2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI)

REACT: an Agile Control Plane for Industrial
Wireless Sensor-Actuator Networks

Dolvara Gunatilaka and Chenyang Lu*
Faculty of Information and Communication Technology, Mahidol University
*Cyber-Physical Systems Laboratory, Washington University in St. Louis

Abstract—Industrial automation is embracing wireless sensor-
actuator networks (WSANSs) as the communication technology
for industrial Internet of Things. Due to the strict real-time
and reliability constraints imposed by industrial applications,
industrial WSAN standards such as WirelessHART employ cen-
tralized management to facilitate deterministic communication.
However, a centralized management architecture faces signifi-
cant challenges to adapt to changing wireless conditions. While
earlier research on industrial WSANs has primarily focused on
improving the performance of the data plane, there has been
limited attention on the control plane, which plays a crucial
role for sustaining the data plane performance in dynamic
environments. This paper presents REACT, a reliable, efficient,
and adaptive control plane for industrial WSANSs. Specifically
optimized for network adaptation, REACT significantly reduces
the latency and energy cost of network reconfiguration, thereby
improving the agility of WSANs in dynamic environments. RE-
ACT comprises (1) a Reconfiguration Planner employing flexible
scheduling and routing algorithms and reactive update policies
to reduce rescheduling cost, and (2) an Update Engine providing
efficient and reliable mechanisms to report link failures and
disseminate updated schedules. REACT has been implemented
for a WirelessHART protocol stack. Evaluation results based
on two testbeds demonstrate that REACT can reduce network
reconfiguration latency by 60% at 50% of energy cost when
compared to standard approaches.

I. INTRODUCTION

Wireless sensor-actuator networks (WSANs) provide a flex-
ible and cost-effective communication technology to incorpo-
rate Internet of Things (IoT) in industrial process control and
automation. Industrial applications are inherently subject to
real-time and reliability requirements, i.e., sensor data or con-
trol commands must be successfully delivered to its destination
by their deadlines. Therefore, industrial WSAN standards such
as WirelessHART [1] and ISA100 [2] adopt specific features
to address such challenges. For instance, the WirelessHART
network utilizes a Time Slotted Channel Hopping MAC
(TSCH) [3], a TDMA-based protocol offering deterministic
communication. The data plane relies on a centralized network
manager to generate routes and transmission schedule for
all the flows in the network. The centralized management
approach offers several key advantages in industrial settings
dominated by concerns about predictability, reliability, and
observability of network operations. The centralized manager
produces conflict-free transmission schedules that enable all
packets to be delivered within their deadlines, thereby en-
hancing the predictability and reliability of communication.
Furthermore, the centralized manager allows plant operators

978-1-7281-6602-5/20/$31.00 ©2020 IEEE
DOI 10.1109/10TDI49375.2020.00013

53

to inspect and log communication schedules and control com-
mands, providing observability that is desirable in industrial
operations. However, a key challenge faced by the centralized
manager is to adapt quickly in response to network dynamics.
This is because the centralized manager must gather network
connectivity information from network devices to generate
routes and a global schedule. The newly computed schedule
is then disseminated into the network through a multi-hop
wireless mesh network. This schedule update process can incur
significant communication overhead, especially in a large,
many-hop network. We note that in many industrial settings,
nodes are stationary in a plant and environmental conditions
are usually stable. Consequently, a global schedule may stay
valid for a relatively long time. However, when changes occur,
the network needs to be able to promptly adapt to the changes
given the critical nature of many industrial applications.

Despite extensive research on industrial WSANs, most
prior works have focused on the data plane, e.g., routing
and scheduling algorithms. Comprehensive reviews of these
works can be found in [4], [5]. However, there has been
limited research on the control plane, which is responsible for
monitoring and maintaining the performance of the data plane.
Due to the unpredictable nature of wireless environment, a
network may suffer link quality degradation or disconnection,
which may lead to failure in industrial plants. While different
techniques are used to enhance network reliability, e.g., multi-
path forwarding [6] and per-link retransmissions [7], [8], when
link failure occurs, a network must have the capability to
promptly reconfigure communication routes and schedules
given mission-critical nature of many industrial applications.
Moreover, although industrial standards (e.g., WirelessHART)
provide some high-level guidelines and specifications for its
control plane, it leaves open the details regarding the actual
design and implementation. To address the open challenge,
we have developed REACT, a reliable, efficient, and adaptive
control plane optimized for adaptation in industrial WSANSs.
Specifically, REACT integrates two key components.

o Reconfiguration Planner employs strategies to compute
and update routes and transmission schedules. Designed
to minimize the changes to transmission schedules, the
planner effectively reduces the latency and energy cost
in disseminating a new schedule.

o Update Engine provides the mechanisms for network
adaptation, including health reporting, failure notifica-

tion, and an efficient and reliable schedule dissemina-
tion mechanism. Our design also allows critical flows
impacted by link failures to recover faster than other ones.

We have implemented REACT as the control plane of a
WirelessHART protocol stack. Evaluation results based on two
wireless testbeds demonstrate that REACT can significantly
reduce the latency and energy cost of network reconfiguration,
thereby supporting agile adaptation in industrial WSANS.

The rest of the paper is organized as follows. Section II
reviews related works. Section III introduces the background.
Section IV provides REACT architecture. Section V presents
the policies used in the Reconfiguration Planner. Section VI
details the design of the Update Engine. Section VII presents
evaluation results, and Section VIII concludes the paper.

II. RELATED WORKS

Earlier works on real-time scheduling for a TDMA-based
network with a centralized manager addressed different ob-
jectives, such as optimizing real-time performance [9], [10]
or enhancing reliable communication [6], [7]. However, these
works schedule transmissions without taking into account the
need for a schedule to be updated due to network dynamics.
Consequently, a network may incur considerable adaptation
cost. Our system includes a scheduling policy that helps
mitigate schedule reconfiguration cost by reducing schedule-
related information that must be disseminated by a network
manager.

There are other scheduling approaches to facilitate network
adaptation. Dezfouli et al. introduced Rewimo [11], a wireless
solution for real-time scheduling in mobile networks. Rewimo
incorporates a scheduling technique for a TSCH network that
enables schedule update in response to workload changes.
Nevertheless, the scheduling policy does not consider the
need for schedule updates due to link failure. To tackle the
unreliable nature of wireless links, Yang et al. [12] and
Shen et al. [13] developed scheduling algorithms that support
efficient schedule reconfiguration. Their scheduling polices
have limitations because they only consider a single channel
protocol, and only single class of flow, i.e., all flows have
the same period and deadline. Moreover, there are previous
efforts [14], [15] that developed custom industrial WSAN
protocols, which include network maintenance and adaptation
mechanisms, based on a centralized management architecture.
Again, these protocols have function limitations, e.g., they
are designed for a single channel TDMA network, whereas
REACT is geared towards a TSCH network operating on
multiple channels.

Additionally, Livolant et al. [16] compared the cost of
installing and updating schedules among existing protocols
such as CoAP [17] and CoMI [18] that run on top of a
6TiSCH [19] network with a centralized manager, and a
custom WSAN protocol OCARI [20]. This work investigated
only the impact of these protocols on the number of messages
required to install a global schedule and focused on optimizing
the protocol headers, while REACT offers a more complete
solution for schedule reconfiguration in an industrial WSAN.

54

In contrast to centralized management, a decentralized
management architecture allows nodes to construct their own
schedules, which enables them to adapt locally when network
connectivity changes. For instance, the recent 6TiSCH stan-
dard combines the TSCH MAC and RPL routing. Duquennoy
et. al [21] developed Orchestra, where nodes autonomously
build their own schedules without requiring additional sig-
naling among neighbors. uRes [22] introduced a schedule
negotiation mechanism between neighbor nodes to compute
local schedules. Accettura et al. [23] presented DeTAS, a de-
centralized scheduling protocol that ensures the smallest end-
to-end latency, and reduces neighbor-to-neighbor signaling to
generate local schedules. Although these protocols enhance
network adaptability, they provide only best-effort service,
and cannot guarantee conflict-free transmissions and real-time
performance.

FD-PaS [24] and DistributedHART [25] are the recent
distributed scheduling algorithms that support real-time com-
munication. In contrast to our work, FD-PaS assumes a single
channel communication, and is designed to handle external
disturbances by adjusting data flow’s period. While Distribut-
edHART is designed for node-level multi-channel scheduling
with spatial reuse and for graph routing, REACT offers a
solution that follows industrial WSAN standards with a cen-
tralized manager that ensures conflict-free communication and
provides observability of network operations.

