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ABSTRACT
In this paper we provide a new method to certify that a nearby polyno-

mial system has a singular isolated root and we compute its multiplicity

structure. More precisely, given a polynomial system f = ( f1, . . . , fN ) ∈
C[x1, . . . ,xn]

N
, we present a Newton iteration on an extended deflated

system that locally converges, under regularity conditions, to a small

deformation of f such that this deformed system has an exact singular

root. The iteration simultaneously converges to the coordinates of the

singular root and the coefficients of the so-called inverse system that

describes the multiplicity structure at the root. We use α-theory test

to certify the quadratic convergence, and to give bounds on the size of

the deformation and on the approximation error. The approach relies

on an analysis of the punctual Hilbert scheme, for which we provide

a new description. We show in particular that some of its strata can

be rationally parametrized and exploit these parametrizations in the

certification. We show in numerical experimentation how the approxi-

mate inverse system can be computed as a starting point of the Newton

iterations and the fast numerical convergence to the singular root with

its multiplicity structure, certified by our criteria.
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1 INTRODUCTION
Local numerical methods such as Newton iterations have proved their

efficiency to approximate and certify the existence of simple roots. How-

ever for multiple roots they dramatically fail to provide fast numerical

convergence and certification. The motivation for this work is to find a

method with fast convergence to an exact singular point and its multi-

plicity structure for a small perturbation of the input polynomials, and to

give numerical tests that can certify it. The knowledge of the multiplicity

structure together with a high precision numerical approximation of a

singular solution can be valuable information in many problems.

In [27] a method called later integration method is devised to compute

the so-called inverse system or multiplicity structure at a multiple root. It
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is used in [25] to compute an approximation of the inverse system, given

an approximation of that root and to obtain a perturbed system that

satisfies the duality property. However, this method did not give a way

to improve the accuracy of the initial approximation of the root and the

corresponding inverse system. In [16] a new one-step deflation method

is presented that gives an overdetermined polynomial system in the

coordinates of the roots and the corresponding inverse system, serving

as a starting point for the present paper. However, for certification, [16]

refers to the symbolic-numeric method in [1] that only works if the input

system is given exactly with rational coefficients and have a multiple

root with the prescribed multiplicity structure.

In the present paper we give a solution for the following problem:

Problem 1.1. Given a polynomial system f = ( f1, . . . , fN ) ∈ C[x]N

and a point ξ ∈ Cn , deduce an iterative method that converges quadrat-

ically to the triple (ξ ∗,µ∗,ϵ∗) such that ξ ∗ ∈ Cn , µ∗ defines the coef-
ficients of a basis Λ∗ = {Λ∗

1
, . . . ,Λ∗r } ⊂ C[dξ ∗ ] dual to the set Bξ ∗ =

{(x − ξ ∗)β1 , . . . , (x − ξ ∗)βr } ⊂ C[x] and ϵ∗ defines a perturbed poly-

nomial system fϵ ∗ := f + ϵ∗Bξ ∗ with the property that ξ ∗ is an exact

multiple root of fϵ ∗ with inverse system Λ∗. Furthermore, certify this

property and give an upper bound on the size of the perturbation ∥ϵ∗∥.
The difficulty in solving Problem 1.1 is that known polynomial sys-

tems defining the coordinates of the roots and the inverse system are

overdetermined, and we need a square subsystem of it in the Newton

iterations to guarantee the existence of a root together with the qua-

dratic convergence. Thus, roots of this square subsystem may not be

exact roots of the complete polynomial system, and we cannot certify

numerically that they are approximations of a root of the complete

system. This is the reason why we introduce the variables ϵ that allow

perturbation of the input system. One of the goals of the present paper

is to understand what kind of perturbations are needed and to bound

their magnitude.

Certifying the correctness of the multiplicity structure that the nu-

merical iterations converge to poses a more significant challenge: the

set of parameter values describing an affine point with multiplicity r
forms a projective variety called the punctual Hilbert scheme. The goal
is to certify that we converge to a point on this variety. We study an

affine subset of the punctual Hilbert scheme and give a new description

using multilinear quadratic equations that have a triangular structure.

These equations appear in our deflated polynomial system, have integer

coefficients, and have to be satisfied exactly without perturbation, other-

wise the solution does not define a proper inverse system, closed under

derivation. Fortunately, the structure allowed us to define a rational

parametrization of a strata of the punctual Hilbert scheme, called the

regular strata. In turn, this rational parametrization allows certification

when converging to a point on this regular strata.

Our method comprises three parts: first, we apply the Integration

Method (Algorithm 1) with input f and ξ to compute an approximation

of the multiplicity structure, second, an analysis and certification part

(see Section 6 and Algorithm 2), and third, a numerical iteration part

converging to the exact multiple root with its multiplicity structure for

an explicit perturbation of the input system (see Section 5). The missing

proofs are available at hal.inria.fr/hal-02478768.

Related Work. There are many works in the literature studying the certi-

fication of isolated singular roots of polynomial systems. One approach

https://doi.org/10.1145/3373207.3404024
https://doi.org/10.1145/3373207.3404024
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is to give separation bounds for isolated roots, i.e. a bound that guar-

antees that there is exactly one root within a neighborhood of a given

point. Worst case separation bounds for square polynomial systems with

support in given polytopes and rational coefficients are presented in

[10]. In the presence of singular roots, turned into root clusters after

perturbations, these separation bounds separate the clusters from each

other and bound the cluster size. [11, 32, 33] give separation bounds and

numerical algorithms to compute clusters of zeroes of univariate poly-

nomials. [8] extends α-theory and gives separation bounds for simple

double zeroes of polynomial systems, [12] extend these results to zeroes

of embedding dimension one.

Another approach, called deflation, comprises of transforming the

singular root into a regular root of a new system and to apply certifica-

tion techniques on the new system. [18] uses a square deflated system

to prove the existence of singular solutions. [20] devises a deflation tech-

nique that adds new variables to the systems for isolated singular roots

that accelerates Newton’s method and [21] modifies this to compute the

multiplicity structure. [28] computes error bounds that guarantee the

existence of a simple double root within that error bound from the input,

[22, 23] generalizes [28] to the breadth one case and give an algorithm

to compute such error bound. [24] gives verified error bounds for iso-

lated and some non-isolated singular roots using higher order deflations.

[6, 7, 15, 30, 31, 34] give deflation techniques based on numerical linear

algebra on the Macaulay matrices that compute the coefficients of the

inverse system, with improvements using the closedness property of

the dual space. [13, 14] give a new deflation method that does not intro-

duce new variables and extends α-theory to general isolated multiple

roots for the certification to a simple root of a subsystem of the overde-

termined deflated system. In [16] a new deflated system is presented,

its simple roots correspond to the isolated singular points with their

multiplicity structure. A somewhat different approach is given in [1],

where they use a symbolic-numeric certification techniques that certify

that polynomial systems with rational coefficients have exact isolated

singular roots. More recently, [19] design a square Newton iteration and

provide separation bounds for roots when the deflation method of [20]

terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic

analysis of some strata of the punctual Hilbert scheme. Some of its

geometric properties have been investigated long time ago, for instance

in [4, 5, 17] or more recently in the plane [2]. However, as far as we know,

the effective description that we use and the rational parametrization of

the regular strata that we compute have not been developed previously.

2 PRELIMINARIES
Let f := ( f1, . . . , fN ) ∈ C[x]N with x = (x1, . . . ,xn ). Let ξ = (ξ1, . . . ,ξn ) ∈
Cn be an isolated multiple root of f . Let I = ⟨f1, . . . , fN ⟩,mξ be the maxi-

mal ideal at ξ andQ be the primary component of I at ξ so that
√
Q = mξ .

The shifted monomials at ξ will be denoted for α = (α1, . . . ,αn ) ∈ N
n

by

xαξ := (x1 − ξ1)
α1 · · · (x1 − ξn )

αn .

