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Industrial automation is embracing wireless sensor-actuator networks (WSANs). Despite the success of

WSANs for monitoring applications, feedback control poses significant challenges due to data loss and strin-

gent energy constraints in WSANs. Holistic control adopts a cyber-physical system approach to overcome

the challenges by orchestrating network reconfiguration and process control at run time. Fundamentally, it

leverages self-awareness across control and wireless boundaries to enhance the resiliency of wireless control

systems. In this article, we explore efficient holistic control designs to maintain control performance while

reducing the communication cost. The contributions of this work are five-fold: (1) We introduce a holistic

control architecture that integrates Low-power Wireless Bus (LWB) and two control strategies, rate adap-

tation and self-triggered control; (2) We present heuristics-based and optimal rate selection algorithms for

rate adaptation; (3) We design novel network adaptation mechanisms to support rate adaptation and self-

triggered control in a multi-hop WSAN; (4) We build WCPS-RT, a real-time network-in-the-loop simulator

that integrates MATLAB/Simulink and a physical WSAN testbed to evaluate wireless control systems; (5) We

empirically explore the tradeoff between communication cost and control performance in holistic control

approaches. Our studies show that rate adaptation and self-triggered control offer advantages in control

performance and energy efficiency, respectively, in normal operating conditions. The advantage in energy

efficiency of self-triggered control, however, may diminish under harsh physical and wireless conditions due

to the cost of recovering from data loss and physical disturbances.
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1 INTRODUCTION

Wireless sensor-actuator networks (WSAN) are being adopted in industrial process automation
for their advantages in reducing deployment and maintenance cost. While existing WSANs are
usually used for monitoring, it remains challenging to support feedback control loops over WSANs,
which is referred to as wireless networked control systems (WNCS) [1]. First, compared with tradi-
tional networked control systems (NCS) with wired networks, the control performance of WNCS
can be compromised by data losses due to dynamic channel conditions in WSANs. This is unde-
sirable, because control performance is closely related not only to the factory’s profits, but also
machine operator’s safety and the environment. Second, a wireless device that requires a power
cord is often impractical in industry settings [2, 3]. In practice, an independent and reliable power
supply (e.g., battery) is often mandatory. Given the difficulty to replace batteries in harsh indus-
trial environments, to ensure a reliable connection between the controllers and the sensors and
actuators despite the long distance, the key to the design of field devices and wireless standards
(e.g., WirelessHART) is to maximize the battery life of the devices such that they could be battery
powered for 4 to 10 years. Therefore, it is crucial to improve the energy efficiency of WSANs while
maintaining control performance in a WNCS. Finally, WNCS must be resilient to both disturbance
to the physical plant and interference to the wireless networks. Therefore, a practical and depend-
able industrial WNCS must meet the following requirements: (1) control performance, which brings
economic benefits; (2) energy efficiency, which reduces maintenance cost; and (3) resiliency, which
prevents accidents.

Traditionally, the wireless network and the physical process are managed separately in a WNCS
at run time. The lack of coordination between network and plant management forces conservative
designs that trade energy for control performance. For example, a WNCS may rely on high sam-
pling rates to guarantee control performance under worst-case conditions, even though the same
sampling rates may result in excessive communication cost under normal conditions. Conversely,
a less conservative design may result in a fragile system vulnerable to physical disturbance and/or
wireless interference. In contrast to the traditional approach, the holistic control approach aims to
enhance the resiliency and efficiency of WNCS by cojoining network reconfiguration and process
control [4].

In this work, we explore efficient holistic control designs to maintain control performance at
low energy cost. We develop holistic control approaches that incorporate two alternative strate-
gies, rate adaptation (RA) and self-triggered control (ST). We note that RA introduces adaptation
in a traditional time-driven control framework, while ST is a representative event-driven control
approach. Exploring both strategies in holistic control allow us to investigate the design tradeoff
involved in holistic control design. Specifically, the contributions of this work are five-fold:

• We introduce a new holistic control architecture that integrates multi-hop wireless networks
running the Low-power Wireless Bus (LWB) protocol [5] and two alternative control strate-
gies, RA and ST;

• We present two online RA approaches based on heuristics and optimal rate selections, re-
spectively, and establish stability of the resultant closed-loop control system;

• We design robust network adaptation mechanisms to support RA and ST, respectively, in
multi-hop LWB networks;

• We build WCPS-RT, a real-time network-in-the-loop simulator that integrates MAT-
LAB/Simulink and a physical WSAN testbed to evaluate wireless control systems;

• We empirically explore the tradeoff between communication cost and control performance
under alternative holistic control approaches.
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Our case studies show that RA and ST offer advantages in control performance and energy
efficiency, respectively, under normal operating conditions. The advantage in energy efficiency
of ST, however, may diminish under harsh physical and wireless conditions due to the cost of
recovering from data loss and physical disturbance.

The rest of the article is organized as follows: Section 2 reviews related works on WNCS designs.
Section 3 introduces the system architecture of holistic control systems. Sections 4 and 5 detail the
control and network designs of RA and ST. Section 6 presents the real-time wireless cyber-physical
simulator (WCPS-RT), and Section 7 analyzes the experimental results.

2 RELATED WORK

WNCS are composed of distributed sensors, actuators, and controllers communicating through
wireless networks. Due to the benefits of flexibility and low deployment and maintenance cost,
WNCS are expanding their applications over industry processes, autonomous warehouses, and
smart factories [6]. However, WNCS face serious challenges due to the inherent dynamics in wire-
less conditions and limited energy resources in wireless networks [7]. The problem of resilient and
efficient wireless control has been investigated in the fields of control theory, wireless networks,
and more recently network-control co-designs [1].

In control theory, state observers [8] (e.g., extended Kalman filter) have been introduced to han-
dle packet loss and communication latency in WNCS. To reduce communication cost, aperiodic
control has been proposed as an alternative to periodic control. Examples include event-triggered
control [9, 10] and self-triggered control [11]. However, existing implementation of aperiodic con-
trol was based on a single-hop wireless network [12] instead of the multi-hop WSANs that are
widely adopted in process industries due to their flexibility and scalability in industrial envi-
ronments. Supporting aperiodic control on a multi-hop WSAN is challenging, because industrial
WSAN standards usually employ TDMA protocols for predictable communication. The aperiodic
communication triggered by aperiodic control is incompatible with the periodic, time-driven na-
ture of communication in industrial multi-hop WSANs.

In wireless networks, given the latency, packet delivery, and energy consumption bounds by
control designers, network designs can achieve optimized energy-efficiency [13], reliability [14],
load balancing [15], and real-time performance [16] under various wireless channel conditions
and network topologies. Breath [13] is proposed to minimize the energy cost while ensuring a
desired packet delivery rate and delay of the WSAN by adjusting routing, MAC, radio power,
and sleeping discipline. SchedEX [14] is proposed to minimize delay while providing reliability
guarantees by producing the TDMA schedule. QU-RPL [15] achieves load balancing and improves
end-to-end reliability based on queue utilization. Blink [16] supports hard real-time communica-
tion in multi-hop WSAN at low energy cost. However, few of those protocols are cognizant of
control performance directly. Better network performance does not always imply good control
performance of the physical plant. Indeed, the internal properties of the physical plant, such as its
stability, inherently influence the impact of improvements in network communication on control
performance.

Recent effort on network-control co-design aims to jointly optimize the network and control at
design time. Previous works on sampling rate optimization [17–21] exploit the freedom of sam-
pling rates to optimize control performance under various network protocols and system settings.
For wired control, Li et al. [17] minimize useful information loss under network bandwidth con-
straints. Our project differs from this work in the objective of optimizing control performance
while lowering energy cost of WSAN. Goswami et al. [18] handle both real-time and control per-
formance constraints by modeling ECUs over a FlexRay bus. While the work is based on a wired
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network, FlexRay shares similarities to LWB used in our system in their TDMA-based scheduling
approach. Our project differs from the work in our focus on online rate adaptation, while Goswami
et al. tackled the optimization problem of offline optimization. Furthermore, we also address self-
triggered control approaches and network adaptation protocols.

For wireless control, Demirel et al. [19] design packet-forwarding policies over an unreliable
and energy-constrained WSAN; Saifullah et al. [20] optimize sampling rates under the end-to-end
deadline constraints of data flows in a WirelessHART mesh network; Kim et al. [21] focus on
control over IEEE 802.11 networks. Asymmetric routing [22] enhances control performance and
network efficiency by applying different routing strategies to sensing and actuation data flows,
since sensing and actuation can have different levels of robustness to packet loss.