Glossy [26] provides fast and efficient network flooding
by exploiting constructive interference and the capture effect.
Blink [27] combines a Glossy-based Low-Power Wireless Bus
protocol [28] and real-time scheduling, and offers a promising
alternative to TSCH-based networks. In contrast to the above-
mentioned efforts, Blink is topology independent. Any change
in network connectivity does not impact its global schedule.
In comparison, REACT aims to enhance existing industrial
standards for process automation through an agile control
plane for centralized management.

In spirit, REACT is similar to Software Defined Networking
(SDN) by separating the control planes from data planes
and utilizing centralized software to control the behavior of
a network [29]. However, traditional control planes of SDN
can incur significant overhead for a WSAN. Baddeley et al.
presented initial efforts to adopt SDN architecture for 6TiSCH
networks [30] by mitigating the effects of SDN’s control
overhead on data traffic. In contrast, REACT is a control
plane specifically designed to reduce the control overhead
and latency. Furthermore, REACT is integrated with the Wire-
lessHART architecture widely adopted in process industries.

ITI. BACKGROUND
In this section, we provide background on the network
model, and describe TSCH scheduling.

A. Network Model

Industrial WSAN standards such as WirelessHART select
a set of specific network features to enable real-time and
highly reliable communication. They adopt the IEEE 802.15.4

physical layer, offering a low data rate and low power commu-
nication, and operating on the 2.4 GHz band with 16 channels.
On top of the physical layer is TSCH MAC protocol. TSCH
is a TDMA-based protocol in which time is divided into slots.
Each slot is 10 ms, long enough to accommodate a transmis-
sion of a packet and its acknowledgement. To prevent channel
contention, only one transmission is allowed per channel in
each time slot. TSCH also supports channel hopping, i.e., a
node can hop to different channels in every time slot. Channel
hopping provides frequency diversity, which helps mitigate the
effect of interference on network reliability. At the network
layer, we consider source routing that provides a single path
from a source to a destination. A WSAN is supervised by a
centralized manager that manages and optimizes operations of
a network throughout the network lifetime to ensure industrial
application requirements are satisfied.

A WSAN consists of a set of real-time flows F
{F}, F,...F},}. For each flow F;, a source node generates a
packet at a periodic interval P;. The packet must be delivered
through a route ¢; to the destination within the deadline D;,
where D; < P;. A route ¢; is composed of a sequence of
links, and a transmission over a link j of a flow ¢ is denoted
as t;;. A flow F; consists of a sequence of transmissions
Iy = {ti,ti2,...,tin}. Let T be the hyper-period (i.e., the
least common multiple of the periods of flows) of a set of
flows F'. A superframe is a set of repeated slots of length 7.
Within a superframe, a flow F; releases T/ P; packets. A set of
flows F' is schedulable if all the flows in F' can be scheduled
to meet their deadlines.

B. TSCH Scheduling

A centralized scheduler residing on the network manager
constructs a global schedule. Building a schedule involves
allocating a time slot and a channel offset to each transmission.
To generate a feasible schedule, a scheduler must follow these
scheduling constraints:

1) Slot constraints:

a) Due to a half-duplex nature of the IEEE 802.15.4
radio, a node can only send or receive at a given
time, SO no two transmissions in a time slot can
share a common node.

To prevent intra-network interference, only one
transmission can be scheduled on each channel in
a time slot.

b)

2) Precedence constraint: a sender must receive a packet
before forwarding it, i.e., transmission ¢;; must be
scheduled in a time slot before transmission #;;1.

3) Real-Time constraint: all flows must be scheduled to
meet their deadlines.

Our work adopts fixed priority scheduling, which offers
an efficient and computationally inexpensive heuristic. Hence,
it is commonly used for real-time systems. Each flow Fj is
associated with a priority. A flow F; has higher priority than
a flow Fj if ¢ < [. Priorities are commonly assigned based on
a flow’s period or deadline, and a scheduler schedules flows

55

Neighbor
i || Maintenance

TSCH
Scheduling
802.15.4 PHY

Network Device

..... » Updated schedule
-+ Schedule update ACK

Network Manager .. > Health report and failure notification

Fig. 1: REACT architecture and adaptation process.

in decreasing order of priority. For each flow Fj, with respect
to the scheduling constraints, a scheduler allocates a time slot
and a channel offset to each transmission ;;.

IV. REACT ARCHITECTURE

Figure 1 depicts REACT architecture, consisting of (1) a
gateway enabling communication between network devices
(sensors or actuators) and the centralized controller (2) a host
running network manager software (3) a WSAN comprising
multiple network devices forming a wireless mesh network,
and (4) access points (AP) wired to the network manager
and the gateway. Providing more than one access points
offers redundant paths between the WSAN and the backplane.
With REACT, the network reconfiguration process is triggered
when link failure is reported to the network manager. To
support this reconfiguration process, REACT includes two
major components: a Reconfiguration Planner and an Update
Engine.

A. Reconfiguration Planner

The reconfiguration planner resides on the network manager,
and consists of the following components:

« Topology Update: A manager collects link statistics from
all network devices, and generates a network topology
represented as a graph. When a link fails to meet the
reliability requirement, the link is removed from the
topology. Conversely, if a node detects a new neighbor
with reliable connectivity, a link between the node and
its neighbor is added into the topology.

o Route Update: The module is responsible for creating
flow routes and constructing a broadcast graph for
disseminating schedule information from the manager
downward to all network devices. With an updated topol-
ogy, it computes new routes for flows associated with a
failed link and adjusts the broadcast graph if necessary.
Our work incorporates a Partial Reroute policy, which
helps reduce the amount of flow’s schedule that must be
updated.

o Schedule Update: Based on the new routes, the sched-
uler recalculates a new global schedule. It utilizes Gap-
Induced scheduling scheme, which complements our
rescheduling policy in granting only schedules of flows
affected by link failure to be updated, thereby lowering
the schedule dissemination cost.

B. Update Engine

The update engine is composed of two different mechanisms
to enable schedule reconfiguration.

o Health report and failure notification: Each network de-
vice maintains statistics pertaining to connectivity be-
tween a node and its neighbors. It learns these statistics
through regular transmissions of data packets and peri-
odic neighbor-discovery packets. These statistics are then
reported to the network manager through upstream flows,
which provide routes from nodes to access points. When
a node identifies a failed link, it notifies the network
manager through the same upstream flow.

o Schedule dissemination: An Update Scheduler installed
on the network manager constructs packets. It schedules
updates based on flow priority. Therefore, more critical
flows receive updates and recover faster than less crit-
ical flows. Schedule-related information is propagated
through a broadcast graph to destinations. Nodes re-
ceiving update commands modify their TSCH schedules,
and send acknowledgement (ACK) back to the network
manager, using the upstream flows. The ACK allows the
network manager to handle packet losses and ensures all
affected nodes receive their new schedule.

V. RECONFIGURATION PLANNER

In this section, we present policies that are incorporated into
our reconfiguration planner to reduce schedule reconfiguration
cost. These policies include the gap-induced scheduling policy,
which the scheduler follows while creating or updating a
schedule, the partial reroute scheme for a route update, and
the rescheduling policy for a schedule update.

A. Gap-Induced Scheduling Policy

We propose a scheduling policy based on fixed priority
scheduling to support efficient transmission rescheduling in
response to link failure. Our policy is designed to (1) decrease
the likelihood that an update to the schedule of a higher
priority flow will impact the schedules of its lower priority
flows. (2) enable a flow’s schedule to be reused partially when
possible. Therefore, only limited portions of a schedule are
modified, which lowers the schedule dissemination overhead.

