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Abstract—Industrial automation is embracing wireless sensor-
actuator networks (WSANs) as the communication technology
for industrial Internet of Things. Due to the strict real-time
and reliability constraints imposed by industrial applications,
industrial WSAN standards such as WirelessHART employ cen-
tralized management to facilitate deterministic communication.
However, a centralized management architecture faces signifi-
cant challenges to adapt to changing wireless conditions. While
earlier research on industrial WSANs has primarily focused on
improving the performance of the data plane, there has been
limited attention on the control plane, which plays a crucial
role for sustaining the data plane performance in dynamic
environments. This paper presents REACT, a reliable, efficient,
and adaptive control plane for industrial WSANs. Specifically
optimized for network adaptation, REACT significantly reduces
the latency and energy cost of network reconfiguration, thereby
improving the agility of WSANs in dynamic environments. RE-
ACT comprises (1) a Reconfiguration Planner employing flexible
scheduling and routing algorithms and reactive update policies
to reduce rescheduling cost, and (2) an Update Engine providing
efficient and reliable mechanisms to report link failures and
disseminate updated schedules. REACT has been implemented
for a WirelessHART protocol stack. Evaluation results based
on two testbeds demonstrate that REACT can reduce network
reconfiguration latency by 60% at 50% of energy cost when
compared to standard approaches.

I. INTRODUCTION

Wireless sensor-actuator networks (WSANs) provide a flex-

ible and cost-effective communication technology to incorpo-

rate Internet of Things (IoT) in industrial process control and

automation. Industrial applications are inherently subject to

real-time and reliability requirements, i.e., sensor data or con-

trol commands must be successfully delivered to its destination

by their deadlines. Therefore, industrial WSAN standards such

as WirelessHART [1] and ISA100 [2] adopt specific features

to address such challenges. For instance, the WirelessHART

network utilizes a Time Slotted Channel Hopping MAC

(TSCH) [3], a TDMA-based protocol offering deterministic

communication. The data plane relies on a centralized network

manager to generate routes and transmission schedule for

all the flows in the network. The centralized management

approach offers several key advantages in industrial settings

dominated by concerns about predictability, reliability, and

observability of network operations. The centralized manager

produces conflict-free transmission schedules that enable all

packets to be delivered within their deadlines, thereby en-

hancing the predictability and reliability of communication.

Furthermore, the centralized manager allows plant operators

to inspect and log communication schedules and control com-

mands, providing observability that is desirable in industrial

operations. However, a key challenge faced by the centralized

manager is to adapt quickly in response to network dynamics.

This is because the centralized manager must gather network

connectivity information from network devices to generate

routes and a global schedule. The newly computed schedule

is then disseminated into the network through a multi-hop

wireless mesh network. This schedule update process can incur

significant communication overhead, especially in a large,

many-hop network. We note that in many industrial settings,

nodes are stationary in a plant and environmental conditions

are usually stable. Consequently, a global schedule may stay

valid for a relatively long time. However, when changes occur,

the network needs to be able to promptly adapt to the changes

given the critical nature of many industrial applications.

Despite extensive research on industrial WSANs, most

prior works have focused on the data plane, e.g., routing

and scheduling algorithms. Comprehensive reviews of these

works can be found in [4], [5]. However, there has been

limited research on the control plane, which is responsible for

monitoring and maintaining the performance of the data plane.

Due to the unpredictable nature of wireless environment, a

network may suffer link quality degradation or disconnection,

which may lead to failure in industrial plants. While different

techniques are used to enhance network reliability, e.g., multi-

path forwarding [6] and per-link retransmissions [7], [8], when

link failure occurs, a network must have the capability to

promptly reconfigure communication routes and schedules

given mission-critical nature of many industrial applications.

Moreover, although industrial standards (e.g., WirelessHART)

provide some high-level guidelines and specifications for its

control plane, it leaves open the details regarding the actual

design and implementation. To address the open challenge,

we have developed REACT, a reliable, efficient, and adaptive

control plane optimized for adaptation in industrial WSANs.

Specifically, REACT integrates two key components.

• Reconfiguration Planner employs strategies to compute

and update routes and transmission schedules. Designed

to minimize the changes to transmission schedules, the

planner effectively reduces the latency and energy cost

in disseminating a new schedule.

• Update Engine provides the mechanisms for network

adaptation, including health reporting, failure notifica-
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tion, and an efficient and reliable schedule dissemina-

tion mechanism. Our design also allows critical flows

impacted by link failures to recover faster than other ones.

We have implemented REACT as the control plane of a

WirelessHART protocol stack. Evaluation results based on two

wireless testbeds demonstrate that REACT can significantly

reduce the latency and energy cost of network reconfiguration,

thereby supporting agile adaptation in industrial WSANs.

The rest of the paper is organized as follows. Section II

reviews related works. Section III introduces the background.

Section IV provides REACT architecture. Section V presents

the policies used in the Reconfiguration Planner. Section VI

details the design of the Update Engine. Section VII presents

evaluation results, and Section VIII concludes the paper.

II. RELATED WORKS

Earlier works on real-time scheduling for a TDMA-based

network with a centralized manager addressed different ob-

jectives, such as optimizing real-time performance [9], [10]

or enhancing reliable communication [6], [7]. However, these

works schedule transmissions without taking into account the

need for a schedule to be updated due to network dynamics.

Consequently, a network may incur considerable adaptation

cost. Our system includes a scheduling policy that helps

mitigate schedule reconfiguration cost by reducing schedule-

related information that must be disseminated by a network

manager.

There are other scheduling approaches to facilitate network

adaptation. Dezfouli et al. introduced Rewimo [11], a wireless

solution for real-time scheduling in mobile networks. Rewimo

incorporates a scheduling technique for a TSCH network that

enables schedule update in response to workload changes.

Nevertheless, the scheduling policy does not consider the

need for schedule updates due to link failure. To tackle the

unreliable nature of wireless links, Yang et al. [12] and

Shen et al. [13] developed scheduling algorithms that support

efficient schedule reconfiguration. Their scheduling polices

have limitations because they only consider a single channel

protocol, and only single class of flow, i.e., all flows have

the same period and deadline. Moreover, there are previous

efforts [14], [15] that developed custom industrial WSAN

protocols, which include network maintenance and adaptation

mechanisms, based on a centralized management architecture.

Again, these protocols have function limitations, e.g., they

are designed for a single channel TDMA network, whereas

REACT is geared towards a TSCH network operating on

multiple channels.