However, all these efforts focus on offline designs instead of online adaptation, which limits
the resiliency and efficiency of WNCS operating in dynamic conditions (e.g., under network inter-
ference and physical disturbance; under transient state or steady state). Online rate optimization
has been investigated in References [23–25] for different objectives. Specifically, Bai et al. [23]
minimize tracking error under the constraints of network capacity and delay requirement; Bao
et al. [24] optimize the control performance over noisy channels under total bit-rate constraint;
Colandairaj et al. [25] adapt sampling rates using a static sampling policy based on control perfor-
mance and network performance in an IEEE 802.11b network.

This article considers the energy cost of WSANs and the design and implementation of the net-
work reconfiguration mechanisms for RA over a multi-hop WSAN under the LWB protocol, which
are not addressed by these previous works. In prior work [4], we proposed the concept of holistic
control that co-joins network management and physical control at run time. As a simple proof of
concept, we presented a holistic control example that adjusts the numbers of transmissions (Txs)
based on physical states. In this article, we generalize the designs of holistic control by incorpo-
rating more sophisticated control approaches, namely, RA and ST. The new control approaches
require more sophisticated network reconfiguration mechanisms that are both efficient and ro-
bust. Furthermore, the alternative control approaches (time-driven vs. event-driven) allow us to
explore the design tradeoff involved in holistic control in multi-hop WSANs.

It is challenging to conduct experiments on industrial control systems in the field, especially
under cyber and physical disturbances. Lab-scale equipment, however, is usually too small for re-
alistic cyber-physical experiments, particularly for multi-hop wireless networks. Therefore, simu-
lation tools are of vital importance to WNCS. Truetime [26] is a MATLAB/Simulink-based tool that
enables simulations of CPU scheduling, communication, and control algorithms. NCSWT [27] in-
tegrates MATLAB/Simulink and NS-2 for modeling and simulation of NCSs. Neither of the native
wireless simulations of Truetime nor the NS-2 simulator can accurately model the probabilistic
and irregular packet receptions of WSANs [28, 29]. WCPS [30] integrates MATLAB/Simulink and
TOSSIM [31], specifically designed to emulate complex temporal link dynamics of WSANs. How-
ever, given the complexity of wireless communication in physical environments, simulators cannot
always capture the real-world behavior of WSANs. Network-in-the-loop simulations have recently
been developed to address the limitation of wireless simulations by incorporating physical wireless
networks [32]. Experiments presented in Reference [12] integrate two double-tank systems with
a single-hop wireless network. Baumann et al. [33–35] integrate two real inverted pendulums and
a 13-node multi-hop WSAN testbed, achieving sampling rates of tens of milliseconds. However,
the physical plants in laboratory settings used in those experiments cannot represent large-scale
industrial processes and are limited to the specific lab-scale physical plants. In this work, we de-
sign and implement a general network-in-the-loop simulator, which integrates MATLAB/Simulink
simulations and a 70-node WSAN testbed.
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Fig. 1. Holistic WNCS architecture.

3 WIRELESS CONTROL SYSTEM ARCHITECTURE

Figure 1 depicts the holistic wireless control architecture. The holistic controllers (1) control the
physical plants by communicating with sensors and actuators through a multi-hop WSAN and (2)
reconfigure the WSAN based on control needs at run time. Multiple control loops share the same
WSAN, which is the most common deployment in the field [7, 36, 37]. As shown in Figure 1, at time
t , a sensor sends its measurements yt to a remote holistic controller over the multi-hop WSAN.
A state observer [8] estimates the state of the plant. Based on the estimated state x̂t , the holistic
controller generates both (1) the control commands (ut ) and (2) the network reconfiguration signal
(Rt orTn). Two instances of holistic controller, namely, RA and ST, are introduced. For RA (or ST),
the control commands ut and the updated sampling rate Rt (or next event time Tn) generated
by the holistic controller are sent to the WSAN through flooding. For the control commands, the
actuator receives ut and applies ût to the physical plant. If ut fails to be delivered by the deadline,
the actuator reuses the control input received in the last period, ût−1. For network reconfiguration,
every node in the network reconfigures its communication schedule based on Rt orTn. The details
of control and network designs for RA and ST are presented in Section 4 and Section 5, respectively.

3.1 Physical Control System

In this article, control design and analysis are performed for the physical plant, which can be
modelled as a linear time-invariant system (LTI) as follows:

xt+1 = Axt + But ,yt = Cxt , (1)

where t is the time index, xt ∈ Rn is the state vector, ut ∈ Rm is the input vector, yt ∈ Rp is the
output vector, A ∈ Rn×n , B ∈ Rn×m , and C ∈ Rp×n . We assume that the pair (A,B) is controllable
and that the pair (A,C ) is observable. This implies the existence of a linear state feedback controller
ut = Kxt , which renders the closed-loop control system asymptotically stable. Note that the pro-
posed wireless network reconfiguration mechanisms, however, are not limited to LTI systems and
are applicable to nonlinear and time-varying systems.

The stability analysis of the resultant control system can be conducted by using the Lyapunov
theory. System (1) is stable if there exists a positive definite Lyapunov function [38]

V (xt ) = x�t Pxt , (2)

such that

V (xt+1) −V (xt ) = x�t
(
(A + BK )�P (A + BK ) − P

)
xt = −x�t Qxt , (3)

where P ,Q are positive definite matrices. P and Q satisfy the discrete-time Lyapunov equation:

(A + BK )�P (A + BK ) − P = −Q . (4)
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Fig. 2. LWB with static global schedule. (f1,1, node2→ node1, 1
T Hz; f2,1, 3→ 4, 1

T Hz; f3,1, 4→ 1, 1
T Hz.)

3.2 Wireless Sensor-actuator Network

3.2.1 Low-power Wireless Bus (LWB). The WSAN extends the LWB [5] protocol to support data
communication and network reconfiguration for holistic control. LWB is based on Glossy [39], a
fast-flooding protocol that exploits the constructive interference among concurrent transmissions
of radios compatible with the IEEE 802.15.4 standard. The flooding process is entirely driven by
radio events, i.e., a transmission is triggered by completing a packet reception, which drastically
speeds up the process and provides microsecond-level WSAN synchronization. Under LWB, nodes
take turns to flood their packets in a time-triggered fashion using Glossy flooding according to a
single global schedule. A sink node is responsible for disseminating the schedule to all the nodes
in the network. Thus, the multi-hop many-to-all communication can be regarded as a single com-
munication resource (shared bus) that runs on a single clock [16].

Adopting LWB as the underlying communication protocol brings significant benefits. Thanks
to Glossy flooding, communication in LWB is topology-independent. Besides, LWB is a wireless
protocol that provides deterministic end-to-end latency given a global schedule [5], which largely
simplifies the analysis of system stability. Additionally, fast Glossy flooding achieves propagation
latency within 10 ms over 100 nodes (8 hops, 3 Txs). We can take the advantage to realize fast
network reconfiguration by quickly flooding network configurations across the entire network,
an important feature, as network reconfiguration is a key element of holistic control.

3.2.2 Implicit Scheduling of Multi-rate LWB. Unlike prior work [16], which uses a centralized
scheduler node to operate scheduling algorithms, we tailored LWB for implicit scheduling. All
nodes schedule themselves based on information from holistic controllers, such as flooding rates
or next event timers of each control loop. We define a data flow of WSAN as fi, j , which transmits
data from a source node si, j to a destination node di, j , where i ∈ {1, 2, . . . ,n} is the control loop
index, and j ∈ {1, 2, . . . ,mi } is the flow index of the control loop i (li ). Accordingly, n is the number
of control loops, and mi is the number of data flows in li . For example, the control loop l1 has
two data flows f1,1 and f1,2, among which f1,1 is a sensing flow transmitting measurements from
a sensor node (s1,1) to a controller node (d1,1), and f1,2 is an actuation flow transmitting control
command from a controller node (s1,2) to an actuator (d1,2). A MIMO control loop can have multiple
sensing and actuation flows. The update rate of control commands in the control loop li is denoted
as Ri . The operation period of li is Ti =

1
Ri

. We assume the rates of the flows in one control loop

are equal.
In implicit scheduling of data flows, each node stores a static global schedule of all data flows,

denoted by entries fi, j [si, j , di, j , ti, j ], ti, j is the relative time slot reserved for flow fi, j in LWB

periodT = 1
R

. LWB operates at the highest rate of all the control loops, R = max1≤i≤n Ri . Figure 2
shows a simple static schedule. We assume there are three control loops and each loop has one flow.
All loops have same rate R1 = R2 = R3 =

1
T

. Thus, the rate of LWB is R = 1
T

. Therefore, we get the
static schedule entries: f1,1[2, 1, 1], f2,1[3, 4, 2], f3,1[4, 1, 3]. In each period T , the synchronization
message S is flooded by the sink node in the beginning of every period, followed by three data
slots assigned for three flows.

