
Predicting Latency Distributions of Aperiodic
Time-Critical Services

Haoran Li, Chenyang Lu, Christopher Gill
Cyber-Physical Systems Laboratory, Washington University in St. Louis

{lihaoran, lu, cdgill}@wustl.edu

Abstract—There is increasing interest in supporting time-
critical services in cloud computing environments. Those cloud
services differ from traditional hard real-time systems in three
aspects. First, cloud services usually involve latency requirements
in terms of probabilistic tail latency instead of hard deadlines.
Second, some cloud services need to handle aperiodic requests
for stochastic arrival processes instead of traditional periodic or
sporadic models. Finally, the computing platform must provide
performance isolation between time-critical services and other
workloads. It is therefore essential to provision resources to
meet different tail latency requirements. As a step towards
cloud services with stochastic latency guarantees, this paper
presents a stochastic response time analysis for aperiodic services
following a Poisson arrival process on computing platforms that
schedue time-critical services as deferrable servers. The stochastic
analysis enables a service operator to provision CPU resources for
aperiodic services to achieve a desired tail latency. We evaluated
the method in two case studies, one involving a synthetic service
and another involving a Redis service, both on a testbed based
on Xen 4.10. The results demonstrate the validity and efficacy of
our method in a practical setting.

Index Terms—Time-sensitive Service, Deferrable Server,
Queueing Model, Response Time Ananlysis, Tail Latency

I. INTRODUCTION

Time-critical services are increasingly hosted in the cloud to

take advantage of the flexibility and scalability of cloud com-

puting platforms. Examples include streaming analytics [1],

interactive services [2], and in-memory data stores [3]. Cloud

providers face a tremendous challenge to meet the latency

requirements of time-critical services. In contrast to traditional

real-time systems, the service-level objective (SLO) of a time-

critical service is usually in terms of a target tail latency in-

stead of hard deadlines. Moreover, requests for cloud services

may arrive aperiodically following stochastic arrival processes

that depart from periodic or sporadic task models. Finally, it

is essential to enforce performance isolation between cloud

services in a shared, multi-tenant environment. A service (or

micro-service [4]) may be instantiated at different granular-

ities, ranging from a process, to a container, to a virtual

machine. For CPU resources, which are the focus of this paper,

a common approach to performance isolation is to schedule a

service as a scheduling server that is allowed to execute for a

specified budget within each period. As examples, Quest-V [5]

uses the PIBS server for micro-service processes, whereas a

Linux process, when scheduled by SCHED_DEADLINE [6], is

governed by a constant bandwidth server (CBS), and a virtual

CPU (VCPU) is scheduled as a deferrable server (DS) when

scheduled by the Xen RTDS [7], [8] scheduler.

The confluence of stochastic latency requirements, aperi-

odic arrivals, and performance isolation mechanisms makes

it highly challenging to analyze the response time of a

time-critical service. The stochastic arrivals and the resultant

queueing delays make response time analysis non-trivial, even

for the highest-priority task in fixed-priority scheduling. The

enforcement of CPU budgets for performance isolation further

aggravates the complexity of the analysis.

Traditionally, response time analysis in real-time systems

focuses on bounding the worst-case response time. This ap-

proach does not work for time-critical services with aperiodic

stochastic arrivals and tail latency requirements. Due to the

stochastic arrivals of service requests, the worst-case response

time cannot be bounded. While soft real-time scheduling ap-

proaches are geared towards achieving bounded tardiness [9]–

[11], they focus on periodic tasks. Similarly, earlier ef-

forts on stochastic analysis have been proposed for periodic

tasks [12]–[17]. Moreover, existing aperiodic scheduling ap-

proaches based on scheduling servers [18]–[21] and aperiodic

utilization bounds [22] are not designed to provide offline

guarantees for aperiodic tasks. Hierarchical and compositional

scheduling analysis [23]–[26] leverages scheduling servers to

achieve performance isolation, but the analysis approach is

generally designed for periodic tasks and deadlines instead of

tail latency.

Queueing theory provides tools to derive the response

time distribution subject to stochastic arrivals. Real-time cal-

culus [27], [28] and real-time queueing theory [29], [30]

extend probabilistic queueing theory to derive hard upper and

lower performance bounds instead of tail latency. Furthermore,

while traditional queueing theory usually models an always-on

server, a scheduling server algorithm (e.g., deferrable server)

dictates that the server is no longer always active, i.e., the

server is suspended when it runs out of its budget. It is

therefore necessary to extend queueing theory to model and

analyze scheduling servers.

This paper takes a first step towards response time analysis

for time-critical services. We consider a time-critical service

scheduled as a deferrable server for performance isolation, and

develop a numerical method for computing the stationary1

1A stationary distribution of a Markov chain is a probabilistic distribution
that remains unchanged in the Markov chain as time progresses [31].

30

2019 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/19/$31.00 ©2019 IEEE
DOI 10.1109/RTSS46320.2019.00014

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

response time distribution of a stochastic Poisson arrival

process. From a queueing theory perspective, we denote the

system as M/D(DS)/1. This notation extends the established

M/D/1 queue (in Kendall’s notation [32]2), to highlight that

the server model is changed from an always-active server to

a deferrable server (DS).

We first observe that a scheduling server in real-time

scheduling theory can be modeled as a periodic service

queueing model that has been studied in the queueing theory

literature [33]–[37]. Combining scheduling analysis and virtual

waiting time analysis, we then establish a transformation

between periodic and deferrable servers. Finally, we derive

an efficient method to compute the stationary response time

distributions of M/D(DS)/1 models. We demonstrate how the

response time distribution of an M/D(DS)/1 system enables

us to configure a deferrable server to achieve the desired

tail latency for a time-critical service. We implement our

approach in a virtualization platform based on Xen 4.10 and

evaluate two case studies, one involving a synthetic service and

another involving Redis, a common in-memory data storage

service. The results of these studies demonstrate the validity

and efficacy of our numerical approach in supporting time-

critical services in a practical setting.

II. BACKGROUND

In queueing theory, an M/D/1 queue represents a single

server queueing system, where job arrivals are determined by

a Poisson process and the job service durations of a given

task have the same constant value, i.e., they are deterministic.

This queueing model, first studied and published by Erlang in

1909 [38], initiated the study of queueing theory.

With the development of an ever growing range of commu-

nication and computing systems, queueing theory has flour-

ished and has been used both as a predictive tool, allowing

one to predict the performance of a given system, and as

a design tool, supporting system configurations to minimize

response time. Numerous models involving different arrival

patterns, service duration distributions, and multiple servers

with different scheduling policies have been studied for dif-

ferent real-world scenarios.

A not-always-active server is of particular interest, and a

queueing system with periodic service is a typical case. For

example, a fixed-cycle traffic light that controls an intersection

can be modeled as a periodic service for each lane; similarly,

a TDMA network can provide several slots for each channel

in each period.

While queueing systems with periodic service have received

significant research attention, the rapid advancement of cloud

technology and new system design paradigms (e.g., micro-

services) require even more sophisticated service models. The

deferrable server model has been relatively ignored by queue-

ing theory, despite a recent surge in its real-world realizations:

e.g., the RTDS scheduler of Xen [8], and vMPCP [39].

2In Kendall’s Notation, “M” is for Poisson arrival, indicating the feature of
“Memoryless”; “D” is for constant service time, i.e., “Deterministic”.

Server (B,P)

CPU

Fixed Priority Scheduler

Time-critical Service

General Service

(a) Scheduling Model

Server
(B,P)Poisson arrival

(b) Queueing Model

Fig. 1: M/D(DS)/1 and M/D(PS)/1 Queueing Model

Predicting even the simplest queueing system involving a

deferrable server policy is still demanding. In this paper, by

establishing and analyzing the M/D(DS)/1 model, we provide

a numerical method for computing the relevant stationary

response time distribution. As a result, this method can act

as both a predictive tool and a design tool.

