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ABSTRACT

In this paper we provide a new method to certify that a nearby polyno-
mial system has a singular isolated root and we compute its multiplicity
structure. More precisely, given a polynomial system f = (fi,...,fn) €
Clx1,. .. ,xn]N , we present a Newton iteration on an extended deflated
system that locally converges, under regularity conditions, to a small
deformation of f such that this deformed system has an exact singular
root. The iteration simultaneously converges to the coordinates of the
singular root and the coefficients of the so-called inverse system that
describes the multiplicity structure at the root. We use a-theory test
to certify the quadratic convergence, and to give bounds on the size of
the deformation and on the approximation error. The approach relies
on an analysis of the punctual Hilbert scheme, for which we provide
a new description. We show in particular that some of its strata can
be rationally parametrized and exploit these parametrizations in the
certification. We show in numerical experimentation how the approxi-
mate inverse system can be computed as a starting point of the Newton
iterations and the fast numerical convergence to the singular root with
its multiplicity structure, certified by our criteria.
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1 INTRODUCTION

Local numerical methods such as Newton iterations have proved their
efficiency to approximate and certify the existence of simple roots. How-
ever for multiple roots they dramatically fail to provide fast numerical
convergence and certification. The motivation for this work is to find a
method with fast convergence to an exact singular point and its multi-
plicity structure for a small perturbation of the input polynomials, and to
give numerical tests that can certify it. The knowledge of the multiplicity
structure together with a high precision numerical approximation of a
singular solution can be valuable information in many problems.

In [27] a method called later integration method is devised to compute
the so-called inverse system or multiplicity structure at a multiple root. It
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is used in [25] to compute an approximation of the inverse system, given
an approximation of that root and to obtain a perturbed system that
satisfies the duality property. However, this method did not give a way
to improve the accuracy of the initial approximation of the root and the
corresponding inverse system. In [16] a new one-step deflation method
is presented that gives an overdetermined polynomial system in the
coordinates of the roots and the corresponding inverse system, serving
as a starting point for the present paper. However, for certification, [16]
refers to the symbolic-numeric method in [1] that only works if the input
system is given exactly with rational coefficients and have a multiple
root with the prescribed multiplicity structure.

In the present paper we give a solution for the following problem:
Problem 1.1. Given a polynomial system f = (fi,...,fy) € C[x]V
and a point £ € C", deduce an iterative method that converges quadrat-
ically to the triple (£*,u*,€*) such that £* € C", y* defines the coef-
ficients of a basis A* = {A’{,. LAY C C[dg*] dual to the set By =
{(x = &P, . (x— £)Pr} c C[x] and e* defines a perturbed poly-
nomial system fe+ := f + €" B+ with the property that £* is an exact
multiple root of fe- with inverse system A*. Furthermore, certify this
property and give an upper bound on the size of the perturbation |[e*|].

The difficulty in solving Problem 1.1 is that known polynomial sys-
tems defining the coordinates of the roots and the inverse system are
overdetermined, and we need a square subsystem of it in the Newton
iterations to guarantee the existence of a root together with the qua-
dratic convergence. Thus, roots of this square subsystem may not be
exact roots of the complete polynomial system, and we cannot certify
numerically that they are approximations of a root of the complete
system. This is the reason why we introduce the variables € that allow
perturbation of the input system. One of the goals of the present paper
is to understand what kind of perturbations are needed and to bound
their magnitude.

Certifying the correctness of the multiplicity structure that the nu-
merical iterations converge to poses a more significant challenge: the
set of parameter values describing an affine point with multiplicity r
forms a projective variety called the punctual Hilbert scheme. The goal
is to certify that we converge to a point on this variety. We study an
affine subset of the punctual Hilbert scheme and give a new description
using multilinear quadratic equations that have a triangular structure.
These equations appear in our deflated polynomial system, have integer
coefficients, and have to be satisfied exactly without perturbation, other-
wise the solution does not define a proper inverse system, closed under
derivation. Fortunately, the structure allowed us to define a rational
parametrization of a strata of the punctual Hilbert scheme, called the
regular strata. In turn, this rational parametrization allows certification
when converging to a point on this regular strata.

Our method comprises three parts: first, we apply the Integration
Method (Algorithm 1) with input f and & to compute an approximation
of the multiplicity structure, second, an analysis and certification part
(see Section 6 and Algorithm 2), and third, a numerical iteration part
converging to the exact multiple root with its multiplicity structure for
an explicit perturbation of the input system (see Section 5). The missing
proofs are available at hal.inria.fr/hal-02478768.

Related Work. There are many works in the literature studying the certi-
fication of isolated singular roots of polynomial systems. One approach
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is to give separation bounds for isolated roots, i.e. a bound that guar-
antees that there is exactly one root within a neighborhood of a given
point. Worst case separation bounds for square polynomial systems with
support in given polytopes and rational coefficients are presented in
[10]. In the presence of singular roots, turned into root clusters after
perturbations, these separation bounds separate the clusters from each
other and bound the cluster size. [11, 32, 33] give separation bounds and
numerical algorithms to compute clusters of zeroes of univariate poly-
nomials. [8] extends a-theory and gives separation bounds for simple
double zeroes of polynomial systems, [12] extend these results to zeroes
of embedding dimension one.

Another approach, called deflation, comprises of transforming the
singular root into a regular root of a new system and to apply certifica-
tion techniques on the new system. [18] uses a square deflated system
to prove the existence of singular solutions. [20] devises a deflation tech-
nique that adds new variables to the systems for isolated singular roots
that accelerates Newton’s method and [21] modifies this to compute the
multiplicity structure. [28] computes error bounds that guarantee the
existence of a simple double root within that error bound from the input,
[22, 23] generalizes [28] to the breadth one case and give an algorithm
to compute such error bound. [24] gives verified error bounds for iso-
lated and some non-isolated singular roots using higher order deflations.
[6, 7, 15, 30, 31, 34] give deflation techniques based on numerical linear
algebra on the Macaulay matrices that compute the coefficients of the
inverse system, with improvements using the closedness property of
the dual space. [13, 14] give a new deflation method that does not intro-
duce new variables and extends a-theory to general isolated multiple
roots for the certification to a simple root of a subsystem of the overde-
termined deflated system. In [16] a new deflated system is presented,
its simple roots correspond to the isolated singular points with their
multiplicity structure. A somewhat different approach is given in [1],
where they use a symbolic-numeric certification techniques that certify
that polynomial systems with rational coefficients have exact isolated
singular roots. More recently, [19] design a square Newton iteration and
provide separation bounds for roots when the deflation method of [20]
terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic
analysis of some strata of the punctual Hilbert scheme. Some of its
geometric properties have been investigated long time ago, for instance
in [4, 5, 17] or more recently in the plane [2]. However, as far as we know,
the effective description that we use and the rational parametrization of
the regular strata that we compute have not been developed previously.