This static schedule is calculated assuming each control loop runs at its highest candidate rate.
The static schedule can be calculated offline using any scheduling algorithm, e.g., EDF or RM. In
practice, industrial process control systems usually run at sampling rates lower than 1 Hz [40].
By adopting fast Glossy flooding (flooding a packet over 100 nodes within 10 ms [39]), WSAN
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Fig. 3. Implicit scheduling. (f1,1, node2→ node1, 1
T Hz; f2,1, 3→ 4, 1

2T Hz; f3,1, 4→ 1, 1
4T Hz.)

Fig. 4. Holistic management of WNCS.

can guarantee the schedulability of tens of data flows, which suggests the feasibility of the static
schedule. We refer interested readers to References [16, 41] for network designs with tighter real-
time requirements.

To implement multi-rate LWB using implicit scheduling, besides the static global schedule, the
only information that all nodes need are the rates of all the control loops Ri . To make the implicit

scheduling work properly, the potentialTi of all the loops should be set to integral multiples of the
shortest period T . Then each node can independently decide whether to flood fi, j or sleep at ti, j
within the time interval [(k − 1)T ,kT ],k = 1, 2, 3, . . ., depending on Ri . Figure 3 shows an example
of the implicit scheduling with the static schedule in Figure 2, where R1 =

1
T

, R2 =
1

2T
, and R3 =

1
4T

.
All nodes flood f1,1 at the first data slot of every period T, flood f2,1 at the second data slot every
other period T, and flood f3,1 at the third data slot every 4T. They sleep at the rest blank data slots.

In implicit scheduling, since each node stores the static schedule, the network reconfiguration
commands can be generated by any source nodes in WSAN distributively, in contrast to centralized

scheduling in which the whole schedule is sent by the sink in the beginning of each period T . We
will present how network reconfiguration signals, such as Ri , are disseminated in Sections 4.2
and 5.2.

3.3 Holistic Management

As shown in Figure 4, we develop a holistic control architecture that bridges the gap between the
plant control and WSAN management. Based on the current status of physical plants and WSAN,
the holistic controller generates two kinds of commands at the same time, one for dynamically
adjusting the network configuration and the other for operating the physical plants. In the follow-
ing two sections, we focus on two specific efficient holistic control designs: rate adaptation and
self-triggered control over a multi-hop mesh network.

4 RATE ADAPTATION

The data flow rates of a WSAN have direct impacts on control performance and energy cost. The
higher the rates, the better the control performance, but the higher the energy cost [19]. In this
section, to ensure the control performance while reducing the network energy cost, we adjust
the rates of the WSAN based on control performance during run time. We introduce the holistic
controller design and the network design of rate adaptation (RA).

4.1 Control Design

We propose two online RA strategies. First is a heuristic-based RA, which selects rate based on
physical states and customized thresholds. Second is an optimal RA by minimizing a certain per-
formance metric characterizing the control performance and communication cost. Finally, the sta-
bility of the resultant closed-loop control system is established. Please note that, in this article, the
sampling rate of multiple loops is adapted in a distributed way. That is, each loop has its own holis-
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ALGORITHM 1: Heuristic rate adaptation algorithm for loop i

Input: xt , t , τ , t0 = t , λ, candidate rates (ascending): {Ri,1,Ri,2, . . . ,Ri,s }, current Ri = Ri, j , Ai ,Bi ,K , P ,Q
Output: updated Ri

Calculate V (xt ) as defined in (2), and VDth , VI th ;

if V (xt ) remains below VDth for a time interval of τ , and Ri > Ri,1 then
Ri ← Ri, j−1;//Ri decreases

else if V (xt ) > VI th and Ri < Ri,s then

if last rate adaptation is a decrease then
t0 ← t ; Ri ← Ri, j+1;//Ri increases

if last rate adaptation is an increase and V (xt ) > (1 − β
α2

)t−t0V (xt0 ) then
t0 ← t ; Ri ← Ri, j+1;//succeeding Ri increases

else
Ri remains constant

tic controller. Each loop determines its own sampling rate (Ri ) individually. The rate is calculated
and potentially adapted every sampling period. We discuss the RA strategies for loop i .

4.1.1 Heuristic Rate Adaptation. We employ a similar adaptation algorithm proposed in Refer-
ence [4] (Algorithm 1). The value of the Lyapunov function V (xt ) in Equation (2), the metric of
the control performance, provides the bounds of the state error. Given Equation (2),

α1 | |xt | |2 ≤ V (xt ) ≤ α2 | |xt | |2, (5)

where α1 and α2 are the smallest and largest eigenvalues of P , respectively. The value of V (xt )
is used to update the rate. Given a customized state error bound, denoted as se = | |xse | |2, we set
the rate increasing threshold VI th = α1 | |xse | |2. Based on Equation (5), we have | |xt | |2 ≤ ||xse | |2,
if V (xt ) ≤ VI th . Furthermore, we adopt a more stringent decreasing threshold VDth to indicate
that the system performs well, VDth = λ α 1 | |xse | |2, λ ∈ (0, 1). If V (xt ) remains below VDth for a
customized time interval τ , the control system is regarded in good condition. Given Equation (3),

V (xt+1) −V (xt ) ≤ −β | |xt | |2, (6)

where β is the smallest eigenvalue of Q . Given Equations (5) and (6), we can get the upper bound
of the ideal Lyapunov function, described by Equation (7). We set this bound as the trigger of
succeeding rate increases:

V (xt+j ) ≤ (1 − β/α2) jV (xt ). (7)

The heuristic RA algorithm of a holistic controller is presented in Algorithm 1. Its complexity
is O (1).

4.1.2 Optimal Rate Adaptation. A disadvantage of the aforementioned heuristics-based RA is
that it requires hand-tuning, which can be challenging for complex control systems. Furthermore,
it does not offer a systematic way to balance control system performance and communication cost,
the two important and conflicting concerns in wireless control systems. Henceforth, we formulate
rate selection as an optimization problem. The objective of the optimization problem is to minimize
a cost function that incorporates both control performance and communication cost.

As described in Section 3.2.2, each candidate period of a feedback control loop is an integral mul-
tiple of the smallest sampling periodT . LetTs = nsT be the least common multiple of all candidate
periods of a feedback control loop. To compare the control performance resulting from different
rates, we rewrite all possible systems with different sampling rates in the slowest time frameTs in
a process referred to as lifting [42].
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By lifting the system in the slowest time frame Ts , the system is given by

xt+nsT = Ans

d1
xt +

[
Ans−1

d1
Bd1 . . . Bd1

] ⎡⎢⎢⎢⎢⎢⎢⎣

ut,1

...
ut+(ns−1)T ,1

⎤⎥⎥⎥⎥⎥⎥⎦
, (8)

where ut+iT ,1 is the control input during time interval [t + iT , t + (i + 1)T
)
, and Ad1 = eAcT ,

Bd1 =
∫ T

0
eAc (T−τ )Bcdτ , where Ac and Bc are the system matrices of the original continuous sys-

tem dynamics ẋ = Acx + Bcu. For the lowest sampling rate 1/Ts , the corresponding system does
not need lifting and has the dynamics

xt+nsT = Adns
xt + Bdns

ut,ns
, (9)

where ut,ns
is defined over [t , t + nsT ), and Adns

= ens AT , Bdns
=
∫ nsT

0
eA(nsT−τ )Bdτ . To make

a fair evaluation for systems resultant from different rates, we rewrite the slowest system (9) as

xt+nsT = Adns
xt +

[
Ans−1

d1
Bd1 . . . Bd1

] ⎡⎢⎢⎢⎢⎢⎢⎣

ut,ns

...
ut+(ns−1)T ,ns

⎤⎥⎥⎥⎥⎥⎥⎦
= Ans

d1
xt +

ns−1∑

i=0

Ai
d1Bd1ut,ns

, (10)

where ut,ns
= ut+iT ,ns

, i ∈ {0, . . . ,ns − 1}, and Adns
= Ans

d1
. Finally, we can rewrite the system dy-

namics of loop i , depending on the rate Ri , as follows:

xt+nsT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ans

d1
xt +
∑ns−1

i=1 Ai
d1
Bd1ut+iT ,1, if Ri = 1/T

...

Ans

d1
xt +
∑ns−1

i=1 Ai
d1
Bd1ut+iT ,k , if Ri = 1/(kT )

...