Additionally, Livolant et al. [16] compared the cost of

installing and updating schedules among existing protocols

such as CoAP [17] and CoMI [18] that run on top of a

6TiSCH [19] network with a centralized manager, and a

custom WSAN protocol OCARI [20]. This work investigated

only the impact of these protocols on the number of messages

required to install a global schedule and focused on optimizing

the protocol headers, while REACT offers a more complete

solution for schedule reconfiguration in an industrial WSAN.

In contrast to centralized management, a decentralized

management architecture allows nodes to construct their own

schedules, which enables them to adapt locally when network

connectivity changes. For instance, the recent 6TiSCH stan-

dard combines the TSCH MAC and RPL routing. Duquennoy

et. al [21] developed Orchestra, where nodes autonomously

build their own schedules without requiring additional sig-

naling among neighbors. uRes [22] introduced a schedule

negotiation mechanism between neighbor nodes to compute

local schedules. Accettura et al. [23] presented DeTAS, a de-

centralized scheduling protocol that ensures the smallest end-

to-end latency, and reduces neighbor-to-neighbor signaling to

generate local schedules. Although these protocols enhance

network adaptability, they provide only best-effort service,

and cannot guarantee conflict-free transmissions and real-time

performance.

FD-PaS [24] and DistributedHART [25] are the recent

distributed scheduling algorithms that support real-time com-

munication. In contrast to our work, FD-PaS assumes a single

channel communication, and is designed to handle external

disturbances by adjusting data flow’s period. While Distribut-

edHART is designed for node-level multi-channel scheduling

with spatial reuse and for graph routing, REACT offers a

solution that follows industrial WSAN standards with a cen-

tralized manager that ensures conflict-free communication and

provides observability of network operations.

Glossy [26] provides fast and efficient network flooding

by exploiting constructive interference and the capture effect.

Blink [27] combines a Glossy-based Low-Power Wireless Bus

protocol [28] and real-time scheduling, and offers a promising

alternative to TSCH-based networks. In contrast to the above-

mentioned efforts, Blink is topology independent. Any change

in network connectivity does not impact its global schedule.

In comparison, REACT aims to enhance existing industrial

standards for process automation through an agile control

plane for centralized management.

In spirit, REACT is similar to Software Defined Networking

(SDN) by separating the control planes from data planes

and utilizing centralized software to control the behavior of

a network [29]. However, traditional control planes of SDN

can incur significant overhead for a WSAN. Baddeley et al.

presented initial efforts to adopt SDN architecture for 6TiSCH

networks [30] by mitigating the effects of SDN’s control

overhead on data traffic. In contrast, REACT is a control

plane specifically designed to reduce the control overhead

and latency. Furthermore, REACT is integrated with the Wire-

lessHART architecture widely adopted in process industries.

III. BACKGROUND

In this section, we provide background on the network

model, and describe TSCH scheduling.

A. Network Model

Industrial WSAN standards such as WirelessHART select

a set of specific network features to enable real-time and

highly reliable communication. They adopt the IEEE 802.15.4
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physical layer, offering a low data rate and low power commu-

nication, and operating on the 2.4 GHz band with 16 channels.

On top of the physical layer is TSCH MAC protocol. TSCH

is a TDMA-based protocol in which time is divided into slots.

Each slot is 10 ms, long enough to accommodate a transmis-

sion of a packet and its acknowledgement. To prevent channel

contention, only one transmission is allowed per channel in

each time slot. TSCH also supports channel hopping, i.e., a

node can hop to different channels in every time slot. Channel

hopping provides frequency diversity, which helps mitigate the

effect of interference on network reliability. At the network

layer, we consider source routing that provides a single path

from a source to a destination. A WSAN is supervised by a

centralized manager that manages and optimizes operations of

a network throughout the network lifetime to ensure industrial

application requirements are satisfied.

A WSAN consists of a set of real-time flows F =
{F1, F2, ...Fk}. For each flow Fi, a source node generates a

packet at a periodic interval Pi. The packet must be delivered

through a route φi to the destination within the deadline Di,

where Di ≤ Pi. A route φi is composed of a sequence of

links, and a transmission over a link j of a flow i is denoted

as tij . A flow Fi consists of a sequence of transmissions

Γi = {ti1, ti2, ..., tin}. Let T be the hyper-period (i.e., the

least common multiple of the periods of flows) of a set of

flows F . A superframe is a set of repeated slots of length T .

Within a superframe, a flow Fi releases T/Pi packets. A set of

flows F is schedulable if all the flows in F can be scheduled

to meet their deadlines.

B. TSCH Scheduling

A centralized scheduler residing on the network manager

constructs a global schedule. Building a schedule involves

allocating a time slot and a channel offset to each transmission.

To generate a feasible schedule, a scheduler must follow these

scheduling constraints:

1) Slot constraints:

a) Due to a half-duplex nature of the IEEE 802.15.4

radio, a node can only send or receive at a given

time, so no two transmissions in a time slot can

share a common node.

b) To prevent intra-network interference, only one

transmission can be scheduled on each channel in

a time slot.

2) Precedence constraint: a sender must receive a packet

before forwarding it, i.e., transmission tij must be

scheduled in a time slot before transmission tij+1.

3) Real-Time constraint: all flows must be scheduled to

meet their deadlines.

Our work adopts fixed priority scheduling, which offers

an efficient and computationally inexpensive heuristic. Hence,

it is commonly used for real-time systems. Each flow Fi is

associated with a priority. A flow Fi has higher priority than

a flow Fl if i < l. Priorities are commonly assigned based on

a flow’s period or deadline, and a scheduler schedules flows
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Fig. 1: REACT architecture and adaptation process.

in decreasing order of priority. For each flow Fi, with respect

to the scheduling constraints, a scheduler allocates a time slot

and a channel offset to each transmission tij .

IV. REACT ARCHITECTURE

Figure 1 depicts REACT architecture, consisting of (1) a

gateway enabling communication between network devices

(sensors or actuators) and the centralized controller (2) a host

running network manager software (3) a WSAN comprising

multiple network devices forming a wireless mesh network,

and (4) access points (AP) wired to the network manager

and the gateway. Providing more than one access points

offers redundant paths between the WSAN and the backplane.

With REACT, the network reconfiguration process is triggered

when link failure is reported to the network manager. To

support this reconfiguration process, REACT includes two

major components: a Reconfiguration Planner and an Update
Engine.

A. Reconfiguration Planner

The reconfiguration planner resides on the network manager,

and consists of the following components:

• Topology Update: A manager collects link statistics from

all network devices, and generates a network topology

represented as a graph. When a link fails to meet the

reliability requirement, the link is removed from the

topology. Conversely, if a node detects a new neighbor

with reliable connectivity, a link between the node and

its neighbor is added into the topology.