2 PRELIMINARIES

Letf := (fi,...,fn) € Cx]N withx = (x1,.. .,
C" be an isolated multiple root of f. Let I = (fi,. ..
mal ideal at & and Q be the primary component of I at & so that 4/0 = m Iz
The shifted monomials at ¢ will be denoted for @ = (a1,...,a,) € N

b
’ X = (1= £ - (o1~ £a)
Consider the ring of power series C[[ds]] := C[[dy,¢,. . .,dp, £]] and

we denote dﬁ = dlﬂlér df"f, with = (B1,...,Pn) € N". We identify

C[[dg]] Wlth the dual space C[x]* by considering the action of d{: on

INDs mg be the maxi-

polynomials as derivations and evaluations at &, defined as

181
&) =00 =— L
& Ox; Lo gl
Hereafter, we reserve the notation d and d; for the dual variables while
and dy, for derivation. We indicate the evaluation at £ € C" by writing
d; ¢ and dg, and for £ = 0 it will be denoted by d. The derivation with
respect to the variable d; ¢ in C[[d¢]] is denoted 5d,—,§ (i=1,...,n).

for p € C[x]. (1)

xn).Leté = (&1,....&n) €
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Observe that
1 ifa=p
—d'B _ £y — >
B¢ (=57 {O otherwise,
where B! = pi!--- Bul.

Forp € C[x] and A € C[[d¢]] = C[x]",letp- A : g — Alpq). We
check that p = (x; — &;) acts as a derivation on C[[dg]]: (x; — &) -
d‘g =04, , (d?) = ﬂidg_ei. Throughout the paper we use the notation
e1,...,e, for the standard basis of C" or for a canonical basis of any
vector space V of dimension n. We will also use integrals of polynomials
in C[[d¢]] as follows: for A € C[[d¢]] and k = 1,...,n, fA denotes

k
the polynomial A* € C[[d]] such that 6dk’§ (A*) = A and A" has no
constant term. We introduce the following shorthand notation

TA = fA(dLg,...,dk,é:,(),...,O). 2)
k k

For an ideal I ¢ C[x], let [* = {A € Clldg]] | Vp € IA(p) = 0}. The
vector space I is naturally identified with the dual space of C[x]/I. We
check that I+ is a vector subspace of C[[d¢]] which is closed under the
derivations adl_f fori=1,...,n.

Lemma 2.1. IfQ is a mg-primary isolated component of I, then ot =
I+ N Cldg].

This lemma shows that to compute Q+, it suffices to compute all
polynomials of C[d;] which are in I*. Let us denote this set D =
*n C[dg]. It is a vector space stable under the derivations - 1ts
dimension is the dimension of Q+ or C[x]/Q, that is the multiplicity of
&, denoted rg(I), or simply r if & and I is clear from the context.

For an element A(d¢) € C[dg] we define the degree or order ord(A)

to be the maximal |f] s.t. d/; appears in A(dg) with non-zero coefficient.

For t € N, let D; be the elements of D of order < t. As D is of
dimension r, there exists a smallest t > 0 s.t. D;+1 = D;. Let us call this
smallest t, the nil-index of  and denote it by §¢(I), or simply by &. As
D is stable by the derivations dy, e We easily check that for t > 6;(I),
D; = D and that §¢(I) is the maximal degree of elements of D.

Let B = {x ‘?1,..., ‘?’} be a basis of C[x]/Q. We can identify the
elements of C[x]/Q with the elements of the vector space spanc(B). We
define the normal form N(p) of a polynomial p in C[x] as the unique
element b of spanc(B) such that p — b € Q. Hereafter, we are going to
identify the elements of C[x]/Q with their normal form in span(B).
For o € N", we will write the normal form of x¢

E as
€)= D e X 3)
i=1

2.1 The multiplicity structure

We start this subsection by recalling the definition of graded primal-dual
pairs of bases for the space C[x]/Q and its dual. The following lemma
defines the same dual space as in e.g. [6, 7, 23], but we emphasize on a
primal-dual basis pair to obtain a concrete isomorphism between the
coordinate ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Letf, §, Q, D, r = rg(f)

and 6 = 5¢(f) be as above. Then there exists a primal-dual basis pair
(B,A) of the local ring C[x]/Q with the following properties:

(1) The primal basis of the local ring C[x]/Q has the form
P P Br

Ba= {xf ) @

We can assume that 1 = 0 and that the ordering of the elements

in B by increasing degree. Define the set of exponents in B as E :=

{Brv. .. Br} C NP
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(2) The unique dual basis A = {A1 Az,...., Ar} of D C Cld¢] dual to
B has the form A; = ﬁ d o+ Z|a|<\ﬂl‘ KB ﬁ,d“

&
(3) We have 0 = ord(Aq) < --- < ord(Ar) and forall0 <t < §
we have Dy = span {A] : ord(Aj) < t} , where D; denotes the

elements of D of order < t, as above.

A graded primal-dual basis pair (B, A) of D as described in Lemma 2.2
can be obtained from any basis Aof D by first choosing pivot elements
that are the leading monomials with respect to a graded monomial
ordering on C[d], these leading monomials define B, then transforming
the coefficient matrix of A into row echelon form using the pivot leading
coefficients, defining A.

A monomial set B is called a graded primal basis of f at & if there
exists A € C[dg] such that (B,A) is a graded primal-dual basis pair and
A is complete for f at £.

Next we describe the so-called integration method introduced in [25,
27] that computes a graded pair of primal-dual bases as in Lemma 2.2 if
the root £ is given. The integration method performs the computation of
a basis order by order. We need the following proposition, a new version
of [27, Theorem 4.2]:

Proposition 2.3. LetAy,...,As € C[d¢] and assume that ord(A;) < t

for some t € N. Suppose that the subspace D := span(Ay,...,As) C
Cldg] is closed under derivation. Then A € C[dg] with no constant term

satisfies 0g, (A) € D forallk = 1,...,n if and only if A is of the form

A= ZZ ka, 5)

i=1 k=1
for some v{‘ € C satisfying
ivfad,(Ai)—v,?adk(Ai) =0 for 1<k<l<n. (6)
Furtherrl:;re, (5) and (6) implies that
da, (A) = Z vEA;  fork=1,...,n. 7)
i=1

Let Q be a mg-primary ideal. Proposition 2.3 implies that if A =

{A1,...,Ar} € C[dg] with Ay = 1¢ is a basis of O, dual to the basis
B= {x'?,. ..,x?’} c C[x] of C[x]/Q with ord(A;) = |f;, then there
exist vl[‘j € C such that

5dk(/\i) = Z V{fjl\j.