Ans

d1
xt +
∑ns−1

i=1 Ai
d1
Bd1ut,ns

, if Ri = 1/Ts

, (11)

Based on Equation (11), the states and inputs of systems with all candidate rates are lifted to
the lowest rate. We are now ready to formulate rate selection as an optimization problem. Let us
evaluate the cost function over a horizon of N sample periods corresponding to the lowest sample
rate, i.e., the horizon for performance evaluation lasts NTs seconds. Since each loop can select its
rate individually, we can formulate n independent optimization problems, where n is the number
of feedback control loops. Coordination between different control loops is part of our future work.
The optimization problem for loop i has decision variables of an N-dimensional vector Ri (k ), where

kth element Ri (k ) represents sample rate during time interval [t + (k − 1)Ts , t + kTs

)
. Finally, cost

function is defined as a weighted combination of control performance and communication cost:

J (xt ,Ri ) =
N−1∑

j=0

{
xt+jTs

(
Ri (j )

)�
WQxt+j

(
Ri (j )

)
+ ϵ1ut+j

(
Ri (j )

)�
WRut+j

(
Ri (j )

)
+ ϵ2Ri (j )

}
, (12)

where xt+j is predicted based on Equation (11) given xt and control law,

xt+j

(
Ri (j )

)�
WQxt+j

(
Ri (j )

)
+ ϵ1ut+j

(
Ri (j )

)�
WRut+j

(
Ri (j )

)
represents control performance

including state cost and control cost, WQ , WR set relative weights of state deviation and control
effort, xt+j denotes xt+jTs

, and

ut+j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[ut+jTs ,1, . . . ,ut+jTs+(ns−1)T ,1]�, if Ri (j ) = 1/T
...
[ut+jTs ,ns

, . . . ,ut+jTs+(ns−1)T ,ns
]�, if Ri (j ) = 1/Ts .
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In Equation (12), the communication cost is linearly proportional to sampling rate Ri (j ). Con-
stant ϵ1 is to weight state error versus control cost, and ϵ2 is to weight control performance versus
communication cost. When ϵ2 approaches 0, which means that network energy cost is ignored,
the WNCS is prone to stay at the fastest sampling rate to achieve better control performance. We
define this scenario as cheap network in analogy with cheap control, which is the caseWR = 0 [43]
when control performance is evaluated. As a result, the optimization problem of loop i can be
written as follows:

minimize
Ri

J (xt ,Ri ) (13a)

subject to Ri = [Ri (1), . . . ,Ri (N )], with Ri (k ) ∈ {Ri,1, . . . ,Ri,s } (13b)

xt+j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ans

d1
xt+j−1 +

∑ns−1
i=1 Ai

d1
Bd1ut+(j−1)Ts+iT ,1, if Ri (j ) = 1/T

...

Ans

d1
xt+j−1 +

∑ns−1
i=1 Ai

d1
Bd1ut+(j−1)Ts ,ns

, if Ri (j ) = 1/Ts

(13c)

ut = Kxt . (13d)

The optimization problem (13) has N integer decision variables. Since the decision variables
Ri (j ) belong to a finite set of candidate rates, the optimal rate adaptation problem is an integer
programming problem, which could be computationally expensive to solve at every sampling pe-
riod. To reduce the computational complexity, we simplify Equation (13) by assuming that the
control system stays at the same rate over the horizon, i.e., Ri (1) = · · · = Ri (N ) = Ri . Accordingly,
the cost function is given by

J (xt ,Ri ) =
N−1∑

j=0

{xt+jTs
(Ri )�WQxt+j (Ri ) + ϵ1ut+j (Ri )�WRut+j (Ri ) + ϵ2Ri }. (14)

The simplified optimization problem takes the following formulation:

minimize
Ri

J (xt ,Ri ) (15a)

subject to Ri ∈ {Ri,1, . . . ,Ri,s }. (15b)

xt+j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ans

d1
xt+j−1 +

∑ns−1
i=1 Ai

d1
Bd1ut+(j−1)Ts+iT ,1, if Ri = 1/T

...

Ans

d1
xt+j−1 +

∑ns−1
i=1 Ai

d1
Bd1ut+(j−1)Ts ,ns

, if Ri = 1/Ts

(15c)

ut = Kxt . (15d)

Although the simplified optimization problem (15) is an integer programming problem, for each
loop i it has only one scalar decision variable Ri (instead of N in Equation (13)). Furthermore, the
number of candidate rates is usually small in practice, which significantly reduces the computa-
tion complexity. We solve the optimization problem by brute force search. Note that the system
matrices of rate lifting can be calculated offline. Given a horizon of N , M candidate rates, and

ns =
Ts

T
, the computation complexity isO (MNns ). We also evaluate the computation cost in MAT-

LAB/Simulink on a 2.5 GHz Intel Core i7 processor. The settings of the experiments are the same
as in Section 7.2.2 (ns = 2M−1). Figure 5 shows the execution time of solving (15) for 2K times. As
shown in Figure 5(a), with candidate rates M = 3, the median and worst-case execution time when
horizon N < 25 is below 1 ms and 2.1 ms, respectively. As shown in Figure 5(b), with N = 10, the
median and worst-case execution time when M ≤ 6 is below 4 ms and 11 ms, respectively. The
execution time is negligible compared with the 1 s sampling period. These results show that the
problem (15) is online solvable.
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Fig. 5. Execution time of solving Equation (15) with various horizon N and number of candidate rates M .

Remark 4.1. Since we target industrial process control systems with sampling rates lower than
1 Hz [40], we tailor the rate selection for our WSAN design with an assumption of the exis-
tence of “worst-case-guaranteed” schedule in Section 3.2. Hence, there is no network resource/
schedulability constraint, and the rate selections of multiple loops can be done individually.

For systems with schedulability constraints, we can provide schedulability guarantee by gener-
alizing the optimal RA problems (13) and (15) to incorporate schedulability constraints. We replace
the objective function in Reference [20] Equation (8) by

∑n
i=1 J (xt ,Ri ) and adding system dy-

namic constraints (11) of all loops. Since we apply LWB, as studied in Reference [16], the real-time
scheduling constraints can be simplified from multi-processor task scheduling in Reference [20]
to uni-processor case. However, given that the configuration space of the corresponding central-
ized optimization problem is much larger than Equations (13) and (15), and the introduction of
schedulability constraints, the resultant optimization problem can be computationally expensive
to solve online. In addition, this approach requires centralized management of the control loops.
Extending our work to consider schedulability constraint is part of future work.

4.1.3 Stability Analysis. Deploying the aforementioned RA algorithms renders the closed-loop
control system being a switched system, whereas the switch is governed by the RA algorithm.
Since it is difficult, if not impossible, to formulate the analytic formula of the switching sequence,
we borrow the stability result for switched systems with arbitrary switching. Stability analysis
tools for switched systems can be found in Reference [44] and references therein. This work per-
forms stability analysis and control design based on a well-received result: If there exists a common
Lyapunov function for all subsystems, then the stability of the switched system is guaranteed un-
der arbitrary switching. It is revealed that the construction of such a common Lyapunov function
among all candidate rates can be formulated as a Linear Matrix Inequality (LMI) problem: solves
for P satisfying

(
A(Ri ) + B (Ri )K

)�
P
(
A(Ri ) + B (Ri )K

)
− P < 0, ∀Ri ∈ {Ri,1, . . . ,Ri,s }, (16)

where A(Ri ) and B (Ri ) are discretized system matrices of loop i corresponding to the sample rate
Ri . If there is a feasible solution for the LMI problem (16), then V (xt ) = xt

�Pxt is the common
Lyapunov function of all candidate rates, and the stability is established.

The aforementioned stability analysis, in a deterministic setting, provides a strategy to search
for a common Lyapunov function V (xt ). As described in Section 3.2.1, the latency bound of LWB
is deterministic [5, 39]. In our test cases, the latency is shorter than one sampling period. Stability
analysis under network latency of below one sampling period is well studied. We refer interested
readers to References [33, 45]. The stability analysis can be generalized to take indeterministic net-
work latency and packet loss into account, which consequently leads to stochastic stability. Stabil-
ity analysis under different network scenarios has been intensively studied in control community
and is not the focus of this article. We refer interested readers to stability analysis addressing
network latency [45, 46] and packet loss with different distribution patterns [47, 48]. Despite the
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Table 1. Schedule Examples for Loop 1 with Candidate Rates of R1,1 =
1
T Hz, R1,2 =

1
2T Hz, R1,3 =

1
4T Hz

simplifications, our stability analysis provides practical guidance towards balancing the closed-
loop control performance and network rate in real-world scenarios involving network latency and
packet loss, as shown in case studies under network and physical interference in Sections 7.4–7.6.