• Route Update: The module is responsible for creating

flow routes and constructing a broadcast graph for

disseminating schedule information from the manager

downward to all network devices. With an updated topol-

ogy, it computes new routes for flows associated with a

failed link and adjusts the broadcast graph if necessary.

Our work incorporates a Partial Reroute policy, which

helps reduce the amount of flow’s schedule that must be

updated.

• Schedule Update: Based on the new routes, the sched-

uler recalculates a new global schedule. It utilizes Gap-
Induced scheduling scheme, which complements our

rescheduling policy in granting only schedules of flows

affected by link failure to be updated, thereby lowering

the schedule dissemination cost.
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B. Update Engine

The update engine is composed of two different mechanisms

to enable schedule reconfiguration.

• Health report and failure notification: Each network de-

vice maintains statistics pertaining to connectivity be-

tween a node and its neighbors. It learns these statistics

through regular transmissions of data packets and peri-

odic neighbor-discovery packets. These statistics are then

reported to the network manager through upstream flows,

which provide routes from nodes to access points. When

a node identifies a failed link, it notifies the network

manager through the same upstream flow.

• Schedule dissemination: An Update Scheduler installed

on the network manager constructs packets. It schedules

updates based on flow priority. Therefore, more critical

flows receive updates and recover faster than less crit-

ical flows. Schedule-related information is propagated

through a broadcast graph to destinations. Nodes re-

ceiving update commands modify their TSCH schedules,

and send acknowledgement (ACK) back to the network

manager, using the upstream flows. The ACK allows the

network manager to handle packet losses and ensures all

affected nodes receive their new schedule.

V. RECONFIGURATION PLANNER

In this section, we present policies that are incorporated into

our reconfiguration planner to reduce schedule reconfiguration

cost. These policies include the gap-induced scheduling policy,

which the scheduler follows while creating or updating a

schedule, the partial reroute scheme for a route update, and

the rescheduling policy for a schedule update.

A. Gap-Induced Scheduling Policy

We propose a scheduling policy based on fixed priority

scheduling to support efficient transmission rescheduling in

response to link failure. Our policy is designed to (1) decrease

the likelihood that an update to the schedule of a higher

priority flow will impact the schedules of its lower priority

flows. (2) enable a flow’s schedule to be reused partially when

possible. Therefore, only limited portions of a schedule are

modified, which lowers the schedule dissemination overhead.

1) Key Ideas: With fixed priority scheduling, flows are

scheduled in descending order of priority. For each flow, (1)

transmissions are assigned to the earliest feasible slot in a

sequential order [31] or (2) a scheduler schedules transmis-

sions in reverse order by selecting the latest possible slot [11]

meeting the scheduling constraint. In contrast to these two

traditional approaches, our scheduling algorithm adopts the

following polices to reduce the rescheduling cost.

• It ensures that for each flow Fi, the same schedule is

repeated for every released packet 1, 2, ...T/Pi within

a superframe. With a regular scheduling pattern, the

network manager can disseminate less schedule-related

information to wireless devices. In practice, flow periods

ch/slot 1 2 3 4 5 6 7 8 9 10
0 a b b c c d a b b c c d
1 b f f g g h

ch/slot 1 2 3 4 5 6 7 8 9 10
0 a b b c c d a b b c c d
1 b f f g g h

ch/slot 1 2 3 4 5 6 7 8 9 10
0 a b b c c d a b b c c d
1 b f f g g h

Schedule 1: Earliest Possible 

Schedule 2: Introducing Gap

Schedule 3: Fewer Transmissions per Slot

Fig. 2: Examples of schedules constructed based on different

heuristics. Each schedule consists of two flows: flow 1 (P1 =
D1 = 5, φ1 = a→ b→ c→ d) is labeled in black, and flow

2 (P1 = D2 = 10, φ2 = b→ f → g → h) is labeled in red.

are usually harmonic, so this policy is then easy to satisfy

when we schedule or reschedule transmissions.

• It adds gaps between transmissions belonging to the same

flow. This policy provides two benefits: (1) it allows a

flow to be rescheduled partially when the route of a flow

does not entirely change, and (2) it reduces the chance of

lower priority flow schedules hindering the modification

of a higher priority flow’s schedule, so a change made to

higher priority flows has less chance of impacting lower

priority flows. For instance, in Figure 2, there are two

flows F1 and F2, which are scheduled based on earliest

possible slot (Schedule 1) and gap-induced (Schedule 2)

policies. Initially, a flow sends a packet through route

a → b → c → d. Suppose b → c fails and a new route

of F1 is a → b → f → c → d. With Schedule 1, in

order to schedule F1 to meet its deadline at slot 5, the

scheduler has to reschedule F2 as well, since b→ f and

f → g block time slots 3 and 4. Otherwise, these two

slots can be allocated to f → c of F1. On the other hand,

with Schedule 2, a scheduler can reschedule F1 without

affecting F2 by removing b → c, then adding b → f
and f → c to slots 3 and 4, respectively. Here, the slots

allocated to a→ b and c→ d also do not change.

• It reduces the number of concurrent transmissions in each

time slot, which spreads out transmissions belonging to

different flows. This heuristic also helps prevent lower

priority flow from blocking updates on higher priority

flow schedules. As shown in Figure 2, for Schedule 3,

the scheduler avoids scheduling multiple transmissions

in the same time slot. Again, supposing link b→ c fails,

then the scheduler needs only to modify the schedule of

F1 by adding b → f to slot 2, f → c to slot 3, and

moving c → d to slot 4, and does not need to update

F2’s schedule.

2) Gap-Induced Scheduling Algorithm: A detailed descrip-

tion of our gap-induced scheduling policy is presented in

Algorithm 1. Here, a time slot means a slot offset in the

superframe. With a superframe length of T , the slot offset
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is within the range [1, T ]. Both the periods and deadlines of

flows are measured in slots.

The input of the algorithm is a set of flows F and c
available channels, and the output is a global schedule S.