Consider the ring of power series C[[dξ ]] := C[[d1,ξ , . . . ,dn,ξ ]] and

we denote dβξ := d
β1
1,ξ · · ·d

βn
n,ξ , with β = (β1, . . . ,βn ) ∈ N

n
. We identify

C[[dξ ]] with the dual space C[x]∗ by considering the action of dβξ on

polynomials as derivations and evaluations at ξ , defined as

dβξ (p) := ∂β (p)
�����ξ
=

∂ |β |p

∂x
β1
1
· · ·∂x

βn
n

(ξ ) for p ∈ C[x]. (1)

Hereafter, we reserve the notation d and di for the dual variables while ∂
and ∂xi for derivation. We indicate the evaluation at ξ ∈ Cn by writing

di,ξ and dξ , and for ξ = 0 it will be denoted by d. The derivation with

respect to the variable di,ξ in C[[dξ ]] is denoted ∂di,ξ (i = 1, . . . ,n).

Observe that

1

β!
dβξ ((x − ξ )

α ) =



1 if α = β ,

0 otherwise,

where β! = β1! · · · βn !.
For p ∈ C[x] and Λ ∈ C[[dξ ]] = C[x]∗, let p · Λ : q 7→ Λ(p q). We

check that p = (xi − ξi ) acts as a derivation on C[[dξ ]]: (xi − ξi ) ·

dβξ = ∂di,ξ (d
β
ξ ) = βid

β−ei
ξ . Throughout the paper we use the notation

e1, . . . ,en for the standard basis of Cn or for a canonical basis of any

vector spaceV of dimension n. We will also use integrals of polynomials

in C[[dξ ]] as follows: for Λ ∈ C[[dξ ]] and k = 1, . . . ,n, ∫
k
Λ denotes

the polynomial Λ∗ ∈ C[[dξ ]] such that ∂dk,ξ (Λ
∗) = Λ and Λ∗ has no

constant term. We introduce the following shorthand notation

∫
k
Λ := ∫

k
Λ(d

1,ξ , . . . ,dk,ξ ,0, . . . ,0). (2)

For an ideal I ⊂ C[x], let I⊥ = {Λ ∈ C[[dξ ]] | ∀p ∈ I ,Λ(p) = 0}. The

vector space I⊥ is naturally identified with the dual space of C[x]/I . We

check that I⊥ is a vector subspace of C[[dξ ]] which is closed under the

derivations ∂di,ξ for i = 1, . . . ,n.

Lemma 2.1. If Q is a mξ -primary isolated component of I , then Q⊥ =
I⊥ ∩ C[dξ ].

This lemma shows that to compute Q⊥, it suffices to compute all

polynomials of C[dξ ] which are in I⊥. Let us denote this set D =

I⊥ ∩ C[dξ ]. It is a vector space stable under the derivations ∂di,ξ . Its
dimension is the dimension of Q⊥ or C[x]/Q , that is the multiplicity of

ξ , denoted rξ (I ), or simply r if ξ and I is clear from the context.

For an element Λ(dξ ) ∈ C[dξ ] we define the degree or order ord(Λ)

to be the maximal |β | s.t. dβξ appears in Λ(dξ ) with non-zero coefficient.

For t ∈ N, let Dt be the elements of D of order ≤ t . As D is of

dimension r , there exists a smallest t ≥ 0 s.t.Dt+1 = Dt . Let us call this

smallest t , the nil-index of D and denote it by δξ (I ), or simply by δ . As
D is stable by the derivations ∂di,ξ , we easily check that for t ≥ δξ (I ),

Dt = D and that δξ (I ) is the maximal degree of elements of D.

Let B = {xβ1ξ , . . . ,x
βr
ξ } be a basis of C[x]/Q . We can identify the

elements of C[x]/Q with the elements of the vector space spanC (B). We

define the normal form N (p) of a polynomial p in C[x] as the unique
element b of spanC (B) such that p − b ∈ Q . Hereafter, we are going to
identify the elements of C[x]/Q with their normal form in spanC (B).
For α ∈ Nn , we will write the normal form of xαξ as

N (xαξ ) =
r∑
i=1

µβi ,α xβiξ . (3)

2.1 The multiplicity structure
We start this subsection by recalling the definition of graded primal-dual

pairs of bases for the space C[x]/Q and its dual. The following lemma

defines the same dual space as in e.g. [6, 7, 23], but we emphasize on a

primal-dual basis pair to obtain a concrete isomorphism between the

coordinate ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Let f , ξ , Q , D, r = rξ (f )
and δ = δξ (f ) be as above. Then there exists a primal-dual basis pair
(B,Λ) of the local ring C[x]/Q with the following properties:

(1) The primal basis of the local ring C[x]/Q has the form

B :=

{
xβ1ξ ,x

β2
ξ , . . . ,x

βr
ξ

}
. (4)

We can assume that β1 = 0 and that the ordering of the elements
in B by increasing degree. Define the set of exponents in B as E :=

{β1, . . . ,βr } ⊂ N
n .
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(2) The unique dual basis Λ = {Λ1,Λ2, . . ., Λr } of D ⊂ C[dξ ] dual to

B has the form Λi =
1

βi !
dβiξ +

∑
|α |≤|βi |
α<E

µβi ,α
1

β !d
α
ξ .

(3) We have 0 = ord(Λ1) ≤ · · · ≤ ord(Λr ), and for all 0 ≤ t ≤ δ

we have Dt = span

{
Λj : ord(Λj ) ≤ t

}
, where Dt denotes the

elements of D of order ≤ t , as above.

A graded primal-dual basis pair (B,Λ) ofD as described in Lemma 2.2

can be obtained from any basis
˜Λ of D by first choosing pivot elements

that are the leading monomials with respect to a graded monomial

ordering on C[d], these leading monomials define B, then transforming

the coefficient matrix of
˜Λ into row echelon form using the pivot leading

coefficients, defining Λ.
A monomial set B is called a graded primal basis of f at ξ if there

exists Λ ⊂ C[dξ ] such that (B,Λ) is a graded primal-dual basis pair and

Λ is complete for f at ξ .
Next we describe the so-called integration method introduced in [25,

27] that computes a graded pair of primal-dual bases as in Lemma 2.2 if

the root ξ is given. The integration method performs the computation of

a basis order by order. We need the following proposition, a new version

of [27, Theorem 4.2]:

Proposition 2.3. Let Λ1, . . . ,Λs ∈ C[dξ ] and assume that ord(Λi ) ≤ t
for some t ∈ N. Suppose that the subspace D := span(Λ1, . . . ,Λs ) ⊂
C[dξ ] is closed under derivation. Then ∆ ∈ C[dξ ] with no constant term
satisfies ∂dk (∆) ∈ D for all k = 1, . . . ,n if and only if ∆ is of the form

∆ =
s∑
i=1

n∑
k=1

νki ∫
k
Λi (5)

for some νki ∈ C satisfying
s∑
i=1

νki ∂dl (Λi ) − ν
l
i ∂dk (Λi ) = 0 for 1 ≤ k < l ≤ n. (6)

Furthermore, (5) and (6) implies that

∂dk (∆) =
s∑
i=1

νki Λi for k = 1, . . . ,n. (7)

Let Q be a mξ -primary ideal. Proposition 2.3 implies that if Λ =

{Λ1, . . . ,Λr } ⊂ C[dξ ] with Λ1 = 1ξ is a basis of Q⊥, dual to the basis

B = {xβ1ξ , . . . ,x
βr
ξ } ⊂ C[x] of C[x]/Q with ord(Λi ) = |βi |, then there

exist νki,j ∈ C such that

∂dk (Λi ) =
∑

|βj |< |βi |

νki,j Λj .

Therefore, the matrix Mk of the multiplication mapMk by xk − ξk in the

basis B of C[x]/Q is

Mk = [νkj,i ]
T
1≤i,j≤r = [µβi ,βj+ek ]1≤i,j≤r

using the notation (3) and the convention that νki,j = µβi ,βj+ek = 0 if

|βi | ≥ |βj |. Consequently,

νki,j = µβi ,βj+ek i, j,= 1, . . . ,r ,k = 1, . . . ,n,

and we have

Λi =
∑

|βj |< |βi |

n∑
k=1

µβi ,βj+ek ∫
k
Λj

where µβi ,βj+ek is the coefficient of xβiξ in the normal form of xβj+ekξ
in the basis B of C[x]/Q .