Remark 4.2. The existence of a single common Lyapunov function (16) for all candidate rates is
a conservative but easy-to-check stability condition. The relaxation of conservativeness has been
intensively studied in control community and leads to numerous results [49–51]. For example, Ref-
erence [49] proposed to replace the single common Lyapunov function with a switched Lyapunov
function and established a sufficient condition of stability as stated in the following theorem:

Theorem 4.3 ([49], Theorem 4). If there exist symmetric matrices S (Ri ), matricesG (Ri ) andU (Ri )
such that ∀(Ri ,R j )

⎡⎢⎢⎢⎢⎣
G (Ri ) +G (Ri )� − S (Ri )

(
A(Ri )G (Ri ) + B (Ri )U (Ri )

)�

A(Ri )G (Ri ) + B (Ri )U (Ri ) S (R j )

⎤⎥⎥⎥⎥⎦
> 0, (17)

then state feedback control gain K (Ri ) = U (Ri )G (Ri ),∀Ri ∈ {Ri,1, . . . ,Ri,s } stabilizes the system.

The results in Reference [49] show the tradeoff between a single Lyapunov function for sim-
plicity and a switched Lyapunov function that is less conservative but numerically hard to check.

4.2 Network Reconfiguration

In this section, we present a run-time RA protocol for a mesh WSAN. Packet loss has non-negligible
impacts on WNCS, especially in network reconfiguration. We also discuss its packet loss recovery.

4.2.1 Candidate Rates Selection. Section 4.1 considers how to adjust the rate of each loop. The
candidate rates are also important design factors. To ensure that the rate transient processes work
properly, the potential rates of each loop need to be designed intentionally. First, according to
Section 3.2.2, when the offline scheduler schedules data flow fi, j , it reserves time slots for fastest
rate R. Second, the candidate periods of all the loops should be integral multiples of the short-
est period T = 1

R
. Third, to ensure that the RA works properly with packet loss recovery, which

will be discussed later in Section 4.2.3, the candidate rates of each loop should be harmonic, e.g.,
( 1

T
, 1

2T
, 1

4T
) or ( 1

T
, 1

3T
, 1

9T
). Schedule examples for ( 1

T
, 1

2T
, 1

4T
) are in Table 1. A filled unit indicates

that a packet is sent in that time slot. According to Section 4.1.3, to guarantee stability, a common
Lyapunov function should exist by solving the LMI problem formulated by subsystems induced
by all candidate rates.

4.2.2 Network Reconfiguration Based on Piggyback. The holistic controller of li adopts a pig-

gyback mechanism to disseminate a newly computed Ri for data flow fi, j . The holistic controller
of li piggybacks Ri with the actuation command. The data field of the actuation packet is [li , Ri ,
Datai ]. Because of the flooding nature of LWB, all nodes in the network can receive this update.
Once a node receives an updated Ri , it will calculate a new schedule based on Ri , as described in
Section 3.2.2.

The distributed network reconfiguration based on piggyback has several benefits over the con-
ventional centralized network reconfiguration. First, this piggyback mechanism helps reduce en-
ergy cost by utilizing existing actuation data flows, saving the time and energy needed to calculate
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Table 2. Packet Loss Recovery for Rate Adaptation of Flow f11

t1,1 t1,1 +T t1,1 + 2T t1,1 + 3T t1,1 + 4T t1,1 + 5T
Updated rate Ri R1,1 R1,2 R1,2 R1,2

Node 2∗ R1,1 (1) R1,1 (1) → R1,2 R1,2 (1) R1,2 (/) R1,2 (1) R1,2 (/)
Node 3 R1,1 (1) R1,1 (1) → R1,2 R1,2 (1) R1,2 (/) R1,2 (1) R1,2 (/)
Node 4 R1,1 (1) R1,1 (0) R1,1 (1) → R1,2 R1,2 (/) R1,2 (1) R1,2 (/)

and deliver the whole schedule in every period. Second, the network reconfiguration commands
can be flooded by any source nodes in WSAN distributively, in contrast to centralized schedul-

ing, in which the whole schedule should be sent by the sink. In addition, implicit and distributed
scheduling using piggyback is more reliable than a centralized scheduler. Packet loss in implicit
scheduling affects only one loop, but the packet loss of centralized scheduling can affect all data
flows.

4.2.3 Packet Loss Recovery. If a node loses the packet with the updated rate of li , it will use the
current Ri until another packet of li is received. Therefore, it is possible that, at the same time,
different nodes along the route of a flow are using different rates. Nevertheless, it is still possible
for nodes to eventually receive the update. The transmissions of three nodes in Table 2 represent
an example of packet loss recovery for flow f1,1 (source s1,1 is node 2) when a holistic controller
updates the rate from R1,1 to R1,2 at the second period (t1,1 +T ). {1, 0, /} in brackets following
R1, j indicate that the node receives a packet, loses a packet, and remains sleeping, separately,
corresponding to schedule of R1, j as shown in Table 1. The update rate is received by nodes 2 and
3, but fails to arrive at node 4 within the second period (t1,1 +T ) due to packet loss. Hence, the
rates of nodes 2 and 3 switch to R1,2, while node 4 continues to use R1,1. Although node 4 uses
different rate, it is still possible for it to receive update rate in the third period (t1,1 + 2T ), since
relative slot t1,1 in the third period is the common slot shared by R1,1 and R1,2. If all candidate
rates are harmonic, i.e., share as many common slots as possible, the node will recover faster from
packet loss.

5 SELF-TRIGGERED CONTROL

Self-triggered control (ST) [11], an aperiodic event-driven control design, improves the efficiency
of the network. The first single-hop wireless network protocol for aperiodic control is presented
in Reference [12]. However, due to the lack of network protocol, aperiodic control designs have
not been adopted in multi-hop mesh networks. In this section, we, respectively, introduce control
design and network design of ST.

5.1 Control Design

In event-triggered control, trigger condition is checked in every sampling period. The time of ac-
tuation event cannot be known in advance, which requires the network to reserve resource for
unknown events. The ST relaxes this requirement by predicting the future events based on system
models. Intuitively, ST triggers sensing and actuation events only when certain control perfor-
mance is predicted to be lost. The self-triggered strategy we present in this article is motivated by
Reference [12]. Since a decreasing Lyapunov function V (xt ) = x�t Pxt is the certificate of stability
(P is achieved in Section 4.1.3), the desired control performance is defined by a decreasing func-
tion S (xt ), upper bounding the evolution of Lyapunov functionV (xt ):V (xt ) ≤ S (xt ). Provided that
V (xt ) ≤ S (xt ) holds and S (xt ) is decaying over time, the closed-loop system is stabilized [11, 12].
The predicted time of the next sensing and actuation events is tk = min{t > tk−1 |V (xt ) − S (xt ) ≥
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Fig. 6. Self-triggered transmission based on LWB (f1,1, node2→ node1; f2,1, 3→ 4; f3,1, 4→ 1).

0}. Here, we adopt a feasible decreasing S (xt ), as follows:

S (xt ) = V (xtk−1
)e−γ V (xtk−1

)δ (t−tk−1 ) . (18)

We induce the term γV (xtk−1
)δ , γ ,δ > 0, which makes the decreasing rate of S (xt ) adapt to the

value of the Lyapunov function (state error). That is, when V (xtk−1
) is large, which indicates se-

vere state error, the S (xt ) decreases faster. Therefore, the sensing and actuation events are more
likely to be triggered. However, whenV (xtk−1

) is small, which indicates the current states are close
to equilibrium point, the S (xt ) decreases slower. The sensing and actuation events are unnecessary
and less likely to be triggered. Please note that, unlike event-triggered control, the trigger condition
of which is checked in every sampling period, self-triggered control checks the trigger condition
based on predictions based on system model, which makes it less resilient to disturbance. To pro-
vide robustness guarantees of the self-triggered control, an upper bound of the inter-transmission
interval should be customized based on References [12, 52, 53].

5.2 Network Protocol for Self-triggered Control

5.2.1 Self-triggered Transmissions. Due to the predictive nature of ST, the network knows a

priori when the event will be triggered by the holistic controllers. Therefore, nodes know the next
time when they should wake up and flood data. Within the inter-transmission interval, the nodes
sleep. Thus, the energy costs of nodes can be reduced compared with periodic control at the highest
rate.

Similar to the network protocol of RA, the holistic controller uses the piggyback mechanism
to disseminate a newly computed time of next transmission Tni for all data flows of li . Again,
Tni should be integral multiples of T . The holistic controller piggybacks Tni with the actuation
command. Therefore, the data field of the actuation packet is [li , Tni , Datai ]. Because of flooding,
all nodes in the network can receive this update. In a node, each data flow has an event timer. Once
a node receives aTni , it will set the value ofTimeri, j toTni and start counting down from the next
period. If the Timeri, j expires, the node will wake up and flood in the pre-assigned relative slots
ti, j withinT . Figure 6 shows an example of self-triggered transmissions based on LWB. At the first
period, f2,1 is flooded, and node 3, which is the source of f2,1, receives and floods Tn2 = 3T at slot
that is assigned for f2,1. Therefore, the next f2,1 is reserved and transmitted 3T later at the fourth
period. At the second period, f1,1 and f3,1 are transmitted, and Tn1 = T , Tn3 = 2T , respectively.
Therefore, the next f1,1 is reserved and transmitted at the third period and f3,1 at the fourth period.