1Bj1<1Bil

Therefore, the matrix M. of the multiplication map My by xp — & in the

basis B of C[x]/Q is
Mg = (1p,.p+ep J1<isj<r

using the notation (3) and the convention that v;"; = pg, Bi+er =0 if

k4T _
[Vj,i]lsi,er =

|Bil = |B;j]. Consequently,

Vi.j = HBipjex i,j,=1,...,r,k=1,...,n,

and we have
Z Zuﬂz ﬁj+eka]

Iﬁ, [<1Bil k=1
; Bi
where pig, p.1e, is the coefficient of x £

in the basis B of C[x]/Q.
Next we give a result that allows to simplify the linear systems in-
volved in the integration method. We first need a definition:

in the normal form of x‘?j ek

Definition 2.4. Let E C N” be a set of exponents. We say that E is
closed under division if § = (f1,...,Pn) € E implies that f — e € E
as long as iy > 0 for all k = 1,...,n. We also call the corresponding
ﬂl . Xﬂr
§Te

primal basis B = {x } closed under division.
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The following lemma provides a simple characterization of dual bases
of inverse systems closed under derivation, that we will use in the
integration algorithm.

Lemma 2.5. Let B = {x?,..

and ordered by degree. Let A = {Aq,...
independent set such that

Z Z B, ﬁ,+ekf A ®
|ﬁ]|<|ﬁ1| k=1
Then D = span{Aji,...,A,} is closed under derivation iff for all i,s =

L Bsl < |Bil andk #1 € {1,...,n} we have
B, Bi+er By Bs+er ~ Hpi.pi+e Hpy fs+er = 0- ©
J1Bs1<1Bj1<1Bil
Furthermore, (B,A) is a graded primal-dual basis pair iff they satisfy (9)
and

.,x?’} c CI[x] be closed under division
JAr} C Cldg] be a linearly

u _ 1 forfi=pj+eg
Bubirer = g forpj +er €E, pi # pj +eg,
To compute the inverse system D of f at a point &, we will consider

the additional systems of equations in § and pi = {ug, o }:
Ai(fj) =0for1<i<r,1<j<N. (11)

Throughout the paper we use the following notation:
Notation 2.6. Let fi,...,fny € C[x], £ € C" and fix t € N. Let B;_; =
{X‘BI,. . x?r”l} C C[xg]t-1 be closed under division and A;—; =

{A1,...,Ar,_,} C C[dée]t_l dual to B;—1 with
adk(Aj): Z ”ﬂj,ﬁs+ekA5 j=1,...,rs—1,k=1,...,n
1Bs1<1B;1

Consider the following homogeneous linear system of equations in the
variables {v]].‘ cj=1,...,r-1, k=1,...,n}

D VS HBuBere V) Hpjpere, =0 1<k<l<n (12)

(10)

Ji1BsI<IBjl<t

vk =0 iffj+er=pforsomel <I<r (13)
rt 1 n

>y ka,(fl_o I=1,...,N. (14)
Jj=1 k=1

We will denote by H; the coefficient matrix of the equations in (12) and
(13) and by K; the coefficient matrix of the equations in (12)-(14).

Algorithm 1 produces incrementally a basis of D, similarly to Macaulay’s
method. The algorithmic advantage is the smaller matrix size in O(r n? +
N) instead of N ("+§_1), where § is the maximal degree (depth) in the
dual, cf. [16, 25].

The full INTEGRATION METHOD consists of taking A1 :=1 £ fort =0,
a basis of Dy and then iterating algorithm INTEGRATION METHOD -
ITERATION ¢ until we find a value of t when D; = D;_;. This implies
that the order § = &; (f) = t — 1. This leads to the following definition.

Definition 2.7. We say that A C C[d] is complete for f at ¢ if the linear
system K; of the equations (12)-(14) in degree t = § + 1 = ord(A) + 1 is
such that ker K5, = {0}.

Notice that the full INTEGRATION METHOD constructs a graded primal-
dual basis pair (B, A). The basis A C (f)1 spans a space stable by deriva-
tion and is complete for f, so that we have span(A) = (f)*NC[d;] = O+
where Q is the primary component of (f) at £.

To guarantee that B; is closed under division, one could choose a
graded monomial ordering < of C[d¢] and compute an auto-reduced

basis of ker K; such that the initial terms for < are dgi. The set B;
constructed in this way would be closed under division, since Dy is
stable under derivation. In the approach we use in practice, we choose the
column pivot taking into account the numerical values of the coefficients
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Algorithm 1 INTEGRATION METHOD - ITERATION ¢t

L fN) eCxIN, £ecn,

Input: ¢t >0, f = (f1,..

By—1 = {X?l, - 'Br’ '} ¢ C[x] closed under division and

Apg = {Aq,. .. ,ArH} C C[d¢] a basis for D1 dual to B;—y, of the
form (8).

Output: Either “D; = D;_1" or By = { ? ﬁ” } for some

r+ > ry—1 closed under division and A; = {A1, ...
form (8), satisfying (9), (10) and (11).

,Ar,} with A; of the

(1) Set up the coefficient matrix K; of the homogeneous linear system

(12)-(14) in Notation 2.6 in the variables {v! }] Looreog, k=1,.

fA, Let

associated to an element of the form A = Zr’ ! ”

h; := dimker K;.

(2) If by = 0 then return “Dy = Dy_1". If hy > 0 define ry := rp—1 + hs.
Perform a triangulation of K; by row reductions with row
permutations and column pivoting so that the non-pivoting columns
correspond to exponents f,_ +1,. .., fr, with strict divisors in B;_1.
Let B; = B;—1 U {xﬁ’f R ,x?t ).

(3) Compute a ba51s Aprpi415- Ay, € C[dg] of ker K; from the
triangular reduction of K; by setting the coefficients of the
non-pivoting columns to 0 or 1. This yields a basis

At = As—1 U{As,_,+1,...,Ar,} dual to B;. The coeficients v ofAl
are g, Brvex in (8) so that Eq. (11) are satisfied. Eq. (10) are satlsﬁed
since A; is dual to By.

and not according to a monomial ordering and we check a posteriori
that the set of exponents is closed under division (See Example 7.1).

The main property that we will use for the certification of multiplici-
ties is given in the next theorem.

Theorem 2.8. If &* is an isolated solution of the system f(x) = 0 and
B is a graded primal basis at £* closed under division, then the system
F(&,p1) = 0 of all equations (9), (10) and (11) admits (¢*, ™) as an isolated
simple root, where i defines the basis A* of the inverse system of (f) at &
dual to B, due to (8).

3 PUNCTUAL HILBERT SCHEME

The results in Sections 3 and 4 do not depend on the point ¢ € C",
so to simplify the notation, we assume in these sections that £ = 0.
Let m = (x1,...,%,) be the maximal ideal defining £ = 0 € C”". Let
C[d] be the space of polynomials in the variables d = (dy,. .. ,d,) and
C[d]; c C[d] the subspace of polynomials in d of degree < t.

