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Hurricanes threaten the petroleum industry in the United States and are expected to

be influenced by climate change. This study presents an integrated framework for

hurricane risk assessment of petroleum infrastructure under changing climatic conditions,

calculating risk in terms of monetary loss. Variants of two synthetic probabilistic storms

and one historical storm (Hurricane Ike) are simulated using the SWAN+ADCIRC model,

representing a range of potential scenarios of impacts of a changing climate on hurricane

forward speed and sea-level rise given uncertainties in climate projections. Model outputs

inform an infrastructure impact and cascading economic loss analysis that incorporates

various sources of uncertainty to estimate five types of losses sustained by petroleum

facilities in surge events: land value loss, process-unit damage loss, cost of spill clean-up

and repair of aboveground storage tanks, productivity loss, and civil fines. The proposed

risk assessment framework is applied as a case study to seven refineries along the

Houston Ship Channel (HSC), a densely-industrialized corridor in Texas. The results reveal

that either an increase in mean sea level or a decrease in storm forward speed increases

the maximum water elevations in the HSC for storms that produce maximum wind setup

in Galveston Bay (FEMA 33 and FEMA 36), resulting in larger economic loss estimates.

The role of refinery features such as storage capacity and average elevation of the refinery

and its critical equipment in the refinery response to hurricane hazards is studied, and the

probability distribution of refinery total loss and the loss risk profile in different hurricane

scenarios are discussed. Loss estimates are presented, demonstrating the effects of

hurricane forward speed and sea level on the losses for the refineries as well as the

HSC. Such a framework can enable hurricane risk assessment and loss estimation for

petroleum infrastructure to inform future policies and risk mitigation strategies. Potential

policy implications for a region like the HSC are highlighted herein as an illustration.

Keywords: petroleum infrastructure, risk assessment framework, storm surge, changing climate, monetary loss,

houston ship channel, aboveground storage tank (AST), refinery
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INTRODUCTION

Many industries in the United States (U.S.), including
manufacturing, mining, and farming, depend on petrochemical
products (Deka et al., 2016). The U.S. petroleum industry
relies heavily on infrastructures located in the Gulf of Mexico
(Chow and Elkind, 2005) which houses more than 45% of the
U.S. refinery capacity and about 51% of the U.S. natural gas
processing capacity (U.S. Energy Information Administration,
2019b), producing about 30% of crude oil and more than 20%
of natural gas in the U.S. (Dismukes, 2011). The Houston
Ship Channel (HSC) is a critical component of the petroleum
industry along the U.S. Gulf Coast, home to the second-largest
petrochemical complex in the world. Businesses in the HSC
account for more than 1.35 million jobs in the state of Texas
and contribute more than $339 billion in revenue to the state
economy (Port of Houston Authority, 2019).

Among various natural hazards, the petroleum industry,
including the infrastructure along the Gulf Coast, is most
vulnerable to hurricanes, strong winds, storm surge, flooding,
and lightning (Cruz and Krausmann, 2013). A hurricane strikes
the Houston/Galveston region, which encompasses the HSC, on
average every 9 years, and a major hurricane (i.e., a Category
3 or higher intensity on the Saffir Simpson scale) impacts the
region every 25 years (National Hurricane Center Central Pacific
Hurricane Center, 2020). Research suggests that changing climate
conditions might alter the characteristics of extreme weather
events including the return period of extreme rainfall events
(Emanuel, 2017; Patricola and Wehner, 2018), the intensity
and size of hurricanes (Mudd et al., 2014a,b; Rosowsky et al.,
2016; Ting et al., 2019), and forward speed of tropical cyclones
(Gutmann et al., 2018; Kossin, 2018; Chan, 2019; Hall and
Kossin, 2019; Lanzante, 2019; Moon et al., 2019; Hassanzadeh
et al., 2020; Yamaguchi et al., 2020; Zhang et al., 2020). Emanuel

Abbreviations: AST, Aboveground storage tank; CERISE: Center of Excellence

for Resilience of Industrial and Energy Infrastructure; FEMA, Federal Emergency

Management Agency; HCAD, Harris County Appraisal District; H-GAC,

Houston-Galveston Area Council; HSC, Houston Ship Channel; MCS,

Monte Carlo simulation; RCP 8.5, Representative Concentration Pathway

8.5; SLR, Sea-level rise; SWAN+ADCIRC, Simulating WAves Nearshore and

ADVanced CIRCulation; U.S., United States; USEIA, U.S. Energy Information

Administration; α, Ratio of an AST repair cost to its replacement cost; β , Clean-up

cost rate; γ , Civil fine per unit volume; ρL, Internal liquid specific gravity; ϕ,

