for each $z = xy$. We denote the distribution of each trial's results by $\nu(CZ)$, which is given as $\nu(C|Z)/4$. Given a QEF $F(CZ)$ with power β and the target probability distribution $\nu(CZ)$ at each trial, according to our theory in the CP [12] the amount of quantum ϵ_σ -smooth conditional min-entropy (in bits) available

after n trials in a successful implementation of our protocol is expected to be $n\mathbb{E}_\nu \log_2(F(CZ))/\beta - \log_2(2/\epsilon_\sigma^2)/\beta$, where \mathbb{E}_ν is the expectation functional according to the distribution $\nu(CZ)$. Therefore, the number of trials required to certify $\sigma = 1089$ bits of quantum smooth conditional min-entropy with the smoothness error $\epsilon_\sigma = 0.8 \times 2^{-64}$ is given by

$$n_{\text{exp}} = \frac{\beta\sigma + \log_2(2/\epsilon_\sigma^2)}{\mathbb{E}_\nu(\log_2(F(CZ)))}. \quad (\text{S9})$$

In principle, we can choose the QEF $F(CZ)$ and its power β such that the number n_{exp} is minimized. Such a QEF is optimal for our purpose. However, an effective algorithm for finding optimal QEFs has not yet been well developed. Instead, we determine a valid and well-performing QEF by a method described in the next paragraph.

We replace the trial-wise QEF $F(CZ)$ with a trial-wise PEF $F'(CZ)$ with the same power β in the above expression of n_{exp} , and we minimize n_{exp} over the PEFs and the power β . The PEF $F'(CZ)$ is constructed for the classical trial model which includes all distributions of CZ satisfying non-signaling conditions [26], Tsirelson's bounds [33], and the specified adversarial bias ϵ_b with free setting choices. Denote the above classical trial model by \mathcal{T}_{CZ} , which is a convex polytope as characterized in Sect. VIII of Ref.[24]. Since the values of σ and ϵ_σ are given, the minimization of n_{exp} over the PEFs at a fixed $\beta > 0$ is equivalent to the following maximization problem:

$$\begin{aligned} & \text{Max}_{F'(CZ)} \mathbb{E}_\nu(\log_2(F'(CZ))) \\ & \text{Subject to } \sum_{cz} \mu(cz) F'(cz) \mu(c|z)^\beta \leq 1 \text{ for all } \mu(CZ) \in \mathcal{T}_{CZ}, \\ & \quad F'(cz) \geq 0 \text{ for all } cz. \end{aligned} \quad (\text{S10})$$

The objective function is strictly concave and the constraints are linear, so there is a unique maximum, which can be found by the sequential quadratic programming (see Sect. VIII of Ref.[24] for more details). After solving the minimization of n_{exp} over the PEFs with a fixed $\beta > 0$, the minimization over the power β can be solved by any generic local search method. The optimal trial-wise PEF $F'_s(CZ)$ and its power β_s found for each instance of our protocol are shown in Tab. IV. Once we obtain $F'_s(CZ)$ and β_s , according to the method discussed in Sect. I we can find the scaling factor f_{max} such that the function $F_s : cz \mapsto F'_s(cz)/f_{\text{max}}$ is a valid QEF with power β_s for each trial even considering the adversarial bias in the setting choices. We found that f_{max} is indistinguishable from 1 at high precision. Specifically, we certified that $f_{\text{max}} \in [1, 1 + 4 \times 10^{-8}]$. Thus, we can construct a well-performing trial-wise QEF in the sense that the constructed trial-wise QEF performs as well as the optimal trial-wise PEF used.

We emphasize that the above use of the i.i.d. assumption is only for determining a well-performing trial-wise QEF, while in our analysis of experimental data the i.i.d. assumption is not invoked. To ensure that the probability of success in the actual implementation is high even if the experimental distribution of trial results CZ drifts slowly with time, we conservatively set the maximum number of trials that can be used for randomness accumulation to $n = 2n_{\text{exp},s}$, where $n_{\text{exp},s}$ is the number of trials required with the optimal PEF $F'_s(CZ)$ found in the above paragraph. The values of n at each instance are shown in Tab. V. If the quantum devices used are honest, we can bound the probability of failure at an instance with Bernstein's inequality [34]. The results are shown in Tab. V. In the actual implementation of the protocol, each instance succeeded with an actual number of trials much less than n . The data analyzed are presented in Tab. VI.