III. SYSTEM MODEL

Our goal is to predict the stationary response distribution

of a time-critical service with a Poisson arrival process and

a deterministic service time, when the service is governed

by a deferrable server. As the first step towards establishing

a scheduling theory for time-critical services, in this paper

we investigate a relatively simple, but still practical, system

model. Specifically, the system has M CPUs. There is one

aperiodic, time-critical service assigned on each CPU. There

may be other general services sharing the CPU with the

time-critical service. The requests for the same time-critical

service arrive following a Poisson process and are scheduled

in a FIFO fashion. The system employs partitioned fixed-

priority scheduling. The time-critical service is scheduled as

a deferrable server assigned a higher priority than the other

services on the same CPU. Fig. 1a shows a single CPU as an

example. Despite its simplicity, this architecture is suitable for

cloud or edge computing scenarios that provide a mix of time-

critical and general services. We focus on CPU resources and

do not consider inter-service interference arising from other

shared resources, such as cache, memory, and I/O. Handling

other resources will be part of future work.

Finding the stationary response time distribution of such a

time-critical service can help us to validate whether the service

level objective (e.g., a 90th percentile latency of less than 10

ms) can be met, in order to configure practical server parameter

settings and thus to provide desired performance.

Due to the stochastic nature of the arriving jobs, the system

is amenable to analysis based on a probabilistic queueing

model. We transfer the scheduling model (Fig. 1a) to the

queueing model (Fig. 1b) for the purpose of analyzing the

stochastic response time of the time-critical service. In the

following section, we further introduce our queueing model,

starting with the canonical M/D/1 queue.

M/D/1 Queue. An M/D/1 queue presents a single always-

active server with Poisson arrivals and deterministic service

times. This model has two parameters (λ, d). The arrival rate

31

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

n n+1 n+2n-1

arrival departure

n+3

Fig. 2: Job Arrival and Departure

λ means that jobs’ inter-arrival times follow an exponential

distribution of parameter λ; the constant service time is d.

Periodic Server: M/D(PS)/1 Queue. Unlike the M/D/1 queue,

a single periodic server is not always active. We use two

additional parameters, budget and period, noted as (B,P),
where B ≤ P , to represent the periodic server model. Since

the server has the highest priority, the server’s schedule is

fixed and switches between the on-state and off-state. When

scheduling with other general tasks, as long as the peri-

odic server is in the on-state, its budget linearly decreases,

regardless whether it is processing a request. The server

stays in the off-state (not providing service) during time

t ∈ [kP, kP + (P −B)), and provides service in the on-state

during time t ∈ [kP + (P − B), (k + 1)P). The server runs

jobs only when it is in the on-state.

Deferrable Server: M/D(DS)/1 Queue. A server in an

M/D(DS)/1 queue is another not-always-active server: a de-

ferrable server. Although M/D(DS)/1 can be also modeled by

four parameters (λ, d,B, P) (like M/D(PS)/1, in Fig. 1b), the

server policy is different. At the beginning of each period, the

server replenishes its remaining budget to B. Whenever a job

arrives and the server has remaining budget, it can run the

job by consuming its budget. The server retains its remaining

budget if it is not running, and if the budget is exhausted

(reaches 0), the server stops providing any service until the

next period, when the budget gets replenished.

System Stability. For a deferrable or periodic server with

parameters (B,P), we define the bandwidth W = B
P . For

an M/D/ arrival with parameters (λ, d), the system utilization
is U = λd. In order to make a system stable, say, to achieve

statistical equilibrium, the system utilization U should be less

than the server bandwidth B. Specifically, for M/D(PS)/1 and

M/D(DS)/1 systems with parameters (λ, d,B, P), the stability

condition is

U = λd <
B

P
= W. (1)

We are interested in the response time (sojourn time)

distribution of an M/D(DS)/1 queue. In this paper, we present

a numerical algorithm to derive the stationary response time

distribution of a Poisson arrival process with a deterministic

service time, subject to the deferrable server policy.

Challenge. The M/D(PS)/1 model has been studied in queue-

ing theory (e.g., traffic flow under a periodic traffic sig-

nal) since the mid 1900s. However, it remains difficult to

derive the explicit analytical result for the stationary re-

sponse time distribution of M/D(PS)/1 queueing models.

Because the M/D(DS)/1 model is much more complicated

than the M/D(PS)/1 model, and since budget management

for M/D(DS)/1 is correlated with stochastic arrivals, it is

extremely challenging to derive an explicit analytical result

for the stationary response time distribution for an M/D(DS)/1

model.

Thus, instead of studying the M/D(DS)/1 model in contin-

uous time using mathematical tools like the Laplace-Stieltjes
Transform, we use a discrete time analysis to approximate

the continuous time M/D(DS)/1 model, as detailed in the next

section. Thanks to the Poisson Limit Theorem [40], we can

first study Bernoulli arrivals with deterministic service times,

subject to the deferrable server policy (B/D(DS)/1 queue).

Then, by choosing a small enough time quantum, we can

closely approximate the M/D(DS)/1 model.

B/D(PS)/1 and B/D(DS)/1. Consider a single queue system

where we divide the time axis into intervals of equal length.

Each interval is a slot. Jobs arrive according to a Bernoulli

process with parameter η: in each slot, either we have exactly

one job arrival, with probability η, or we have no job arrival,

with probability 1−η. The inter-arrival time distribution of the

Bernoulli process is a geometric distribution with parameter

η. The service times of jobs are deterministic, denoted as d.

A B/D(DS)/1 or B/D(PS)/1 queue can be modeled by the

parameters (η, d,B, P).
Job arrival, service starting, and job departure (service

completion) occur only at slot boundaries. For convenience,

we assume that an job arrival ori the start of a service always

occurs just after the slot boundary, and a job departs only just
before the slot boundary. For example, in Fig. 2, a job arrives

at n+ and departs at (n+2)−, starting its service just after the

beginning of n-th slot, running for 2 time units, and departing

just before the (n+ 2)-th slot.

The server renders service according to the budget man-

agement policy, i.e., deferrable or periodic server policy. The

stability condition is U = ηd < B
P = W .

IV. THEORETICAL PROPERTIES AND ALGORITHMS

In this section, we compute the stationary response time

distribution of an M/D(DS)/1 queue with the parameters

(λ, d′, B′, P ′). This M/D(DS)/1 queue can be approximated by

a discrete B/D(DS)/1 queue with the parameters (η, d,B, P).
We first illustrate how to quantize the system and map

the parameters. We then study two queues, B/D/(PS)/1 and

B/D(DS)/1, and focus on their virtual waiting time process. If

a new job happens to arrive at the queueing system at time n,

the server may still have pending jobs to render; and the server

has to stay in active-state for v[n] time units before handling

this new job. This time v[n] is defined as the virtual waiting
time.

Assuming their virtual waiting time processes (discrete

stochastic processes) are ṼDS [n] and ṼPS [n], we study the

virtual waiting time at the start of each period, i.e., VDS [n] =
ṼDS [nP] and VPS [n] = ṼPS [nP]. VDS [n] and VPS [n] are

Markov chains. We prove an equivalence in Theorem 1 and

Corollary 5: if the system is stable, the two queues always

have the same virtual waiting time distribution at the start of

each server period, i.e., VDS [n] = VPS [n].
Theorem 1 indicates that if we can compute the stationary

virtual waiting time distribution at the start of the server

32

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

NP’/d’
P

0

P’
P’

0

d’

d=N

Co
nt

in
uo

us
 T

im
e

M
/D

(D
S)

/1
D

is
cr

et
e

Ti
m

e
B/

D
(D

S)
/1

Fig. 3: Quantization: From Continuous Time to Discrete Time

Parameter M/D(DS)/1 B/D(DS)/1
Arrival/Succeed Rate λ η = λd′/N
Service Duration d′ d = N
Period P ′ P = NP ′/d′
Budget B′ B = NB′/d′

TABLE I: Parameter Mapping

period, then for B/D(PS)/1, the result can be applied directly

to the comparable B/D(DS)/1 model. Algorithm 1 leverages

this feature and uses the B/D(PS)/1 model to compute the

stationary virtual waiting time distribution at the start of

the server period. Then, the stationary virtual waiting time

distribution of B/D(DS)/1 at all slots within a server period

can be computed recursively via Algorithm 2.