5.2.2 Why Not Event-triggered Transmissions. We adopt ST instead of event-triggered control.
In event-triggered control, trigger conditions are checked every sampling period. Source node
is aware of whether the event is triggered in current period, and it does not flood if the trigger
condition is not violated. However, other nodes in mesh WSAN do not know the trigger time
in advance; they still wake up and keep listening in case certain events are triggered in current
period. Therefore, event-trigger control systems over a multi-hop mesh network cannot reduce
duty cycle of the network. As shown in Figure 7, at the first period, the source node of f2,1, node 3,
notices the event is triggered. It floods f2,1 in the second relative time slot. Since all other nodes
are listening, they receive and forward f2,1. Different from ST, all nodes keep awake in the first
and third relative time slots in case the trigger conditions of f1,1 and f3,1 are violated.
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Fig. 7. Event-triggered transmission based on LWB.

Table 3. Impact of Packet Loss on Self-triggered Control of Flow f1,1

t1,1 t1,1 +T t1,1 + 2T t1,1 + 3T t1,1 + 4T t1,1 + 5T
Updated inter-transmission time: Tn1 T 2T 2T 2T

Node 2∗ 2T (1) → T T (1) → 2T 2T (/) 2T (1) 2T (/) 2T (1)
Node 3 2T (1) → T T (1) → 2T 2T (/) 2T (1) 2T (/) 2T (1)
Node 4 2T (0) 2T (/) 2T (0) 2T (/) 2T (0) 2T (/)

5.2.3 Packet Loss Recovery for ST. If all nodes receiveTni and are synchronized well, they wake
up and flood fi, j at the same time. However, unlike rate adaptation based on LWB, which can self-
recover from packet loss, self-triggered transmissions based on LWB are less resilient to packet
loss. If a node fails to receiveTni , it is possible that it will not wake up at the right time for the next
transmission and will become unsynchronized with other nodes for fi, j forever. Table 3 shows an
example of the impact of packet loss on flow f1,1 when a holistic controller predicts a series of inter-
transmission intervals (Tn1). {1, 0, /} in brackets following Tn1 indicate that the node receives a
packet, loses a packet, and remains sleeping, separately, corresponding to its inter-transmission
interval Tn1. In this example, the update inter-transmission time Tn1 = T is received by nodes 2
and 3, but fails to arrive at node 4 in first period (t1,1) due to packet loss. Hence, the nodes 2 and
3 schedule next transmissions in the second period (t1,1 +T ), while node 4 uses lastTn1 = 2T and
schedules next transmission in the third period (t1,1 + 2T ). In the second period, nodes 2 and 3
receive new Tn1 = 2T , and schedule the next transmissions in the fourth period (t1,1 + 3T ). Node
4 sleeps at this period and loses the updated inter-transmission time again. If the system goes on
like this, node 4 becomes unsynchornized with other nodes and loses all packets. Therefore, it is
of vital importance to come up with effective and efficient strategies to recover from packet loss.
We propose the following packet loss recovery strategy: If a node wakes up but does not receive a
packet withTni , it should re-awake at the highest rate R until another packet withTni is received.

6 WCPS REAL-TIME

To experiment with wireless control over real-world WSANs, we develop wireless cyber-physical
simulator real-time (WCPS-RT).

6.1 Architecture of WCPS-RT

WCPS-RT integrates MATLAB/Simulink Desktop Real-time (SLDRT) [54] and a three-floor WSAN

testbed [55, 56]. The architecture of WCPS-RT is shown in Figure 8. Note that this figure shows
the architecture of one wireless control loop. Several control loops can share the same WSAN.

SLDRT is used to simulate the physical part of the WNCS: physical plants, controllers, state
observers, and physical disturbance. In practice, industrial plants usually operate continuously or
at very high rates. However, the wireless communication and controller execute at a relatively
low rate because of the communication and computation latencies. Therefore, SLDRT modules are
operated at different rates in our design.

The three-floor WSAN testbed is deployed on the third to fifth floors of Jolley Hall at Washington
University in St. Louis, as in Figure 9. It consists of 70 TelosB motes. Each mote is equipped with
Chipcon CC2420 radio compliant with the IEEE 802.15.4 standard and a TI MSP430 microcontroller.
40 Raspberry Pis with a backplane network are used for the management of the WSAN [7].
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Fig. 8. Architecture of WCPS-RT. Fig. 9. Three-floor WSAN testbed in Jol-

ley Hall of Washington University in St.

Louis.

Fig. 10. Timeline of WCPS-RT.

The interfaces between SLDRT and WSAN are socket connections between the PCs that run
SLDRT and the Pis, and serial connections between the Pis and the end nodes. In this way, the end
nodes si, j ,di, j of the sensing and actuation flows fi, j can be any nodes in the testbed.

6.2 Real-time Network-in-the-loop Simulation

Both SLDRT and the three-floor WSAN testbed operate in real-time. To evaluate the real-time
performance of the WCPS-RT, we measure the latency caused by each module. In our design,
sensing and actuation flows have the same overhead induced by interfaces, since they have the
same types of interfaces between physical parts and WSAN, as in Figure 8, and all data flows share
the same WSAN with independent interfaces.

We use the latencies of one actuation flow as an illustrative example. First, we adopt the Preci-

sion Time Protocol (PTP) to synchronize the PC that runs SLDRT and the Pis. PTP is a protocol used
to synchronize clocks throughout a network. It achieves clock accuracy in the sub-microsecond
range [57]. Then, we record the completion timestamps of each module on corresponding ma-
chines (1) the physical modules, (2) the actuation flow from Simulink to s1,1, (3) the transmissions
in WSAN, (4) the actuation flow from d1,1 to Simulink. Finally, we draw the timeline of WCPS-
RT and analyze the latencies, as shown in Figure 10. We set the sampling period to 1s , which
is the fastest update time supported by most industrial WSAN products. From the timeline, the
total overhead induced by interfaces between Simulink, and the node is less than 26 ms (2.6%).
More than 966 ms are reserved for communication over the WSAN in each period, among which
around 175 ms are utilized for transmissions in this example. The results validate the real-time
performance of WCPS-RT. Please note that 26 ms overhead is acceptable when we use WCPS-RT
to simulate industrial processes such as oil refinery and mining, sampling periods of which are
usually longer than 1 s [40]. However, it is not acceptable in faster sampling period of tens of
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milliseconds. We will work on shortening this overhead in the future. We refer interested readers
to References [16, 33, 41] for network and WNCS designs with tighter time requirements.

7 EVALUATION

In this section, we describe systematic trials of our wireless control designs using WCPS-RT. On
the physical side, to represent an industrial process system, we use up to five 4-state load position-
ing systems that share the same WSAN. On the WSAN side, we evaluate the proposed network
protocols over a 70-node WSAN testbed [55, 56].

Because the state observer provides robust and theoretically sound protection against loss of
sensing information [8, 58, 59], the WNCS are more sensitive to packet loss on the actuation side
of WSAN [22]. Thus, we focus on comprehensive actuation-network-in-the-loop simulations. We
then empirically evaluate the tradeoff between rate adaptation (RA) and self-triggered control (ST)
in communication cost and control performance under different operating conditions.

7.1 Systems Settings

7.1.1 Physical System Settings. We run simulations of a realistic load positioning system [60,
61], which positions a load (L) using a motor with a ballscrew transmission. The motor is at-
tached rigidly to a movable base platform (B). The load positioning is a 4-state nonlinear system
as described in Reference [61]. When the system is operated at low rates, as in real industrial ap-
plications, the stiffness of the ballscrew and the potential energy stored in it are neglected in the
model. The system can be simplified as a 4-state linear system [60]:

ẋt = Acxt + Bcut ,yt = Ccxt , (19)

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 −dL ( 1
mL
+ 1

mB
) kB

mB

dB

mB

0 0 0 1

0 dL

mB
− kB

mB
− dB

mB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

mL
+ 1

mB

0
− 1

mB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cc =

[
1 0 0 0

]
.

Here, dL , mL , dB , mB , and kB are parameters of the load and base platforms, such as the mass,
damping, and stiffness. The state vector is defined as xt = [xL (t ) ẋL (t ) xB (t ) ẋB (t )]T , where xL

is the displacement of the load relative to the base platform, xB is the absolute displacement of
the base platform, and ẋL and ẋB are the speeds of the relative and absolute movements. We will
stabilize the states of the load positioning system to the origin.