1) Key Ideas: With fixed priority scheduling, flows are
scheduled in descending order of priority. For each flow, (1)
transmissions are assigned to the earliest feasible slot in a
sequential order [31] or (2) a scheduler schedules transmis-
sions in reverse order by selecting the latest possible slot [11]
meeting the scheduling constraint. In contrast to these two
traditional approaches, our scheduling algorithm adopts the
following polices to reduce the rescheduling cost.

o It ensures that for each flow Fj, the same schedule is

repeated for every released packet 1,2,...7/P; within
a superframe. With a regular scheduling pattern, the
network manager can disseminate less schedule-related
information to wireless devices. In practice, flow periods

Schedule 1: Earliest Possible

ch/slot 1 2 3 4 5 6 7 8 9 10
0 a>b | b>c | c>d a>b | b>c | c>d
1 b>f | f>g | g>h

Schedule 2: Introducing Gap

ch/slot 1 2 3 4 5 6 7 8 9 10
0 a>b b>c c>d | a>b b>c c>d
1 b>f f>g g>h

Schedule 3: Fewer Transmissions per Slot

ch/slot 1 2 3 4 5 6 7 8 9 10
0 a>b | b>c | c>d a>b | b>c | c>d
1 b>f | f>g g~>h

Fig. 2: Examples of schedules constructed based on different
heuristics. Each schedule consists of two flows: flow 1 (P; =
Dy =5, $p1 =a — b— ¢ — d) is labeled in black, and flow
2 (P, =Dy =10, ¢o =b— f — g — h) is labeled in red.

are usually harmonic, so this policy is then easy to satisfy
when we schedule or reschedule transmissions.

« It adds gaps between transmissions belonging to the same
flow. This policy provides two benefits: (1) it allows a
flow to be rescheduled partially when the route of a flow
does not entirely change, and (2) it reduces the chance of
lower priority flow schedules hindering the modification
of a higher priority flow’s schedule, so a change made to
higher priority flows has less chance of impacting lower
priority flows. For instance, in Figure 2, there are two
flows F'1 and F'2, which are scheduled based on earliest
possible slot (Schedule 1) and gap-induced (Schedule 2)
policies. Initially, a flow sends a packet through route
a — b — ¢ — d. Suppose b — c fails and a new route
of Fiisa — b — f — ¢ — d. With Schedule 1, in
order to schedule F} to meet its deadline at slot 5, the
scheduler has to reschedule F5 as well, since b — f and
f — g block time slots 3 and 4. Otherwise, these two
slots can be allocated to f — ¢ of Fj. On the other hand,
with Schedule 2, a scheduler can reschedule F; without
affecting F, by removing b — ¢, then adding b — f
and f — c to slots 3 and 4, respectively. Here, the slots
allocated to @ — b and ¢ — d also do not change.

o It reduces the number of concurrent transmissions in each
time slot, which spreads out transmissions belonging to
different flows. This heuristic also helps prevent lower
priority flow from blocking updates on higher priority
flow schedules. As shown in Figure 2, for Schedule 3,
the scheduler avoids scheduling multiple transmissions
in the same time slot. Again, supposing link b — ¢ fails,
then the scheduler needs only to modify the schedule of
F; by adding b — f to slot 2, f — ¢ to slot 3, and
moving ¢ — d to slot 4, and does not need to update
Fy’s schedule.

2) Gap-Induced Scheduling Algorithm: A detailed descrip-
tion of our gap-induced scheduling policy is presented in
Algorithm 1. Here, a time slot means a slot offset in the
superframe. With a superframe length of 7T, the slot offset

is within the range [1,7]. Both the periods and deadlines of
flows are measured in slots.

The input of the algorithm is a set of flows F' and c
available channels, and the output is a global schedule S.
The algorithm schedules flows in descending order of flow
priority. Each flow F; consists of a sequence of transmissions
Iy = {ti1,ti2, .., tin}, and || is the size of T';. During a
superframe, a flow generates T'/P; packets. Each packet ¢ is
released at time r;, and has a deadline d;,. The first step
is to obtain a set of feasible slots x;; for each transmission
t;; (function ObtainFeasibleSlot()) starting from the last
transmission t;,, to the first transmission ¢;;. A time slot x
is added to x;; if Vg, a slot (¢ — 1) % P; + x satisfies the slot
constraint for ¢;; and is within [r;g, d;,]. Because the scheduler
will assign only a slot in x;; to each t;;, it is guaranteed
that a flow can repeat the same schedule for every packet
released in the superframe. The scheduler also determines the
latest feasible slot \;; € x;; for each transmission ¢;;, where
Aij < Ajj41 for transmission 2 to n-1. Note that a function
S.assign() assigns a time slot z;; and an unused channel
offset in x;; to t;;.

To spread out transmissions and introduce gaps between
transmissions of a flow, the algorithm schedules the first trans-
mission ¢;; of flow F; at the earliest possible slot ;1 € X1,
and assigns the latest feasible slot x;, € X, to the last
transmission %;,,. For each remaining transmission ¢;;, from
J = 2 to n—1, the scheduler computes an ideal slot y (line 16).
Suppose ;1 is a slot assigned to the previous transmission
tij—1, and ;] — j is the number of remaining unscheduled
transmissions. Here, if the scheduler divides slots in the range
[ij—1+1, 24, —1] into |I';|—j+1 equal segments, and assigns
a time slot at the end of segment 1 to segment |T';| — j to each
remaining transmission, then ¢;; and remaining transmissions
after t;; can be spaced evenly between [z;;_1 + 1,2, — 1].
Hence, in other words, y is the last slot in the first segment.

A function SelectSlot() determines the best slot for ¢;;.
It computes the cost of choosing slot z € x;; (line 41),
considering the distance between = and y and the number
of transmissions already scheduled in x (#trans(z)). The
scheduler selects the lowest-cost slot x;; for ¢;; (i.e., the slot
closest to y and already allocated to the fewest transmissions),
where z;; € [x; j—1+1, A\jj 41— 1]. The algorithm enforces t;;
to be scheduled after a slot x; ;1 (to preserve the precedence
constraint) and before the latest feasible slot \;;41 of the next
transmission #; ;41 (to ensure the flow’s schedulability). The
algorithm terminates when (1) transmissions of all flows are
scheduled within their deadline, or (2) a scheduler cannot
find a slot for t;;, i.e., no slot in Y;; is within the range

(i,j—1, Aij+1)-
B. Partial Reroute

Selecting a new route for a flow associated with link failure
influences the flow’s new schedule. To allow affected flows
to reuse parts of their old schedules, the routing algorithm
should choose a new route that includes links in the old route.
A network topology is represented as a graph G(V, E), where

ALGORITHM 1: Gap-Induced Scheduling

1

e o N R W N

RN DN NN NN N e e ke e R b el e e e
[U R W RN RS ® NN R W R =S

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Input : A flow set F' ordered by priority, ¢ = the
number of available channels
Output: A global schedule S
foreach flow F;, where i=1I to k do
foreach transmission t;;, where j =n to 1 do
Xij = ObtainFeasibleSlots(t;;);
if j==1 then
x;1 = earliest slot in x;;;
S.assign(t;1, x;1, unusedChannel(xz;1));
else if j==n then
T, = latest slot in x;;;
Ain = Tin;
S.assign(tin, Tin, unusedChannel (z;y,));
else
| Aij = latest slot in x;j, where Aj; < Ajjj1;
end
end
foreach transmission t;;, where j = 2 to n—1 do
Y =Tij—1 + @in — i1+ DT — j + 1);
Tij = SelectSlot(tij, Xijyr Tij—1, /\7;]'_|_17 y),
if .T}Z‘j==-] then
| return (;
end
S.assign(tij, i, unusedChannel(z;;));

end
end
return S
Function ObtainFeasibleSlots (t;;) :
for =11t T/P; do
Find X, = set of slots in [r;q, d;,] that meets
the slot constraint
foreach slot x in X, do
‘ z=(r—1) mod P, +1;
end
Xi = Moy Xqt
end
return y;;
Function SelectSlot (t;5, Xij» Tij—1, Aij+1, Y)*
if Vo € Xijs L ¢ (a:ij,l, >\¢j+1) then
| return -1;
end
foreach siot x € x;; and © € (z;;_1, Aij+1) do
dist(xz,y) = |z —y| + 1;
w(z) = (#trans(z) + 1) /c;
cost(z) = dist(x,y) *x w(x);
end
return arg min, cost(z);

57

V is a set of network devices and E is a set of links. A
link is added between nodes v and v if « and v can reliably
communicate with each other, i.e., the packet reception ratios
(PRR), the number of packets successfully received over the
total number of packets sent, of both links v — v and v — u
must be higher than the reliability requirement in all ¢ channels
used. Due to channel hopping, nodes must be able to reliably
communicate in all channels used.