Finally, if the virtual waiting time of the queueing system

upon one job’s arrival is known, then the response time is

deterministic, due to the FIFO policy and deterministic service

time. Using the discrete version of the PASTA Theorem [31]3,

in which “upon arrival at a station, a job observes the system as

if in steady state at an arbitrary instant for the system without

that job” [41], we can determine the stationary response time

distribution, FDS , for a B/D(DS)/1 queue.

A. Approximating the continuous M/D(DS)/1 model

As we discussed previously, we can employ a B/D(DS)/1

queue, using the Poisson Limit Theorem [40], to approximate

the stationary response time distribution of an M/D(DS)/1

queue. Given an M/D(DS)/1 queue with parameters of

(λ, d′, P ′, B′), we can quantify the continuous time model by

choosing a quantum (slot width) of d′/N and get a discrete

time version, as shown in Fig. 3. Then, we can represent a

correlated B/D(DS)/1 queue with the parameters (η, d, P,B)
in this discrete time model. Using the invariance of utilization

(i.e., λd′ = ηN) and bandwidth (i.e., B′
P ′ =

B
P), we can easily

produce the mapping shown in Table I. Using the Poisson

Limit Theorem [40], we can approximate a Poisson process

by a Bernoulli process, given large enough N . As a result, we

can approximate the M/D(DS)/1 system by mapping it to a

B/D(DS)/1 system with an appropriate value of N .

3The discrete version is also called the BASTA Theorem – Bernoulli
Arrivals See Time Average.

B. Virtual Waiting Time Equivalence at Start of Server Period
In this section, we show the equivalence of the virtual

waiting times at the start of each server period for the pe-

riodic and deferrable server models, with the same parameters

(B,P). Theorem 1 below can be adopted to any arbitrary

arrival pattern and any service time distribution (usually noted

as G/G/ arrival in Kendall’s notation, where “G” stands for

“General”) in both continuous and discrete time domains. We

denote the general deferrable and periodic server queueing

systems as G/G(DS)/1 and G/G(PS)/1, respectively. Without

losing generality, suppose the continuous virtual waiting time

processes of the deferrable and periodic queueing systems are

ṼDS(t) and ṼPS(t), respectively. The virtual waiting time

sequences at each start of a server period are Markov chains,

VDS [n] and VPS [n], where

VDS [n] = ṼDS(nP), VPS [n] = ṼPS(nP), n ∈ N.

We denote a realization of the stochastic sequences VDS [n]
and VPS [n] as vDS [n] and vPS [n], respectively.

Theorem 1. Let the same G/G/ process arrive in both the
deferrable and periodic queueing servers with the same server
parameters (B,P). The virtual waiting time realizations of the
two systems at the start of each period are always equal to
each other, i.e.,

vDS [n] = vPS [n].

Fig. 4 illustrates an example of Theorem 1: We randomly

generate an arriving job sequence {(ai, ci)}. The i-th job

releases at time ai, with execution time ci. We use the

same process to stimulate both the deferrable server and

the periodic server, whose server parameters are the same

(B = 2, P = 5). Then, vDS(t) is one possible realization

of the stochastic process VDS(t), and vPS(t) is a realization

of VPS(t). By observing the virtual waiting time at the start

of each period, that is, t = 0, 5, 10, 15, 20, ...), we find the

sequence vDS [n] = vPS [n], as Theorem 1 indicates.
To prove Theorem 1, we consider a certain server period,

denoted as [0, P), in Fig. 5. Suppose that we have x time units

of work pending at the start of the period (time 0), and that

exactly n jobs arrive within this period. The jobs are indexed

in reverse: Their arrival times are an, an−1, ..., a1, where 0 ≤
an < an−1 < ... < a1 < P . The execution times of the n jobs

are cn, cn−1, ..., c1, respectively.
We analyse this period with both the deferrable and periodic

policies. We denote the work remaining at the end of this

period (time P) as yDS and yPS , for deferrable server and

periodic server, respectively.
Hypothesis H(n). In the described period, ∀x ≥ 0, ∀P >
0, ∀B ∈ [0, P], if exactly n jobs arrive within the period, then

yDS = yPS . We can prove that ∀n ∈ N, H(n) is true.

Lemma 2. H(0) is true.

Proof of Lemma 2. H(0) means no new job arrives within

this period. We can consider only the x units of pending work.
If x ≥ B, then in this period all of the budget will be

consumed, whether DS or PS is used: i.e., yDS = yPS =

33

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

v D
S(t

)
v P

S(t
)

(1.5, 1) (3, 2) (5.5, 1) (9.5, 3) (14, 0.5)Arriving
Process

De
fe

rr
ab

le
 S

er
ve

r
(B

=2
,P

=5
)

Pe
rio

di
c S

er
ve

r
(B

=2
,P

=5
)

vDS[0]=0 vDS[1]=1 vDS[2]=3 vDS[3]=1.5 vDS[4]=0

vPS[0]=0 vPS[1]=1 vPS[2]=3 vPS[3]=1.5 vPS[4]=0

Fig. 4: Example: How vDS [n] = vPS [n] in a possible realization

0 P

…….

an
an-1

a1
…….

x pending work
yDS, if run with DS
yPS, if run with PS

Fig. 5: n jobs fall in a server period

x − B. If x < B, then yDS = yPS = 0. For either case,

yDS = yPS = max{0, x−B}, so H(0) is true.

Lemma 3. H(n) is either true, or has the same logic value
(a.k.a. truth value) as H(n− 1).

Proof of Lemma 3. Considering the first job, an, we can

enumerate the possible x and an values and evaluate each

case. We will see that the system can be reduced to a system

with n− 1 job arrivals within the new period.

Case 1. If x ≥ B, then H(n) is true.

Whether the server is deferrable or periodic, it will exhaust

exactly B time units of budget for the pending job, and all

incoming jobs will accumulate. As a result,

yDS = yPS = x+

n∑
i=1

ci −B,

so H(n) is true.

Case 2. If x < B, then we must consider an.

Case 2.1 If x < B and an < x, then we evaluate cn.

Case 2.1.1 If x < B, an < x, and x+cn ≥ B, then H(n) is

true. In this case, whether the server is deferrable or periodic,

it will exhaust all of its budget for x and job an. Effectively,

yDS = yPS = x+ cn +
n−1∑
i=1

ci −B = x+
n∑

i=1

ci −B,

……

an
an-1

a1
……

x+cn

0 P

x+cn pending
……

x+cn

P - B

…… ……

x+cn
x pending x+cn pending

0 PP - B

0 P 0 P

an-1

a1
……

an
an-1

a1
…… an-1

a1
……De

fe
rr

ab
le

 S
er

ve
r

Pe
rio

di
c

Se
rv

er x pending

Fig. 6: Case 2.1.2: reduce the system to n− 1 arrivals

so H(n) is true.

Case 2.1.2 If x < B, an < x, and x+cn < B, then we first

consider the deferrable server, as shown in Fig. 6. If an < x,

then the schedule of the original system (with n arrivals) is

equivalent to a system starting with a pending job of x+ cn,

and with only n−1 arriving jobs. Those two systems will yield

the same busy period for the deferrable server, so the pending

work at the end of the period, yDS , will remain unchanged.

Similarly, we can also reduce the periodic server system to

a system with n− 1 arrivals. Since the busy period stays the

same, yPS will remain unchanged. According to Case 2.1.1

and Case 2.1.2, for Case 2.1, H(n) will have the same logic

value as H(n− 1).
Case 2.2 If x < B and an ≥ x, then we consider the

deferrable server first. In this case, since an will arrive after

the pending job queue is emptied, we can reduce the system

to a new system with n−1 arrivals with different parameters:

P ′ = P − an, B′ = min{B − x, P − an}, a′i = ai − an, and

x′ = cn. Note that P − an may be less than B − x, which

means that an arrives so late that at least some budget has

been wasted and can never be reclaimed.