There are two kinds of plants. The first kind is denoted as PLANT1, dL = 15,mL = 100, dB = 10,
mB = 10, kB = 5, and K = [−1.9393 − 13.1373 0.0842 − 13.0264]. The second kind is denoted as
PLANT2, dL = 10, mL = 15, dB = 3, mB = 5, kB = 2, and K = [−1.0076 −0.6317 −0.1954 −0.3814].
The second kind has lower mass and damping, therefore their response time is shorter than that of
PLANT1. In holistic controller, we discretize the continuous-time models (19) using step-invariant

transformation at its corresponding sampling sampling periodTi :ATi
= eAcTi ,BTi

=
∫ Ti

0
eAc τdτBc .

For each control loop, given the discrete-time model, K , and Q , we can get P , α1, α2, and β
according to Equations (16), (5), and (6), respectively. For all loops,Q = I4,WQ = I4,WR = 1, γ = 1,
and δ = 2. We will adjust and evaluate some parameter selections of RA, such as VI th , λ and τ of
heuristic RA algorithm, and ϵ2 of the optimal RA problem.

7.1.2 WSAN Settings. The network protocols for RA and ST use Contiki [62]. The LWB operates
at the rate R = 1 Hz. The global static schedule has one synchronization slot, with a length of
25 ms, and 2–5 data slots, with lengths of 18 ms. 70 nodes participate in the transmissions. The
synchronization packet is disseminated by the sink node (node 164) every 1 s. The synchronization
packet size is 6 bytes, and the data packets are 25 bytes. Each data slot is used to transmit the control
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Fig. 11. SLDRT modules of WCPS-RT.

Fig. 12. Response curve of heuristic rate adaptation.

command ut and network reconfiguration signals R orTn of each control loop. Figure 9 shows the
source and destination pairs of five actuation flows over three-floor WSAN. The Tx power is 0 dbm,
and the retransmission number is 3.

7.1.3 WCPS-RT Settings. We simulate the WNCS using WCPS-RT, which integrates a 70-node
WSAN and SLDRT. We simulated two control loops sharing a WSAN for statistical results from
Section 7.3 to Section 7.6. Loop l1 controls a PLANT1. Loop l2 controls a PLANT2. The SLDRT
modules of two loops are shown in Figure 11. Each loop has its own holistic controller, and the
controllers and the actuators communicate via actuation flows sharing the same WSAN. And we
simulate five control loops sharing a WSAN to show the scalability of WCPS-RT in Section 7.7.
Loops l1, l3, and l5 control three PLANT1s separately. Loops l2 and l4 control two PLANT2s.

As presented in Section 6.1, modules in Figure 11 operate at different rates. The physical plants
run at 100 Hz. Kalman filters and actuators run at 1 Hz. The “worst-case-guaranteed” WSAN and
controllers run at 1 Hz, and WSAN and controllers can adjust their rates and operate ST during
run time, based on control needs. In RA, we choose candidate rates: 1 Hz, 0.5 Hz, 0.25 Hz, which
are reasonable rates for our load positioning systems with time constants of roughly 30 s. And
they are also typical rates in industrial process control [40]. To provide robustness guarantees of
the self-triggered control [12], we set the upper bound of the inter-transmission interval as 10 s.

7.2 Evaluation of Optimal and Heuristic Rate Adaptation Algorithms

We first evaluate the optimal and heuristic RA algorithms. Since they are control designs, we tem-
porarily run simulations under ideal network (100% packet delivery ratio and no latency) in Sec-
tion 7.2. We then run network-in-the-loop simulations with different holistic control approaches
under different physical and network conditions in Sections 7.3–7.7.

7.2.1 Heuristic Rate Adaptation. We first evaluate the online heuristic RA. Figure 12 shows how
heuristic RA works. Take PLANT1 as an example. We introduce physical disturbance by injecting a
constant bias into the actuator from 120 to 140 s, as shown in plot (a). Plot (b) shows the Lyapunov
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Fig. 13. Impacts of parameters in heuristic RA.

Fig. 14. Response curve of optimal RA.

function V (xt ). The two dashed lines, from upper to lower, are the thresholds for increase and
decrease of rate. Plot (c) shows the sampling rate adaptation. Tn indicates the time till the next
packet Tx, i.e., sampling period in RA. Plots (d) and (e) show the control command ut and physical
states xt , respectively. During the transient (0 − 60 s and 120 − 160 s), the control performance is
poor, which is reflected by a large value ofV (xt ). WhenV (xt ) is above the increase threshold, the
holistic controller increases the rate. When x is approaching the origin (80 − 120 s and 170 − 200 s),
as indicated by the decreases of V (xt ), and V (xt ) is below the decrease threshold for τ = 10 s, the
rate of the WSAN decreases, as shown in (c).

Figure 13 shows the impact of parameter tuning in heuristic rate selection, i.e., the increased
threshold VI th , decreased threshold coefficient λ, and the test time interval τ . Each marker in this
figure is obtained by carrying out 20 rounds of simulations. We use the mean absolute error (MAE)
as the metric of control performance, and the number of packets sent through WSAN as the metric
of energy cost. The value of X-axis is the mean of MAEs in 20 rounds of simulations, and the value
of Y-axis is the mean of total number of packets. As described in Section 4.1.1, VI th = α1 | |xse | |2,
VDth = λα1 | |xse | |2. Thus, the intuition is that smaller VI th makes rate increase more often, and
smaller λ and longer τ make rate decrease less often. We can see that with fixed τ and λ, the
MAE decreases at the cost of more network energy consumption as VI th becomes smaller. There
is a diminishing return of control performance improving as increase of energy cost. Figure 13(a)
shows that λ mostly does not affect the trajectory of curves, which indicate relationship between
MAE and network energy cost. With fixed VI th and τ , MAE decreases at more energy cost when
λ is smaller. The same holds for τ in Figure 13(b), that MAE decreases at more energy cost when
τ is longer.
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Fig. 15. Impact of ϵ2 in optimal

RA.

Fig. 16. Compare optimal RA and

heuristic RA.

7.2.2 Optimal Rate Adaptation. We evaluate the optimal RA. Figure 14 shows how optimal RA
works. Plot (b) shows the values of objective function J of three candidate rates and the opti-
mal rate solution of the optimization problem (15). During the transient processes around 0 − 50 s
and 125 − 150 s, the control performance dominates J . Therefore, high sampling rate minimizes
J . While when the system is stable during 80 − 120 s and 180 − 200 s, the communication cost
dominates J . Thus, low rate minimizes J . In this way, optimal rate selection facilitates a system-
atic balance between energy cost and control performance through adjusting the weight (ϵ2) in
J . Figure 15 shows the relationship between MAE, communication cost, and ϵ2. Each marker is
obtained by 20 rounds of simulations. Larger ϵ2 reduces energy cost at the cost of control perfor-
mance and vice versa. Considering the diminishing return of MAE improvement, proper ϵ2 could
be chosen to achieve small MAE at the cost of reasonable network energy cost.

7.2.3 Comparison between Optimal and Heuristic Approaches. The optimal RA is able to sys-
tematically balance energy and control performance. It does not need any threshold compared to
heuristic RA. However, since we propose to adapt the rate at run time, computational complexity
of the algorithms matters. Optimal RA problem is an integer programming problem. Its compu-
tational complexity is higher than the heuristic approach with the complexity of O (1). Figure 16
compares the performance of optimal and heuristic approaches. The markers on the lower left of
the figure indicate better performance that can achieve smaller MAE with less energy cost. We
can see that the optimal RA has slightly better performance than the best envelop of the heuristic
approach. The envelop is achieved by arbitrarily tuning combinations of parameters 90 times as
shown in Figure 13. However, tuning ϵ2 in optimal RA is more efficient to balance energy and
control performance. However, we can also see that the advantage of optimal RA is less remark-
able when the requirement of control performance is stringent, as shown in the right bottom
part of Figure 16. Since we have a specific and stringent requirement on control performance, i.e.,
| |xse | |2 = 0.1, λ = 0.1 and τ = 10 s, we choose to adopt heuristic RA in the rest of sections.

7.3 Normal Network and Physical Conditions

We then run network-in-the-loop simulations. We evaluate the WNCS under normal conditions.
The WSAN operated on IEEE 802.15.4’s channel 26. The average packet delivery ratio is 99.15%.
And there is no physical disturbance. We present the results of five sets of network-in-the-loop
simulations under the different management approaches:

(1) RA: Figure 17(a) shows the response curves of loop 1. In plot (b), each dot indicates Txs of
one packet, and the y-axis of the dot is the time till the next Tx. When x is approaching the
origin, as indicated by the decreases of V (xt ), and V (xt ) is below the decrease threshold
for τ = 10 s, the rate of the WSAN starts to decrease, as shown in (b). The rate changes
from 1 Hz (1 Tx every 1 s) to 0.5 Hz (1 Tx every 2 s) at t = 53 s, then to 0.25 Hz (1 Tx every
4 s) at t = 64 s.
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Fig. 17. Response curve under normal condition.