After the network manager detects a failed link, it updates
a graph by removing an edge corresponding to the failed link
from G(V, E). It then calculates a new route for each affected
flow in decreasing order of flow priority. Let ¢; be an old route
of a flow 7. For each affected flow, we update a weight of each
link in G(V, E). If a link is not included in the old route ¢;,
the weight of the link is set to w. Otherwise, the weight of the
link is assigned to w/2. Then, the algorithm uses the Dijkstra’s
algorithm to calculate a new route. By doing so, the algorithm
will output the least-cost route, i.e., a shorter route containing
links used in ¢;.

Due to the centralized control architecture, a packet needs to
be propagated upstream from a source to an access point and a
gateway, and downstream from a gateway and an access point
to a destination. If the network contains more than one access
points, there can be multiple combinations of an upstream and
a downstream route for a new route ¢;. Hence, the routing
algorithm must select the combination with the lowest cost.
Here, the cost is computed based on the number of operations
required to update a route from ¢; to ¢, which reflects the
minimum cost of modifying a flow schedule. The cost is
defined as (nDEL x a) + (nADD x b), where nDEL and
nADD are the numbers of deleting and adding operations
for a flow’s schedule, respectively. Here, a and b are the
numbers of bytes required to DELETE or ADD a schedule
of a transmission (See Section VI.B).

C. Schedule Reconfiguration Policy

Based on fixed priority scheduling, if a schedule of a higher
priority flow is updated due to a failed link, all of its lower
priority flows must be rescheduled as well, although these
lower priority flows are not pertinent to the failed link. Such an
approach introduces more modification to a global schedule,
which implies a corresponding higher schedule dissemination
cost. The goal of this policy is to reduce the schedule update
cost by (1) rescheduling only flows affected by the failed
link and (2) reusing a flow’s schedule as much as possible.
Consequently, fewer packets are required to update a global
schedule. A schedule constructed based on the gap-induced
scheduling policy has a higher chance of being successfully
reconfigured to meet these two goals. For the same reason,
the reconfiguration policy also adopts gap-induced scheduling
scheme when rescheduling transmissions.

The input of the algorithm is a set of affected flows F’,
ordered from highest to lowest priority, and a current global
schedule S. The output is a new global schedule S’. Let I'; be
the old set of transmissions, and let I', = {t,1, 2, ..., tim } be
the new set of transmissions of flow Fj. The algorithm aims

58

to assign new time slots and channel offsets to transmissions
in I, — T'; without modifying the schedules of the remaining
transmissions in I',. For each affected flow F}, the algorithm
reschedule flow transmissions as follow:

Step 1: Let I'y C I' be a set of sequential transmissions
{tip, tip+1, ..., tig }, where every transmission in I'y is not a
member of I';. If I'y contains only one transmission, then p =
q. For instance, suppose I'; is {a = b,b — ¢,c — d,d — e}
and I, comprises {a — b,b — c¢,c = g¢,9 — e}. Here,
I's = {¢c = g,9 — e} is the only set of transmissions to
be rescheduled. Transmissions a — b and b — ¢ should be
allocated to the same slots and channel offsets as in schedule
S.

Step 2: The algorithm reschedules transmissions in I'; fol-
lowing the gap-induced scheduling policy, and time slots
allocated for these transmissions must be within the range
[upper_bound, lower_bound] to avoid modifying the sched-
ule of those transmissions that are not in I';.

o If ¢;, is the first transmission of F;, then the lower_bound
is the first slot of the superframe.

o If t;4 is the last transmission of Fj, the upper_bound is
the flow deadline D;.

o Otherwise, the upper_bound and lower_bound slots are
Zip—1+1 and w441 —1, respectively, and x;,_1 and ;441
are time slots already assigned to the transmissions ¢;,_1
and t;441 (in the old schedule .S).

Step 3: If the scheduler fails to schedule transmissions in I,
it will obtain I, by performing one of the followings:

o If t;, is already the last transmission of F}, the scheduler
will add one or more transmissions prior to ¢, to I's and
adjust a lower_bound.

o If t;, is the first transmission of Fj, the scheduler will
include at least one transmission after ¢;, to I'y and
computes a new upper_bound.

o Otherwise, the algorithm will compute which of the
two options is better. The better option is the one
providing the higher ratio of the number of slots in
[lower_bound, upper_bound] of T, to the number of
transmissions in I'.

In both cases, the algorithm keeps adding transmissions to
I's until it reaches the next transmission that is already
assigned a time slot, which sets a new upper_bound or a new
lower_bound. The scheduler determines the upper_bound
and lower_bound and reschedules I, as in Step 2. By doing
so, the algorithm gradually updates the schedule of those
transmissions existing in the old route only when necessary,
which enables a flow to preserve its old schedule as much as
possible.

Step 3 is repeated until (1) I, can be rescheduled suc-
cessfully, or (2) I I, and the upper_bound and
lower_bound reach their limits (i.e., upper_bound = D;
and lower_bound = 1). For case (2), the algorithm will
terminate since it cannot modify a schedule of F; without
rescheduling other flows. Otherwise, the algorithm ends when
all the affected flows are scheduled to meet their deadlines.

VI. UPDATE ENGINE

In this section, we present the designs of our update engine
to handle network adaptation. We first discuss health reporting
and failure notification mechanisms, and then a schedule
dissemination mechanism.

A. Health Report and Failure Notification Mechanisms

Before a WSAN network is made operational, to determine
a reliable set of links and channels for calculating routes
and schedules, the network manager must collect complete
topology information from every node and on all 16 channels.
Because environmental conditions in a plant change over time,
the manager must update the network topology throughout the
network’s lifetime, and must ensure the current flow routes and
schedule stay valid. Therefore, while the network is operating,
nodes must have the capability to report link condition to the
network manager.

To maintain neighbor statistics, each node deploys a neigh-
bor table of link statistics for each of its neighbors, e.g.,
PRR. A node obtains the PRR from periodic data packets
and neighbor-discovery packets. Each node is required to
broadcast a neighbor discovery packet periodically on all
channels used, so other nodes hearing the packet can maintain
their connectivity with the sender node. In particular, for each
link, a node records if a packet is successfully received, and
uses a sliding window to compute the current PRR.

Instead of periodically reporting to the network manager
the link statistics of every neighbor, our system reduces the
amount of data uploading to the network manager by letting
nodes send a health report only when they discover new
neighbors or when the link quality between a node and any
of its neighbor falls below the reliability requirement, thereby
saving the network resources. A node activates a link failure
notification whenever an active link, i.e., a link used by any
data flow, fails to meet the reliability requirement. To ensure
that a notification will eventually arrive at the gateway, both
the sender and receiver associated with the failed link will
repeatedly send out notifications until they receive a new
schedule. Moreover, to conserve network resources, these
control information can be piggybacked onto periodic data
packets. We allocate a separate upstream control flow for a
node only when it has no upstream data flow passing through.

B. Schedule Dissemination Mechanism

Our schedule dissemination mechanism supports reliable
and efficient schedule updates using the following features:

1) Update Scheduler: It is important that critical flows
(flows with higher priority) promptly recover from link failure.
Therefore, we design our system to ensure that schedules of
more critical flows are updated first. To facilitate such a design,
the update scheduler disseminates packets containing sched-
ules of higher priority flows before packets with lower priority
flow schedules. The update scheduler must first form packets
containing schedule update commands and then determine the
sequence in which these packets will be disseminated.

59

To reduce schedule dissemination overhead, the network
manager identifies the differences between the old and the
newly computed schedules, and distributes only the modified
portions of the global schedule to the affected network devices.
Our system supports two schedule modification commands
ADD and DELETE. A DELETE command removes the
transmission of a flow from a time slot, while an ADD
command schedules a new transmission in a time slot. An
ADD command contains a schedule entry associated with
a new transmission. A schedule entry is represented by the
following attributes: slot offset (2 bytes), channel offset (4 bits
for the maximum of 16 channels), sender (1 byte), receiver
(1 byte), and flow ID (1 byte). The flow ID indicates which
flow a transmission belongs to. For a DELETE command, it
is sufficient to specify only the sender (1 byte), the receiver
(1 byte), and the time slot (2 bytes) of the transmission to
be removed. The WirelessHART standard suggests that the
number of nodes in a network should not exceed 80, therefore,
1 byte is enough to address all nodes in the network. Hence, it
requires 6 bytes to ADD a new schedule, and 4 bytes to remove
a schedule entry. Note that the maximum MAC payload is 98
bytes [3].