For a vector space V, let ¢, (V) be the projective variety of the r
dimensional linear subspaces of V, also known as the Grassmannian of
r-spaces of V. The points in 4, (V) are the projective points of P(A"V)
of the form v = v A --- A v, for v; € V. Fixing a basis eq,...,es of
V, the Pliicker coordinates of v are the coefficients of A;.._; (v) of
V= Yii<o<iy Dy, iy (V) €5 A A e,, When V = C[d];-1, a natural
basis is the dual monomlal basis (—)| «|<r- The Pliicker coordinates
of an element v € ¢, (C[d],_1) for this basis are denoted Ay, .. a, (V)
where a; € N” |a;| < 7.

If A = {A1,...,A,} is a basis of a r-dimensional space D in C[d],—1
with A; = Y|q)<r pi,a% , the Pliicker coordinates of D are, up to
a scalar, of the form Ay, . o, = det [Hi’aj]lsi,er . In particular, a

monomial set B = {xﬁ 1 xP r} C C[x],-1 has a dual basis in D iff
Ap,....p (D) #0.1f(B {xﬁ'} 1A =1{A;}]_)) is a graded primal-dual
basis pair, then p; g, = &; ;. To keep our notation consistent with the

previous sections, the coordinates of A; € A when A is dual to B will be
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denoted by g, o instead of p; . By properties of the determinant, the
Pliicker coordinates of D are such that

ABy,....Bicr, . Bists- s fr
HBia = e e i=1,...,r. (15)
ﬁ “ Aﬁlv---vﬁr
If D is the dual of an ideal 0 = D+ c C[x] and B = {Xﬁl,. .. ,xﬁ’}
is a basis of C[x]/Q so that Ag g (D) # 0, the normal form of

x% € C[x],-1 modulo Q=9D"%in the basis B is

ﬁ]_ ﬂl, ﬁ; l’aﬁj+1s -Br /3]
U X

(if deg(x*) > r, then N®Ex%) = 0).

Definition 3.1. Let .77, C ¥,(C[d],-1) be the set of linear spaces D
of dimension r in C[d],—; which are stable by the derivations dy, with
respect to the variables d (i.e. 94, D € D fori =1,...,n). We called 77
the punctual Hilbert scheme of points of multiplicity r.

If © c C[d] is stable by the derivations dg,, then by duality I =
D+ c C[x] is a vector space of C[x] stable by multiplication by x;, i.e.
an ideal of C[x].

Proposition 3.2. D € 7, iff D+ =
dimC[x]/Q =r.

Q is an m-primary ideal such that

PrROOF. Let D € 7. We prove that D+ = Q is an m-primary ideal.
As D is stable by derivation, Q = D= is an ideal of C[x]. This also
implies that 1 € D, so that Q ¢ m. As dim®D = dimC[x]/Q = r,
8 = ord(D) is finite and m®*! ¢ DL = Q. Therefore, Q is m-primary,
which shows the first implication.

Conversely, let Q be a m-primary ideal such that dim C[x]/Q = r.
Then by Lemma 2.1, D = Q1 ¢ C[d]; is stable by derivation and of
dimension r = dim C[x]/Q. Thus D € .. This concludes the proof of
the proposition. O

For D € J¢;, for t > 0 we denote by D; the vector space of elements
of D of order < t. We verify that Z)f‘ = D+ + mf*!. The next theorem
follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B C C[x] closed under division such that |B| = r and
& = deg(B), the following points are equivalent:
(1) D € s, and By is a basis of C[x]/(D*+ + m!*!) fort = 1,...,8.
(2) The dual basis A = {A1,...,Ar} of B satisfies A1 = 1 and the
equations (8), (9) and (10).

For a sequence h = (hg,h1,...,hs) € Njf“ and 0 < t < 4, let
h; = (ho,....hs), rr = Zf:o hi. For r > 1 we denote by S” the set of
sequences h of some length § < r with h; # 0, hg = 1 and rg = r. For
h € S", we consider the following subvarieties of J7,:

I, ={D € 7, | dimD; =dimD NC[d]; < ri,i =0,...,1}.
These are projective varieties in /%, defined by rank conditions on
the linear spaces D N C[d]; for D € J¢;,, that can be expressed in
terms of homogeneous polynomials in the Pliicker coordinates of D. In
particular, the varieties %, := J#, ; are projective subvarieties of 7.
They may not be irreducible or irreducible components of .77, but we
have 74 = Upesr 74,-

We will study a particular component of .74, that we call the regular
component of 74, denoted %’ilreg . It is characterized as follows. Let
ifreg {(1)} = {C[d]o} = 4 (C[d]o) and assume that %rei; has been
deﬁned as an irreducible component of 74, ,. Let '

Wi = {(Di-1, &) | Di-1 € H4,,_, E € 9y, (Cld]y),

Dyt C E, Vi Dg, & C Diy)
The constraints D1 C & and 84,8 € Dy—q fori=1,...,n define a
linear system of equations in the Pliicker coordinates of &; (see e.g. [9]),
corresponding to the equations (5), (6). By construction, the projection of
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W ¢ A4, X%, (C[d];) on the second factor ¥, (C[d];) is m2(W;) =
S, and the projection on the first factor is m (W) = 74, ,.

There exists a dense subset U;—1 of the irreducible variety Ji’ilr:lg (with
U1 = Jf e ) such that the rank of the linear system corresponding to
(5) and (6) deﬁnlng &t is maximal. Since 7 (D;_1) is irreducible (in fact

linear) of fixed dimension for D;_; € Ut,l - th 9 thereisa unique
t—1

irreducible component Wy, req of Wy such that 71 (Wy, req) = j‘lilre?
.

(see eg. [29][Theorem 1.26]). We define jfreg = 12 (Wi, reg)- It is an
irreducible component of %, , since 0therw1se Wi reg = 7, I(Jf €9 )
would not be a component of W; but strictly included in one of the
irreducible components of W;.

Definition 3.4. Let n; : J&,, — 74, ,, D = D N C[d];-1 be the
projection in degree t —1. We define by induction on t, ,%’ilzeg = {(1)} and

7Y is the irreducible component H;I(threg) of 4, fort =1,...,6.
t-1

h;
4 RATIONAL PARAMETRIZATION

Let B = {Xﬂl, ... ,Xﬂ’} C C[x]r-1 be a monomial set. In this section we
assume that B is closed under division and its monomials are ordered by
increasing degree. For t € N, we denote by B; = BN C[x];, by B, the
subset of its monomials of degree t. Let hy = |Bsjl, 1t = Yo<i<s ht =
|Bt| and & = deg(B).