Next we give a result that allows to simplify the linear systems in-

volved in the integration method. We first need a definition:

Definition 2.4. Let E ⊂ Nn be a set of exponents. We say that E is

closed under division if β = (β1, . . . ,βn ) ∈ E implies that β − ek ∈ E
as long as βk > 0 for all k = 1, . . . ,n. We also call the corresponding

primal basis B = {xβ1ξ , . . . ,x
βr
ξ } closed under division.

The following lemma provides a simple characterization of dual bases

of inverse systems closed under derivation, that we will use in the

integration algorithm.

Lemma 2.5. Let B = {xβ1ξ , . . . ,x
βr
ξ } ⊂ C[x] be closed under division

and ordered by degree. Let Λ = {Λ1, . . . ,Λr } ⊂ C[dξ ] be a linearly
independent set such that

Λi =
∑

|βj |< |βi |

n∑
k=1

µβi ,βj+ek ∫
k
Λj . (8)

Then D = span{Λ1, . . . ,Λr } is closed under derivation iff for all i,s =
1, . . . ,r , |βs | < |βi | and k , l ∈ {1, . . . ,n} we have∑

j : |βs |< |βj |< |βi |

µβi ,βj+ek µβj ,βs+el − µβi ,βj+el µβj ,βs+ek = 0. (9)

Furthermore, (B,Λ) is a graded primal-dual basis pair iff they satisfy (9)

and

µβi ,βj+ek =



1 for βi = βj + ek
0 for βj + ek ∈ E, βi , βj + ek ,

(10)

To compute the inverse system D of f at a point ξ , we will consider
the additional systems of equations in ξ and µ = {µβi ,α }:

Λi ( fj ) = 0 for 1 ≤ i ≤ r ,1 ≤ j ≤ N . (11)

Throughout the paper we use the following notation:

Notation 2.6. Let f1, . . . , fN ∈ C[x], ξ ∈ Cn and fix t ∈ N. Let Bt−1 =

{xβ1ξ , . . . , x
βrt−1
ξ } ⊂ C[xξ ]t−1 be closed under division and Λt−1 =

{Λ1, . . . ,Λrt−1 } ⊂ C[dξ ]t−1 dual to Bt−1 with

∂dk (Λj ) =
∑

|βs |< |βj |

µβj ,βs+ekΛs j = 1, . . . ,rt−1,k = 1, . . . ,n.

Consider the following homogeneous linear system of equations in the

variables {νkj : j = 1, . . . ,rt−1, k = 1, . . . ,n}:∑
j :|βs |< |βj |<t

νkj µβj ,βs+el − ν
l
j µβj ,βs+ek = 0, 1 ≤ k < l ≤ n (12)

νkj = 0 if βj + ek = βl for some 1 ≤ l ≤ rt−1 (13)

*.
,

rt−1∑
j=1

n∑
k=1

νkj ∫
k
Λj

+/
-
(fl ) = 0 l = 1, . . . , N . (14)

We will denote by Ht the coefficient matrix of the equations in (12) and

(13) and by Kt the coefficient matrix of the equations in (12)-(14).

Algorithm 1 produces incrementally a basis ofD, similarly toMacaulay’s

method. The algorithmic advantage is the smaller matrix size inO (r n2+

N ) instead of N
(n+δ−1

δ

)
, where δ is the maximal degree (depth) in the

dual, cf. [16, 25].

The full Integration Method consists of taking Λ1 := 1ξ for t = 0,

a basis of D0 and then iterating algorithm Integration Method -

Iteration t until we find a value of t when Dt = Dt−1. This implies

that the order δ = δξ (f ) = t − 1. This leads to the following definition.

Definition 2.7. We say thatΛ ⊂ C[dξ ] is complete for f at ξ if the linear
system Kt of the equations (12)-(14) in degree t = δ + 1 = ord(Λ) + 1 is
such that kerKδ+1 = {0}.

Notice that the full IntegrationMethod constructs a graded primal-

dual basis pair (B,Λ). The basis Λ ⊂ (f )⊥ spans a space stable by deriva-

tion and is complete for f , so that we have span(Λ) = (f )⊥∩C[dξ ] = Q⊥

where Q is the primary component of (f ) at ξ .
To guarantee that Bt is closed under division, one could choose a

graded monomial ordering ≺ of C[dξ ] and compute an auto-reduced

basis of kerKt such that the initial terms for ≺ are dβiξ . The set Bt

constructed in this way would be closed under division, since Dt is

stable under derivation. In the approachwe use in practice, we choose the

column pivot taking into account the numerical values of the coefficients
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Algorithm 1 Integration Method - Iteration t

Input: t > 0, f = ( f1, . . . , fN ) ∈ C[x]N , ξ ∈ Cn ,

Bt−1 = {x
β1
ξ , . . . ,x

βrt−1
ξ } ⊂ C[x] closed under division and

Λt−1 = {Λ1, . . . ,Λrt−1 } ⊂ C[dξ ] a basis for Dt−1 dual to Bt−1, of the
form (8).

Output: Either “Dt = Dt−1" or Bt = {x
β1
ξ , . . . ,x

βrt
ξ } for some

rt > rt−1 closed under division and Λt = {Λ1, . . . ,Λrt } with Λi of the
form (8), satisfying (9), (10) and (11).

(1) Set up the coefficient matrix Kt of the homogeneous linear system

(12)-(14) in Notation 2.6 in the variables {νkj }j=1, ...,rt−1, k=1, ...,n

associated to an element of the form Λ =
∑rt−1
j=1

∑n
k=1 ν

k
j ∫
k
Λj . Let

ht := dim kerKt .
(2) If ht = 0 then return “Dt = Dt−1". If ht > 0 define rt := rt−1 + ht .
Perform a triangulation of Kt by row reductions with row

permutations and column pivoting so that the non-pivoting columns

correspond to exponents βrt−1+1, . . . ,βrt with strict divisors in Bt−1.

Let Bt = Bt−1 ∪ {x
βrt−1+1
ξ , . . . ,xβrtξ }.

(3) Compute a basis Λrt−1+1, . . . ,Λrt ∈ C[dξ ] of kerKt from the

triangular reduction of Kt by setting the coefficients of the

non-pivoting columns to 0 or 1. This yields a basis

Λt = Λt−1 ∪ {Λrt−1+1, . . . ,Λrt } dual to Bt . The coefficients νki,j of Λi
are µβi ,βj+ek in (8) so that Eq. (11) are satisfied. Eq. (10) are satisfied,

since Λt is dual to Bt .

and not according to a monomial ordering and we check a posteriori

that the set of exponents is closed under division (See Example 7.1).

The main property that we will use for the certification of multiplici-

ties is given in the next theorem.

Theorem 2.8. If ξ ∗ is an isolated solution of the system f (x) = 0 and
B is a graded primal basis at ξ ∗ closed under division, then the system
F (ξ ,µ ) = 0 of all equations (9), (10) and (11) admits (ξ ∗,µ∗) as an isolated
simple root, where µ∗ defines the basis Λ∗ of the inverse system of (f ) at ξ
dual to B, due to (8).

3 PUNCTUAL HILBERT SCHEME
The results in Sections 3 and 4 do not depend on the point ξ ∈ Cn ,
so to simplify the notation, we assume in these sections that ξ = 0.
Let m = (x1, . . . ,xn ) be the maximal ideal defining ξ = 0 ∈ Cn . Let
C[d] be the space of polynomials in the variables d = (d1, . . . ,dn ) and
C[d]t ⊂ C[d] the subspace of polynomials in d of degree ≤ t .