To constructs packets, the update scheduler first sorts the
schedule update commands in decreasing order of flow prior-
ity, so that higher priority flow schedules are included in earlier
packets. For each flow, DELETE commands precede ADD
commands, since a schedule entry needs to be removed before
a new entry is added. It adds schedule update commands into
a packet until the packet is full, then creates a new packet and
assigns each packet a sequence number.

The update scheduler distributes packets containing up-
date commands of higher priority flows first, and ensures
that all intended recipients have received the packets before
disseminating the packets for lower priority flows. Once a
node receives each packet, it immediately updates its TSCH
schedule, and executes a new schedule in the next superframe.
Therefore, higher priority flows can recuperate and use a new
schedule, while the update scheduler is still disseminating and
updating schedules of the lower priority flows.

2) Broadcast Graph: We use a broadcast graph to dis-
seminate update commands. Compared to installing multiple
downstream control flows from access points to every network
device, a broadcast graph requires fewer time slots allocated
for delivering a packet to every network device. In addition,
with fewer allocated time slots, nodes can save the energy
cost when no packet is being distributed, because every node
scheduled to receive in a time slot must always listen on a
channel for at least 2.2 ms [1] to detect if there is an incoming
packet or not. If there is not, the node will turn off its radio.
Otherwise, it continues to receive the packet.

A broadcast graph consists of two root nodes (access
points), multiple intermediate nodes that receive and forward
packets, and multiple leaf nodes, which only receive packets.
To provide route diversity and ensure reliable dissemination
of packets containing update commands, we require that an

intermediate or a leaf node must have two parents, and an
intermediate node must receive a packet from both parents
before broadcasting a packet to its children.

Since each packet contains schedules intended for different
sets of nodes, it is not efficient to disseminate every packet
to every node. Therefore, intermediate nodes in a broadcast
graph will forward a packet only when they are on a path to
packet’s destinations. To realize such a forwarding mechanism,
we install on intermediate nodes information about each node’s
children and its descendants in a broadcast graph. Hence,
when a node checks the destinations of a packet, it can decide
whether to forward a packet.

When a broadcast graph is also affected by link failure,
its schedule will be updated as well. A broadcast graph’s
new schedule will be disseminated after the schedules of all
affected data flows have been updated. To ensure that all nodes
use the same broadcast graph during the current round of
schedule update, a new broadcast graph schedule is executed
at a later time, when the network again requires schedule
reconfiguration.

3) Handling Packet Losses: We use an acknowledgement
scheme to confirm that nodes have received all their schedule
update packets. For every new packet a node receives, the node
sends an ACK back to the network manager through an up-
stream flow. Similar to health reports and failure notifications,
we allow an ACK to be piggybacked onto a data packet. Since
there can be more than one packet intended for a node, an ACK
must contain a packet number identifying the specific packet
a node received. The update scheduler ensures that it receives
ACKs from all recipients of the packet. Otherwise, it needs to
resend that packet until the packet reaches all destinations.

4) Handling multiple link failures: REACT can handle
multiple incoming link failure notifications. If a new failure
notification arrives, while the network manager is computing
a new schedule or when a new schedule has not been dissemi-
nated yet, then the network manager can halt those operations
and recalculate a new schedule. Contrarily, if the dissemination
process is on going as a new notification arrives, the manager
will have to stop disseminating packets and start recomputing
a new schedule again. In the meantime, nodes that already
have received a schedule update will execute those partial
new schedules. Since REACT updates schedules based on flow
priority, flows that already received an update will run a new
schedule, while the other flows execute on the old schedule,
as they wait for the manager to compute and distribute the
most recent schedule.

VII. EVALUATION

To evaluate the performance of REACT, we develop the
reconfiguration planner and the update engine to support
schedule reconfiguration. We implement network manager
software running on our server, and a protocol stack running
on TinyOS 2.1.2 [32] and TelosB motes. The network manager
can update the network topology, generate and update sched-
ules and routes, and schedule update commands. In addition,

60

we incorporate features necessary for schedule reconfiguration
including health reporting, failure notification, and TSCH
schedule updating into the network protocol stack, which
supports TSCH MAC and source routing. We designate two
nearby nodes in our testbed as access points. The server
communicates with the access points through serial interfaces.

Following common practices for process monitoring and
control applications, flows release packets periodically, and
the periods of flows are harmonic. The periods are uniformly
selected from the range P = {2%,2*+! . 2Y}. The manager
constructs a collision-free TSCH schedule using fixed-priority
scheduling, where only one transmission is allowed per chan-
nel in a time slot. We consider two fixed-priority scheduling
policies commonly adopted for real-time systems: deadline
monotonic and rate monotonic policies. Following a deadline
monotonic policy, flows with shorter deadlines have higher
priority, while a rate monotonic policy assigns flows with
higher rates with higher priority. With the deadline monotonic
policy, if a flow F; has a period P; = 2%, then its deadline
D; is randomly selected from the range {2%~! +|T;|* 2, 2%},
where |T';| is the number of transmissions of F;. For the rate
monotonic policy, D; is configured to be equal to FP;. We
adopt WirelessHART source routing, which provides a single
route from a source to a destination. For each transmission
belonging to a data flow, the manager reserves an additional
time slot for a sender to retransmit a packet if the sender does
not receive an ACK from the receiver.

We quantify the performance of the reconfiguration planner
based on two metrics: (1) the success rate in rescheduling a
flow without modifying schedules of other flows, and (2) the
number of packets required to update flow schedules. For the
update engine, we run experiments on the local testbed, present
the resulting schedule reconfiguration timelines, and measure
the schedule dissemination latency and the energy cost. Table I
summarizes different scheduling, route update, and schedule
update policies that we compare against our work. By choosing
combinations of the three policy types, we construct different
approaches, each of the form scheduling policy/route update
policy + schedule update policy.

A. Reconfiguration Planner Evaluation

To evaluate the reconfiguration planner, we conduct simu-
lation studies based on our local testbed topology containing
60 nodes spanning across three floors of the Jolley Hall at
Washington University, and the Indriya testbed [33] topology
consisting of 80 nodes. The topology information includes the
PRRs of all links in the network in all 16 channels. We use
the topology to construct a communication graph in which
links added to the graph have PRRs of no less than 90% in
all channels used and in both directions. Here, we use four
channels. We randomly generate 50 flow sets under different
traffic loads (i.e., when the numbers of flows are 24, 28, and
32) by varying the locations of sources and destinations of
flows and access points. For each flow set, we obtain a set of
links, where each link in the set is randomly picked. In each
experiment, one link in this set is selected as a failed link.

TABLE I: SCHEDULING, ROUTE, AND SCHEDULE UPDATE POLICIES

Fixed-Priority Scheduling Policy

GAP: schedule transmissions based on a gap-induced scheduling policy
EARLY: schedule transmissions of a flow in sequential order and select the earliest feasible slot for a transmission
LATE: schedule transmissions of a flow in a reverse order and select the latest feasible slot for a transmission

Route Update Policy

PR: apply a partial reroute policy, and compute a new route using Dijkstra’s shortest path algorithm
RR: reroute using Dijkstra's shortest path algorithm

Schedule Update Policy

AFO: reschedule affected flows only
ALL: reschedule affected flows and all of their lower priority flows

Q _
e 1 - T El £ -+ + -
o | o El
Bo0s T Sosf 1 T E \
e 1+ 8 n
S S |
9 0.6 | 9 0.6 | +
s | [5 1.
g S i
Soaf 1+ Soat 1
2 + > !
g = n
0.2 302
() (5]
o o

0 0

EARLY/ LATE/ GAP/ GAP/ EARLY/ LATE/ GAP/ GAP/
RR+ RR+ RR+ PR+ RR+ RR+ RR+ PR+
AFO AFO AFO AFO AFO AFO AFO AFO

(a) 24 flows (local) (b) 28 flows (local)

o
o

I
~

03

Reconfiguration Success Rate

50

L

Reconfiguration Success Rate

1t —
|

06 ,
i

%Dj»%

0
EARLY/ LATE/ GAP/ GAP/

RR+

RR+ RR+ PR+

AFO AFO AFO AFO

EARLY/ LATE/ GAP/ GAP/

RR+
AFO

RR+ RR+ PR+
AFO AFO AFO

(c) 32 flows (local) (d) 32 flows (Indriya)

Fig. 3: Box plots of schedule reconfiguration success rates of
AFO under the rate monotonic policy.