Let 3 = (D € H; | B, is a basis of C[x]/(D* + m!*1),t =
0,...,8}. By Theorem 3.3, .#3 is the set of linear spaces D € .7 such
that D; = D N C[d]; satisfy Equations (8) and (9). It is the open subset
of D € J4, such that Ag,(D;) # 0fort = 1,...,5, where Ag, :=
Ag,..., Br, denotes the Plicker coordinate for ¢, (C[d];) corresponding
to the monomials in B;.

Since for D € 5 we have Ag(D) # 0, we can define the affine
coordinates of .73 using the coordinates of the elements of the basis

A ={A1,...,A;} dual to B:
A ) )

The following lemma shows that the values of the coordinates {1, g, 1e, :

i,j=1,...r,1Bjl <|Bil,k = 1,...,n} uniquely define A.

,xﬁ’t} closed under division, D € 3
,Ar} be the unique basis of D dual to B with A; =
,T. ThenA1 =landfori=2,...,r

Lemma 4.1. LetB = {xﬁl,. ..
and A = {Aq,...

Z|a|s|ﬁ,~|#ﬂ,~,ai—rf0” =1.

Z Z Hi, ﬂ]+ekaJ

Iﬁj|<\ﬂ1|k 1
Thus, pg, o is a polynomial function of {pp_ p. e, = 1Bsl < 1Bil.1Bj] <
|Bsl,k=1,...,n} fori=1,...,r, la| < |Bil.

Proor. Since D is closed under derivation, by Proposition 2.3 there
exist ¢; s x € Csuch that 0y, (Ai) = 2\, 1<|B;| Ci,s,kAs- Then

Bpi e = MiOPTR) = 0q (AP = YT ei ks (6P) = ¢ k.
1Bs|<IBil
The second claim follows from obtaining the coefficients in A recursively
from Ay = 1and A; = Zlﬂj|<|ﬁi| ZZ:1 pﬁi’ﬁjJrekaj, fori=2,...,r
k
m]

Wedefine p := {up, p.ver Vi j=1,...r.18;1<|Bi L k=1,....n> Mt =
pox Bl <ty c pand ppyy == {up, pve, € 1 ¢ 1Bjl =t} C py. The next
definition uses the fact that Equations (12) and (13) are linear in V]k with
coefficients depending on pi;—1:

Definition 4.2. Given D;1 € 3, , with a unique basis A;—; =

(AL, A Y wWith Aj = 3 101<; .Uﬁ,-,a% forj = 1,...,rs—1 that is
dual to B;—1, uniquely determined by u;—1 = {,uﬁi’ﬂjﬂk Bl <

{1p,.pi+er €
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t — 1,18jl < |Bil} as above. Recall from Notation 2.6 that H; is the

coefficient matrix of the homogeneous linear system (12) and (13) in

k

the variables {vj : j=1,...,rs-1, k = 1,...,n}. To emphasize the

dependence of its coefficients on D;_1 or uy—; we use the notation
H;(D¢-1) or Hi(ps—1). For D € %ireg in an open subset, the rank p;
of Hy(Dy-1) is maximal.

The next definition describes a property of a monomial set B such
that it will allow us to give a rational parametrization of J¢3.

Definition 4.3. Fort =1,...,6 = deg(B) we say that D; € ¢, (C[d];)
is regular for B; if,
o dim(Dy) =r: = |B:l,
o rank H;(D;-1) = p; the generic rank of H; on %”
e Ap, (Z)[t ) # 0 where Apy, (Drp) is the Plucker coordlnate of
D[, € %, (C[d];) corresponding to the monomials in B[;].
Let Uy := (Dy € 4%
an open dense subset of the irreducible variety ,%’il:eg or empty if
Ap, (D) = 0forall D € ,%‘;l:ey. We say that B is a regular basis
ifU; = ,%’ilrfg (orUs #0)fort =1,...,6.
We denote by y[;) = dim ¥}, (ker H;(Dy-1)) for Dy—1 € Up—1 and
Y= Zfzo Y1e)-

reg

Dy is regular for By }. Then U; is either

If the basis B is regular and closed under division, then 7] "9 can

be parametrized by rational functions of free parameters . We present
hereafter Algorithm 2 to compute such a parametrization iteratively.

Algorithm 2 RATIONAL PARAMETRIZATION - ITERATION ¢

Input: t > 0, By = (xPi,.. ,xﬁ’t} C C[x]¢ closed under division and

regular! Hi—1 © Hi-1 and ®;_; :ﬁt—l = (qﬁ] a(ﬁt—l))w |<t-1,|al<r
reg

with 9p.a € Q(f;_,) parametrizing a dense subset ofjf

t

(qﬁj’a)lﬁ,-lﬁt,\akr’qﬁ.f’a Q(,u,)

extending ®;_; and parametrizing a dense subset of jfilre‘g
L

Output: i, C y; and & : i, =

(1) Let H; be as in Notation 2.6, v = [VJ].C j=1,...,r-1,k = 1,...,n]T.

Decompose Hy (®;—1(f;_1)) - v =0as

v
| AGE) | B | €y ] | v l =0, (16)

v
where v’ is associated to a maximal set of independent columns of
Hi(®i-1(py_q)), v = {v}C : xPiter ¢ Bly1) and ¥ refers to the rest of
the columns. If no such decomposition exists, return “B; is not regular”.
(2) For VJ’.C € v/ express V]k = (pJ]?(V,V”) € Q(E;_1)[v,v""]; as the
generic solution of the system Hy (®;—1(f,_;)) - v = 0.
(3)Fori=ri_1+1,...,r; do:

: Vj k € 7}

(3.1) Define pif,y ; == {”ﬁz,ﬁﬁek
’ k ’” k
Wi = Wpipyoee v €)= Ui v € 47, and

Hr = Feg Y Ui:rt,lﬂ Arei
(3.2) For pg, g ver € My ; SCL A, pyrer
Bi = Bj + ey and 0 otherwise.
(3.3) For pig, ey € /th],i define
4pi.prrer = O Wy iokin ;) € Q)
(3.4) For |a| <rand pg, 4 ¢ p find g, o using Lemma 4.1.

= Hp;. pre = 1if

Proposition 4.4. Let B = {xﬂl,. ..,xﬂ’} C C[x]r-1 be closed under
division and assume that B is a regular basis. There exist a subset i C u



ISSAC 20, July 20-23, 2020, Kalamata, Greece

with || = y and rational functions qﬁj’a(ﬁ) € Q) forj=1,...,r and
|a| < r, such that the map ® : C¥ — 5¢3 defined by

®: 10 (4p,0M),_,

parametrizes a dense subset of%’ilreg.

,oshlal<r

Definition 4.5. We denote by H;(¢) a maximal square submatrix of A
in (16) such that det(H; (z,_;)) # 0.