Next, we consider the periodic server: As before, since an
will arrive after the pending job queue is emptied, we can

34

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

0 P

…….

an
an-1

a1
…….

x
x pending

…….

an a’n-1

a’1
…….

x
cn pending

-an P’=P-anP-B P’-B’

Pe
rio

di
c

Se
rv

er

0 P

…….

an
an-1

a1
…….

x
x pending

P-B

De
fe

rr
ab

le
 S

er
ve

r

…….

an a’n-1

a’1
…….

x
cn pending

P’=P-anP’-B’

(a) B − x ≤ P − an

...

an

a1
…….

xx pending

a’1
…….

x cn pending

-an P’=B’=P-an0
an-1

...

a’n-1

0 PP-B

Pe
rio

di
c

Se
rv

er

...

an

a1
…….

x
x pending

a’1
…….

x
cn pending

-an P’=B’=P-an0
an-1

...

a’n-1

0 PP-B

De
fe

rr
ab

le
 S

er
ve

r

(b) B − x > P − an

Fig. 7: Case 2.2: reduce the system to n− 1 arrivals

reduce the budget of the new system by x units and consider

the new system that starts when an arrives. The original

schedule of x must fall within the off-period of the new

system. Hence, we reduce the original system to a new system

with n − 1 arrivals with different parameters: P ′ = P − an,

B′ = min{B − x, P − an}, a′i = ai − an, and x′ = cn.

As shown in Fig. 7, the new systems for both the deferrable

server and the periodic server still satisfy the condition for

H(n − 1): P ′ ≥ B, x′ = cn ≥ 0, and 0 ≤ an−1 < an−1 <
... < a1 < P . Thus for Case 2.2, H(n) has the same logic

value as H(n− 1).

Considering Case 2.1 and Case 2.2 as a whole, for Case 2,

H(n) is either true or has the same logic value as H(n− 1).

Considering Case 1 and Case 2, H(n) has the same logic

value as H(n− 1).

Lemma 4. ∀n ∈ N, H(n) is true.

Proof of Lemma 4. For n = 0, we have proved Lemma 2.

For n > 0, we can recursively use Lemma 3 to reduce H(n)
to H(0), and finally to find H(n) is true.

Proof of Theorem 1. Let the system start at t = 0, with no

initial pending job, i.e., vDS [0] = vPS [0] = 0. Using Lemma 4

recursively for each period [kP, (k + 1)P), we can conclude

that vDS [n] = vPS [n].

The stationary virtual waiting times of the two Markov

chains are VDS [n]
p→ VDS , and VPS [n]

p→ VPS , respectively.

Corollary 5. Let a G/G/ process arrive in both the deferrable
and periodic servers with the same server parameters (B,P).
If the stability condition holds, the stationary distributions of
the virtual waiting times of the two systems at the start of each

(0|0) (1 | 0) (2 | 0) (3 | 0)

(0 | 1) (1 | 1) (2 | 1) (3 | 1)

η

1-η

…
…

η η η

(0 | P-B-1) (1 | P-B-1) (2 | P-B-1) (3 | P-B-1)

(0 | P-B) (1 | P-B) (2 | P-B) (3 | P-B)

η
1-η

…
…

η η η

… … … …

(0 | P-B+1) (1 | P-B+1) (2 | P-B+1) (3 | P-B+1) …

1-η 1-η 1-η

(0 | P-2) (1 | P-2) (2 | P-2) (3 | P-2) …
(0 | P-1) (1 | P-1) (2 | P-1) (3 | P-1) …

… … … …

Se
rv

er
 O

ff
Se

rv
er

 O
n

(0 | 0) (1 | 0) (2 | 0) (3 | 0) …

1-η 1-η 1-η

1-η

1-η

1-η

Fig. 8: State Transition Diagram for a B/D(PS)/1 queue:

Pr{V PS = l|T = n}, d = 2

period exhibit almost sure equality4, i.e.:

VDS
a.s.
= VPS .

Proof of Corollary 5. Using Theorem 1, we have vDS [n] =
vPS [n]. Thus, Pr{VDS [n] = VPS [n]} = 1. That is,

VDS [n]
a.s.
= VPS [n]. If the stability condition holds, statistical

equilibrium can be achieved: VDS
a.s.
= VPS .

C. Conditional Stationary Virtual Waiting Time in a Period

Corollary 5 indicates that a comparable deferrable server

and periodic server have the same stationary virtual waiting

times at the start of a server period: V DS |(T = 0) has the

same distribution as V PS |(T = 0). We apply Corollary 5

on B/D/ arrival to simplify the computation of the stationary

response time distribution of a B/D(DS)/1 queue.

Stationary Virtual Waiting Time of a Periodic Server. Sup-

posing the B/D(PS)/1 queue reaches its statistical equilibrium,

we denote the distribution of stationary virtual waiting times

at any slot of the server period as pl,n, where

pl,n = Pr{V PS = l|T = n} l, n ∈ N. (2)

Then, when the sever is in the off-state (0 ≤ n ≤ P−B−1),{
pl,n+1 = (1− η)pl,n 0 ≤ l < d,

pl,n+1 = (1− η)pl,n + ηpl−d,n l ≥ d.
(3)

When the sever is in the on-state (P −B ≤ n ≤ P),⎧⎪⎨
⎪⎩
p0,n+1 = (1− η)(p0,n + p1,n) l = 0,

pl,n+1 = (1− η)pl+1,n 1 ≤ l < d− 1,

pl,n+1 = (1− η)pl+1,n + ηpl−d+1,n l ≤ d− 1.

(4)

4In probability and statistics, almost sure equality is a stronger equivalence
than equality in distribution [40].

35

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

Equations (3) and (4) govern the state transitions within a

server period. Fig. 8 shows an example of the state transition

within a server period of the B/D(PS)/1 queue when d = 0.

If the statistical equilibrium has been achieved, due to the

periodicity of the system, we have

pl,n+P = pl,n, ∀l ∈ N. (5)

Consider the normalization condition of the conditional prob-

ability mass function:

∞∑
l=0

pl,n =
∞∑
l=0

Pr{V PS = l|T = n} = 1, 0 ≤ n ≤ P. (6)

Equations (3), (4), (5), and (6) form a differential equation

system, and pl,n can be uniquely determined. However, instead

of deriving a purely analytical solution for the differential

system, we employ a positive convergent series, {pl,n}∞l=0, and

use the mathematical nature of this series [42] to construct a

practical algorithm.

Theorem 6. ∀ε > 0, n ∈ N, ∃M ∈ N, s.t.
∑∞

l=M pl,n < ε.

Proof of Theorem 6. According to equation (6), the non-

negative series {pl,n} is convergent. The partial summation

series {Sm}∞m=0 → 1, where Sm =
∑m

l=0 pl,n. In other words,

∀ε > 0, n ∈ N, ∃M ∈ N, s.t.

M∑
l=0

pl,n > 1− ε. (7)

Using (6) minus (7), we get
∑∞

l=M pl,n < ε.
Theorem 6 indicates that in practice, if we choose a large

enough M , we can ignore the tail distribution of pl,n. This

feature helps us construct a practical algorithm: We focus on

only the first M items, i.e., {pl,n}M−1
l=0 , and treat the tails,

{pl,n}∞l=M , as 0s.

Algorithm 1 demonstrates how we leverage the recursive

structure in Fig. 8 to compute {pl,0}M−1
l=0 : (i) we initialize

only p0,0 = 1, while others are equal to 0, which represents

layer n = 0 of Fig. 8; (ii) using equation (3), we can reach

layer n = P − B. Using equation (4), we can reach layer

n = P ; (iii) because of equation (5), layer P is effectively

layer 0. By normalizing the result of layer P , we are able to

compare it to the original layer 0; (iv) we repeat the procedure

until the 1-norm error is less than the threshold (δ < Δ).