The algorithm schedules flows in descending order of flow

priority. Each flow Fi consists of a sequence of transmissions

Γi = {ti1, ti2, ..., tin}, and |Γi| is the size of Γi. During a

superframe, a flow generates T/Pi packets. Each packet q is

released at time riq and has a deadline diq . The first step

is to obtain a set of feasible slots χij for each transmission

tij (function ObtainFeasibleSlot()) starting from the last

transmission tin to the first transmission ti1. A time slot x
is added to χij if ∀q, a slot (q − 1) ∗ Pi + x satisfies the slot

constraint for tij and is within [riq, diq]. Because the scheduler

will assign only a slot in χij to each tij , it is guaranteed

that a flow can repeat the same schedule for every packet

released in the superframe. The scheduler also determines the

latest feasible slot λij ∈ χij for each transmission tij , where

λij < λij+1 for transmission 2 to n-1. Note that a function

S.assign() assigns a time slot xij and an unused channel

offset in xij to tij .

To spread out transmissions and introduce gaps between

transmissions of a flow, the algorithm schedules the first trans-

mission ti1 of flow Fi at the earliest possible slot xi1 ∈ χi1,

and assigns the latest feasible slot xin ∈ χin to the last

transmission tin. For each remaining transmission tij , from

j = 2 to n−1, the scheduler computes an ideal slot y (line 16).

Suppose xij−1 is a slot assigned to the previous transmission

tij−1, and |Γi| − j is the number of remaining unscheduled

transmissions. Here, if the scheduler divides slots in the range

[xij−1+1, xin−1] into |Γi|−j+1 equal segments, and assigns

a time slot at the end of segment 1 to segment |Γi|−j to each

remaining transmission, then tij and remaining transmissions

after tij can be spaced evenly between [xij−1 + 1, xin − 1].
Hence, in other words, y is the last slot in the first segment.

A function SelectSlot() determines the best slot for tij .

It computes the cost of choosing slot x ∈ χij (line 41),

considering the distance between x and y and the number

of transmissions already scheduled in x (#trans(x)). The

scheduler selects the lowest-cost slot xij for tij (i.e., the slot

closest to y and already allocated to the fewest transmissions),

where xij ∈ [xi,j−1+1, λij+1−1]. The algorithm enforces tij
to be scheduled after a slot xi,j−1 (to preserve the precedence

constraint) and before the latest feasible slot λij+1 of the next

transmission ti,j+1 (to ensure the flow’s schedulability). The

algorithm terminates when (1) transmissions of all flows are

scheduled within their deadline, or (2) a scheduler cannot

find a slot for tij , i.e., no slot in χij is within the range

(xi,j−1, λij+1).

B. Partial Reroute

Selecting a new route for a flow associated with link failure

influences the flow’s new schedule. To allow affected flows

to reuse parts of their old schedules, the routing algorithm

should choose a new route that includes links in the old route.

A network topology is represented as a graph G(V,E), where

ALGORITHM 1: Gap-Induced Scheduling

Input : A flow set F ordered by priority, c = the

number of available channels

Output: A global schedule S
1 foreach flow Fi, where i=1 to k do
2 foreach transmission tij , where j = n to 1 do
3 χij = ObtainFeasibleSlots(tij);
4 if j==1 then
5 xi1 = earliest slot in χij ;

6 S.assign(ti1, xi1, unusedChannel(xi1));
7 else if j==n then
8 xin = latest slot in χij ;

9 λin = xin;

10 S.assign(tin, xin, unusedChannel(xin));
11 else
12 λij = latest slot in χij , where λij < λij+1;

13 end
14 end
15 foreach transmission tij , where j = 2 to n−1 do
16 y = xij−1 + (xin − xij−1+1)/(|Γi| − j + 1);
17 xij = SelectSlot(tij , χij , xij−1, λij+1, y);
18 if xij==-1 then
19 return ∅;
20 end
21 S.assign(tij , xij , unusedChannel(xij));
22 end
23 end
24 return S;

25 Function ObtainFeasibleSlots(tij):
26 for q = 1 to T/Pi do
27 Find Xq = set of slots in [riq, diq] that meets

the slot constraint

28 foreach slot x in Xq do
29 x = (x− 1) mod Pi + 1;

30 end
31 χij =

⋂T/Pi

q=1 Xq;

32 end
33 return χij ;

34 Function SelectSlot(tij , χij , xij−1, λij+1, y):
35 if ∀x ∈ χij , x /∈ (xij−1, λij+1) then
36 return -1;

37 end
38 foreach slot x ∈ χij and x ∈ (xij−1, λij+1) do
39 dist(x, y) = |x− y|+ 1;

40 w(x) = (#trans(x) + 1)/c;
41 cost(x) = dist(x, y) ∗ w(x);
42 end
43 return argminx cost(x);
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V is a set of network devices and E is a set of links. A

link is added between nodes u and v if u and v can reliably

communicate with each other, i.e., the packet reception ratios

(PRR), the number of packets successfully received over the

total number of packets sent, of both links u→ v and v → u
must be higher than the reliability requirement in all c channels

used. Due to channel hopping, nodes must be able to reliably

communicate in all channels used.

After the network manager detects a failed link, it updates

a graph by removing an edge corresponding to the failed link

from G(V,E). It then calculates a new route for each affected

flow in decreasing order of flow priority. Let φi be an old route

of a flow i. For each affected flow, we update a weight of each

link in G(V,E). If a link is not included in the old route φi,

the weight of the link is set to w. Otherwise, the weight of the

link is assigned to w/2. Then, the algorithm uses the Dijkstra’s

algorithm to calculate a new route. By doing so, the algorithm

will output the least-cost route, i.e., a shorter route containing

links used in φi.

Due to the centralized control architecture, a packet needs to

be propagated upstream from a source to an access point and a

gateway, and downstream from a gateway and an access point

to a destination. If the network contains more than one access

points, there can be multiple combinations of an upstream and

a downstream route for a new route φ′i. Hence, the routing

algorithm must select the combination with the lowest cost.

Here, the cost is computed based on the number of operations

required to update a route from φi to φ′i, which reflects the

minimum cost of modifying a flow schedule. The cost is

defined as (nDEL ∗ a) + (nADD ∗ b), where nDEL and

nADD are the numbers of deleting and adding operations

for a flow’s schedule, respectively. Here, a and b are the

numbers of bytes required to DELETE or ADD a schedule

of a transmission (See Section VI.B).

C. Schedule Reconfiguration Policy

Based on fixed priority scheduling, if a schedule of a higher

priority flow is updated due to a failed link, all of its lower

priority flows must be rescheduled as well, although these

lower priority flows are not pertinent to the failed link. Such an

approach introduces more modification to a global schedule,

which implies a corresponding higher schedule dissemination

cost. The goal of this policy is to reduce the schedule update

cost by (1) rescheduling only flows affected by the failed

link and (2) reusing a flow’s schedule as much as possible.

