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Abstract. Let f1, . . . , fm be univariate polynomials with rational coef-
ficients and I := 〈f1, . . . , fm〉 ⊂ Q[x] be the ideal they generate. Assume
that we are given approximations {z1, . . . , zk} ⊂ Q[i] for the common
roots {ξ1, . . . , ξk} = V (I) ⊆ C. In this study, we describe a symbolic-
numeric algorithm to construct a rational matrix, called Hermite matrix,
from the approximate roots {z1, . . . , zk} and certify that this matrix is
the true Hermite matrix corresponding to the roots V (I). Applications
of Hermite matrices include counting and locating real roots of the poly-
nomials and certifying their existence.

Keywords: Symbolic–Numeric computation · Approximate roots · Her-
mite Matrices.

1 Introduction

The development of numerical and symbolic techniques to solve systems of poly-
nomial equations resulted in an explosion of applicability, both in term of the
size of the systems efficiently solvable and the reliability of the output. Nonethe-
less, many of the results produced by numerical methods are not certified. In
this paper, we show how to compute exact Hermite matrices from approximate
roots of polynomials, and how to certify that these Hermite matrices are correct.

Hermite matrices and Hermite bilinear forms were introduced by Hermite in
1850 [7], and have many applications, including counting real roots [8, 9, 3] and
locating them [2]. Assume that we are given the ideal I := 〈f1, . . . , fm〉 ⊂ Q[x]
generated by rational polynomials, and assume that dimQ Q[x]/I = k. Hermite
matrices have two kinds of definitions (see the precise formulation in Section
2.1):

1. The first definition of Hermite matrices uses the traces of k2 multiplication
matrices, each of them of size k × k. The advantage of this definition is
that it can be computed exactly, working with rational numbers only. The
disadvantage is that it requires the computation of the traces of k2 matrices.
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2. The second definition uses symmetric functions of the k common roots of I,
counted with multiplicity. The advantage of this definition is that it gives a
very efficient way to evaluate the entries of the Hermite matrix, assuming
that we know the common roots of I exactly. The disadvantage is that we
need to compute the common roots exactly, which may involve working in
field extensions of Q.

In this paper we propose to use the second definition to compute Hermite
matrices, but instead of using exact roots, we use approximate roots that can be
computed with numerical methods efficiently [6]. Once we obtain an approximate
Hermite matrix, we use rational number reconstruction (RNR) to construct a
matrix with rational entries of bounded denominators. Finally, we give a sym-
bolic method which certifies that the rational Hermite matrix we computed is
in fact the correct one, corresponding to the exact roots of I.

Using RNR techniques on rational polynomial systems is not a new concept.
A common approach is to use p-adic lifting or iterative refinement to build an
approximate solution, then apply rational number reconstruction [13–15]. Peryl
and Parrilo [11] used the approximate solutions as starting points for the com-
putation of exact rational sum of squares decomposition of rational polynomials.
RNR is also used to solve systems of linear equations and inequalities over the
rational numbers [12]. Moreover, RNR can be used to construct the coefficients
of the rational univariate representation of rational polynomial systems [1].

The novelty of this note and the difficulty of this problem is to certify the
correctness of the Hermite matrix that we computed with the above heuristic
approach. This part of the algorithm is purely symbolic. The main idea is to
use the fact that companion matrices act like roots of the polynomials, so we
can certify them, and then we use the famous Newton-Girard formulas [16] to
connect the entries of the companion matrix with the entries of the Hermite
matrix.

A natural question arises about the advantage of this hybrid symbolic–
numeric approach over purely symbolic methods, for example by taking the
gcd of the input polynomials and computing the symbolic Hermite matrix of the
gcd using the definition with traces. In many cases, the input polynomials have
much higher degree D than the number of common roots, so the bottleneck of
the computation is computing the common roots or the gcd of the polynomials.
Our approach computes numerically the roots of one polynomial with integer
coefficients of size at most h, substitutes them into the other m− 1 polynomials
to find the common roots, which can be done using O((D3+hD2)+hmD) binary
operations up to logarithmic factors (c.f. [4, 10]). On the other hand, comput-
ing the gcd of m degree D polynomials with integer coefficients of overall size
H ≤ mh takes O(mD3) arithmetic operation with integers of size O(D4H). (c.f.
[5]).
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2 Preliminaries

2.1 Hermite Matrices

Let f1, . . . , fm ∈ Q[x], I = 〈f1, . . . , fm〉 ⊂ Q[x] and k := dimQ Q[x]/I. Assume
that (the residue classes of the polynomials in) B = {1, x, . . . , xk−1} form a basis
for Q[x]/I. Note that all definitions in this section are valid for polynomials over
R or C, but in this note we only consider polynomials with rational coefficients.