Algorithm 1 also indicates how to compute {pl,n}M−1
l=0 , n =

1, 2, ..., P − 1: After {pl,0}M−1
l=0 converges, we can use equa-

tions (3) and (4) to compute and then normalize each layer.

Stationary Virtual Waiting Time of a Deferrable Server. In

contrast to a periodic server, the active time slot of a deferrable

server is no longer independent of the arrival process, and

the remaining budget must be included in the state transition

diagram. Thus, we express the conditional joint distribution of

both the virtual waiting time ṼDS and the remaining budget

G,

ql,g,n = Pr{ṼDS = l, G = g|T = n}, l, n ∈ N, 0 ≤ g ≤ B.
(8)

Algorithm 1: Compute first M terms of pl,0

Input: Vector Length: M , Expected Error: Δ

Output: M × 1-Vector:
−→
V = (p0,0, p1,0, ..., pM−1,0)

1 M × 1-Vector:
−→
V ← (1, 0, 0, ...); δ ←∞;

2 while δ ≥ Δ do
3

−→
V ′ ← −→

V ;

4 for i← 0 to P −B − 1 do
5 M × 1-Vector:

−→
VT ← (0, 0, 0, ...);

6 Compute
−→
VT = (p0,i+1, p1,i+1, ..., pM−1,i+1)

from
−→
V = (p0,i, p1,i, ..., pM−1,i), using Eq.(3);

7
−→
V ← −→

VT ;

8 end
9 for i← P −B to P − 1 do

10 M × 1-Vector:
−→
VT ← (0, 0, 0, ...);

11 Compute
−→
VT = (p0,i+1, p1,i+1, ..., pM−1,i+1)

from
−→
V = (p0,i, p1,i, ..., pM−1,i), using Eq.(4);

12
−→
V ← −→

VT ;

13 end
14

−→
V ← −→

V /‖−→V ‖1; δ ← ‖−→V −−→V ′‖1;

15 end
16 return

−→
V ;

A deferrable server replenishes its budget at the start of each

period, which means the remaining budget must be B when

n = 0. According to Theorem 1, we have{
ql,B,0 = pl,0, l ∈ N,

ql,g,0 = 0, l ∈ N, g < B.
(9)

Now we compute the conditional joint distribution ql,g,n for

layers n ≥ 1. Because of the deferrable server policy and ad-

ditional state variable G, the B/D(DS)/1 queue has B times the

number of states as in B/D(PS)/1. Fortunately, many of those

states are not reachable. Thus, instead of deriving equations

corresponding to (3) and (4) for a B/D(DS)/1 system, we can

use a forward recursion algorithm (Algorithm 2), which helps

us determine both the effective states and the probability.

The algorithm returns a M ×B × P -Matrix, A, each item

of which represents ql,g,n, and a list, nz_list, comprised of

n sets, with each set recording the unique non-zero states of

layer n.

Algorithm 2 iterates through the layers, and in each layer n,

we iterate through each non-zero state. For each state, we have

probability η of an incoming job and 1 − η for no incoming

job. Each non-zero state can potentially transit to two different

states in the next layer. We determine the state for the next

layer by evaluating state parameters l and g with the deferrable

policy, and finally we get the matrix and the nz_list.

How Theorem 1 Helps Reduce Complexity. One can derive

a state transition diagram for B/D(DS)/1 and use a similar

iteration method as in Algorithm 1 to compute the stationary

distribution. However, such a method needs to iterate through

each state of the deferrable server, which is O(MP 2). If

36

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Compute ql,g,n

Input: M × 1-Vector:
−→
V = (p0,0, p1,0, ..., pM−1,0)

Output: M ×B × P -Matrix: A = {ql,g,n}, List:

nz_list
1 A = zeros(M,B,P); nz_list ← []; tset ← { };
2 for l← 0 to M − 1 do
3 A[l][B][0]← pl,0;

4 tset.union({(l, B)});

5 end
6 nz_list.append(tset);

7 for n← 0 to P − 2 do
8 iterset ← nz_list[n]; tset ← { };
9 for (l, g) in iterset do

10 if g > 0 then
11 if l > 0 then
12 A[l− 1][g− 1][n+1] += (1− η)A[l][g][n];
13 tset.union({(l − 1, g − 1)});

14 if l + d− 1 ≤M then
15 A[l + d− 1][g − 1][n+ 1] +=

ηA[l][g][n];
16 tset.union({(l + d− 1, g − 1)});

17 end
18 else
19 A[l][g][n+ 1] += (1− η)A[l][g][n];
20 tset.union({(l, g)});

21 if l + d− 1 ≤M then
22 A[l + d− 1][g − 1][n+ 1] +=

ηA[l][g][n];
23 tset.union({(l + d− 1, g − 1)});

24 end
25 end
26 else
27 A[l][g][n+ 1] += (1− η)A[l][g][n];
28 tset.union({(l, g)});

29 if l + d > M then
30 A[l + d][g][n+ 1] += ηA[l][g][n];
31 tset.union({(l + d, g)});

32 end
33 end
34 end
35 nz_list.append(tset);

36 end
37 return (A,nz_list);

the outer “while” loop needs K iterations, then the overall

complexity is O(KMP 2). Thanks to Theorem 1, we can first

compute {pl,n}M−1
l=0 by Algorithm 1 with O(K ×M × P),

then explore the state space of B/D(DS)/1 only once by Algo-

rithm 2 with O(MP 2). Hence we get an overall complexity

of O(MP (K + P)) rather than O(KMP 2).

D. Determine the Stationary Response Time Distribution

Finally, we consider the stationary response time distri-

bution, FDS(t) = Pr{RDS = t}, for a B/D(DS)/1 queue.

0

d=2

5 10 15

l=3

Arriving at n=3
(3,5)

New Job
Pending Job

fDS(3,1,3)=8

g=1

γ1

γ2 P-B

Fig. 9: Determine the Response Time, An Example

Using the total probability law over the joint random variables

V DS , G, T :

FDS(t) = Pr{RDS = t} =
∞∑
l=0

B∑
g=0

P−1∑
n=0

Pr{RDS = t|V DS = l, G = g, T = n}Pr{V DS = l, G = g, T = n}. (10)

Given the values of (l, g, n), the response time can be

determined directly by fDS(l, g, n), where

fDS(l, g, n) =⎧⎪⎪⎨
⎪⎪⎩
h, h ≤ γ1,

h+ γ2, γ1 < h ≤ γ1 +B,

h+ γ2 + �h− (γ1 +B)

B
�(P −B), h > γ1 +B.

h = l + d, γ1 = min{P − n, g}, γ2 = P − n− γ1.

(11)

We use an example to illustrate both the notation and the

intuition of equation (11). Fig. 9 shows a B/D(DS)/1 system

with P = 5, B = 3, and d = 2. At the third slot of a

period (n = 3), a new incoming job arrives, and the sever

has only one unit of budget remaining (g = 1) for current

period, while it still has three-unit pending jobs (l = 3). We

want to figure out the response time of the new incoming job,

i.e., fDS(3, 1, 3).
The server needs to provide h units of service to finish

the new incoming job. γ1 indicates the available service units

within the first period. Clearly, if the server can provide

enough service time within the first period (h ≤ γ1), the

response time should be h, as in the first case of equation

(11).

Then, if the h units can be fulfilled before the end of the

second period (h < γ1+B), we need to pay only an additional

γ2 budget replenishment penalty. Thus the response time is

h+ γ2, as in the second case of equation (11).

If more periods are required to fulfill the h units of service

time, we need to wait P−B units each time, before consuming

B units service from each new period.

In Fig. 9, the service time cannot be fulfilled within the first

two periods (h = 5 > γ1+B = 4). We need one (� 5−(1+3)
3 � =

1) more period besides the first two, which we get by waiting

for one additional budget replenishment (P − B = 2) . As a

result, the response time is 5 + 1 + 1× 2 = 8.