Fig. 18. Performance under normal condition.

(2) ST: Figure 17(b) shows the response curve of ST. In (b), since V (xt ) decreases, the inter-
transmission interval changes from 1 s to 10 s at t = 48 s. WhenV (xt ) increases at around
60 s to 90 s, Tn reduces to 1 s as soon as the timer expires.

(3) Fixed rate time-driven control: Existing WSANs typically employ time-drive transmis-
sions with fixed rates, so we use three fixed rates of 1 Hz, 0.5 Hz, and 0.25 Hz, denoted by
1, 2, 4 in following statistical results.

Next, we run each experiment for 20 rounds with different initial values to statistically compare
different approaches. Figure 18 shows the performances of two loops. Both RA and ST can achieve
similar control performances with fixed rate of 1 Hz, with a network cost (# of packets) reduction
of more than 50%. Loop 2 has network cost reduction of more than 62%, since it has shorter time
constant. For both loops, ST is more aggressive in saving network cost than RA.

In reality, the total energy cost, including the synchronization cost, is of interest. Therefore,
we analyze power cost over the WSAN in detail. We collect the time spent in transmitting and
listening per node per second using the Energest module [63] provided by Contiki OS. The sum of
transmitting and listening time is the radio-on time of the collection period, and the node sleeps
in the rest of the period. We adopt the energy model in Reference [64] to estimate the energy cost.
Figure 19(a) and Figure 19(b) show that the energy costs are consistent with duty cycle. Figure 19(a)
shows the average energy cost of all 70 nodes is consistent with the number of packets going
through WSAN. RA and ST save 40% energy, which is higher than energy cost of loop1 and loop2
alone in Figure 18, since energy estimation includes the cost of synchronization every second.
However, in the case of the maximum energy cost, ST costs more than RA, which can be explained
by the fact that the node incurs the maximum energy cost due to packet loss. Facing packet loss, the
node with the ST protocol keeps listening at a high energy cost because of its recovery mechanism.
Whereas the node with the RA protocol applies self-recovery mechanism without extra energy
cost. To verify this difference, we analyze the power cost of two nodes. Node 103 has a higher
packet reception ratio than node 124. Figure 19(c) shows that ST transmissions are not as efficient
as RA for node 124, due to its recovery mechanism. Figure 20 shows the relationship between
MAE and energy cost under normal condition. Each data point indicates the MAE and energy cost
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Fig. 19. Energy cost under normal condition.

Fig. 20. Relationship between MAE and energy cost under normal condition.

Fig. 21. Response curve under network interference.

of one round of experiment. Data points of RA and ST are concentrated in the bottom left of the
figure, which indicates that those approaches achieve smaller MAE with lower energy cost.

7.4 Network Interference

We operate WSAN over channel 22 (2.460 GHz) of IEEE.802.15.4, and we introduce network inter-
ference by continuously sending jamming packets over an overlapping channel 11 (2.462 GHz) of
Wi-Fi. The average packet delivery ratio is reduced to 65.9%. Figure 21 shows the response curves
of RA and ST. In plot (b), each dot indicates that the actuator receives a packet. Both methods
stay longer at high rate than in normal condition to compensate the impact of interferences. And
both the network protocols can recover from packet drops. Figure 22 shows the statistical results
under network interference. In this case, both RA and ST guarantee the control performance, at
the cost of more energy consumption than Section 7.3. ST consumes more energy than RA, due to
its packet loss recovery mechanism. Figure 23 shows the relationship between MAE and energy
cost under network interference. Data points of RA and ST are concentrated in the bottom middle,
which indicates that those approaches achieve smaller MAE with higher energy cost than normal
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Fig. 22. Performance under network interference. Fig. 23. Relationship

between MAE and

energy cost under

network interference.

Fig. 24. Response curve under physical interference. Fig. 25. Relationship be-

tween MAE and energy

cost under physical distur-

bance.

case due to recovery from network interference, but still lower than 1 Hz sampling. The simulta-
neous increase of both MAE and energy cost can be explained by the intuition of efficient holistic
control that poorer system performance will cause the increase of the rates and number of events.
However, no extra energy is cost when the system is in good condition. This trend indicates that
network resources are adapted well based on the states of the physical plants.

7.5 Physical Disturbance

We introduce physical disturbance by adding a constant bias to actuators from 120 s to 140 s. As
shown in Figure 24, both RA and ST adapt rates to 1 Hz under the physical disturbance. However,
the time ST (t = 130 s) reacts to the disturbance is later than RA (t = 126 s), since ST has longer
Tn (10 s). Figure 26 shows the statistical results. In Figure 26(a), both RA and ST have similar MAE
with a fixed rate of 1 Hz and can save more than 30% of the energy. However, in Figure 26(b), the ST
performs worse than RA within the interference interval. The longerTn (10 s) makes ST response
to disturbance slower than time-driven management. Figure 25 shows the relationship between
MAE and energy cost under physical disturbance. Data points of RA and ST are concentrated in
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Fig. 26. Performance under physical interference.

Fig. 27. Performance under network and physi-

cal interferences.

Fig. 28. Relationship

between MAE and en-

ergy cost under both

network and physical

interferences.

the bottom left of the figure, which indicates that those approaches achieve smaller MAE with
lower energy cost.

7.6 Both Network and Physical Interferences

We run experiments with both network and physical interferences in Section 7.4 and Section 7.5.
Fixed rate of 0.25 Hz causes the instability of the system. Therefore, we do not show the results
of 0.25 Hz. Figure 27 shows the statistical results that both RA and ST guarantee the control per-
formance at the costs of more energy consumption than in Section 7.5. ST costs more energy than
RA due to the recovery mechanism. Figure 28 shows the relationship between MAE and energy
cost under both network and physical interferences. Data points RA and ST are concentrated in
the bottom left, which indicates that those approaches achieve smaller MAE with lower energy
cost. The simultaneous increase of both MAE and energy cost indicate that network resources are
allocated properly based on the states of the physical plants.

To summarize, in normal physical and network condition, RA and ST can achieve similar control
performance to a conventional fixed rate of 1 Hz while improving energy efficiency. Besides, ST is
more aggressive in energy saving than RA. However, when there are interferences, RA has better
performance and energy efficiency than ST, because ST has an embedded recovery mechanism,
which costs more energy under packet loss, and a longer inter-transmission interval, which makes
ST response slowly to disturbance.

7.7 Scalability and Flexibility of WCPS-RT

Although above experimental results are based on two control loops. WCPS-RT has the scalability
to operate more control loops. In addition, it has the flexibility that end nodes of the data flows
can be any nodes in the testbed. As an example, we simulate five control loops sharing a WSAN.
Loops l1, l3, and l5 control three PLANT1s. Loops l2 and l4 control two PLANT2s. Figure 9 shows
the source and destination pairs of five actuation flows over three-floor WSAN. Table 4 shows
the MAEs and energy costs in one round (200 s) of network-in-the-loop simulation under normal
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Table 4. Performance of Five-loop Simulation

MAE1 MAE2 MAE3 MAE4 MAE5 Energy (mW)
1 0.9666 0.2891 0.9509 0.2292 0.9630 5.2730
2 1.2529 0.3158 1.2800 0.2723 1.6537 3.0461
4 1.5129 0.3131 1.6886 0.2701 1.8859 2.0233

RA 0.9435 0.2623 0.9458 0.2987 0.9671 2.7966
ST 0.9764 0.3148 1.0243 0.3151 0.9943 2.5209

condition. Loops l1, l3, and l5 have larger MAEs and are more sensitive to different rates than l2
and l4, since l2 and l4 with lower mass and damping are easier and faster to stabilize. Although
there is some randomness in single simulation, it is obvious that RA and ST can achieve similar
control performance with fixed rate of 1 Hz while saving energy for more than 47%.

8 CONCLUSIONS

Wireless control faces significant challenges due to data loss and energy constraints in wireless
networks. In this article, we present efficient holistic control approaches based on rate adaptation
(RA) and self-triggered control (ST). The holistic control architecture can not only ensure control
performance under wireless and physical interferences, but also reduce network energy consump-
tion. Furthermore, we design network reconfiguration mechanisms based on LWB to support RA
and ST. In addition, we build WCPS-RT that integrates MATLAB/Simulink and a three-floor WSAN
testbed for experimental validation of control over real-world WSANs. Our empirical studies show
that both RA and ST result in improvement of control performance and energy efficiency when
compared to traditional control systems at fixed sampling rates. The advantage in energy efficiency
of ST, however, diminishes under harsh physical and wireless network conditions due to the cost
of recovering from data loss and physical disturbance.
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