Consequently, fewer packets are required to update a global

schedule. A schedule constructed based on the gap-induced

scheduling policy has a higher chance of being successfully

reconfigured to meet these two goals. For the same reason,

the reconfiguration policy also adopts gap-induced scheduling

scheme when rescheduling transmissions.

The input of the algorithm is a set of affected flows F ′,
ordered from highest to lowest priority, and a current global

schedule S. The output is a new global schedule S′. Let Γi be

the old set of transmissions, and let Γ′i = {ti1, ti2, ..., tim} be

the new set of transmissions of flow Fi. The algorithm aims

to assign new time slots and channel offsets to transmissions

in Γ′i − Γi without modifying the schedules of the remaining

transmissions in Γ′i. For each affected flow Fi, the algorithm

reschedule flow transmissions as follow:

Step 1: Let Γs ⊂ Γ′i be a set of sequential transmissions

{tip, tip+1, ..., tiq}, where every transmission in Γs is not a

member of Γi. If Γs contains only one transmission, then p =
q. For instance, suppose Γi is {a → b, b → c, c → d, d → e}
and Γ′i comprises {a → b, b → c, c → g, g → e}. Here,

Γs = {c → g, g → e} is the only set of transmissions to

be rescheduled. Transmissions a → b and b → c should be

allocated to the same slots and channel offsets as in schedule

S.

Step 2: The algorithm reschedules transmissions in Γs fol-

lowing the gap-induced scheduling policy, and time slots

allocated for these transmissions must be within the range

[upper bound, lower bound] to avoid modifying the sched-

ule of those transmissions that are not in Γs.

• If tip is the first transmission of Fi, then the lower bound
is the first slot of the superframe.

• If tiq is the last transmission of Fi, the upper bound is

the flow deadline Di.

• Otherwise, the upper bound and lower bound slots are

xip−1+1 and xiq+1−1, respectively, and xip−1 and xiq+1

are time slots already assigned to the transmissions tip−1

and tiq+1 (in the old schedule S).

Step 3: If the scheduler fails to schedule transmissions in Γs,

it will obtain Γ′s by performing one of the followings:

• If tiq is already the last transmission of Fi, the scheduler

will add one or more transmissions prior to tip to Γs and

adjust a lower bound.

• If tip is the first transmission of Fi, the scheduler will

include at least one transmission after tiq to Γs and

computes a new upper bound.

• Otherwise, the algorithm will compute which of the

two options is better. The better option is the one

providing the higher ratio of the number of slots in

[lower bound, upper bound] of Γ′s to the number of

transmissions in Γ′s.

In both cases, the algorithm keeps adding transmissions to

Γs until it reaches the next transmission that is already

assigned a time slot, which sets a new upper bound or a new

lower bound. The scheduler determines the upper bound
and lower bound and reschedules Γ′s as in Step 2. By doing

so, the algorithm gradually updates the schedule of those

transmissions existing in the old route only when necessary,

which enables a flow to preserve its old schedule as much as

possible.

Step 3 is repeated until (1) Γ′s can be rescheduled suc-

cessfully, or (2) Γ′s = Γ′i and the upper bound and

lower bound reach their limits (i.e., upper bound = Di

and lower bound = 1). For case (2), the algorithm will

terminate since it cannot modify a schedule of Fi without

rescheduling other flows. Otherwise, the algorithm ends when

all the affected flows are scheduled to meet their deadlines.
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VI. UPDATE ENGINE

In this section, we present the designs of our update engine

to handle network adaptation. We first discuss health reporting

and failure notification mechanisms, and then a schedule

dissemination mechanism.

A. Health Report and Failure Notification Mechanisms

Before a WSAN network is made operational, to determine

a reliable set of links and channels for calculating routes

and schedules, the network manager must collect complete

topology information from every node and on all 16 channels.

Because environmental conditions in a plant change over time,

the manager must update the network topology throughout the

network’s lifetime, and must ensure the current flow routes and

schedule stay valid. Therefore, while the network is operating,

nodes must have the capability to report link condition to the

network manager.

To maintain neighbor statistics, each node deploys a neigh-

bor table of link statistics for each of its neighbors, e.g.,

PRR. A node obtains the PRR from periodic data packets

and neighbor-discovery packets. Each node is required to

broadcast a neighbor discovery packet periodically on all

channels used, so other nodes hearing the packet can maintain

their connectivity with the sender node. In particular, for each

link, a node records if a packet is successfully received, and

uses a sliding window to compute the current PRR.

Instead of periodically reporting to the network manager

the link statistics of every neighbor, our system reduces the

amount of data uploading to the network manager by letting

nodes send a health report only when they discover new

neighbors or when the link quality between a node and any

of its neighbor falls below the reliability requirement, thereby

saving the network resources. A node activates a link failure

notification whenever an active link, i.e., a link used by any

data flow, fails to meet the reliability requirement. To ensure

that a notification will eventually arrive at the gateway, both

the sender and receiver associated with the failed link will

repeatedly send out notifications until they receive a new

schedule. Moreover, to conserve network resources, these

control information can be piggybacked onto periodic data

packets. We allocate a separate upstream control flow for a

node only when it has no upstream data flow passing through.

B. Schedule Dissemination Mechanism

Our schedule dissemination mechanism supports reliable

and efficient schedule updates using the following features:

1) Update Scheduler: It is important that critical flows

(flows with higher priority) promptly recover from link failure.

Therefore, we design our system to ensure that schedules of

more critical flows are updated first. To facilitate such a design,

the update scheduler disseminates packets containing sched-

ules of higher priority flows before packets with lower priority

flow schedules. The update scheduler must first form packets

containing schedule update commands and then determine the

sequence in which these packets will be disseminated.

To reduce schedule dissemination overhead, the network

manager identifies the differences between the old and the

newly computed schedules, and distributes only the modified

portions of the global schedule to the affected network devices.

Our system supports two schedule modification commands

ADD and DELETE. A DELETE command removes the

transmission of a flow from a time slot, while an ADD

command schedules a new transmission in a time slot. An

ADD command contains a schedule entry associated with

a new transmission. A schedule entry is represented by the

following attributes: slot offset (2 bytes), channel offset (4 bits

for the maximum of 16 channels), sender (1 byte), receiver

(1 byte), and flow ID (1 byte). The flow ID indicates which

flow a transmission belongs to. For a DELETE command, it

is sufficient to specify only the sender (1 byte), the receiver

(1 byte), and the time slot (2 bytes) of the transmission to

be removed. The WirelessHART standard suggests that the

number of nodes in a network should not exceed 80, therefore,

1 byte is enough to address all nodes in the network. Hence, it

requires 6 bytes to ADD a new schedule, and 4 bytes to remove

a schedule entry. Note that the maximum MAC payload is 98

bytes [3].