In our numerical implementation, the time cost for finding the maximally likely input-conditional distribution $\nu(C|Z)$ and the optimal PEF $F'_s(CZ)$ with its power β_s at each instance of the protocol was about two seconds on a personal computer, which is negligible. However, it took time to determine tight bounds on f_{max} in order to ensure that the performance of the resulted QEF is as close as possible to that of the PEF used. We recall that as the same QEF is used for each executed trial, we need only to perform the certification of f_{max} once at each instance of the protocol. For this, we implemented the algorithm presented in Appendix G of the CP [12] with parallel computation in Matlab. According to the algorithm, the least upper bound and the greatest lower bound on f_{max} are iteratively updated. At each iteration, we first need to divide a 2-dimensional searching region into t subregions and perform a computation for each subregion independently. Then the bounds on f_{max} could be updated according to the algorithm. This division and computation step can be implemented in parallel. The parameter t is free and reflects the tradeoff between the time cost and the computational resource cost. In our implementation, we used 81 parallel workers and so we set $t = 81$. At each instance of the protocol, the certification that $f_{\text{max}} \in [1, 1 + 4 \times 10^{-8}]$ at the numerical precision of $2^{-52} \approx 2.22 \times 10^{-16}$ with Matlab took about 39 min. We also verified the obtained bounds on f_{max} with Mathematica at the precision of 10^{-32} . This verification consumed about 4.5 min on a personal computer for each instance.

TABLE IV. The optimal trial-wise PEF $F'_s(CZ)$ and its power β_s constructed using the calibration data.

The PEF $F'_s(CZ)$ with $\beta_s = 0.010$ for Instance 1					
ab	00	10	01	11	
xy					
00	0.999985100015945	0.960053330288753	0.961278860973820	1.031270546920231	
10	1.000014959703430	0.996179015633874	0.928539989152853	1.034730739709108	
01	1.000014959703431	0.929773555664518	0.996567940251360	1.036340302673597	
11	0.999984980337838	1.003805611257416	1.003418239233214	0.897122388776918	

The PEF $F'_s(CZ)$ with $\beta_s = 0.010$ for Instance 2					
ab	00	10	01	11	
xy					
00	0.999983119719060	0.957736610299895	0.959750543337949	1.033066848043457	
10	1.000016947937376	0.995893262896469	0.924415087525900	1.035965231274906	
01	1.000016947937377	0.926439911048989	0.996244181142510	1.038322042906155	
11	0.999982984135019	1.004090207359396	1.003740689984598	0.892082537083196	

The PEF $F'_s(CZ)$ with $\beta_s = 0.009$ for Instance 3					
ab	00	10	01	11	
xy					
00	0.999987733298785	0.962390263422718	0.964371945028196	1.030101311154533	
10	1.000012315866351	0.996537925255370	0.932055378066285	1.032011535518689	
01	1.000012315866352	0.934047411232071	0.996837840568035	1.034285221532220	
11	0.999987634771458	1.003448155559641	1.003149437513694	0.903094436700780	

The PEF $F'_s(CZ)$ with $\beta_s = 0.009$ for Instance 4					
ab	00	10	01	11	
xy					
00	0.999988613440492	0.963372326842968	0.964857020693164	1.029377999040675	
10	1.000011432196966	0.996661005061451	0.933765419597876	1.031652352661214	
01	1.000011432197022	0.935258762949600	0.996997010088361	1.033467124616762	
11	0.999988521982605	1.003325574159495	1.002990910470073	0.905005556856297	

The PEF $F'_s(CZ)$ with $\beta_s = 0.010$ for Instance 5					
ab	00	10	01	11	
xy					
00	0.999986292840056	0.960621025921868	0.962460953372542	1.030949615008017	
10	1.000013762098517	0.996351569224136	0.929429804140644	1.033727107818069	
01	1.000013762098517	0.931280011007014	0.996713237820074	1.035921358844919	
11	0.999986182742716	1.003633756084664	1.003273531275535	0.898874175871150	

TABLE V. The maximum number, n , of trials required for each instance and the corresponding failure probability p_{fail} .

Instance	1	2	3	4	5
n	52481032	47374338	59237139	61990028	54890733
p_{fail}	$\leq 8.386 \times 10^{-6}$	$\leq 7.958 \times 10^{-6}$	$\leq 9.863 \times 10^{-6}$	$\leq 1.014 \times 10^{-5}$	$\leq 8.598 \times 10^{-6}$

TABLE VI. Counts of measurement settings xy and outcomes ab analyzed for randomness accumulation in the protocol.