We set P = {271 20 21}, Periods are uniformly assigned to
flows in a flow set.

1) Schedule Reconfiguration Success Rate: To evaluate the
effectiveness of our gap-induced scheduling policy in enabling
the AFO reconfiguration policy to update only the schedules of
those flows affected by link failure, we quantify the schedule
reconfiguration success rate of AFO. The success rate is
defined as the fraction of cases of a flow set in which AFO suc-
cessfully reschedules only flows using the failed link. We com-
pare our two approaches GAP/RR+AFO and GAP/PR+AFO,
against EARLY/RR+AFO and LATE/RR+AFO.

Figure 3 shows box plots of the reconfiguration success
rates of AFO under the rate monotonic policy. GAP/PR+AFO
demonstrates better improvement as the traffic load increases
(Figures 3a, 3b, and 3c). This is because it is more difficult for
AFO to avoid rescheduling flows unaffected by link failure as

61

0.8

0.6

CDF

0.4

0.8

0.6

—0- EARLY/RR+ALL
—©—LATE/RR+ALL
—»= EARLY/RR+AFO|

CDF

0.4

—O- EARLY/RR+ALL
—6— LATE/RR+ALL
—»— EARLY/RR+AFO

—<—LATE/RR+AFO ¢
0.2 GAP/RR+AFO 0.2
——GAP/PR+AFO

—*—LATE/RR+AFO
GAP/RR+AFO
—+— GAP/PR+AFO

0 10 20 30 0 5 10 15 20 25
Number of Packets Number of Packets

(a) Overall (local) (b) Overall (Indriya)

Fig. 4: CDFs of the total number of packets to be disseminated
when the network has 32 flows, and under the rate monotonic
policy.

more flows occupy the schedule, especially under the EARLY
and LATE scheduling policies. In Figure 3c, GAP/PR+AFO
increases the median success rate by 87.9% and 65%, com-
pared to EARLY/RR+AFO and LATE/RR+AFO, respectively.
Similar result can be observed under the Indriya testbed
topology (Figure 3d).

The results manifest the benefit of GAP in improving the
reconfiguration success rate of AFO and in preventing the
modification of higher priority flow schedules from impacting
those of lower priority flows. In addition, it also shows that PR
policy can further enhance the reconfiguration success rate of
AFO by at most 12.5% (Figure 3c) because PR allows flows’
schedules to be partially reused.

2) Number of Packets to Disseminate: We examine the
ability of GAP/PR+AFO to reduce the cost of adapting to
a failed link by computing the number of packets required to
update the global schedule, which is a direct quantification
of the schedule reconfiguration overhead. We compare our
approach with two additional baselines, EARLY/RR+ALL
and LATE/RR+ALL. Moreover, if AFO cannot successfully
reconfigure a flow’s schedule, the manager will reschedule the
flow, along with all of its lower priority flows, starting from
the highest priority flow that AFO fails to reconfigure.

Figures 4 presents the Cumulative Distribution Function
(CDF) of the total number of packet to be disseminated
under our local testbed and the Indriya testbed. GAP/PR+AFO
proves to be most effective in reducing the total number of

@
3

@
S
@
S

N

)
'
B

-

N
B

-

N
S
n
=]
n
=]

|

I
! I

! I
L I
I

T
|

iig

LATE/ LATE/ GAP/
RR+ RR+ PR+
ALL AFO AFO

(b) 6-10 flows (local)

[RN

3
>

Number of Packets
&
>

Number of Packets
>

Number of Packets
&

o
o
o

€L

GAP/
PR+
AFO

o

+
LATE/
RR+
ALL

LATE/
RR+
AFO

GAP/
PR+
AFO

0
LATE/
RR+
ALL

LATE/
RR+
AFO

(a) 1-5 flows (local) (c) 11+ flows (local)

30 30 30

N

a
o
3]
N
&

N
=]
N
S
N
S

|

N

LATE/
RR+
ALL

o

Number of Packets
o
>

Number of Packets
E

e
o o

JE AR
Number of Packets
E

o
o

o errrrerere

[Hossesersrsrrers

€L

0

LATE/
RR+
ALL

LATE/
RR+
AFO

GAP/
PR+
AFO

GAP/
PR+
AFO

LATE/
RR+
AFO

GAP/
PR+
AFO

(d) 1-5 flows (Indriya) (e) 6-10 flows (Indriya) (f) 11+ flows (Indriya)

Fig. 5: Box plots of the number of packets required to update
a schedule as the number of flows associated with a failed link
increases, and under the rate monotonic policy.

packets required to update a schedule than other approaches.
Furthermore, we investigate how the number of flows associ-
ated with link failure impacts the number of packets needed
to update a schedule (Figure 5). We show only the results of
LATE/RR+AFO and LATE/RR+ALL, since the LATE policy
can perform better than or similar to the EARLY scheme.
GAP/PR+AFO significantly outperforms the baselines when
there are more flows associated with link failure. For instance,
GAP/PR+AFO reduces the median number of packets by
60% and 55% compared to LATE/RR+AFO under the local
and the Indriya testbed, respectively, when the number of
affected flows is more than 10. GAP/PR+AFO offers a notable
reduction over the baselines in the number of packets required
to reconfigure a schedule, which translates into shorter recon-
figuration latency and lower energy consumption.

We repeat the evaluation with the deadline monotonic
scheduling policy, and observe similar results for both recon-
figuration success rate and number of packet to disseminate.
For brevity, we only show the results when the network
contains 32 flows as presented in Figure 6.

B. Update Engine Evaluation

We assess if REACT helps reduce schedule reconfiguration
latency and energy cost by conducting experiments on the local
testbed consisting of 50 TelosB motes. Figure 7 shows the lo-
cal testbed topology where two nodes are designated as access
points. We explore three different configurations, i.e., when
the network has 16, 24, and 32 flows. Transmission schedules
are generated based on the deadline monotonic policy. We
opt to compare our GAP/PR+AFO approach against only
LATE/RR+ALL and LATE/RR+AFO, since they outperform

62

2
& T
2
fosp — E| 0.8
S | ! |
@06 | i L 06
o 1 o T e ome
Toa * i3] —0- EARLY/RR+ALL
3 } + + 0.4+% —6—LATE/RR+ALL
£ | n —»= EARLY/RR+AFO
g0% 1 02 ld —%— LATE/RR+AFO
o <Y GAP/RR+AFO

0 ——GAP/PR+AFO

EARLY/ LATE/ GAP/ e ———

GAP/ 0ld
PR+ 0 5
AFO

RR+ RR+ RR+
AFO AFO AFO

10 15 20
Number of Packets

25

(a) Schedule reconfigura- (b) Number of packets to be disseminated

tion success rate

Fig. 6: Schedule reconfiguration with 32 flows, and under the
deadline monotonic policy (local).

Access

Floor 5 Floor 4

Fig. 7: Local testbed topology.

. Failure Schedule
__Inject notification dissemination
interference received completed

° k 4 v %4 %9
o
2 08F ,
8 A
£ 06f ,
2
Q o04r q
S —o— LATE/RR+ALL
. o2f —— LATE/RR+AFO |
B ——GAP/PR+AFO

o . . :

0 10 20 30 40 50

Time [S]
(a) Percentage of packets received
0.06 - ,
o
Q M‘N}ﬂq
20041 —
5
a
2
go0.02r- ——LATE/RR+ALL |
o —— LATE/RR+AFO
——GAP/PR+AFO
o . . :
0 10 20 30 40 50
Time [S]

(b) Radio duty cycle

Fig. 8: Schedule reconfiguration timeline.

the baselines employing the EARLY policy under the deadline
monotonic policy. We schedule a broadcast graph every 1
second. All flows generate packets with similar periods of 1
second. The deadline of each flow is chosen randomly from
the range [|T'|+2,2°], where || is the number of transmissions
of a flow. We allow control data (e.g., failure notification and
ACK) to be piggybacked onto data packets, so no additional
control flow is installed. All configurations follow the same
settings, except where stated otherwise.