For a vector space V , let Gr (V ) be the projective variety of the r
dimensional linear subspaces of V , also known as the Grassmannian of

r -spaces of V . The points in Gr (V ) are the projective points of P(∧rV )
of the form v = v1 ∧ · · · ∧ vr for vi ∈ V . Fixing a basis e1, . . . ,es of

V , the Plücker coordinates of v are the coefficients of ∆i1, ...,ir (v) of
v =

∑
i1< · · ·<ir ∆i1, ...,ir (v) ei1 ∧ · · · ∧ eir . WhenV = C[d]r−1, a natural

basis is the dual monomial basis ( d
α

α ! ) |α |<r . The Plücker coordinates
of an element v ∈ Gr (C[d]r−1) for this basis are denoted ∆α1, ...,αr (v)
where αi ∈ N

n
, |αi | < r .

If Λ = {Λ1, . . . ,Λr } is a basis of a r -dimensional space D in C[d]r−1
with Λi =

∑
|α |<r µi,α

dα
α ! , the Plücker coordinates of D are, up to

a scalar, of the form ∆α1, ...,αr = det

[
µi,α j

]
1≤i,j≤r

. In particular, a

monomial set B = {xβ1 , . . . ,xβr } ⊂ C[x]r−1 has a dual basis in D iff

∆β1, ...,βr (D) , 0. If (B = {xβi }ri=1,Λ = {Λi }
r
i=1) is a graded primal-dual

basis pair, then µi,βj = δi,j . To keep our notation consistent with the

previous sections, the coordinates of Λi ∈ Λ when Λ is dual to B will be

denoted by µβi ,α instead of µi,α . By properties of the determinant, the

Plücker coordinates of D are such that

µβi ,α =
∆β1, ...,βi−1,α ,βi+1, ...,βr

∆β1, ...,βr
i = 1, . . . ,r . (15)

If D is the dual of an ideal Q = D⊥ ⊂ C[x] and B = {xβ1 , . . . ,xβr }
is a basis of C[x]/Q so that ∆β1, ...,βr (D) , 0, the normal form of

xα ∈ C[x]r−1 modulo Q = D⊥ in the basis B is

N (xα ) =
r∑
j=1

µβj ,α xβj =
r∑
j=1

∆β1, ...,βj−1,α ,βj+1, ...,βr

∆β1, ...,βr
xβj .

(if deg(xα ) ≥ r , then N (xα ) = 0).

Definition 3.1. Let Hr ⊂ Gr (C[d]r−1) be the set of linear spaces D
of dimension r in C[d]r−1 which are stable by the derivations ∂di with

respect to the variables d (i.e. ∂diD ⊂ D for i = 1, . . . ,n). We called Hr
the punctual Hilbert scheme of points of multiplicity r .

If D ⊂ C[d] is stable by the derivations ∂di , then by duality I =

D⊥ ⊂ C[x] is a vector space of C[x] stable by multiplication by xi , i.e.
an ideal of C[x].

Proposition 3.2. D ∈ Hr iff D⊥ = Q is an m-primary ideal such that
dimC[x]/Q = r .

Proof. Let D ∈ Hr . We prove that D⊥ = Q is an m-primary ideal.

As D is stable by derivation, Q = D⊥ is an ideal of C[x]. This also
implies that 1 ∈ D, so that Q ⊂ m. As dimD = dimC[x]/Q = r ,

δ = ord(D) is finite and mδ+1 ⊂ D⊥ = Q . Therefore, Q is m-primary,

which shows the first implication.

Conversely, let Q be a m-primary ideal such that dimC[x]/Q = r .
Then by Lemma 2.1, D = Q⊥ ⊂ C[d]t is stable by derivation and of

dimension r = dimC[x]/Q . Thus D ∈ Hr . This concludes the proof of

the proposition. □

ForD ∈ Hr , for t ≥ 0 we denote byDt the vector space of elements

of D of order ≤ t . We verify that D⊥t = D
⊥ +mt+1. The next theorem

follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B ⊂ C[x] closed under division such that |B | = r and
δ = deg(B), the following points are equivalent:

(1) D ∈ Hr and Bt is a basis of C[x]/(D⊥ +mt+1) for t = 1, . . . ,δ .
(2) The dual basis Λ = {Λ1, . . . ,Λr } of B satisfies Λ1 = 1 and the

equations (8), (9) and (10).

For a sequence h = (h0,h1, . . . ,hδ ) ∈ N
δ+1
+ and 0 ≤ t ≤ δ , let

ht = (h0, . . . ,ht ), rt =
∑t
i=0 hi . For r ≥ 1 we denote by Sr the set of

sequences h of some length δ < r with hi , 0, h0 = 1 and rδ = r . For
h ∈ Sr , we consider the following subvarieties of Hrt :

Hht = {D ∈ Hrt | dimDi = dimD ∩ C[d]i ≤ ri ,i = 0, . . . ,t }.

These are projective varieties in Hrt defined by rank conditions on

the linear spaces D ∩ C[d]i for D ∈ Hrt , that can be expressed in

terms of homogeneous polynomials in the Plücker coordinates of D. In

particular, the varieties Hh :=Hhδ are projective subvarieties of Hr .

They may not be irreducible or irreducible components of Hr , but we

have Hr = ∪h∈Sr Hh.
We will study a particular component of Hh, that we call the regular

component of Hh, denoted H
r eд
h . It is characterized as follows. Let

H
r eд
h0
= {⟨1⟩} = {C[d]0} = G1 (C[d]0) and assume that H

r eд
ht−1

has been

defined as an irreducible component of Hht−1 . Let
Wt = {(Dt−1, Et ) | Dt−1 ∈ Hht−1, Et ∈ Grt (C[d]t ),

Dt−1 ⊂ Et , ∀i ∂di Et ⊂ Dt−1 }

The constraints Dt−1 ⊂ Et and ∂di Et ⊂ Dt−1 for i = 1, . . . ,n define a

linear system of equations in the Plücker coordinates of Et (see e.g. [9]),

corresponding to the equations (5), (6). By construction, the projection of
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Wt ⊂ Hht−1 × Grt (C[d]t ) on the second factor Grt (C[d]t ) is π2 (Wt ) =
Hht and the projection on the first factor is π1 (Wt ) =Hht−1 .

There exists a dense subsetUt−1 of the irreducible varietyH
r eд
ht−1

(with

Ut−1 =H
r eд
ht−1

) such that the rank of the linear system corresponding to

(5) and (6) defining Et is maximal. Since π−1
1

(Dt−1) is irreducible (in fact

linear) of fixed dimension for Dt−1 ∈ Ut−1 ⊂ H
r eд
ht−1

, there is a unique

irreducible component Wt,r eд of Wt such that π1 (Wt,r eд ) = H
r eд
ht−1

(see eg. [29][Theorem 1.26]). We define H
r eд
ht

= π2 (Wt,r eд ). It is an

irreducible component of Hht , since otherwiseWt,r eд = π−1
2

(H
r eд
ht

)

would not be a component ofWt but strictly included in one of the

irreducible components ofWt .

Definition 3.4. Let πt : Hht → Hht−1 , D 7→ D ∩ C[d]t−1 be the

projection in degree t−1.We define by induction on t ,H
r eд
h0
= {⟨1⟩} and

H
r eд
ht

is the irreducible component π−1t (H
r eд
ht−1

) of Hht for t = 1, . . . ,δ .

4 RATIONAL PARAMETRIZATION
Let B = {xβ1 , . . . ,xβr } ⊂ C[x]r−1 be a monomial set. In this section we

assume that B is closed under division and its monomials are ordered by

increasing degree. For t ∈ N, we denote by Bt = B ∩ C[x]t , by B
[t ] the

subset of its monomials of degree t . Let ht = |B[t ] |, rt =
∑
0≤i≤t ht =

|Bt | and δ = deg(B).
Let HB := {D ∈ Hr | Bt is a basis of C[x]/(D⊥ + mt+1),t =

0, . . . ,δ }. By Theorem 3.3, HB is the set of linear spaces D ∈ Hr such

that Dt = D ∩ C[d]t satisfy Equations (8) and (9). It is the open subset

of D ∈ Hh such that ∆Bt (Dt ) , 0 for t = 1, . . . ,δ , where ∆Bt :=

∆β1, ...,βrt denotes the Plücker coordinate for Grt (C[d]t ) corresponding
to the monomials in Bt .