The size of Hg (1) is the size of v/ in (16), that is the maximal number of
independent columns in Hy (fi;_;). Given an element D = AjA---AA, €
%,(C[d]r-1), in order to check that D is regular for B, it is sufficient
to check first that Ag(D) # 0 and secondly that |H;(x)| # 0 for all
t=0,...,6, where yi = (ug o) is the ratio of Pliicker coordinates of
defined by the formula (15).

5 NEWTON’S ITERATIONS

In this section we describe the extraction of a square, deflated system
that allows for a Newton’s method with quadratic convergence. We
assume that the sole input is the equations f = (f1,..., fy) € C[x]V,
an approximate point £ € C" and a tolerance ¢ > 0.

Using this input we first compute an approximate primal-dual pair
(B, A) by applying the iterative Algorithm 1. The rank and kernel vectors
of the matrices K; (see Algorithm 1) are computed numerically within
tolerance ¢, using SVD. Note that here and in Section 6 we do not need
to certify the SVD computation but we are only using SVD to certify
that some matrices are full rank by checking that the distance to the
variety of singular matrices is bigger than the perturbation of the matrix.
Thus we need a weaker test, which relies only on a lower bound of the
smallest singular value.

B . Xﬁr}

The algorithm returns a basis B = {x with exponent vec-

tors E = {f1,. .., B}, as well as approximate values for the parameters
U= {l'lﬁl,ﬁj"'ek 2 |Bjl < |Bil € E, k = 1,...,n}. These parameters will
be used as a starting point for Newton’s iteration. Note that, by looking
at B, we can also deduce the multiplicity r, the maximal order § of dual
differentials, the sequences r¢ = |B;|, and hy = |B[;| fort = 0,...,d.
Let F be the deflated system with variables (x,y) defined by the
relations (8) and Equations (9), (10) and (11) i.e.
‘ﬁsk‘;jkwi‘/—’ﬁi,ﬁj+ekﬂﬂj,/}5+el — B pjre HBj porer =0 (a)
foralli=1,..., r, 1Bs| < |Bil,k#1e{l,...,n}
1 forfi=pj+e
HpiBjrer = {0 for ,/tjj + f,j € E]j Bi # Bj +ex, )
Ai(fj) =0, i=1,..., r,j=1,...,N. (c)

Here Aj = 1x and A; = Z|ﬁj|<\ﬁi|zzzl /’lﬂi,ﬁj"'ekaj € Clu][dx]
k

denote dual elements with parametric coefficients defined recursively.

F(x,p)=

. dg
Also, if A; = Zlalslﬁi\ 'uﬁi,ag{_x! then

A= D)
lal<1Bil
which is in C[x, u] by Lemma 4.1. Note, however, that (a) and (b) are
polynomials in C[y], only (c) depends on x and p. Equations (b) define
a simple substitution into some of the parameters p. Hereafter, we ex-
plicitly substitute them and eliminate this part () from the equations
we consider and reducing the parameter vector p.
By Theorem 2.8, if B is a graded primal basis for f at the root £* then
the above overdetermined system has a simple root at a point (£*, u*).
To extract a square subsystem defining the simple root (£*,u*) in
order to certify the convergence, we choose a maximal set of equations
whose corresponding rows in the Jacobian are linearly independent.
This is done by extracting first a maximal set of equations in (a) with
linearly independent rows in the Jacobian. For that purpose, we use the
rows associated to the maximal invertible matrix H; (Definition 4.5) for

()
Hpra ™ g1

Angelos Mantzaflaris, Bernard Mourrain and Agnes Szanto

each new basis element A; € D[t] and t = 1,...,r. We denote by Gy
the subsystem of (a) that correspond to rows of H;.

We complete the system of independent equations Gy with equations
from (c), using a QR decomposition and thresholding on the transposed
Jacobian matrix of Gy and (c) at the approximate root. Let us denote
by Fy the resulting square system, whose Jacobian, denoted by Jy, is
invertible.

For the remaining equations F; of (c), not used to construct the
square system Fy, define Q = {(i,) : Ai(fj) € F1}. We introduce new
parameters €;,j for (i,j) € Q and we consider the perturbed system

f‘i’e Zfi— Z e,-,jxgj.

Jl(i.j)eQ
The perturbed system is f¢ = f — € B, where € is the N X r matrix with
[eli,j = €ij if (i,j) € Q and [€]; j = 0 otherwise. Denote by F(x, y,€)
obtained from F(x, i) by replacing A;(f;) by Aj(fie)forj=1,...,r,i=
1,...,N. Then the equations used to construct the square Jacobian Jy
are unchanged. The remaining equations are of the form

Aj(fie) = Aj(fi) —€ij=0 (i) € Q.
Therefore the Jacobian of the complete system F(x,pu,€) is a square
invertible matrix of the form
Jo O
Je = i )

where J is the Jacobian of the system F; of polynomials Aj(f;) € C[x, 1]
with (i,j) € Q.

Since Je is invertible, the square extended system F(x, 1, €) has an
isolated root (&*,u*,€*) corresponding to the isolated root (¢*, ") of
the square system Fy. Furthermore, A; (fi) = ezj = 0 for (i,j) € Q. Here
Al,. .., AL € C[dg] are defined from (&%, ™) recursively by

n —

Aj=tgandAj= Y N [A (17)
1B 1<1Bil k=1 k

We have the following property:

Theorem 5.1. If the Newton iteration
(Exvts Hiesr) = (& p) = Jo(Exs i) ™ Fol s k),
starting from a point (&, j1g) converges when k — oo, to a point (£*, ii*)
such that B is a regular basis for the inverse system D* associated to
(&%, ") and D* is complete for f, then there exists a perturbed system

fier = fi=Zjijen € x?i withe} ; = A;f(fi) such that &* is a multiple
root of fi e+ with the multiplicity structure defined by p*.

6 CERTIFICATION

In this section we describe how to certify that the Newton iteration
defined in Section 5 quadratically converges to a point that defines
an exact root with an exact multiplicity structure of a perturbation
of the input polynomial system f. More precisely, we are given f =
(fi.---.fN) € CxIV, B = P, xPr) c C[x] in increasing order
of degrees and closed under division, § := |f,|. We are also given the
deflated systems F(x, y2), its square subsystem Fy(x, ;1) defined in Section
5 and Fj (x, ;1) the remaining equations in F(x, i). Finally, we are given
£ € C" and o = {y;i’ﬁij €C : ij=1,....nIBl < IBil.k =
1,...,n}. Our certification will consist of a symbolic and a numeric part:
Regularity certification. We certify that B is regular (see Definition
4.3). This part of the certification is purely symbolic and inductive on
t. Suppose for some t — 1 < § we certified that B;_; is regular and
computed the parameters i, _; and the parametrization

Qi1 :Hpq P (qﬂi,a(:ul‘—l)) 1B:|<t-1, || <t-1
(Algorithm 2). Then to prove that B; is regular, we consider the coeffi-
cient matrix H; of equations (12) and (13). We substitute the parametriza-
tion ®;_ to get the matrices H; (ji,_;). We symbolically prove that the
rows of H (11,_;) (Definition 4.5) are linearly independent and span all
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rows of Hy (ji,_;) over Q(z,_;). If that is certified, we compute the pa-

rameters i, and the parametrization ®; : ji, > (qﬁi,zx(/_lt)) il <t <t

as in Algorithm 2 inverting the square submatrix H; of H; such that the
denominators of qg, o for |B;| =t divide det(Hs(,_q)) # 0.