Since fDS(l, g, n) is determined, the first factor in equation

(10), Pr{RDS = t|V DS = l, G = g, T = n}, is either 1 or 0.

The first factor equals 1, only if fDS(l, g, n) = t.

37

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

To obtain the second factor in equation (10), using Bayes’

theorem, the PASTA theorem [31], and equation (8), we have

Pr{V DS = l, G = g, T = n} = ql,g,n
P

. (12)

Finally, the response time distribution of B/D(DS)/1 can be

represented as

FDS(t) =
1

P

∑
l≥0,0≤g≤B,0≤n≤P−1,

fDS(l,g,n)=t

ql,g,n. (13)

E. Summary of the Numerical Method

We now summarize how to compute the stationary response

time distribution of an M/D(DS)/1 queue with the parameters

(λ, d′, B′, P ′), as follows:

Given an M/D(DS)/1 system: (λ, d′, B′, P ′),
1. Choose N , using Table I for a B/D(DS)/1 system

(η, d,B, P);
2. Use Algorithm 1 to compute the stationary virtual

waiting time distribution at the start of a server period

(ql,B,0 of Equation (9));

3. Use Algorithm 2 to compute the conditional station-

ary virtual waiting time distribution at each slot within

a period ({ql,g,n}) recursively;

4. Compute the stationary response time distribution

FDS(t) via Equation (13).

V. CONFIGURATION TO MEET SLOS

In this section, we apply our algorithm as a design tool,

showing how the computed stationary response time distribu-

tion can be used to meet the service level objective (SLO) of

a time-sensitive service.

Latency SLO Validation. A time-sensitive service may have

a required tail latency performance: e.g., a 90th percentile

latency of less than 10ms. This latency objective can be

represented as a point (d0 = 10ms, p = 0.90) on the same

coordinate system as a stationary response distribution whose

x-axis is latency and y-axis is cumulative proportion. For

an M/D(DS)/1 system with the parameters (λ, d,B, P), we

can uniquely determine the CDF of its stationary response

time. This capability makes SLO validation trivial: if the point

(d0, p) falls below the CDF curve, then the SLO requirement

will be met; otherwise, the SLO cannot be met. The single-

point latency objective can also be generalized to a multi-

point latency objective and even to a lower-bound CDF curve

objective.

Parameter Space Exploration. Computing the stationary

response time distribution enables us to conduct both qual-

itative and quantitative analysis for an M/D(DS)/1 queue. As

shown in Fig. 10, to illustrate the impact of each parameter,

we change only one parameter while keeping the others

unchanged. We plot the M/D/1 response time distribution [38]

as a reference when sweeping W and P . We make three ob-

servations: (1) When λ and d increase, the utilization U = λd

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

λ=0.2

λ=0.3

λ=0.4

λ=0.5

(a) Sweep λ

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

d=0.50

d=0.75

d=1.00

d=1.25

(b) Sweep d

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

M/D/1

W=60%

W=80%

W=100%

(c) Sweep W

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

M/D/1

P=1.0

P=4.0

P=8.0

(d) Constant W , Sweep P

Fig. 10: Response Time Distribution and Parameter Sweep,

Base Condition λ = 0.4, d = 1.0, P = 2.0, B = 1.2

increases. As a result, the response time performance becomes

worse (Fig. 10a and 10b). (2) As shown in Fig. 10c, when

λ, d, and P are constant, the larger the budget (bandwidth), the

better the response time. When B = P and hence W = 100%,

the M/D(DS)/1 model degenerates to an M/D/1 model. Indeed,

since the server of the M/D(DS)/1 queueing model is subject

to a resource constrained policy (deferrable server with the

parameters (B,P)), we can immediately conclude that the

response time distribution of M/D(DS)/1 is upper bounded by

that of the M/D/1 queue. (3) As shown in Fig. 10d, when λ, d
and W = B

P are constant, the larger the period (and the budget,

proportionally), the more the deferrable server can tolerate the

burstiness introduced by stochastic arrivals. As a result, we get

better response time performance. If P →∞, the M/D(DS)/1

system degenerates to an M/D/1 model.

Parameter Selection. In practice, the job arrival rate (λ) and

service duration (d) usually cannot be easily adjusted, while

the server period (P) and budget (B) can be configured to

meet a tail latency requirement, noted as (d0, p). With the

M/D(DS)/1 stationary response time distribution, parameter

selection is straightforward, as follows:

(1) SLO feasibility: The response time distribution of the

M/D/1 provide an upper bound of the M/D(DS)/1 response

time distribution. Only if B = P can the M/D(DS)/1 achieve

the same performance of the M/D/1 queue. If the SLO (d0, p)
falls below the M/D/1 response time distribution, we may be

able to manipulate (B,P) of an M/D(DS)/1 queue to achieve

the goal. Otherwise, the SLO is unachievable.

(2) Selecting (B,P): Suppose the SLO is achievable, and

we want to provide a 90th percentile latency of less than

3, i.e., a SLO (d0 = 3, p = 0.90) with an arrival rate of

38

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

M/D/1 boundary

Latency SLO

(a) Choosing W

M/D/1 boundary

Latency SLO

(b) Choosing P

Fig. 11: Parameter Selection, with λ = 0.4, d = 1.0

λ = 0.4 and a constant service duration d = 1.0. We can

directly plot the curves as in Fig. 11 and focus on how the

90th percentile latency changes versus W and P . By choosing

a proper bandwidth value W and period value P (so that

B = PW is effectively determined), the desired latency can

be made less than the goal d0 = 3 defined in the SLO.

Specifically, if overprovisioning by increasing the server

bandwidth is acceptable, a drastic decrease in the tail latency

can be achieved (Fig. 11a). For example, choosing P = 4.0,

any W ≥ 0.7 can satisfy the latency SLO. Latency also can

be improved by keeping the same bandwidth and increasing

the period and budget proportionally (Fig. 11b). For example,

by choosing W = 0.7, any P ≥ 4.0 can satisfy the latency

SLO.

Again, none of these methods can yield a better latency than

the M/D/1 limit: In Fig. 11a, all the curves (with different P)

cross when W = 100% (i.e., P = B), and hence the system

degenerates to an M/D/1 system and reaches the M/D/1 bound-

ary. Similarly, in Fig. 11b, the curve W = 100% overlaps with

the M/D/1 boundary, and other curves converge to the M/D/1

boundary when P → ∞. However, a large P implies that

a time-sensitive service may potentially monopolize the CPU

for a long time. As a result, it will have negative impacts

on general services which share the same CPU. Our analysis

allows operators to select the period and budget to meet the

tail latency without a unnecessarily large period.

VI. EVALUATION

In this section, we evaluate our algorithm as a predictive

tool. By comparing our numerical results with empirical results

on real systems, we can assess how closely the numerical

prediction can approximate the empirical results.

We conducted experiments on a machine with one Intel

E5-2683v4 16-core CPU and 64 GB memory. We disabled

hyper-threading and power saving features and fixed the CPU

frequency at 2.1 GHz to reduce unpredictability, as in [7],

[43], [44]. We ran time-critical services and general services

in Linux virtual machines (VMs) on the Xen 4.10.0 hypervisor.

We modified the Real-Time Deferrable Server (RTDS) to

support a partitioned fixed priority scheduling policy5 [7],

[8]. The modified RTDS scheduler treated each VCPU as a

5The vanilla RTDS is a gEDF scheduler.

 Host
Client VM Time Critical VM

Xen FP Scheduler

Job Dispatcher

VCPU (B,P,Highest)

PCPU 1

Full CPU

General VM

VCPU

PCPU 2

Full CPUFull CPU

PCPU 2PCPU 2-15

Server

Fig. 12: M/D(DS)/1 System for Evaluation

deferrable server with three parameters: budget, period, and

priority. We used Linux 4.4.19 for all VMs. We configured

Domain 0 with one full CPU pinned to one dedicated core,

i.e., PCPU 0.