Since for D ∈ HB we have ∆B (D) , 0, we can define the affine

coordinates of HB using the coordinates of the elements of the basis

Λ = {Λ1, . . . ,Λr } dual to B:{
µβj ,α =

∆β1, ...,βj−1,α ,βj+1, ...,βr

∆B
: j = 1, . . . ,r , |α | < r

}
.

The following lemma shows that the values of the coordinates {µβi ,βj+ek :

i, j = 1, . . . r , |βj | < |βi |,k = 1, . . . ,n} uniquely define Λ.

Lemma 4.1. Let B = {xβ1 , . . . ,xβrt } closed under division, D ∈ HB
and Λ = {Λ1, . . . ,Λr } be the unique basis of D dual to B with Λi =∑
|α | ≤ |βi | µβi ,α

dα
α ! for i = 1, . . . ,r . Then Λ1 = 1 and for i = 2, . . . ,r

Λi =
∑

|βj |< |βi |

n∑
k=1

µβi ,βj+ek ∫
k
Λj .

Thus, µβi ,α is a polynomial function of {µβs ,βj+ek : |βs | ≤ |βi |, |βj | <

|βs |,k = 1, . . . ,n} for i = 1, . . . ,r , |α | < |βi |.

Proof. Since D is closed under derivation, by Proposition 2.3 there

exist ci,s,k ∈ C such that ∂dk (Λi ) =
∑
|βs |< |βi | ci,s,kΛs . Then

µβi ,βj+ek = Λi (xβj+ek ) = ∂dk (Λi ) (x
βj ) =

∑
|βs |< |βi |

ci,s,kΛs (xβj ) = ci,j,k .

The second claim follows from obtaining the coefficients inΛ recursively

from Λ1 = 1 and Λi =
∑
|βj |< |βi |

∑n
k=1 µβi ,βj+ek ∫

k
Λj , for i = 2, . . . ,r .

□

Wedefine µ := {µβi ,βj+ek }i,j=1, ...r , |βj |< |βi |,k=1, ...,n , µt := {µβi ,βj+ek ∈

µ : |βi | ≤ t } ⊂ µ and µ
[t ] := {µβi ,βj+ek ∈ µ : |βj | = t } ⊂ µt . The next

definition uses the fact that Equations (12) and (13) are linear in νkj with

coefficients depending on µt−1:

Definition 4.2. Given Dt−1 ∈ HBt−1 with a unique basis Λt−1 =

{Λ1, . . . ,Λrt−1 } with Λi =
∑
|α |<t µβi ,α

dα
α ! for j = 1, . . . ,rt−1 that is

dual to Bt−1, uniquely determined by µt−1 = {µβi ,βj+ek : |βi | ≤

t − 1, |βj | < |βi |} as above. Recall from Notation 2.6 that Ht is the

coefficient matrix of the homogeneous linear system (12) and (13) in

the variables {νkj : j = 1, . . . ,rt−1, k = 1, . . . ,n}. To emphasize the

dependence of its coefficients on Dt−1 or µt−1 we use the notation

Ht (Dt−1) or Ht (µt−1). For D ∈ H
r eд
h in an open subset, the rank ρt

of Ht (Dt−1) is maximal.

The next definition describes a property of a monomial set B such

that it will allow us to give a rational parametrization of HB .

Definition 4.3. For t = 1, . . . ,δ = deg(B) we say thatDt ∈ Grt (C[d]t )
is regular for Bt if,

• dim(Dt ) = rt = |Bt |,
• rankHt (Dt−1) = ρt the generic rank of Ht on H

r eд
ht

,

• ∆B[t ] (D[t ]) , 0 where ∆B[t ] (D[t ]) is the Plücker coordinate of

D
[t ] ∈ Ght (C[d]r ) corresponding to the monomials in B

[t ].

Let Ut := {Dt ∈ H
r eд
ht

: Dt is regular for Bt }. Then Ut is either

an open dense subset of the irreducible variety H
r eд
ht

or empty if

∆B[t ] (D[t ]) = 0 for all D ∈ H
r eд
ht

. We say that B is a regular basis

ifUt =H
r eд
ht

(orUt , ∅) for t = 1, . . . ,δ .

We denote by γ
[t ] = dimGht (kerHt (Dt−1)) for Dt−1 ∈ Ut−1 and

γ =
∑δ
t=0 γ[t ].

If the basis B is regular and closed under division, then H
r eд
h can

be parametrized by rational functions of free parameters µ. We present

hereafter Algorithm 2 to compute such a parametrization iteratively.

Algorithm 2 Rational Parametrization - Iteration t

Input: t > 0, Bt = {xβ1 , . . . ,xβrt } ⊂ C[x]t closed under division and

regular, µt−1 ⊂ µt−1 and Φt−1 : µt−1 7→
(
qβj ,α (µt−1)

)
|βj | ≤t−1, |α |<r

with qβj ,α ∈ Q(µt−1) parametrizing a dense subset of H
r eд
ht−1

.

Output: µt ⊂ µt and Φt : µt 7→
(
qβj ,α

)
|βj | ≤t, |α |<r

, qβj ,α ∈Q(µt )

extending Φt−1 and parametrizing a dense subset of H
r eд
ht

.

(1) Let Ht be as in Notation 2.6, ν = [νkj : j = 1, . . . ,rt−1,k = 1, . . . ,n]T .

Decompose Ht (Φt−1 (µt−1)) · ν = 0 as

[
A(µt−1) B (µt−1) C (µt−1)

] 

ν ′

ν ′′

ν


= 0, (16)

where ν ′ is associated to a maximal set of independent columns of

Ht (Φt−1 (µt−1)), ν
′′ = {νkj : xβj+ek ∈ B

[t ]} and ν refers to the rest of

the columns. If no such decomposition exists, return “Bt is not regular”.

(2) For νkj ∈ ν
′
express νkj = φkj (ν ,ν

′′) ∈ Q(µt−1)[ν ,ν
′′
]1 as the

generic solution of the system Ht (Φt−1 (µt−1)) · ν = 0.

(3) For i = rt−1 + 1, . . . ,rt do:
(3.1) Define µ

[t ],i :=
{
µβi ,βj+ek : νj,k ∈ ν

}
,

µ ′
[t ],i = {µβi ,βj+ek : νkj ∈ ν

′}, µ ′′
[t ],i = {µβi ,βj+ek : νkj ∈ ν

′′}, and

µt := µt−1 ∪
⋃rt

i=rt−1+1
µ
[t ],i .

(3.2) For µβi ,βj+ek ∈ µ
′′
[t ],i set qβi ,βj+ek = µβi ,βj+ek = 1 if

βi = βj + ek and 0 otherwise.

(3.3) For µβi ,βj+ek ∈ µ
′
[t ],i define

qβi ,βj+ek := φkj (µ[t ],i ,µ
′′
[t ],i ) ∈ Q(µt )

(3.4) For |α | < r and µβi ,α < µt find qβi ,α using Lemma 4.1.

Proposition 4.4. Let B = {xβ1 , . . . ,xβr } ⊂ C[x]r−1 be closed under
division and assume that B is a regular basis. There exist a subset µ ⊂ µ
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with |µ | = γ and rational functions qβj ,α (µ ) ∈ Q(µ ) for j = 1, . . . ,r and
|α | < r , such that the map Φ : Cγ →HB defined by

Φ : µ 7→
(
qβj ,α (µ )

)
j=1, ...,r , |α |<r

parametrizes a dense subset of H
r eд
h .

Definition 4.5. We denote by Ht (µ ) a maximal square submatrix of A
in (16) such that det(Ht (µt−1)) , 0.

The size of Ht (µ ) is the size of ν
′
in (16), that is the maximal number of

independent columns inHt (µt−1). Given an elementD = Λ1∧· · ·∧Λr ∈
Gr (C[d]r−1), in order to check that D is regular for B, it is sufficient

to check first that ∆B (D) , 0 and secondly that |Ht (µ ) | , 0 for all

t = 0, . . . ,δ , where µ = (µβ,α ) is the ratio of Plücker coordinates of D

defined by the formula (15).