Analysis data for Instance 1					Analysis data for Instance 2						
xy	ab	00	10	01	11	xy	ab	00	10	01	11
00	5766872	7890	8525	15483		00	9365500	12916	13661	24706	
10	5715070	58133	6115	18096		10	9278437	94378	9907	28542	
01	5713556	6361	62971	17067		01	9269918	10273	103158	27282	
11	5643767	74691	78949	1334		11	9160334	120357	128237	2185	

Analysis data for Instance 3					Analysis data for Instance 4						
xy	ab	00	10	01	11	xy	ab	00	10	01	11
00	7098856	9769	10200	19035		00	7044516	9510	10216	18839	
10	7033040	71534	7528	21465		10	6981677	70746	7461	21440	
01	7025429	7822	78637	20731		01	6969396	7845	78520	20625	
11	6941352	92273	98527	1607		11	6889053	91212	97340	1582	

Analysis data for Instance 5					
xy	ab	00	10	01	11
00	6768897	9374	9996	18188	
10	6708625	68397	7033	20723	
01	6702989	7421	74355	19950	
11	6622018	87747	92572	1602	

V. PERFORMANCE OF ENTROPY ACCUMULATION WITH CHSH-BASED MIN-TRADEOFF FUNCTIONS

The entropy accumulation protocol as described in Ref. [19] is another experimentally accessible protocol for certifying smooth conditional min-entropy with respect to quantum side information. The implementation of entropy accumulation requires a “min-tradeoff function” f_{\min} . We studied the performance of entropy accumulation with the class of min-tradeoff functions in Ref. [19]. These min-tradeoff functions are constructed from a lower bound on the single-trial conditional von Neumann entropy derived in Refs. [35, 36]. The lower bound is characterized as a function of the violation of the CHSH Bell inequality [13] (hence we are calling them “CHSH-based min-tradeoff functions”). Given the expected violation $(\hat{I} - 2) > 0$ of the CHSH Bell inequality, a lower bound κ on the success probability of the entropy accumulation protocol, and the smoothness error ϵ_σ , the minimum number of i.i.d. trials, where the input distribution is uniform, required to certify σ bits of quantum smooth conditional min-entropy according to entropy accumulation with CHSH-based min-tradeoff functions is denoted by $n_{\text{EAT},\sigma}$. The explicit expression for $n_{\text{EAT},\sigma}$ is given in Eq. (S34) of our previous work [25], which is derived from the results presented in Ref. [19]. For convenience and completeness, we restate the result as follows:

$$n_{\text{EAT},\sigma} = \min_{3/4 \leq p_t \leq (2 + \sqrt{2})/4} n_{\text{EAT},\sigma}(p_t), \quad (\text{S11})$$

where $n_{\text{EAT},\sigma}(p_t)$ is defined by

$$g(p) = \begin{cases} 1 - h\left(\frac{1}{2} + \frac{1}{2}\sqrt{16p(p-1) + 3}\right) & p \in \left[3/4, (2 + \sqrt{2})/4\right] \\ 1 & p \in \left[(2 + \sqrt{2})/4, 1\right], \end{cases}$$

$$\begin{aligned}
f_{\min}(p_t, p) &= \begin{cases} g(p) & p \leq p_t \\ \frac{d}{dp}g(p)|_{p_t}p + \left(g(p_t) - \frac{d}{dp}g(p)|_{p_t}p_t\right) & p > p_t \end{cases} \\
v(p_t, \epsilon, \kappa) &= 2 \left(\log_2 9 + \frac{d}{dp}g(p)|_{p_t} \right) \sqrt{1 - 2\log_2(\epsilon\kappa)}, \\
n_{\text{EAT},\sigma}(p_t) &= \left(\frac{v(p_t, \epsilon_\sigma, \kappa) + \sqrt{v(p_t, \epsilon_\sigma, \kappa)^2 + 4\sigma f_{\min}(p_t, \hat{I}/8 + 1/2)}}{2f_{\min}(p_t, \hat{I}/8 + 1/2)} \right)^2,
\end{aligned}$$

where $h(x) = -x\log_2(x) - (1-x)\log_2(1-x)$ is the binary entropy function and $f_{\min}(p_t, p)$ with the free parameter p_t is a CHSH-based min-tradeoff function.

We estimate the minimum number of trials required by entropy accumulation with CHSH-based min-tradeoff functions when $\sigma = 1089$ and $\epsilon_\sigma = 0.8 \times 2^{-64} \approx 4.34 \times 10^{-20}$. We observe that the smaller the value of κ , the larger the value of $n_{\text{EAT},\sigma}$ becomes when other parameters are fixed. We therefore formally set $\kappa = 1$ in the above expression of $n_{\text{EAT},\sigma}$. From the first 21 min unblinded data for testing our protocol we estimate the expected CHSH violation $(\hat{I} - 2) = 1.142 \times 10^{-3}$. Then $n_{\text{EAT},\sigma=1089} = 6.108 \times 10^{10}$, which would have taken 169.7 h of experiment time with the trial rate of 100 kHz (this is slightly higher than the trial rate used in the current work). For the DIQRNG implemented with a loophole-free Bell test of Ref. [11], from Tab. VI therein we estimate the expected CHSH violation $(\hat{I} - 2) = 2.141 \times 10^{-3}$. So, $n_{\text{EAT},\sigma=1089} = 1.737 \times 10^{10}$, which would have taken 24.1 h of experiment time with the trial rate of 200 kHz used in Ref. [11].