To constructs packets, the update scheduler first sorts the

schedule update commands in decreasing order of flow prior-

ity, so that higher priority flow schedules are included in earlier

packets. For each flow, DELETE commands precede ADD

commands, since a schedule entry needs to be removed before

a new entry is added. It adds schedule update commands into

a packet until the packet is full, then creates a new packet and

assigns each packet a sequence number.

The update scheduler distributes packets containing up-

date commands of higher priority flows first, and ensures

that all intended recipients have received the packets before

disseminating the packets for lower priority flows. Once a

node receives each packet, it immediately updates its TSCH

schedule, and executes a new schedule in the next superframe.

Therefore, higher priority flows can recuperate and use a new

schedule, while the update scheduler is still disseminating and

updating schedules of the lower priority flows.

2) Broadcast Graph: We use a broadcast graph to dis-

seminate update commands. Compared to installing multiple

downstream control flows from access points to every network

device, a broadcast graph requires fewer time slots allocated

for delivering a packet to every network device. In addition,

with fewer allocated time slots, nodes can save the energy

cost when no packet is being distributed, because every node

scheduled to receive in a time slot must always listen on a

channel for at least 2.2 ms [1] to detect if there is an incoming

packet or not. If there is not, the node will turn off its radio.

Otherwise, it continues to receive the packet.

A broadcast graph consists of two root nodes (access

points), multiple intermediate nodes that receive and forward

packets, and multiple leaf nodes, which only receive packets.

To provide route diversity and ensure reliable dissemination

of packets containing update commands, we require that an
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intermediate or a leaf node must have two parents, and an

intermediate node must receive a packet from both parents

before broadcasting a packet to its children.
Since each packet contains schedules intended for different

sets of nodes, it is not efficient to disseminate every packet

to every node. Therefore, intermediate nodes in a broadcast

graph will forward a packet only when they are on a path to

packet’s destinations. To realize such a forwarding mechanism,

we install on intermediate nodes information about each node’s

children and its descendants in a broadcast graph. Hence,

when a node checks the destinations of a packet, it can decide

whether to forward a packet.
When a broadcast graph is also affected by link failure,

its schedule will be updated as well. A broadcast graph’s

new schedule will be disseminated after the schedules of all

affected data flows have been updated. To ensure that all nodes

use the same broadcast graph during the current round of

schedule update, a new broadcast graph schedule is executed

at a later time, when the network again requires schedule

reconfiguration.

3) Handling Packet Losses: We use an acknowledgement

scheme to confirm that nodes have received all their schedule

update packets. For every new packet a node receives, the node

sends an ACK back to the network manager through an up-

stream flow. Similar to health reports and failure notifications,

we allow an ACK to be piggybacked onto a data packet. Since

there can be more than one packet intended for a node, an ACK

must contain a packet number identifying the specific packet

a node received. The update scheduler ensures that it receives

ACKs from all recipients of the packet. Otherwise, it needs to

resend that packet until the packet reaches all destinations.

4) Handling multiple link failures: REACT can handle

multiple incoming link failure notifications. If a new failure

notification arrives, while the network manager is computing

a new schedule or when a new schedule has not been dissemi-

nated yet, then the network manager can halt those operations

and recalculate a new schedule. Contrarily, if the dissemination

process is on going as a new notification arrives, the manager

will have to stop disseminating packets and start recomputing

a new schedule again. In the meantime, nodes that already

have received a schedule update will execute those partial

new schedules. Since REACT updates schedules based on flow

priority, flows that already received an update will run a new

schedule, while the other flows execute on the old schedule,

as they wait for the manager to compute and distribute the

most recent schedule.

VII. EVALUATION

To evaluate the performance of REACT, we develop the

reconfiguration planner and the update engine to support

schedule reconfiguration. We implement network manager

software running on our server, and a protocol stack running

on TinyOS 2.1.2 [32] and TelosB motes. The network manager

can update the network topology, generate and update sched-

ules and routes, and schedule update commands. In addition,

we incorporate features necessary for schedule reconfiguration

including health reporting, failure notification, and TSCH

schedule updating into the network protocol stack, which

supports TSCH MAC and source routing. We designate two

nearby nodes in our testbed as access points. The server

communicates with the access points through serial interfaces.

Following common practices for process monitoring and

control applications, flows release packets periodically, and

the periods of flows are harmonic. The periods are uniformly

selected from the range P = {2x, 2x+1, ..., 2y}. The manager

constructs a collision-free TSCH schedule using fixed-priority

scheduling, where only one transmission is allowed per chan-

nel in a time slot. We consider two fixed-priority scheduling

policies commonly adopted for real-time systems: deadline

monotonic and rate monotonic policies. Following a deadline

monotonic policy, flows with shorter deadlines have higher

priority, while a rate monotonic policy assigns flows with

higher rates with higher priority. With the deadline monotonic

policy, if a flow Fi has a period Pi = 2x, then its deadline

Di is randomly selected from the range {2x−1+ |Γi| ∗ 2, 2x},
where |Γi| is the number of transmissions of Fi. For the rate

monotonic policy, Di is configured to be equal to Pi. We

adopt WirelessHART source routing, which provides a single

route from a source to a destination. For each transmission

belonging to a data flow, the manager reserves an additional

time slot for a sender to retransmit a packet if the sender does

not receive an ACK from the receiver.

We quantify the performance of the reconfiguration planner

based on two metrics: (1) the success rate in rescheduling a

flow without modifying schedules of other flows, and (2) the

number of packets required to update flow schedules. For the

update engine, we run experiments on the local testbed, present

the resulting schedule reconfiguration timelines, and measure

the schedule dissemination latency and the energy cost. Table I

summarizes different scheduling, route update, and schedule

update policies that we compare against our work. By choosing

combinations of the three policy types, we construct different

approaches, each of the form scheduling policy/route update
policy + schedule update policy.