5 NEWTON’S ITERATIONS
In this section we describe the extraction of a square, deflated system

that allows for a Newton’s method with quadratic convergence. We

assume that the sole input is the equations f = ( f1, . . . , fN ) ∈ C[x]N ,

an approximate point ξ ∈ Cn and a tolerance ε > 0.

Using this input we first compute an approximate primal-dual pair

(B, Λ) by applying the iterative Algorithm 1. The rank and kernel vectors

of the matrices Kt (see Algorithm 1) are computed numerically within

tolerance ε , using SVD. Note that here and in Section 6 we do not need

to certify the SVD computation but we are only using SVD to certify

that some matrices are full rank by checking that the distance to the

variety of singular matrices is bigger than the perturbation of the matrix.

Thus we need a weaker test, which relies only on a lower bound of the

smallest singular value.

The algorithm returns a basis B = {xβ1ξ , . . . ,x
βr
ξ } with exponent vec-

tors E = {β1, . . . ,βr }, as well as approximate values for the parameters

µ = {µβi ,βj+ek : |βj | < |βi | ∈ E, k = 1, . . . ,n}. These parameters will

be used as a starting point for Newton’s iteration. Note that, by looking

at B, we can also deduce the multiplicity r , the maximal order δ of dual

differentials, the sequences rt = |Bt |, and ht = |B[t ] | for t = 0, . . . ,δ .
Let F be the deflated system with variables (x,µ ) defined by the

relations (8) and Equations (9), (10) and (11) i.e.

F (x,µ )=




∑
|βs |< |βj |< |βi |

µβi ,βj +ek µβj ,βs +el − µβi ,βj +el µβj ,βs +ek =0 (a)

for all i = 1, . . . , r , |βs | < |βi |, k , l ∈ {1, . . . , n }

µβi ,βj +ek =
{
1 for βi = βj + ek
0 for βj + ek ∈ E, βi , βj + ek ,

(b )

Λi (fj ) = 0, i = 1, . . . , r , j = 1, . . . , N . (c )

Here Λ1 = 1x and Λi =
∑
|βj |< |βi |

∑n
k=1 µβi ,βj+ek ∫

k
Λj ∈ C[µ][dx]

denote dual elements with parametric coefficients defined recursively.

Also, if Λi =
∑
|α | ≤ |βi | µβi ,α

dαx
α ! then

Λi ( fj ) =
∑
|α | ≤ |βi |

µβi ,α
∂α ( fj ) (x)

α !

which is in C[x,µ] by Lemma 4.1. Note, however, that (a) and (b) are
polynomials in C[µ], only (c ) depends on x and µ. Equations (b) define
a simple substitution into some of the parameters µ. Hereafter, we ex-
plicitly substitute them and eliminate this part (b) from the equations

we consider and reducing the parameter vector µ.
By Theorem 2.8, if B is a graded primal basis for f at the root ξ ∗ then

the above overdetermined system has a simple root at a point (ξ ∗,µ∗).
To extract a square subsystem defining the simple root (ξ ∗,µ∗) in

order to certify the convergence, we choose a maximal set of equations

whose corresponding rows in the Jacobian are linearly independent.

This is done by extracting first a maximal set of equations in (a) with
linearly independent rows in the Jacobian. For that purpose, we use the

rows associated to the maximal invertible matrix Ht (Definition 4.5) for

each new basis element Λi ∈ D[t ] and t = 1, . . . ,r . We denote by G0

the subsystem of (a) that correspond to rows of Ht .
We complete the system of independent equationsG0 with equations

from (c ), using a QR decomposition and thresholding on the transposed

Jacobian matrix of G0 and (c ) at the approximate root. Let us denote

by F0 the resulting square system, whose Jacobian, denoted by J0, is
invertible.

For the remaining equations F1 of (c ), not used to construct the

square system F0, define Ω = {(i, j ) : Λi ( fj ) ∈ F1}. We introduce new

parameters ϵi,j for (i, j ) ∈ Ω and we consider the perturbed system

fi,ϵ = fi −
∑

j |(i,j )∈Ω

ϵi,j x
βj
ξ .

The perturbed system is fϵ = f − ϵ B, where ϵ is the N × r matrix with

[ϵ]i,j = ϵi,j if (i, j ) ∈ Ω and [ϵ]i,j = 0 otherwise. Denote by F (x,µ,ϵ )
obtained from F (x,µ ) by replacing Λj ( fi ) by Λj ( fi,ϵ ) for j = 1, . . . ,r ,i =
1, . . . ,N . Then the equations used to construct the square Jacobian J0
are unchanged. The remaining equations are of the form

Λj ( fi,ϵ ) = Λj ( fi ) − ϵi,j = 0 (i, j ) ∈ Ω.

Therefore the Jacobian of the complete system F (x,µ,ϵ ) is a square

invertible matrix of the form

Jϵ :=

(
J0 0

J1 Id

)
where J1 is the Jacobian of the system F1 of polynomialsΛj ( fi ) ∈ C[x,µ]
with (i, j ) ∈ Ω.

Since Jϵ is invertible, the square extended system F (x,µ,ϵ ) has an
isolated root (ξ ∗,µ∗,ϵ∗) corresponding to the isolated root (ξ ∗,µ∗) of
the square system F0. Furthermore, Λ∗j ( fi ) = ϵ∗i,j = 0 for (i, j ) ∈ Ω. Here

Λ∗
1
, . . . ,Λ∗r ∈ C[dξ ∗ ] are defined from (ξ ∗,µ∗) recursively by

Λ∗
1
= 1ξ ∗ and Λ∗i =

∑
|βj |< |βi |

n∑
k=1

µ∗βi ,βj+ek ∫
k
Λ∗j . (17)

We have the following property:

Theorem 5.1. If the Newton iteration
(ξk+1, µk+1) = (ξk , µk ) − J0 (ξk , µk )

−1F0 (ξk , µk ),
starting from a point (ξ0,µ0) converges when k → ∞, to a point (ξ ∗,µ∗)
such that B is a regular basis for the inverse system D∗ associated to
(ξ ∗,µ∗) and D∗ is complete for f , then there exists a perturbed system

fi,ϵ ∗ = fi−
∑
j |(i,j )∈Ω ϵ∗i,j x

βj
ξ ∗ with ϵ

∗
i,j = Λ∗j ( fi ) such that ξ

∗ is a multiple
root of fi,ϵ ∗ with the multiplicity structure defined by µ∗.

6 CERTIFICATION
In this section we describe how to certify that the Newton iteration

defined in Section 5 quadratically converges to a point that defines

an exact root with an exact multiplicity structure of a perturbation

of the input polynomial system f . More precisely, we are given f =
( f1, . . . , fN ) ∈ C[x]N , B = {xβ1 , . . . ,xβr } ⊂ C[x] in increasing order

of degrees and closed under division, δ := |βr |. We are also given the

deflated systems F (x,µ ), its square subsystem F0 (x,µ ) defined in Section

5 and F1 (x,µ ) the remaining equations in F (x,µ ). Finally, we are given
ξ0 ∈ C

n
and µ0 = {µ

(0)
βi ,βj+ek

∈ C : i, j = 1, . . . ,r , |βj | < |βi |,k =

1, . . . ,n}. Our certification will consist of a symbolic and a numeric part:

Regularity certification. We certify that B is regular (see Definition

4.3). This part of the certification is purely symbolic and inductive on

t . Suppose for some t − 1 < δ we certified that Bt−1 is regular and

computed the parameters µt−1 and the parametrization

Φt−1 : µt−1 7→
(
qβi ,α (µt−1)

)
|βi | ≤t−1, |α | ≤t−1

(Algorithm 2). Then to prove that Bt is regular, we consider the coeffi-

cient matrixHt of equations (12) and (13). We substitute the parametriza-

tion Φt−1 to get the matrices Ht (µt−1). We symbolically prove that the

rows of Ht (µt−1) (Definition 4.5) are linearly independent and span all
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rows of Ht (µt−1) over Q(µt−1). If that is certified, we compute the pa-

rameters µt and the parametrization Φt : µt 7→
(
qβi ,α (µt )

)
|βi | ≤t, |α | ≤t

as in Algorithm 2 inverting the square submatrix Ht of Ht such that the

denominators of qβi ,α for |βi | = t divide det(Ht (µt−1)) , 0.