Friction coefficient at AST base; B, Internal liquid height; CAST , AST replacement

cost; CClean−up, Total clean-up cost at a refinery; CR, Repair cost of an AST;

CRepair , Total repair cost of ASTs at a refinery; D, AST diameter; E [X] , Expected

value of X; f , Probability density function; H, AST height; Hw , Wave height;

IDP , Inundation depth at process-units; IRF , Facility inundation ratio; IRP ,

Process-unit inundation ratio; L1, Land value loss; L2, Process-unit damage loss;

L3, Spill clean-up and AST repair cost; L4, Productivity loss; L5, Civil fine; LHSC ,

The HSC aggregated loss; LP , Production loss; LS, Sale loss; LT , Total refinery loss;

N, Number of ASTs at a refinery; PrP , Production price; PrR, Retail price; PrW ,

Wholesale price; PtS, Sale profit; R1, Land value loss ratio; R2, Refinery damage

parameter; S, Surge height; Sd , Design stress value of the steel shell of ASTs; SV ,

Spill volume for an AST; SVT , Total spill volume at a refinery; T, Downtime;

T1, Downtime due to facility inundation; T2, Downtime due to process-unit

inundation; T3, Downtime due to petrochemical spill; Tw , Wave period; U,

Current velocity; unif , Uniform distribution; Vf , Hurricane forward speed; VLand ,

Property-appraised value of land; VRef , Refinery value; VolP , Production volume;

VolS, Sale volume;W, Wind speed.

(2017) showed that the return period of rainfalls in excess
of 500mm in Houston, Texas, decreases significantly under
Representative Concentration Pathway 8.5 (RCP 8.5: the scenario
corresponding to unmitigated emission of greenhouse gases),
dropping from 2,000 years in the late 20th century to 100 years
by the end of 21st century. Similarly, Patricola and Wehner
(2018) showed that climate change increases the probability of
extreme rainfall events. Mudd et al. (2014a,b) studied the effects
of future climate conditions such as sea surface temperature and
hurricane frequency on the hurricane wind hazard along the
U.S. East Coast. They reported significant increases in the 50-
year wind hazard due to increase in hurricane size (radius to
maximum wind speed) and intensity (maximum wind speed)
as a result of potential future change in hurricane frequency
alone or along with change of sea surface temperature. Rosowsky
et al. (2016) also reported an increase in hurricane intensity
along the U.S. East Coast under RCP 8.5. Findings from previous
research on the effect of climate change on hurricane forward
speed are more uncertain, predicting both an increase (Chan,
2019; Hassanzadeh et al., 2020; Yamaguchi et al., 2020) and
decrease (Gutmann et al., 2018; Zhang et al., 2020) in the
forward speed due to increased greenhouse gases. These climate-
induced changes in hurricane characteristics will likely influence
storm surge generation (Marsooli et al., 2019) and therefore
loading on infrastructure in hurricane-prone regions (Done et al.,
2015). Many studies have shown that hurricane size (radius to
maximum wind speed), maximum wind speed (intensity), and
landfall location largely dictate the peak surge response at the
coast with hurricane forward speed and angle of approach being
secondary factors (Irish et al., 2008; Rego and Li, 2009; Bass et al.,
2018). However, hurricane forward speed influences the storm
duration over both open-ocean and embayed water bodies, which
may influence time-variable surge dynamics at the coast, the total
volumetric flux of surge into coastal bays (Bass et al., 2018), and
therefore, the vulnerability of petroleum infrastructure.

Previous hurricanes have demonstrated the vulnerability of
many types of petroleum infrastructure, including platforms,
ports, refineries, and storage facilities, to these extreme events
(Godoy, 2007; Hoffman et al., 2009; Dismukes, 2011; Horowitz
and Disis, 2017). In addition to direct fiscal losses from
physical damage, hurricane impacts to petroleum infrastructure
can lead to secondary losses from local and global economic,
environmental and societal consequences (Palinkas et al., 1993;
Kingston, 2002; Lewis, 2009). Previous studies have either
focused on qualitative evaluation of direct physical damage to
the built environment such as buildings, bridges, levees, storage
tanks, and utility distribution networks (Cauffman et al., 2006;
Godoy, 2007) or the secondary losses or cascading consequences,
such as impacts on communities’ wellbeing and petrochemical
spills into the environment (Wu et al., 2002; Pine, 2006; Adams
et al., 2007; Frazier et al., 2010). Although risk assessment
frameworks have been created to investigate the vulnerability of
individual components of petroleum complexes during hurricane
events [e.g., business vulnerability, infrastructure resilience, flood
management, and hazardous material transport (Verter and
Kara, 2001; Zhang et al., 2009; Kim et al., 2011; Qi and Altinakar,
2011; Francis and Bekera, 2014; Anarde et al., 2018)], studies
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that analyze losses of industrial complexes comprehensively are
generally lacking (Burleson, 2015).