A. Reconfiguration Planner Evaluation

To evaluate the reconfiguration planner, we conduct simu-

lation studies based on our local testbed topology containing

60 nodes spanning across three floors of the Jolley Hall at

Washington University, and the Indriya testbed [33] topology

consisting of 80 nodes. The topology information includes the

PRRs of all links in the network in all 16 channels. We use

the topology to construct a communication graph in which

links added to the graph have PRRs of no less than 90% in

all channels used and in both directions. Here, we use four

channels. We randomly generate 50 flow sets under different

traffic loads (i.e., when the numbers of flows are 24, 28, and

32) by varying the locations of sources and destinations of

flows and access points. For each flow set, we obtain a set of

links, where each link in the set is randomly picked. In each

experiment, one link in this set is selected as a failed link.
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TABLE I: SCHEDULING, ROUTE, AND SCHEDULE UPDATE POLICIES

Fixed-Priority Scheduling Policy
GAP: schedule transmissions based on a gap-induced scheduling policy

EARLY: schedule transmissions of a flow in sequential order and select the earliest feasible slot for a transmission

LATE: schedule transmissions of a flow in a reverse order and select the latest feasible slot for a transmission

Route Update Policy
PR: apply a partial reroute policy, and compute a new route using Dijkstra’s shortest path algorithm

RR: reroute using Dijkstra's shortest path algorithm

Schedule Update Policy
AFO: reschedule affected flows only

ALL: reschedule affected flows and all of their lower priority flows
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Fig. 3: Box plots of schedule reconfiguration success rates of

AFO under the rate monotonic policy.

We set P = {2−1, 20, 21}. Periods are uniformly assigned to

flows in a flow set.

1) Schedule Reconfiguration Success Rate: To evaluate the

effectiveness of our gap-induced scheduling policy in enabling

the AFO reconfiguration policy to update only the schedules of

those flows affected by link failure, we quantify the schedule

reconfiguration success rate of AFO. The success rate is

defined as the fraction of cases of a flow set in which AFO suc-

cessfully reschedules only flows using the failed link. We com-

pare our two approaches GAP/RR+AFO and GAP/PR+AFO,

against EARLY/RR+AFO and LATE/RR+AFO.

Figure 3 shows box plots of the reconfiguration success

rates of AFO under the rate monotonic policy. GAP/PR+AFO

demonstrates better improvement as the traffic load increases

(Figures 3a, 3b, and 3c). This is because it is more difficult for

AFO to avoid rescheduling flows unaffected by link failure as
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Fig. 4: CDFs of the total number of packets to be disseminated

when the network has 32 flows, and under the rate monotonic

policy.

more flows occupy the schedule, especially under the EARLY

and LATE scheduling policies. In Figure 3c, GAP/PR+AFO

increases the median success rate by 87.9% and 65%, com-

pared to EARLY/RR+AFO and LATE/RR+AFO, respectively.

Similar result can be observed under the Indriya testbed

topology (Figure 3d).

The results manifest the benefit of GAP in improving the

reconfiguration success rate of AFO and in preventing the

modification of higher priority flow schedules from impacting

those of lower priority flows. In addition, it also shows that PR

policy can further enhance the reconfiguration success rate of

AFO by at most 12.5% (Figure 3c) because PR allows flows’

schedules to be partially reused.

2) Number of Packets to Disseminate: We examine the

ability of GAP/PR+AFO to reduce the cost of adapting to

a failed link by computing the number of packets required to

update the global schedule, which is a direct quantification

of the schedule reconfiguration overhead. We compare our

approach with two additional baselines, EARLY/RR+ALL

and LATE/RR+ALL. Moreover, if AFO cannot successfully

reconfigure a flow’s schedule, the manager will reschedule the

flow, along with all of its lower priority flows, starting from

the highest priority flow that AFO fails to reconfigure.

Figures 4 presents the Cumulative Distribution Function

(CDF) of the total number of packet to be disseminated

under our local testbed and the Indriya testbed. GAP/PR+AFO

proves to be most effective in reducing the total number of
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Fig. 5: Box plots of the number of packets required to update

a schedule as the number of flows associated with a failed link

increases, and under the rate monotonic policy.

packets required to update a schedule than other approaches.

Furthermore, we investigate how the number of flows associ-

ated with link failure impacts the number of packets needed

to update a schedule (Figure 5). We show only the results of

LATE/RR+AFO and LATE/RR+ALL, since the LATE policy

can perform better than or similar to the EARLY scheme.

GAP/PR+AFO significantly outperforms the baselines when

there are more flows associated with link failure. For instance,

GAP/PR+AFO reduces the median number of packets by

60% and 55% compared to LATE/RR+AFO under the local

and the Indriya testbed, respectively, when the number of

affected flows is more than 10. GAP/PR+AFO offers a notable

reduction over the baselines in the number of packets required

to reconfigure a schedule, which translates into shorter recon-

figuration latency and lower energy consumption.

We repeat the evaluation with the deadline monotonic

scheduling policy, and observe similar results for both recon-

figuration success rate and number of packet to disseminate.

For brevity, we only show the results when the network

contains 32 flows as presented in Figure 6.

B. Update Engine Evaluation

We assess if REACT helps reduce schedule reconfiguration

latency and energy cost by conducting experiments on the local

testbed consisting of 50 TelosB motes. Figure 7 shows the lo-

cal testbed topology where two nodes are designated as access

points. We explore three different configurations, i.e., when

the network has 16, 24, and 32 flows. Transmission schedules

are generated based on the deadline monotonic policy. We

opt to compare our GAP/PR+AFO approach against only

LATE/RR+ALL and LATE/RR+AFO, since they outperform
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Fig. 6: Schedule reconfiguration with 32 flows, and under the

deadline monotonic policy (local).
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the baselines employing the EARLY policy under the deadline

monotonic policy. We schedule a broadcast graph every 1

second. All flows generate packets with similar periods of 1

second. The deadline of each flow is chosen randomly from

the range [|Γ|∗2, 20], where |Γ| is the number of transmissions

of a flow. We allow control data (e.g., failure notification and

ACK) to be piggybacked onto data packets, so no additional

control flow is installed. All configurations follow the same

settings, except where stated otherwise.

To demonstrate the benefit of REACT in reducing

rescheduling overhead, we pick one critical link used by 85%-

90% of flows as a failed link. To simulate network dynamics,

WiFi interference is introduced close to the selected link.

We use two Raspberry PIs to generate 5MB traffic on WiFi

channel 1 overlapping with IEEE 802.15.4 channels 11 to 14

while the nodes communicate on channels 13 to 15. A node

reports a link failure to the network manager once a link's PRR

falls below 90%, and employs a sliding window of size 100

to calculate the link's PRR. To obtain average measurements,

we repeat the experiment five times for each configuration.