As shown in Fig. 12, the time-critical service ran on a

single VCPU virtual machine, which had highest priority. The

VCPU shared the same PCPU1 with another VCPU which

was running a “CPU-Hog” process in a general VM. We used

another 14-VCPU VM to run clients that dispatched jobs to

the service under test.

We used two different services for the experiments: a

synthetic server and a Redis [3] server. The synthetic server

is designed to have a predictable execution time with litter

variance. The Redis server worked as a representative time-

critical service commonly used in cloud environments.

Synthetic Server. We used four parameters, (λ, d,B, P), to

represent an M/D(DS)/1 system. For each configuration of the

system, we measured the response time distribution in three

different ways: (1) We directly computed the response time

distribution via our algorithm. (2) We randomly generated

20, 000 samples following a Poisson process with a rate of λ,

and then simulated the system behavior to get the response

time distribution. (3) Using the same Poisson process, we

let the job dispatcher stimulate the time-critical service on

the testbed as shown in Fig. 12, then measured the empiri-

cal response time distribution. We expected that those three

approaches would produce similar results.

We let the arrival rate be λ = 0.004 event/ms, and

the constant service duration be d = 100ms. We first

fixed the period P = 200ms, while we varied B over

{120ms, 160ms, 200ms}, corresponding to a bandwidth W
of {60%, 80%, 100%}. We chose N = 20 for our algorithm.

Fig. 13a, 13b, and 13c show the numerical, simulation,

and empirical results. Fig. 13d is the superposition of the first

three figures, and it supports two observations. (1) The numer-

ical results, simulation results, and empirical results closely

approximate each other. The fact that our numerical results

approximate the simulated ones validates the correctness of

our numerical algorithm. Both results also approximate the

empirical one, indicating that our system and synthetic server

implementation fit the M/D(DS)/1 model. (2) For the same

period value, the larger the bandwidth, the better the response

39

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

W=60%

W=80%

W=100%

(a) Numerical Result

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

W=60%

W=80%

W=100%

(b) Simulation Result

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

W=60%

W=80%

W=100%

(c) Empirical Result (d) Superposed Result

Fig. 13: Response Time Distribution of Synthetic Server, Fixed

P = 200ms, Results Normalized against d = 100ms

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

P=1.0

P=2.0

P=4.0

(a) Numerical Result

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

P=1.0

P=2.0

P=4.0

(b) Simulation Result

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

P=1.0

P=2.0

P=4.0

(c) Empirical Result (d) Superposed Result

Fig. 14: Response Time Distribution of Synthetic Server, Fixed

W = 60%, Results Normalized against d = 100ms

time distribution.

Keeping the same arrival rate and service duration, we then

fixed the bandwidth W = 60%, while varying P (and B
proportionally) over {100ms, 200ms, 400ms}.

As shown in Fig. 14, these results support two observations:

(1) The numerical, simulation, and empirical results closely

approximate each other. (2) Given the same bandwidth value,

the larger the period, the better the response time distribution.

0 5 10 15 20

Execution Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

Redis

(a) CDF

Worst Case = 10.23ms

Average = 8.55ms

(b) Boxplot

Fig. 15: Redis Execution Time Distribution

0 5 10 15 20

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

Redis Empr

Average Estimation

Worst Estimation

(a) Zoomed Out

0 1 2 3 4 5

Normalized Response Time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

(b) Zoomed In

Fig. 16: Response Time Distribution of Redis, P = 10ms,

B = 6ms, Normalized against d = 8.55ms

Redis. Being a single-threaded in-memory data storage server,

Redis is typically deployed as a micro-service or in a vir-

tualized host, as in AWS ElastiCache for Redis [45]. We

used Redis as a time-sensitive workload to verify whether our

approach can effectively predict the stationary response time

distribution for a real-world application.

We used the Redis server in a time-sensitive VM as shown

in Fig. 12. We chose the “SORT” query, which sorts a 20,000-

item key-value based list. Unlike the synthetic server, whose

job execution times can be calibrated and fine-tuned, we mea-

sured the execution time for Redis empirically. Fig. 15 shows

the execution time distribution of the Redis “SORT” query.

Though the service time is relatively predictable (Fig. 15a),

but with non-negligible variance (Fig. 15b): The average

execution time and worst case execution time were 8.55ms
and 10.23ms, respectively. We used the average time for

predicting an approximated distribution, and the worst case

value for predicting the lower bound of the response time

distribution.

We stimulated the system with a job arrival rate of

λ = 0.004 event/ms, setting the deferrable server period

P = 10ms and B = 6ms. We estimated the response time

distribution by using an M/D(DS)/1 model with our numerical

analysis. First, using the average execution time for Redis

(d = 8.55ms) as an approximation of the deterministic service

duration in an M/D(DS)/1 system, we computed the response

distribution by using our numerical approach. Second, using

the worst case execution time (d = 10.23ms), we derived a

lower bound of the response time distribution.

40

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

As shown in Fig. 16, we observed that the response time

distribution, when using the average Redis execution time (d =
8.55ms) as the deterministic execution duration, approximated

the empirical result closely. However, due to the variability of

the Redis execution time distribution (Fig. 15b), the head of

the empirical distribution is better than estimated, while the

tail portion is worse. In comparison, when using the worst

case execution time for estimation, the estimated response

time distribution provided a lower bound of the empirical

distribution.

VII. RELATED WORK

Kaczynski, Lo Bello, and Nolte [21] extended the SAF

model [14] by allowing aperiodic tasks to run within polling

servers. The objectives of our work and their work are differ-

ent. On one hand, the extended SAF model was not designed

for deriving the exact response time distribution of aperiodic

tasks, which is the main objective of our work. On the other

hand, another aspect of the extended SAF model is more

general: It allows arbitrary arriving and arbitrary execution for

aperiodic task, by using Arrival Profile and Execution Time
Profile (ETP), and running them within a polling server with

any priority, while our system allows the aperiodic task to be

a Poisson arrival with deterministic execution, running within

a highest priority deferrable server. Unfortunately, given the

difference between the deferrable server and the polling server,

the ETP extraction cannot be directly adopted on a deferrable

server.

Queueing systems with periodic service have been stud-

ied since 1956 [37]. Researchers encountered mathematical

difficulties when trying purely analytical techniques to study

virtual waiting time and response time distributions on con-

tinuous time domain models [34]–[36]. Eenige [33] focused

on discrete time queueing systems with periodic services.

He observed the mathematical difficulties in deriving a pure

analytical method even on a simplistic B/D(PS)/1 queue whose

service time equals one time slot, i.e., d = 1. As a result,

Eenige employed numerical methods for calculating the virtual

waiting time distribution for a discrete queueing system with

periodic service. Inspired by the queueing model with periodic

service and virtual waiting time analysis, here we first observe

the virtual waiting time equivalence between the periodic

server and the deferrable server. Combining scheduling anal-

ysis and virtual waiting time analysis, we derive an efficient

method to compute the stationary response time distributions

of M/D(DS)/1 models.

VIII. CONCLUSIONS

The proliferation of time-critical services in cloud comput-

ing has emphasized the importance of performance isolation.

In this paper we consider a time-critical service scheduled as

a deferrable server for performance isolation, and we develop

a numerical method for computing the stationary response

time distribution of a stochastic Poisson arrival process. The

numerical method takes advantage of the equivalence of virtual

waiting times between periodic and deferrable server. Knowing

the stationary response time distribution of the M/D(DS)/1

queue, we demonstrated how the method can enable an

operator to meet the latency SLO of a time-critical service.

We implemented a prototype testbed based on Xen 4.10.0

hypervisor and evaluated two case studies involving both

a synthetic service and the commonly used Redis service.

The results of those studies demonstrated the accuracy of

our approach as a predictive tool in supporting time-sensitive

services in practical real-world settings. In the future, we aim

to extend the system model by allowing arbitrary job execution

times with a known distribution, i.e., an M/G(DS)/1 queue .