This study addresses current gaps in risk assessment and loss
estimation to petroleum facilities by posing a multi-disciplinary
framework that leverages models, data, and expertise across
climate and hurricane hazard modeling, infrastructure risk
assessment, and economic loss estimation, while also informing
potential policy implications. The integrated risk assessment
framework enables a first exploration of how the vulnerability of
petroleum facilities and consequent direct and secondary fiscal
losses from hurricane hazards may change in a future climate.
The next section details the components of this risk assessment
framework including potential impacts of a changing climate
to hurricane characteristics in the Gulf of Mexico, a coupled
surge and wave model for simulation of hurricane hazards, and
quantification of risk in terms of financial loss due to direct
physical damage, facility shutdowns, petrochemical spills and
associated civil fines. Application of this framework is presented
in the Results and Discussion section for a case study focused
on the effects of multiple hurricane hazards including surge,
wave, current and wind on aboveground storage tanks (ASTs)
and refineries located along the HSC. Lastly, identification of
the main risk factors for the HSC is discussed along with policy
considerations, and the study conclusions are provided in the
Conclusions section.

OVERVIEW OF THE INTEGRATED RISK
ASSESSMENT FRAMEWORK

Figure 1 provides an overview of the framework presented
herein for risk assessment of petroleum infrastructure located
in hurricane-prone regions subjected to changing climate

conditions. The HSC is selected to demonstrate the application of
the framework to a highly-industrialized corridor with multiple
refineries exposed to major hurricane hazard. As mentioned
previously, the petroleum industry is highly vulnerable to storm
surge and flooding during a hurricane event. This study explores
the sensitivity of hurricane-induced surge and flood hazard at
target petroleum infrastructures to two parameters: hurricane
forward speed

(

Vf

)

and relative sea-level rise (SLR). The focus
on these parameters is motivated by findings of recent studies
[e.g., Gutmann et al., 2018; Chan, 2019; Hall and Kossin, 2019;
Marsooli et al., 2019; Hassanzadeh et al., 2020; Yamaguchi et al.,
2020; Zhang et al., 2020] and the purpose of this paper, which
is to illustrate the application of the integrated framework to a
test case.

The tightly coupled Simulating WAves Nearshore and
ADVanced CIRCulation (SWAN+ADCIRC) model (Luettich,
2004; Dietrich et al., 2011) is then employed to simulate
multiple hurricane hazards at the locations of ASTs and
refineries including storm surge, currents, waves, and wind
and determine the corresponding loads on infrastructure.
Fragility analysis is conducted to determine the potential of
structural failure of target infrastructure from these loads
and inform a comprehensive analysis of direct and secondary
fiscal losses. As a result, the risk to the target petroleum
infrastructures is expressed in terms of monetary loss, providing
useful insights on expected risk posed to petroleum facilities
under current and potential future climate scenarios that may
then be used to develop robust hazard mitigation strategies
and policy interventions. It is noted that while this study
focuses on a single case study region and therefore imposed
future climate condition and petroleum infrastructures, the
framework is adaptable to explore the effects of changing
hurricane characteristics (e.g., hurricane size, intensity), hazards

FIGURE 1 | Overview of the integrated risk assessment framework.
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(e.g., pluvial flooding), and petroleum infrastructures (e.g., gas
processing plants) elsewhere.

Hurricane Hazard Analysis
This study simulates a suite of synthetically modified historical
and probabilistic hurricanes using the SWAN+ADCIRC model
to capture changes in surge, wave, and wind response at target
petroleum infrastructures due to potential impacts of a changing
climate. SWAN+ADCIRC is a physics-based numerical model
that can resolve the evolution of storm surge as well as wave
generation, propagation, and dissipation both at the coast and
into coastal bays, estuaries, and tributaries (Dietrich et al., 2012).
The baseline storms selected for use in this study include FEMA
Storms 33 and 36, two synthetic storms created for FEMA’s
comprehensive flood insurance study of the U.S. Gulf Coast
(FEMA, 2013), and Hurricane Ike, a historical storm which
made landfall at Galveston Island, Texas, in September 2008.
The FEMA storms were developed using the vortex-planetary
boundary layer model (FEMA, 2013) and correspond to 100-
(FEMA 33) and 500-year (FEMA 36) return period still-water
flood elevations in the HSC. Hurricane Ike generated significant
surge in the region and is used in this study to contextualize
the results of the probabilistic storm scenarios with a validated
historical storm (Hope et al., 2013) derived from reliable wind
and pressure fields [NOAA’s Hurricane Research Wind Analysis
System (Powell et al., 1998; Hope et al., 2013)].