To demonstrate the benefit of REACT in reducing
rescheduling overhead, we pick one critical link used by 85%-
90% of flows as a failed link. To simulate network dynamics,
WiFi interference is introduced close to the selected link.
We use two Raspberry PIs to generate SMB traffic on WiFi
channel 1 overlapping with IEEE 802.15.4 channels 11 to 14
while the nodes communicate on channels 13 to 15. A node
reports a link failure to the network manager once a link's PRR
falls below 90%, and employs a sliding window of size 100
to calculate the link's PRR. To obtain average measurements,
we repeat the experiment five times for each configuration.

Note that with centralized scheduling, schedule reconfig-
uration process involves failure detection, schedule recom-
putation, and schedule dissemination. Failure detection time
depends on several factors (e.g., how often a node communi-
cate with its neighbor and the manager, the size of the sliding
window for calculating PRR, the reliability requirement, etc.),
which introduce different tradeoffs. For instance, scheduling
upstream flows to the manager less frequently preserves net-
work resources, but incurs more reconfiguration latency. Se-
lecting the optimized values for these parameters is not within
the scope of this work. Schedule recomputation time depends
on the complexity of schedule reconfiguration algorithm, the
size of the network, and the number of flows associated with
link failure, while schedule dissemination latency is mainly
subject to the amount of information to be distributed and the
period of a broadcast graph. Our work focuses on lowering
the schedule dissemination latency by reducing the change
to the route and schedule so fewer packets are required for
the schedule update, and on offering an efficient and reliable
mechanisms to update the schedule. In addition, our sched-
ule recomputation algorithm incurs relatively low overhead
compared to the failure detection and schedule dissemination
processes. For example, based on our simulation studies, with
32 flows, we observe a maximum execution time of 13.5 ms
for PR+AFO. The execution time is measured on a Macbook
Pro laptop with a 2.7 GHz Intel Core i7.

1) Schedule Reconfiguration Timeline: Figure 8 presents
the schedule reconfiguration timeline to validate the correct-
ness of our implementation. We quantify two metrics: (1) the
radio duty cycle, the fraction of time a node has its radio
on, and (2) the percentage of packets successfully received at
their destinations. The network consists of 16 flows. When the
network is stable, all approaches achieve a high percentage
of packets received and incur low duty cycles. At time=20,
interference is injected to degrade the link quality, and the
percentage of packets received starts to decrease. Because the

63

+ o]
+ o
15 + o 30 * 88
+ x 0 ¥ % 00
+ o x o 25 ks |
Ie ERNPLY
+ o + X,0
Q1o + 0 Q20 t 1.8
z P E £ 5o8
3 315 ®
[y + © [$ éé
¢ 10 g°
5
+ 0 © LATE/RR+ALL gg o LATE/RR+ALL
Yo * LATE/RR+AFO| 5l 8% * LATE/RR+AFO|
@ + GAP/PR+AFO 18 + GAP/PR+AFO
0
o 2 4 6 8 10 12 0 5 10 15 20
Time [S] Time [S]
(a) 16 flows (b) 32 flows
25 : Lo 25 % Lo
+) [e3
+ o (3
20 f g 20 H]
o 8 oyl
ais . $ Xo ats s o°
z I.5° 2 0?
] + 78 3 o
w10 + g w10 $ © @
& A
s ¢ o LATE/RR+ALL s §g ° o LATE/RR+ALL
18 * LATE/RR+AFO +3 * LATE/RR+AFO
+ GAP/PR+AFO 3 + GAP/PR+AFO
0 0
0 5 10 15 20 0 5 10 15 20
Time [S] Time [S]
(c) 24 flows (d) 24 flows (AFO fails to reconfigure
LATE)

Fig. 9: Flow schedule update latency under different traffic
loads.

51[o LATE/RR+ALL o ° 5
* LATE/RR+AFO| °
+ _GAP/PR+AFO X S

© LATE/RR+ALL °
* LATE/RR+AFO %0
+_GAP/PR+AFO o

o

5 10 15 20 0 5 10 15 20
Time [S] Time [S]

(a) 24 flows (b) 24 flows (AFO fails to reconfigure
LATE)

Fig. 10: Latency in which each affected node has received a
completed schedule.

failed link is used by multiple flows, nodes can detect link
quality degradation and notify the network manager quickly.
In this setting, the network manager takes less than 10 ms to
recompute a new schedule. So after receiving the notification
at time=24, the manager can promptly begin disseminating a
new schedule at time=25.

During the schedule reconfiguration phase, we notice
the percentage of packets received drops, and the ra-
dio duty cycle increases because nodes need to retrans-
mit a packet more often and they also participate in
schedule distribution. Schedule reconfiguration finishes at
times 30, 33, and 37 for GAP/PR+AFO, LATE/RR+AFO,
and LATE/RR+ALL, respectively. GAP/PR+AFO provides
25% and 43.8% improvements in schedule reconfiguration
latency over LATE/RR+AFO and LATE/RR+ALL, since
GAP/PR+AFO requires fewer packets to update the sched-
ule. After schedule reconfiguration, the network performance
returns to normal, and the slightly higher radio duty cycle is

—e— LATE/RR+ALL
—— LATE/RR+AFO|
—+— GAP/PR+AFO

02 /
0

—e— LATE/RR+ALL
—— LATE/RR+AFO|
—— GAP/PR+AFO

0 5 10 15 5 10 15
Energy Consumption (mJ) Energy Consumption (mJ)
(a) 16 flows (b) 32 flows
1 1
0.8 0.8
@ @
3 0.6 § 0.6
2 2
®04 X204
0.2 —— LATE/RR+ALL 0.2 —e—LATE/RR+ALL
: —— LATE/RR+AFQ|) ——LATE/RR+AFOQ|
—— GAP/PR+AFO o —+—GAP/PR+AFO
0 0
0 5 10 15 5 10 15
Energy Consumption (mJ) Energy Consumption (mJ)
(c) 24 flows (d) 24 flows (AFO fails to reconfigure

LATE)

Fig. 11: CDFs of node’s energy consumption in mJ.

due to longer flow routes, which requires more transmissions.

Note that process monitoring applications may be able to
tolerate some packet losses during the reconfiguration process.
However, for more time-sensitive control applications, it is
crucial to ensure that flows can still operate to meet the
real-time requirement when the network suffers from link
failure. Therefore, graph routing (a multi-path routing strategy
supported by the WirelessHART protocol) should be adopted
for this class of application to ensure reliable communication.

2) Schedule Dissemination Latency: We first validate that
our policies indeed meet their goal of reducing schedule
dissemination time. Latency is measured from when the first
packet is disseminated until the schedules of all impacted flows
are modified. Figure 9 presents the latency (in seconds) when
a schedule of each flow is updated under different workloads,
and Figure 10 plots the time required for each related node to
receive a complete schedule.

We first consider the case where AFO successfully resched-
ules only flows affected by the failed link for LATE/RR+AFO.
In Figures 9a, 9b, and 9c, GAP/PR+AFO reduces the sched-
ule dissemination latency by approximately 45.1%-55% and
31.7%-34.5% over LATE/RR+ALL and LATE/RR+AFO, re-
spectively. This is because GAP and PR enable AFO to reuse
more of flows’ old schedules. In addition, Figure 9d presents
the result with 24 flows when AFO fails to update only flows
associated with the failed link for LATE/RR+AFO. Here, the
manager reschedules the remaining flows that could not be
reconfigured by AFO, and also reschedules all of their lower
priority flows. Compared to LATE/RR+AFO, GAP/PR+AFO
further lowers the schedule update latency by 60%.

These results indicate the schedule dissemination latency
achieved with GAP/PR+AFO is considerably lower than that

64

of other approaches. This reduction shows the complemen-
tary benefit of our scheduling and reconfiguration policies
in reducing the amount of schedule-related information to
be broadcast once link failure is detected. Furthermore, the
results in Figure 9 also verify that our update scheduler indeed
modifies schedules of higher priority flows (i.e., flows with
smaller ID) first. Therefore, these more critical flows suffer
less from packet losses.

3) Energy Consumption: We next examine the performance
of REACT in terms of energy efficiency. We measure the radio
on time on each node and compute the energy consumption
in mJ. According to the CC2420 radio specification [34], the
power requirements for a transmission and a reception are
52.2 mW and 59.2 mW, respectively. The results presented in
this section are obtained from the experiments in the previous
section.