ACKNOWLEDGMENTS

This research was supported in part by NSF grant 1646579

(CPS) and the Fullgraf Foundation.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[2] J. Li, K. Agrawal, S. Elnikety, Y. He, I. Lee, C. Lu, K. S. McKinley
et al., “Work stealing for interactive services to meet target latency,” in
ACM SIGPLAN Notices, vol. 51, no. 8. ACM, 2016, p. 14.

[3] “Introduction to Redis,” https://redis.io/topics/introduction, 2018.
[4] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,”

International Journal of Open Information Technologies, vol. 2, no. 9,
pp. 24–27, 2014.

[5] Y. Li, R. West, Z. Cheng, and E. Missimer, “Predictable communication
and migration in the quest-v separation kernel,” in Real-Time Systems
Symposium (RTSS), 2014.

[6] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta, “An efficient and
scalable implementation of global edf in linux,” in proc. of the 7th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT11). Citeseer, 2011, pp. 6–15.

[7] S. Xi, M. Xu, C. Lu, L. T. Phan, C. Gill, O. Sokolsky, and I. Lee,
“Real-time multi-core virtual machine scheduling in Xen,” in 2014
International Conference on Embedded Software (EMSOFT), 2014.

[8] M. Xu, “RTDS-based-scheduler,” https://wiki.xenproject.org/wiki/RTDS-
Based-Scheduler, 2015.

[9] A. F. Mills and J. H. Anderson, “A stochastic framework for multi-
processor soft real-time scheduling,” in 2010 16th IEEE Real-Time and
Embedded Technology and Applications Symposium. IEEE, 2010, pp.
311–320.

[10] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. H. Ander-
son, “Soft real-time scheduling on performance asymmetric multicore
platforms,” in 13th IEEE Real Time and Embedded Technology and
Applications Symposium (RTAS’07). IEEE, 2007, pp. 101–112.

[11] J. P. Erickson, G. Coombe, and J. H. Anderson, “Soft real-time schedul-
ing in google earth,” in 2012 IEEE 18th Real Time and Embedded
Technology and Applications Symposium. IEEE, 2012, pp. 141–150.

[12] B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng, “Probabilistic response
time and joint analysis of periodic tasks,” in 2015 27th Euromicro
Conference on Real-Time Systems. IEEE, 2015, pp. 235–246.

[13] L. Abeni, N. Manica, and L. Palopoli, “Efficient and robust probabilistic
guarantees for real-time tasks,” Journal of Systems and Software, vol. 85,
no. 5, pp. 1147–1156, 2012.

[14] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello, J. M. López,
S. L. Min, and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in 23rd IEEE Real-Time Systems Symposium, 2002. RTSS
2002. IEEE, 2002, pp. 289–300.

[15] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical response-
time analysis of real-time embedded systems,” in 2012 IEEE 33rd Real-
Time Systems Symposium. IEEE, 2012, pp. 351–362.

[16] D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in 2013 IEEE 34th
Real-Time Systems Symposium. IEEE, 2013, pp. 224–235.

[17] L. Palopoli, D. Fontanelli, N. Manica, and L. Abeni, “An analytical
bound for probabilistic deadlines,” in 2012 24th Euromicro Conference
on Real-Time Systems. IEEE, 2012, pp. 179–188.

41

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

[18] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[19] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments,” IEEE Transactions on Computers, vol. 44, no. 1, pp. 73–91,
1995.

[20] T.-H. Lin and W. Tarng, “Scheduling periodic and aperiodic tasks in
hard real-time computing systems,” in ACM SIGMETRICS performance
evaluation review, vol. 19, no. 1. ACM, 1991, pp. 31–38.

[21] G. A. Kaczynski, L. Lo Bello, and T. Nolte, “Deriving exact stochastic
response times of periodic tasks in hybrid priority-driven soft real-time
systems,” in 2007 IEEE Conference on Emerging Technologies and
Factory Automation (EFTA 2007), Sep. 2007, pp. 101–110.

[22] T. F. Abdelzaher, V. Sharma, and C. Lu, “A utilization bound for
aperiodic tasks and priority driven scheduling,” IEEE Transactions on
Computers, vol. 53, no. 3, pp. 334–350, 2004.

[23] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
Real-Time Systems Symposium (RTSS), 2004.

[24] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based mul-
tiprocessor scheduling,” Real-Time Systems, vol. 43, no. 1, pp. 25–59,
2009.

[25] S. K. Baruah and N. Fisher, “Component-based design in multiprocessor
real-time systems,” in International Conference on Embedded Software
and Systems (ICESS), 2009.

[26] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering of multiprocessors,” in Euromicro Conference on
Real-Time Systems (ECRTS), 2008.

[27] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 IEEE International Sym-
posium on Circuits and Systems. Emerging Technologies for the 21st
Century. Proceedings (IEEE Cat No. 00CH36353), vol. 4. IEEE, 2000,
pp. 101–104.

[28] L. T. Phan, S. Chakraborty, and P. Thiagarajan, “A multi-mode real-
time calculus,” in 2008 Real-Time Systems Symposium. IEEE, 2008,
pp. 59–69.

[29] J. P. Lehoczky, “Real-time queueing theory,” in 17th IEEE Real-Time
Systems Symposium. IEEE, 1996, pp. 186–195.

[30] ——, “Using real-time queueing theory to control lateness in real-time
systems,” ACM SIGMETRICS Performance Evaluation Review, vol. 25,
no. 1, pp. 158–168, 1997.

[31] R. J. Boucherie and N. M. Van Dijk, Queueing networks: a fundamental
approach. Springer Science & Business Media, 2010, vol. 154.

[32] D. G. Kendall, “Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chain,” The
Annals of Mathematical Statistics, pp. 338–354, 1953.

[33] M. Eenige, van, “Queueing systems with periodic service,” Ph.D.
dissertation, Department of Mathematics and Computer Science, 1996.

[34] T. J. Ott, “On the stationary waiting-time distribution in the GI/G/1
queue, i: transform methods and almost-phase-type distributions,” Ad-
vances in applied probability, vol. 19, no. 1, pp. 240–265, 1987.

[35] ——, “The single-server queue with independent GI/G and M/G input
streams,” Advances in applied probability, vol. 19, no. 1, pp. 266–286,
1987.

[36] İ. Şahin and U. N. Bhat, “A stochastic system with scheduled secondary
inputs,” Operations Research, vol. 19, no. 2, pp. 436–446, 1971.

[37] G. F. Newell, “Statistical analysis of the flow of highway traffic through
a signalized intersection,” Quarterly of Applied Mathematics, vol. 13,
no. 4, pp. 353–369, 1956.

[38] A. K. Erlang, “The theory of probabilities and telephone conversations,”
Nyt. Tidsskr. Mat. Ser. B, vol. 20, pp. 33–39, 1909.

[39] H. Kim, S. Wang, and R. Rajkumar, “vmpcp: A synchronization frame-
work for multi-core virtual machines,” in Real-Time Systems Symposium
(RTSS), 2014 IEEE. IEEE, 2014, pp. 86–95.

[40] S. Karlin, A first course in stochastic processes. Academic press, 2014.
[41] N. M. van Dijk, “On the arrival theorem for communication networks,”

Comput. Netw. ISDN Syst., vol. 25, no. 10, pp. 1135–1142, May 1993.
[42] R. Larson and B. H. Edwards, Calculus. Cengage Learning, 2009.
[43] H. Kim and R. Rajkumar, “Real-time cache management for multi-core

virtualization,” in Embedded Software (EMSOFT), Oct 2016, pp. 1–10.
[44] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee, “vcat: Dynamic cache

management using cat virtualization,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[45] “5 tips for running Redis over AWS,” https://redislabs.com/blog/5-tips-
for-running-redis-over-aws/, 2018.

42

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 01,2020 at 02:13:20 UTC from IEEE Xplore. Restrictions apply.