Singularity certification.
(C1) We certify that theNewton iteration for the square system F0 start-

ing from (ξ0,µ0) quadratically converges to some root (ξ ∗,µ∗) of

F0, such that ∥ (ξ0,µ0) − (ξ ∗,µ∗)∥2 ≤ ˜β , using α-theory.
(C2) We certify that D∗ = span(Λ∗) is regular for B (see Definition

4.3), by checking that |Ht (µ
∗) | , 0 for t = 1, . . . ,δ (See Definition

4.5), using the Singular Value Decomposition of Ht (µ0) and the

distance bound
˜β between µ∗ and µ0.

(C3) We certify that Λ∗ is complete for f at ξ ∗ (see Definition 2.7),

where Λ∗ ⊂ C[dξ ∗ ] is the dual systems defined from (ξ ∗,µ∗) re-
cursively as in (17). This is done by checking that kerKδ+1 (ξ

∗,µ∗) =
{0} (See Definition 2.7), using the Singular Value Decomposition

of Kδ+1 (ξ0,µ0) and the distance bound
˜β between (ξ ∗,µ∗) and

(ξ0,µ0).

Let us now consider for a point-multplicity structure pair (ξ0,µ0) γ̃ :=

supk≥2 ∥DF
−1
0

(ξ0,µ0)
Dk F0 (ξ0,µ0 )

k ! ∥
1

k−1 , ˜β := 2∥DF−1
0

(ξ0,µ0) F0 (ξ0,µ0)∥,

α̃ := ˜β γ̃ and for a matrix functionA(ξ ,µ ), let L1 (A; ξ0,µ0;b) be a bound
on its Lipschitz constant in the ball Bb (ξ0,µ0) of radius b around (ξ0,µ0)
such that ∥A(ξ ,µ ) − A(ξ0,µ0)∥ ≤ L1 (A; ξ0,µ0;b) ∥ (ξ ,µ ) − (ξ0,µ0)∥ for
(ξ ,µ ) ∈ Bb (ξ0,µ0). For a matrixM , let σmin (M ) be its smallest singular

value. We have the following result:

Theorem 6.1. Let B = {xβ1 , . . . ,xβr } ⊂ C[x] be closed under division
and suppose B is regular. Suppose that α̃ < α̃0 := 0.26141,
L1 (Kδ+1; ξ0,µ0; ˜β ) ˜β < σmin (Kδ+1 (ξ0,µ0)) and for t = 1, . . . ,δ it holds
that L1 (Ht ; µ0; ˜β ) ˜β < σmin (Ht (µ0)). Then the Newton iteration on the
square system F0 starting from (ξ0,µ0) converges quadratically to a point
(ξ ∗,µ∗) corresponding to a multiple point ξ ∗ with multiplicity structure µ∗

of the perturbed system fϵ ∗ = f − ϵ∗Bξ ∗ such that ∥ϵ∗∥ ≤ ∥F1 (ξ0,µ0)∥ +

L1 (F1; ξ0,µ0; ˜β ) ˜β , where Bξ ∗ = {x
β1
ξ ∗ , . . . ,x

βr
ξ ∗ }.

7 EXPERIMENTATION
In this section we work out some examples with (approximate) singu-

larities. The experiments are carried out using Maple, and our code is

publicly available at https://github.com/filiatra/polyonimo.

Example 7.1. We consider the equations

f1 = x3
1
+ x2

2
+ x2

3
− 1, f2 = x3

2
+ x2

1
+ x2

3
− 1, f3 = x3

3
+ x2

1
+ x2

2
− 1,

the approximate root ξ0 = (0.002,1.003,0.004) and threshold ε = 0.01.

In the following we use 32-digit arithmetic for all computations.

We shall first compute a primal basis using Algorithm 1. In the first

iteration we compute the 3× 3 matrix K1 = K1 (ξ0). The elements in the

kernel of this matrix consists of elements of the form Λ = ν1
1
d1 + ν

2

1
d2 +

ν3
1
d3. The singular values of K1 (ξ0) are (4.1421,0.0064,0.0012), which

implies a two-dimensional kernel, since two of them are below threshold

ε . The (normalized) elements in the kernel are Λ̃2 = d1 − 0.00117d2 and
Λ̃3 = d3−0.00235d2. Note that d2 was not chosen as a leading term. This

is due to pivoting used in the numeric process, in order to avoid leading

terms with coefficients below the tolerance ε . The resulting primal basis

B1 = {1,x1,x3} turns out to be closed under derivation.

Similarly, in degree 2we compute one element Λ̃4 = d1d3−0.00002d
2

1
−

0.00235d1d2 + 5.5 · 10
−6d2

2
− 0.00117 · d2d3 − 0.00002d

2

3
+ 5.9 · 10−6d2.

In the next step, we have kerK3 = {0}, since the minimum singular

value is σmin = 0.21549, therefore we stop the process, since the com-

puted dual is approximately complete (cf. Definition 2.7). We derive that

the approximate multiple point has multiplicity r = 4 and one primal

basis is B = {1,x1,x3,x1x3}.

The parametric form of a basis of D1 is kerK1 = ⟨Λ2 = d1 +
µ2,1d2,Λ3 = d3 + µ3,1d2⟩. Here we incorporated (10), thus fixing some

of the parameters according to primal monomials x1 and x3.
The parametric form of the matrix K2 (ξ ,µ) of the integration method

at degree 2 is



ν 1
1

ν 2
1

ν 3
1

ν 1
2

ν 2
2

ν 3
2

ν 1
3

ν 2
3

ν 3
3

(9) 0 0 0 0 0 −µ2,1 0 1 −µ3,1
(9) 0 0 0 0 0 −1 1 0 0

(9) 0 0 0 µ2,1 -1 0 µ3,1 0 0

Λ(f
1
) 3ξ 2

1
2ξ2 2ξ3 3ξ1 µ2,1 0 3ξ1 µ3,1 1

Λ(f
2
) 2ξ1 3ξ 2

2
2ξ3 1 3µ2,1 ξ2 0 0 3µ3,1 ξ2 1

Λ(f
3
) 2ξ1 2ξ2 3ξ 2

3
1 µ2,1 0 0 µ3,1 3ξ3



,

where the columns correspond to the parameters in the expansion (5):

Λ4 = ν 1
1
d1 + ν 2

1
d2 + ν 3

1
d3 + ν 1

2
d2
1
+ ν 2

2
(d1d2 + µ2,1 d2

2
)

+ν 3
2
(d1d3 + µ2,1 d3d2 ) + ν 1

3
(µ3,1 d1d2 ) + ν 2

3
(µ3,1 d2

2
) + ν 3

3
(d2

3
+ µ3,1 d2d3 )

Setting Λ4 (x1x3) = 1 and Λ4 (x1) = Λ4 (x3) = Λ4 (1) = 0, we obtain

ν1
1
= ν3

1
= 0 and ν3

2
= 1. The dual element of order 2 has the parametric

form

Λ4 = d1d3 + µ4,1d2 + µ4,2d
2

1
+ µ4,3d1d2 + µ4,6d

2

3
+ (18)

+ (µ2,1 + µ3,1 µ4,6 )d2d3 + (µ2,1 µ4,4 + µ3,1 µ4,5 )d
2

2

(ν2
1
= µ4,1,ν

1

2
= µ4,2,ν

2

2
= µ4,3,ν

1

3
= µ4,4,ν

2

3
= µ4,5,ν

3

3
= µ4,6). Overall 8

parameters are used in the representation of D2.

The highlighted entries of K2 (ξ ,µ) form the non-singular matrix H2
in Definition 4.5, therefore D2 is regular for B (cf. Definition 4.3). We

obtain the polynomial parameterization µ4,3 = µ2,1 µ4,2 + µ3,1 ,µ4,4 =
1,µ4,5 = µ2,1 + µ3,1 µ4,6 with the free parameters µ̄ = (µ2,1,µ3,1,µ4,1,
µ4,2,µ4,6). There is no denominator since det H2 = 1.