In [3, Section 4.3.2] it is shown that the following two definitions of Hermite
matrices are equivalent:

Definition 1. Let ξ1, ξ2, . . . , ξk ∈ C be the common roots of I (here each root
is listed as many times as their multiplicity) and g ∈ Q[x]. Then the Hermite
matrix of I with respect to g is

Hg := V T
B GVB (1)

where VB = [ξj−1i ]i,j=1,...,k is the Vandermonde matrix of the roots with respect to
the basis B and G is an k×k diagonal matrix with [G]ii = g(ξi) for i = 1, . . . , k.
We will also need the extended Hermite matrix of I with respect to g

H+
g := V T

B+GVB+ ∈ Q(k+1)×(k+1) (2)

where VB+ = [ξj−1i ]i=1,...,k,j=1,...,k+1 ∈ Ck×(k+1) is the Vandermonde matrix
corresponding to B+ := {1, x, x2, . . . , xk}.

Definition 1 gives the following formula for g = 1

H1 =

[
k∑

l=1

ξi+j−2
l

]
i,j=1,...,k

. (3)

The right hand side of (3) is the (i+ j − 2)-th power sum of the roots, which is
an elementary symmetric function of the roots.

The second definition implies that the Hermite matrix has a Hankel structure
and its entries are rational numbers.

Definition 2. Let I as above and g ∈ Q[x]. The Hermite matrix of I with
respect of g is

Hg :=
[
Tr(Mgxi+j−2)

]k
i,j=1

,

where Mf denotes the matrix of the multiplication map µf : Q[x]/I → Q[x]/I,
µf (p) := p · f + I in the basis B.

2.2 Rational Number Reconstruction

Continued fractions are widely used for rational approximation purposes. Let
z be a real number, one can compute the sequence of repeated quotients using
continued fractions, yielding rational approximations for z. If the denominator
is bounded, the following theorem guarantees the uniqueness of the rational
approximation in case of existence.
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Theorem 1. [12] There exists a polynomial time algorithm which, for a given
rational number z and a natural number B tests if there exists a pair of integers
(p, q) with 1 ≤ q ≤ B and ∣∣∣∣z − p

q

∣∣∣∣ < 1

2B2

if so, finds this unique pair of integers.

If we have a bound E for the absolute approximation error of z, then the
denominator bound can be defined as B :=

⌈
(2E)−1/2

⌉
to guarantee the unique-

ness of a rational number within distance E from z with denominator at most
B.

3 Construction and Certification of Hermite Matrices

In the following algorithm we assume that I = 〈f1, . . . , fm〉 is radical, i.e. if
k = dimQ[x]/I then V (I) has cardinality k. Our algorithm to construct and
certify Hermite matrices from approximate roots is as follows.

Algorithm: Certified Univariate Hermite Matrix

– Input: f1, . . . , fm, g ∈ Q[x]; k = dimQ[x]/I; {z1, . . . , zk} ⊂ Q[i] approxi-
mate roots; a bound E on the absolute error of these approximate roots.

– Output: Hg ∈ Qk×k or Fail.
1: Compute the approximate extended Hermite matrix

H̃+
1 :=

[
k∑

l=1

zi+j−2
l

]
i,j=1,...,k+1

∈ Q[i](k+1)×(k+1).

2: Use Rational Number Reconstruction for the real part of each entry H̃+
1 ,

using Theorem 1 with denominator bound for the (i, j)-th entry

Bi,j :=
⌈
(2k(i+ j − 2)EAi+j−3)−1/2

⌉
. (4)

Here A is an upper bound for the coordinates of the approximate roots. The
resulting matrix is denoted by H+

1 ∈ Q(k+1)×(k+1).
3: H1 ← the first k rows and the first k columns of H+

1

Hk
1 ← the first k rows and the last k columns of H+

1 .
4: If H+

1 has Hankel structure and rank(H1) = rank(H+
1 ) = k, then

Mx ← H−11 ·Hk
1

else return Fail.
5: If Mx has a companion matrix shape and fi(Mx) = 0 for i = 1, . . . ,m

then p(x)← charpol(Mx) else return Fail;
If p is not square-free then return Fail. Otherwise Mx is the certified mul-
tiplication matrix by x in Q[x]/I.
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6: Use the Newton–Girard formulas [16] with the coefficients of p to yield the
d-th power sums of the roots of p for d = 0, . . . , 2k− 2, as in (3). If each one
matches to the corresponding entry of H1, then it certifies H1, else return
Fail.

7: Once H1 and Mx are certified, return

Hg ← H1 · g(Mx),

which is correct by H1 · g(Mx) = (V TV ) · (V −1GV ) = V TGV = Hg.