Figure 11 shows the CDFs of a node’s average energy
consumption. GAP/PR+AFO significantly improves the energy
cost over the two baselines, especially the case when AFO fails
to reschedule only the affected flows (Figure 11d). For exam-
ple, with 32 flows (Figure 11b), under GAP/PR+AFO, 42% of
the nodes consume less than 6 mJ, while for LATE/RR+AFO,
only 8% of the nodes have energy costs lower than 6 mJ. In
contrast, with LATE/RR+ALL, all nodes require more than 6
mJ. This is due to the fact that REACT disseminates fewer
packets, and it reduces the number of nodes affected by the
schedule update. As shown in Figure 10, many fewer nodes
are affected by the schedule modification under GAP/PR+AFO
than under either baselines. Reducing the number of nodes
impacted by the schedule update results in fewer nodes par-
ticipating in schedule dissemination, since we allow nodes in
the broadcast graph to forward a packet only when they are
on a path to the packet’s destinations, thereby improving the
node’s energy efficiency.

VIII. CONCLUSION

To meet the stringent demands of industrial applications
for real-time and reliable performance, industrial WSAN
standards adopt centralized management to provide determin-
istic communication. The centralized management demands
a highly efficient control plane to reconfigure the network
in response to link failures. In this work, we design and
implement REACT, a novel control plane to handle network
adaptation. REACT includes a reconfiguration planner and
an update engine to support efficient and reliable schedule
reconfiguration. We implement and evaluate REACT with a
WirelessHART protocol stack on a WSAN testbed. The results
show that our system reduces the schedule dissemination
latency by over 60%, and improves the node energy efficiency.

ACKNOWLEDGMENT

This work was sponsored by NSF through grants 1646579
(CPS) and by the Fullgraf Foundation.

[1]
[2]
[3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

“Wirelesshart, 2007,” http://www.hartcomm?2.org.
“ISA100.11a,” https://www.isa.org/.

“IEEE 802.15.4e¢ Time-Slotted Channel
https://tools.ietf.org/html/rfc7554.

C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems,” Proceedings of the IEEE, vol.
104, no. 5, pp. 1013-1024, May 2016.

M. Nobre, I. Silva, and L. A. Guedes, “Routing and Scheduling
Algorithms for WirelessHART Networks: a Survey,” Sensors, vol. 15,
no. 5, pp. 9703-9740, 2015.

S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and
Real-Time Communication in Industrial Wireless Mesh Networks,” in
2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, April 2011, pp. 3—-12.

S. Munir, S. Lin, E. Hoque, S. Nirjon, J. A. Stankovic, and K. White-
house, “Addressing Burstiness for Reliable Communication and Latency
Bound Generation in Wireless Sensor Networks,” in Proceedings of the
9th ACM/IEEE International Conference on Information Processing in
Sensor Networks. ACM, 2010, pp. 303-314.

R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A
Flexible Retransmission Policy for Industrial Wireless Sensor Actua-
tor Networks,” in 2018 IEEE International Conference on Industrial
Internet (ICII), 10 2018, pp. 79-88.

A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling
for WirelessHART Networks,” in 2010 31st IEEE Real-Time Systems
Symposium, Nov 2010, pp. 150-159.

O. Chipara, C. Wu, C. Lu, and W. Griswold, “Interference-Aware Real-
Time Flow Scheduling for Wireless Sensor Networks,” in 2011 23rd
Euromicro Conference on Real-Time Systems, July 2011, pp. 67-77.
B. Dezfouli, M. Radi, and O. Chipara, “REWIMO: A Real-Time and
Reliable Low-Power Wireless Mobile Network,” ACM Trans. Sen. Netw.,
vol. 13, no. 3, pp. 17:1-17:42, Aug. 2017.

D. Yang, Y. Xu, H. Wang, T. Zheng, H. Zhang, H. Zhang, and
M. Gidlund, “Assignment of Segmented Slots Enabling Reliable Real-
Time Transmission in Industrial Wireless Sensor Networks,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3966-3977,
June 2015.

W. Shen, T. Zhang, M. Gidlund, and F. Dobslaw, “SAS-TDMA: A
Source Aware Scheduling Algorithm for Real-time Communication in
Industrial Wireless Sensor Networks,” Wirel. Netw., vol. 19, no. 6, pp.
1155-1170, Aug. 2013.

W.-B. Péttner, H. Seidel, J. Brown, U. Roedig, and L. Wolf, “Con-
structing Schedules for Time-Critical Data delivery in Wireless Sensor
Networks,” ACM Transactions on Sensor Networks (TOSN), vol. 10,
no. 3, pp. 44:1-44:31, 2014.

T. O’donovan, J. Brown, F. Biisching, A. Cardoso, J. Cecilio, P. Furtado,
P. Gil, A. Jugel, W.-B. Pottner, U. Roedig et al., “The GINSENG
System for Wireless Monitoring and Control: Design and Deployment
Experiences,” ACM Transactions on Sensor Networks (TOSN), vol. 10,
no. 1, pp. 4:1-4:40, 2013.

E. Livolant, P. Minet, and T. Watteyne, “The Cost of Installing a
6TiSCH Schedule,” in AdHoc-Now 2016 - International Conference on
Ad Hoc Networks and Wireless , Lille, France, Jul. 2016. [Online].
Available: https://hal.inria.fr/hal-01302966
“CoAP: The Constrained
https://tools.ietf.org/html/rfc7252.

“CoMI: CoAP Management Interface,” https://tools.ietf.org/html/draft-
ietf-core-comi-01.

“IPv6 over the TSCH mode of IEEE 802.15.4e
https://datatracker.ietf.org/wg/6tisch/about/.

K. Al Agha, G. Chalhoub, A. Guitton, E. Livolant, S. Mahfoudh,
P. Minet, M. Misson, J. Rahme, T. Val, and A. Van Den Bossche,
“Cross-Layering in an Industrial Wireless Sensor Network: Case Study
of OCARL” journal of networks, vol. 4, no. 6, pp. 411-420, Aug.
2009. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00390488
S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks through Autonomously Scheduled TSCH,” in
Proceedings of the ACM Conference on Embedded Network Sensor
Systems (Sensys), 2015, pp. 337-350.

“uRES,” https://openwsn.atlassian.net/.

Hopping (TSCH),”

Application Protocol,”

(6tisch),”

65

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]
(33]

(34]

N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia,
and M. Dohler, “Decentralized Traffic Aware Scheduling in 6TiSCH
Networks: Design and Experimental Evaluation,” IEEE Internet of
Things Journal, vol. 2, no. 6, pp. 455-470, 2015.

T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu, “FD-
PaS: A Fully Distributed Packet Scheduling Framework for Handling
Disturbances in Real-Time Wireless Networks,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2018, pp. 1-12.

V. Modekurthy, A. Saifullah, and S. Madria, “DistributedHART: A Dis-
tributed Real-Time Scheduling System for WirelessHART Networks,”
in 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2019.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in Information Pro-
cessing in Sensor Networks (IPSN), 2011 10th International Conference
on. 1IEEE, 2011, pp. 73-84.

M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adap-
tive Real-time Communication for Wireless Cyber-Physical Systems,”
ACM Transactions on Cyber-Physical Systems, vol. 1, no. 2, p. 8, 2017.
F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power Wire-
less Bus,” in Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems (Sensys). New York, NY, USA: ACM, 2012,
pp. 1-14.

M. Ndiaye, G. Hancke, and A. Abu-Mahfouz, “Software Defined
Networking for Improved Wireless Sensor Network Management: A
Survey,” Sensors, vol. 17, p. 1031, May 2017.

M. Baddeley, R. Nejabati, G. Oikonomou, S. Gormus, M. Sooriyaban-
dara, and D. Simeonidou, “Isolating SDN Control Traffic with Layer-2
Slicing in 6TiSCH Industrial IoT Networks,” in IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), Nov 2017, pp. 247-251.

A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-End Communication
Delay Analysis in Industrial Wireless Networks,” IEEE Transactions on
Computers, vol. 64, no. 5, pp. 1361-1374, May 2015.

“TinyOS,” http://tinyos.stanford.edu/tinyos-wiki/index.php/Main_Page.
M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, “Indriya: A Low-
Cost, 3D Wireless Sensor Network Testbed,” in TRIDENTCOM, 2011,
pp. 302-316.

“CC2420 Documentation,” http://www.ti.com/lit/ds/symlink/cc2420.pdf.