We now setup the numerical scheme. The overdetermined and de-

flated system F (x,µ) consists of 15 equations:
µ2,1µ4,2 + µ3,1 − µ4,3 ,−µ4,4 + 1 ,−µ2,1µ4,4 − µ3,1µ4,6 + µ4,5,
Λ1 ( f1)=f1,Λ1 ( f2)=f2,Λ1 ( f3)=f3,Λ2 ( f1)=2µ2,1x2 + 3x

2

1
,

Λ2 ( f2)=3µ2,1x
2

2
+ 2x1,Λ2 ( f3)=2µ2,1x2 + 2x1,Λ3 ( f1)=2µ3,1x2 + 2x3,

Λ3 ( f2)=3µ3,1x
2

2
+ 2x3 ,Λ3 ( f3)=2µ3,1x2 + 3x

2

3
,

Λ4 ( f1)=µ2,1µ4,3+µ3,1µ4,5+2µ4,1x2+3µ4,2x1+µ4,6 ,
Λ4 ( f2)=3µ2,1µ4,3x2+3µ3,1µ4,5x2+3µ4,1x

2

2
+µ4,2+µ4,6 ,

Λ4 ( f3)=µ2,1µ4,3+µ3,1µ4,5+2µ4,1x2+3µ4,6x3+µ4,2
We now consider JF (ξ0,µ0). This Jacobian is of full rank, and we can

obtain a maximal minor by removing Λ1 ( f2),Λ1 ( f3),Λ2 ( f3) and Λ3 ( f3)
from F . We obtain the square 11 × 11 system denoted by F0.

The initial point of the Newton iterations is ξ0 = (0.002,1.003,0.004)
and the approximation of the variables µi,j provided by the numerical

integration method: µ0 = (−0.00117,− 0.00235,5.9 · 10−6,− 0.00002,−
0.00235,1.0,− 0.00117,− 0.00002) .

We now use Theorem 6.1 to certify the convergence to a singular

system. We can compute for (ξ0,µ0) the value ˜β ≈ 0.01302. Moreover,

σmin (Kδ+1 (ξ0,µ0)) = 0.21549 and the minimum singular value of the

highlighted submatrix of K2 (ξ0,µ0) is equal to one. Therefore
˜β is at

least one order of magnitude less than both of them, which is sufficient,

since the involved Lipschitz and γ̃ constants are of the order of 1 for the

input polynomials. In the first iteration we obtain
˜β ≈ 0.00011 which

clearly indicates that we are in the region of convergence. Indeed, the

successive residuals for 4 iterations are 0.00603,4.0 ·10−5,2.07 ·10−9,8.6 ·

10
−18,3.55 · 10−35. Clearly, the residual shrinks with a quadratic rate

1
.

We obtain ξ4 = (1.8 · 10−37,1.0,2.8 · 10−36) and the overdetermined

system is satisfied by this point: ∥F (ξ4,µ4)∥∞ = 8 · 10−35; the resulting

dual structure is D∗
2
= {1,d1,d3,d1d3}.

Example 7.2. We demonstrate how our method handles inaccuracies

in the input, and recovers a nearby system with a true multiple point.

Let

f1 = x1
2 + x1 − x2 + 0.003 , f2 = x2

2 + 1.004x1 − x2.

1
The convergence is seen up tomachine error. If we increase the accuracy to 150 digits the rate

remains quadratic for 7 iterations: . . . 3.55 · 10−35, 6.78 · 10−70, 4.15 · 10−140, 5.1 · 10−281 .

https://github.com/filiatra/polyonimo
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There is a cluster of three roots around ξ0 = (0.001,−0.002). Our goal is
to squeeze the cluster down to a three-fold real root. We use 32 digits

for the computation. Starting with ξ0, and a tolerance equal to 10
−2

Algorithm 1 produces an approximate dual 1, d1 + 1.00099651d2, d2
1
+

1.00099651d1d2 + 1.00266222d
2

2
+ 0.99933134d2 and identifies the pri-

mal basis B = {1,x1,x
2

1
} using pivoting on the integration matrix.

The sole stability condition reads µ1,1 − µ2,2 = 0, and Λ1 = 1, Λ2 =

d1 + µ1,1d2, Λ3 = d
2

1
+ µ1,1d1d2 + µ2,1d2 + µ2,2µ1,1d

2

2
.

The nearby system that we shall obtain is deduced by the residue in

Newton’s method. In particular, starting from ξ0, we consider the square
system given by removing the equationsΛ1 ( f1) = 0 andΛ2 ( f2) = 0. The

rank of the corresponding Jacobian matrix remains maximal, therefore

such a choice is valid. Newton’s iterations converge quadratically to the

point (ξ5,µ5) = (1.1 · 10−33,1.2 · 10−33,1,1,1). The full residual is now

F (ξ5,µ5) = (0,0.003,−10−32,10−32,0.004,0,0) .

This yields a perturbation
˜f1 ≈ f1−0.003 and ˜f2 ≈ f2−0.004(x1−ξ

∗
1
) to

obtain a system with an exact multiple root at the origin (cf. Th. 6.1). Of

course, this choice of the square sub-system is not unique. By selecting

to remove equations Λ1 ( f1) = 0 and Λ1 ( f2) = 0 instead, we obtain

(ξ5,µ5) = (0.00066578,−0.00133245,1.001,1.0,1.001) and the residual

F (ξ5,µ5) = (0,0.005,0.002,0,0,0,0), so that the nearby system

f ∗
1
≈ x1

2 + x1 − x2 + 0.008, f ∗
2
≈ x2

2 + 1.004x1 − x2 + 0.002

has a singularity at the limit point ξ ∗ ≈ (0.00066578,−0.00133245)
described locally by the coefficients µ∗ ≈ (1.001,1.0,1.001).

Finally, consider the two square sub-systems as above, after changing

f1, f2 to define an exact three-fold root at the origin (i.e. f1 = x1
2 +

x1 − x2, f2 = x2
2 + x1 − x2). Newton’s iteration with initial point ξ0

on either deflated system converges quadratically to (ξ ,µ) = (0,1).
This is a general property of the method: exact multiple roots and their

structure are recovered by this process if ξ0 is a sufficiently good initial

approximation (cf. Section 5). We plan to develop this aspect further in

the future.

Example 7.3. We show some execution details on a set of benchmark

examples in taken from [7], see also [26]. For this benchmark, we are

given systems and points withmultiplicities.We perturb the given points

with a numerical perturbation of order 10
−2
. We use double precision

arithmetic and setup Newton’s iteration; with less than 10 iterations,

the root was approximated within the chosen accuracy.

In Table 1, “IM” is the maximal size of the (numeric) integration

matrix that is computed to obtain the multiplicity, “#µ” is the number

of new parameters that are needed for certified deflation, “SC” is the

number of stability constraints that were computed and “OS” stands for

the size of the overdetermined system (equations × variables). This is

the size of the Jacobian matrix that must be computed and inverted in

each Newton’s iteration. We can observe that the number of parameters

required can grow significantly. Moreover, these parameters induce non-

trivial denominators in the rational functions qβj ,α (µ ) of Prop. 4.4. for

the instances cmbs1, cmbs2 and KSS.

System r/n IM SC #µ OS

cmbs1 11/3 27 × 23 75 74 108 × 77

cmbs2 8/3 21 × 17 21 33 45 × 36

mth191 4/3 10 × 9 3 9 15 × 12

decker2 4/2 5 × 5 4 8 12 × 10

Ojika2 2/3 6 × 5 0 2 6 × 5

Ojika3 4/3 12 × 9 15 14 27 × 17

KSS 16/5 155 × 65 510 362 590 × 367

Capr. 4/4 22 × 13 6 15 22 × 19

Cyclic-9 4/9 104 × 33 36 40 72 × 49

Table 1: Size of required matrices and parameters for deflation.
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