Note that if we do not give k = dimQ Q[x]/I as part of the input, the above
algorithm only certifies that the output matrix Hg corresponds to a rational
subvariety of V (I), i.e. possibly a proper subset of V (I) that is defined by
rational polynomials.

We finish this note by describing a modification of the above algorithm for
the case when I is not radical. In this case we return a certified Hermite matrix
Hg corresponding to a rational component of the radical of I, i.e. each common
roots of I is counted with multiplicity one or zero. We still start with the same
input, but z1, . . . , zk may have repetitions (or form clusters). In Step 4, instead
of requiring H1 to have rank k, we compute the companion matrix Mx using a
maximal non-singular submatrix of H+

1 , which may have size smaller than k. In
Step 6, we use the Newton–Girard formulas to define H1, and return Hg defined
as in Step 7, which may also have size smaller than k.

In future work, we plan to extend these results to multivariate and overde-
termined polynomial systems.

4 Example

We demonstrate our algorithm on a simple example. Consider f(x) = 16x4 −
10x2+1 ∈ Q[x], with g(x) = 1. The exact roots of f are 1/

√
2,−1/

√
2, 1/2

√
2,−1/2

√
2.

We get the following approximate solutions using homotopy method in Maple:
z1 = 0.7071067810, z2 = −0.7071067810, z3 = 0.3535533905, z4 = −0.3535533905.
This solution has error bound E := 10−8.

1: Compute the approximate extended Hankel matrix H̃+
1 from z1, z2, z3, z4:

H̃
+
1 =



4.0 −0.0000000007 1.2500000052 −0.00000000026 0.5312500055

−0.0000000007 1.2500000053 −0.0000000002 0.5312500055 −5.3363907043 × 10−11

1.2500000052999999 −0.0000000002 0.5312500055 −5.4597088135 × 10−11 0.2539062541

−0.0000000002 0.5312500055 −5.4597088135 × 10−11 0.2539062542 −9.3658008865 × 10−12

0.5312500055 −5.3363907043 × 10−11 0.2539062541 −9.3658008865 × 10−12 0.1254882840


.
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2: Rationalize H+
1 , using A = 0.8 and E = 10−8 and (4). This gives B ∼= 2700

as upper bound for the denominators of each entry of the Hankel matrix H+
1 .

H+
1 =



4 0 5
4 0 17

32

0 5
4 0 17

32 0

5
4 0 17

32 0 65
256

0 17
32 0 65

256 0

17
32 0 65

256 0 257
2048


3: Let H1 be the first k rows and the first k columns of H+

1 , and Hk
1 be the first

k rows and the last k columns of H+
1 .

4: H+
1 has Hankel structure and rank(H+

1 ) = rank(H1) = 4. Then

Mx = H−11 ·H4
1 =


0 0 0 − 1

16

1 0 0 0

0 1 0 5
8

0 0 1 0

 .

5: Mx has a companion matrix shape and f(Mx) = 0, then p(x) := x4− 5
8x

2+ 1
16

with gcd(p, p′) = 1 (square free). Thus we certified that Mx is the multiplication
matrix by x in Q[x]/〈f〉.
6: We Newton–Girard formulas with the elementary symmetric functions: e0 =
1, e1 = 0, e2 = − 5

8 , e3 = 0, e4 = 1
16 , which yields

4∑
i=1

ξ0i = 4,
4∑

i=1

ξ2i =
5

4
,

4∑
i=1

ξ4i =
17

32
,

4∑
i=1

ξ6i =
65

256
,

4∑
i=1

ξ8i =
257

2048
,

and all odd power sums are zero. Each sum matches the corresponding entry,
thus we certified H1.
7: Since g(x) = 1, Return H1.
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limites données. Journal für die reine und angewandte Mathematik 52 39–51 (1856)

10. Pan, V. Y.: Nearly Optimal Polynomial Root-finders: the State of the Art and New
Progress, arXiv:1805.12042v10 [cs.NA] (2019)

11. Peyrl, H., Parrilo, P. A. : Computing Sum of Squares Decompositions with Rational
Coefficients. Theor. Comput. Sci., 409(2), 269-281 (2008)

12. Schrijver, A. : Theory of linear and integer programming. JohnWiley & Sons, New
York (1998)

13. Steffy, D. E.: Exact solutions to linear systems of equations using output sensitive
lifting. ACM Communications in Computer Algebra, 44(3/4), 160182 (2011)

14. Wan, Z.: An algorithm to solve integer linear systems exactly using numerical
methods. Journal of Symbolic Computation, 41:621632, (2006)

15. Wang X., Pan V. Y. : Acceleration of Euclidean algorithm and rational number
reconstruction. SIAM J. Comput., 32(2), 548–556 (2003)

16. Weisstein, E. W. “Newton-Girard Formulas.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Newton-GirardFormulas.html