Singularity certification.

(C1) We certify that the Newton iteration for the square system Fj start-
ing from (&, jo) quadratically converges to some root (¢*, u*) of
Fo, such that [|(&, p0) — (£*,4%)ll2 < B, using a-theory.

(C2) We certify that D* = span(A*) is regular for B (see Definition
4.3), by checking that [H; (u*)| # 0 for t = 1,...,5 (See Definition
4.5), using the Singular Value Decomposition of H; (p0) and the
distance bound ﬁ between p* and po.

(C3) We certify that A* is complete for f at £* (see Definition 2.7),
where A* C C[dg-] is the dual systems defined from (£*, ") re-

cursively as in (17). This is done by checking that ker K51 (£*, 4*) =

{0} (See Definition 2.7), using the Singular Value Decomposition
of K51 (&0, 0) and the distance bound f between (£*,*) and
(%0-p0)-

Let us now consider for a point-multplicity structure pair (&, o) ¥ :=

Supjs IDFy ! (£, o) 222800 25§ 9 IDE1 (2, t0) Fo (oo o)l
@ := f 7 and for a matrix function A(&, 1), let £ (A; &, io; b) be a bound
on its Lipschitz constant in the ball By, (&, po) of radius b around (&, 1o)
such that [JA(§, i) — Ao, po)ll < L1(A; o, po3 b) 1€, 1) = (o, pro) 1l for
(&, 1) € By (&0, po). For a matrix M, let oppin (M) be its smallest singular
value. We have the following result:

Theorem 6.1. LetB = {xﬁl,‘..,xﬁ’} C C[x] be closed under division
and suppose B is regular. Suppose that @ < dp := 0.26141,

L1(Ks+15 80,403 B) f < omin(Ks+1(&0,p0)) and fort = 1,...,8 it holds
that L1(Hg; po; B) B < omin(He (o). Then the Newton iteration on the
square system Fy starting from (&, o) converges quadratically to a point
(&%, ") corresponding to a multiple point £* with multiplicity structure p*
of the perturbed system fo+ = f — e*Bg* such that ||€*|| < ||F1 (&, po)ll +

L1(Fy3 0,103 f) B where Bg- = (2, x[7).
7 EXPERIMENTATION

In this section we work out some examples with (approximate) singu-
larities. The experiments are carried out using Maple, and our code is
publicly available at https://github.com/filiatra/polyonimo.

Example 7.1. We consider the equations

fi :xf+x§+x§—1,f2:x§+xf+x§—1,f3:x§’+xf+x§—1,
the approximate root & = (0.002,1.003,0.004) and threshold ¢ = 0.01.
In the following we use 32-digit arithmetic for all computations.

We shall first compute a primal basis using Algorithm 1. In the first
iteration we compute the 3 X 3 matrix K; = K1(&p). The elements in the
kernel of this matrix consists of elements of the form A = vll di + Vlzdg +
vfd3. The singular values of K7 (&) are (4.1421,0.0064,0.0012), which
implies a two-dimensional kernel, since two of them are below threshold
¢. The (normalized) elements in the kernel are Ay = di — 0.00117d, and
As = d3 —0.00235d,. Note that d, was not chosen as a leading term. This
is due to pivoting used in the numeric process, in order to avoid leading
terms with coefficients below the tolerance ¢. The resulting primal basis
By = {1,x1,x3} turns out to be closed under derivation.

Similarly, in degree 2 we compute one element A4 = d;d3 —0.0000de—
0.00235d1dy + 5.5 - 107°dZ — 0.00117 - dad3 — 0.00002d5 + 5.9 - 107%d.

In the next step, we have ker K3 = {0}, since the minimum singular
value is opyjn = 0.21549, therefore we stop the process, since the com-
puted dual is approximately complete (cf. Definition 2.7). We derive that
the approximate multiple point has multiplicity r = 4 and one primal
basis is B = {1,x1,x3,x1x3}.
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The parametric form of a basis of D is kerK; = (Ay = di +
pi2,1d2,A3 = d3 + p3,1d2). Here we incorporated (10), thus fixing some
of the parameters according to primal monomials x; and xs.

The parametric form of the matrix Ky (&, p) of the integration method
at degree 2 is

oo o oy vy vy v vy v
(9) 0 0 0 0 0 —Hz2,1 0 1 —i31
© 0o 0 o 0 0 -1 1 0 0
©) 0 0 0 Ha2,1 -1 0 13,1 0 0
Afy) 3EE 28 28 3& H2.1 0 38 13,1 1
Alfy) 28 3& 25 1 3Bpwaé 0 0 3ps1 &2 1
Af3) 26 25 38 1 Ha.1 0 0 H3,1 3¢

where the columns correspond to the parameters in the expansion (5):
Ag = vidy +vidy +vids +vid? + vi(didy + a1 d)
+v3(dids + pp,1 dady) + v (31 dide) + v (3,1 dF) + v (dF + pa1 dads)
Setting A4(x1x3) = 1 and A4(x1) = A4(x3) = A4(1) = 0, we obtain
vll = vf =0and v23 = 1. The dual element of order 2 has the parametric
form

Ay =dids + pady + papd> + pazdida + a6 ds+ (18)

+ (Ho,1 + p3,1 fla6 )dods + (o1 flaa + 3,1 a5 )ds
(VE = pia1.v) = fla2.V: = J14.3.Vy = jla4.V2 = J14,5.V3 = Jia ). Overall 8
parameters are used in the representation of D.

The highlighted entries of K(&, ) form the non-singular matrix Hp
in Definition 4.5, therefore D5 is regular for B (cf. Definition 4.3). We
obtain the polynomial parameterization pi43 = pia 1 fia,2 + p3,1, 4,4 =
1,445 = pi2,1 + p3,1 pa¢ with the free parameters g = (2,1, 43,1, 4,1,
14,2, [l4,6). There is no denominator since detHy = 1.