Note that with centralized scheduling, schedule reconfig-

uration process involves failure detection, schedule recom-

putation, and schedule dissemination. Failure detection time

depends on several factors (e.g., how often a node communi-

cate with its neighbor and the manager, the size of the sliding

window for calculating PRR, the reliability requirement, etc.),

which introduce different tradeoffs. For instance, scheduling

upstream flows to the manager less frequently preserves net-

work resources, but incurs more reconfiguration latency. Se-

lecting the optimized values for these parameters is not within

the scope of this work. Schedule recomputation time depends

on the complexity of schedule reconfiguration algorithm, the

size of the network, and the number of flows associated with

link failure, while schedule dissemination latency is mainly

subject to the amount of information to be distributed and the

period of a broadcast graph. Our work focuses on lowering

the schedule dissemination latency by reducing the change

to the route and schedule so fewer packets are required for

the schedule update, and on offering an efficient and reliable

mechanisms to update the schedule. In addition, our sched-

ule recomputation algorithm incurs relatively low overhead

compared to the failure detection and schedule dissemination

processes. For example, based on our simulation studies, with

32 flows, we observe a maximum execution time of 13.5 ms

for PR+AFO. The execution time is measured on a Macbook

Pro laptop with a 2.7 GHz Intel Core i7.

1) Schedule Reconfiguration Timeline: Figure 8 presents

the schedule reconfiguration timeline to validate the correct-

ness of our implementation. We quantify two metrics: (1) the

radio duty cycle, the fraction of time a node has its radio

on, and (2) the percentage of packets successfully received at

their destinations. The network consists of 16 flows. When the

network is stable, all approaches achieve a high percentage

of packets received and incur low duty cycles. At time=20,

interference is injected to degrade the link quality, and the

percentage of packets received starts to decrease. Because the
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Fig. 9: Flow schedule update latency under different traffic

loads.
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Fig. 10: Latency in which each affected node has received a

completed schedule.

failed link is used by multiple flows, nodes can detect link

quality degradation and notify the network manager quickly.

In this setting, the network manager takes less than 10 ms to

recompute a new schedule. So after receiving the notification

at time=24, the manager can promptly begin disseminating a

new schedule at time=25.

During the schedule reconfiguration phase, we notice

the percentage of packets received drops, and the ra-

dio duty cycle increases because nodes need to retrans-

mit a packet more often and they also participate in

schedule distribution. Schedule reconfiguration finishes at

times 30, 33, and 37 for GAP/PR+AFO, LATE/RR+AFO,

and LATE/RR+ALL, respectively. GAP/PR+AFO provides

25% and 43.8% improvements in schedule reconfiguration

latency over LATE/RR+AFO and LATE/RR+ALL, since

GAP/PR+AFO requires fewer packets to update the sched-

ule. After schedule reconfiguration, the network performance

returns to normal, and the slightly higher radio duty cycle is
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Fig. 11: CDFs of node’s energy consumption in mJ.

due to longer flow routes, which requires more transmissions.

Note that process monitoring applications may be able to

tolerate some packet losses during the reconfiguration process.

However, for more time-sensitive control applications, it is

crucial to ensure that flows can still operate to meet the

real-time requirement when the network suffers from link

failure. Therefore, graph routing (a multi-path routing strategy

supported by the WirelessHART protocol) should be adopted

for this class of application to ensure reliable communication.

2) Schedule Dissemination Latency: We first validate that

our policies indeed meet their goal of reducing schedule

dissemination time. Latency is measured from when the first

packet is disseminated until the schedules of all impacted flows

are modified. Figure 9 presents the latency (in seconds) when

a schedule of each flow is updated under different workloads,

and Figure 10 plots the time required for each related node to

receive a complete schedule.

We first consider the case where AFO successfully resched-

ules only flows affected by the failed link for LATE/RR+AFO.

In Figures 9a, 9b, and 9c, GAP/PR+AFO reduces the sched-

ule dissemination latency by approximately 45.1%-55% and

31.7%-34.5% over LATE/RR+ALL and LATE/RR+AFO, re-

spectively. This is because GAP and PR enable AFO to reuse

more of flows’ old schedules. In addition, Figure 9d presents

the result with 24 flows when AFO fails to update only flows

associated with the failed link for LATE/RR+AFO. Here, the

manager reschedules the remaining flows that could not be

reconfigured by AFO, and also reschedules all of their lower

priority flows. Compared to LATE/RR+AFO, GAP/PR+AFO

further lowers the schedule update latency by 60%.

These results indicate the schedule dissemination latency

achieved with GAP/PR+AFO is considerably lower than that

of other approaches. This reduction shows the complemen-

tary benefit of our scheduling and reconfiguration policies

in reducing the amount of schedule-related information to

be broadcast once link failure is detected. Furthermore, the

results in Figure 9 also verify that our update scheduler indeed

modifies schedules of higher priority flows (i.e., flows with

smaller ID) first. Therefore, these more critical flows suffer

less from packet losses.

3) Energy Consumption: We next examine the performance

of REACT in terms of energy efficiency. We measure the radio

on time on each node and compute the energy consumption

in mJ. According to the CC2420 radio specification [34], the

power requirements for a transmission and a reception are

52.2 mW and 59.2 mW, respectively. The results presented in

this section are obtained from the experiments in the previous

section.

Figure 11 shows the CDFs of a node’s average energy

consumption. GAP/PR+AFO significantly improves the energy

cost over the two baselines, especially the case when AFO fails

to reschedule only the affected flows (Figure 11d). For exam-

ple, with 32 flows (Figure 11b), under GAP/PR+AFO, 42% of

the nodes consume less than 6 mJ, while for LATE/RR+AFO,

only 8% of the nodes have energy costs lower than 6 mJ. In

contrast, with LATE/RR+ALL, all nodes require more than 6

mJ. This is due to the fact that REACT disseminates fewer

packets, and it reduces the number of nodes affected by the

schedule update. As shown in Figure 10, many fewer nodes

are affected by the schedule modification under GAP/PR+AFO

than under either baselines. Reducing the number of nodes

impacted by the schedule update results in fewer nodes par-

ticipating in schedule dissemination, since we allow nodes in

the broadcast graph to forward a packet only when they are

on a path to the packet’s destinations, thereby improving the

node’s energy efficiency.

VIII. CONCLUSION

To meet the stringent demands of industrial applications

for real-time and reliable performance, industrial WSAN

standards adopt centralized management to provide determin-

istic communication. The centralized management demands

a highly efficient control plane to reconfigure the network

in response to link failures. In this work, we design and

implement REACT, a novel control plane to handle network

adaptation. REACT includes a reconfiguration planner and

an update engine to support efficient and reliable schedule

reconfiguration. We implement and evaluate REACT with a

WirelessHART protocol stack on a WSAN testbed. The results

show that our system reduces the schedule dissemination

latency by over 60%, and improves the node energy efficiency.
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