We now setup the numerical scheme. The overdetermined and de-
flated system F(x, ) consists of 15 equations:

H2,1H4,2 + 13,1 — fla,3 s —flaq + 1, —[12 1/14.4 — [i3,1/la.6 + H4,5,
A(f)=f1. M1 (f2)=f2. M1 (f3)=f3. A2 (fi)=2p2, 162 + 37,
Aa(fo)=3p2,1%5 + 21, Ao (f3)=2p2,12 + 2x1,A3(f1)=2p3,1%2 + 2x3,
1\3(fg)=3/,13’1x:2Z + 2x3 ,A3(f3)=2p3,1%2 + 3x§ s

Ng(f1)=p2 14,3+ 13,1 /14,5+214,1X2+3 14 2X1 +H[ig6 »
Aq(f2)=3p12,114,3%2+3413,114,5X2+ 314, 1X5+]la 2+ la 6 -
Ag(f3)=p2,114,3+113,114,5+ 214,12 +3 14,6 X3+ [14,2

We now consider Jg(&p, po)- This Jacobian is of full rank, and we can
obtain a maximal minor by removing A1(f2),A1(f3),A2(f3) and A3 (f3)
from F. We obtain the square 11 X 11 system denoted by Fj.

The initial point of the Newton iterations is & = (0.002,1.003,0.004)
and the approximation of the variables y; ; provided by the numerical
integration method: gy = (-0.00117, — 0.00235,5.9 - 1076, — 0.00002, —
0.00235,1.0,— 0.00117, — 0.00002) .

We now use Theorem 6.1 to certify the convergence to a singular
system. We can compute for (&, po) the value ,B~ ~ 0.01302. Moreover,
Omin (Ks+1(&o, 10)) = 0.21549 and the minimum singular value of the
highlighted submatrix of Ky (&, o) is equal to one. Therefore ﬁN is at
least one order of magnitude less than both of them, which is sufficient,
since the involved Lipschitz and y constants are of the order of 1 for the
input polynomials. In the first iteration we obtain § ~ 0.00011 which
clearly indicates that we are in the region of convergence. Indeed, the
successive residuals for 4 iterations are 0.00603,4.0-107>,2.07-107°,8.6-
10718 3.55. 10735, Clearly, the residual shrinks with a quadratic ratel.
We obtain & = (1.8 - 10737,1.0,2.8 - 10’36) and the overdetermined
system is satisfied by this point: ||F(&4, ts)|lco = 8 - 1073%; the resulting
dual structure is D; = {1,d1,d3,d1d3}.

Example 7.2. We demonstrate how our method handles inaccuracies
in the input, and recovers a nearby system with a true multiple point.
Let

fi=x?2+x1—x+0.003 , fo=x5°+1.004x] — x3.

1 The convergence is seen up to machine error. If we increase the accuracy to 150 digits the rate
remains quadratic for 7 iterations: . . . 3.55 - 107, 6.78 - 10779, 4.15 - 107140, 5.1 . 107281 |
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There is a cluster of three roots around &, = (0.001,—0.002). Our goal is
to squeeze the cluster down to a three-fold real root. We use 32 digits
for the computation. Starting with &, and a tolerance equal to 1072
Algorithm 1 produces an approximate dual 1, d; + 1.00099651d>, df +
1.00099651d1ds + 1.00266222d§ + 0.99933134d, and identifies the pri-
mal basis B = {1,x1,x%} using pivoting on the integration matrix.
The sole stability condition reads p11,1 — piz2 = 0, and A; = 1, Ay =
di + p11da, A3 = d% + py1dids + pio1da + pio o p,1ds.

The nearby system that we shall obtain is deduced by the residue in
Newton’s method. In particular, starting from &y, we consider the square
system given by removing the equations A1 (f1) = 0 and A2(f2) = 0. The
rank of the corresponding Jacobian matrix remains maximal, therefore
such a choice is valid. Newton’s iterations converge quadratically to the
point (&5, pu5) = (1.1-10733,1.2 - 10733,1,1,1). The full residual is now

F(&s,ps) = (0,0.003,-1072,10732,0.004,0,0) .
This yields a perturbation fl ~ f1—0.003 and fg ~ f2—0.004(x1 — &) to
obtain a system with an exact multiple root at the origin (cf. Th. 6.1). Of
course, this choice of the square sub-system is not unique. By selecting
to remove equations Aj(f1) = 0 and A1(f2) = 0 instead, we obtain
(&5, ps) = (0.00066578,—0.00133245,1.001,1.0,1.001) and the residual
F(&s,ps5) = (0,0.005,0.002,0,0,0,0), so that the nearby system

£ mx?+x1—x2+0.008,  fy ~x2% +1.004x1 — x2 + 0.002

has a singularity at the limit point £* = (0.00066578,—0.00133245)
described locally by the coefficients g* ~ (1.001,1.0,1.001).

Finally, consider the two square sub-systems as above, after changing
fi, fo to define an exact three-fold root at the origin (ie. fi = x,2 +
X1 —x2, fo = x2% + x1 — x2). Newton’s iteration with initial point &
on either deflated system converges quadratically to (£€,p) = (0,1).
This is a general property of the method: exact multiple roots and their
structure are recovered by this process if & is a sufficiently good initial
approximation (cf. Section 5). We plan to develop this aspect further in
the future.

Example 7.3. We show some execution details on a set of benchmark
examples in taken from [7], see also [26]. For this benchmark, we are
given systems and points with multiplicities. We perturb the given points
with a numerical perturbation of order 1072, We use double precision
arithmetic and setup Newton’s iteration; with less than 10 iterations,
the root was approximated within the chosen accuracy.

In Table 1, “IM” is the maximal size of the (numeric) integration
matrix that is computed to obtain the multiplicity, “#p” is the number
of new parameters that are needed for certified deflation, “SC” is the
number of stability constraints that were computed and “OS” stands for
the size of the overdetermined system (equations X variables). This is
the size of the Jacobian matrix that must be computed and inverted in
each Newton’s iteration. We can observe that the number of parameters
required can grow significantly. Moreover, these parameters induce non-
trivial denominators in the rational functions gg, , (i) of Prop. 4.4. for
the instances cmbs1, cmbs2 and KSS.

System | r/n M SC | #p OS
cmbs1 11/3 | 27 x 23 75 74 108 X 77
cmbs2 8/3 | 21x17 21 33 45 X 36
mth191 4/3 10X 9 3 9 15X 12
decker2 | 4/2 5X%X5 4 8 12X 10
Ojika2 2/3 6X5 0 2 6X5
Ojika3 4/3 12X 9 15 14 27 X 17
KSS 16/5 | 155X 65 | 510 | 362 | 590 X 367
Capr. 4/4 | 22x13 6 15 22X 19
Cyclic-9 | 4/9 | 104x33 | 36 | 40 72 X 49

Table 1: Size of required matrices and parameters for deflation.
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