Of the aforementioned projected impacts to hurricane
characteristics, the parameters most likely to influence
storm surge generation and therefore loading of petroleum
infrastructure include changes to the forward translation speed
(Gutmann et al., 2018; Kossin, 2018; Chan, 2019; Hall and Kossin,
2019; Lanzante, 2019; Moon et al., 2019; Hassanzadeh et al.,
2020; Yamaguchi et al., 2020; Zhang et al., 2020), intensity (faster
maximum winds), and hurricane size (radius to maximum
wind speed) ((Mudd et al., 2014a,b; Rosowsky et al., 2016;
Gutmann et al., 2018)). The influence of climate change on
the forward translation speed of tropical cyclones both at a
global and basin-wide scale is uncertain as modeling studies
have shown both an increase (Chan, 2019; Hassanzadeh et al.,
2020; Yamaguchi et al., 2020) and decrease (Gutmann et al.,
2018; Zhang et al., 2020) in the forward speed of simulated
future tropical cyclones. Specifically for Texas, using outputs
of climate models and downscaling experiments, Hassanzadeh
et al. (2020) found an increase in the northward steering winds
and likelihood of faster-moving landfalling hurricanes under
climate change. However, using simulations of Hurricane Ike
under climate change, Gutmann et al. (2018) found a decrease in
Hurricane Ike’s forward speed.

Here, taking these climate projection uncertainties into
account, the effect of changing forward speed, including both
slower and faster hurricanes, on inland surge response is
examined for a range of imposed mean sea levels. The forward
translation speeds of the three baseline hurricanes (5.6, 5.6, and
6 m/s for FEMA 33, FEMA 36, and Hurricane Ike, respectively)
are modified to values within the range of forward speeds typical
of this region [3–12 m/s (Liu and Irish, 2019)] by altering
the time component of the input wind and pressure fields.

This approach generates synthetic variants of FEMA 33, FEMA
36, and Hurricane Ike with differing forward speeds but the
same spatial characteristics (wind and pressure fields, track,
and landfall location) as the baseline storm, which is similar
in approach to the standardized modifications of synthetic
and historical storms adopted in other surge response studies
along the Gulf Coast (Sebastian et al., 2014; Bass et al., 2018).
Three future sea levels are imposed for the slowest, fastest,
and baseline storm scenarios (20, 96.5, and 173 cm above mean
sea level), corresponding to the projected minimum, average,
and maximum SLR in the Houston/Galveston region between
2,030 and 2,100 within the 95% confidence bounds (Kopp et al.,
2014). The hurricane scenarios are analyzed in SWAN+ADCIRC
simulations, and the resulting water elevations, current velocities,
wind speeds, wave heights and wave periods at locations of
interest are used in the loss analysis discussed in the next section.

Loss Analysis Framework
The loss analysis framework presented herein couples
infrastructure fragility analysis with an economic loss analysis to
quantify the monetary impact of hurricane hazards on petroleum
infrastructure, namely ASTs and oil refineries. ASTs are widely
used for storage of petrochemical materials at short-term storage
facilities, refineries, and product terminals. Because of their light
weight and thin steel shells, ASTs are vulnerable to dislocation
and buckling during hurricane events (Kameshwar and Padgett,
2018b). Numerous instances of AST failures have been observed
in the wake of past hurricanes (Godoy, 2007; Hyder, 2008; Sengul
et al., 2012), resulting in recorded spills of more than 26.5ml of
petrochemicals for Hurricanes Katrina and Rita (Godoy, 2007)
alone. Refineries are key facilities in the petroleum industry,
which produce a wide range of petrochemicals from crude oil.
In a hurricane event, refineries may cease operations as a result
of storm surge inundation or flooding (Horowitz and Disis,
2017) and consequently suffer significant economic losses due to
loss of production and inundation-induced damage. As detailed
in the following sections, the total loss risk profile at a given
refinery considers the following loss components: land value
loss, process-unit damage loss, spill clean-up and AST repair
cost, productivity loss, and civil fines. Refinery total loss is the
summation of these loss components, and aggregated loss at a
regional level equals the summation of the total losses of target
facilities in the region.

The proposed loss analysis framework detailed below is
applied to seven refineries (referred to as “Refinery 1–7” herein,
as shown in Figure 2), and the ASTs located in these facilities’
boundaries. All analyses conducted herein leverage only publicly
accessible data for the inventory, damage, and loss estimation.
Refined estimates with reduced uncertainty could leverage in-
house data by owners. Information on refinery boundaries and
process-units are derived from analysis of 2018 aerial imagery
provided by the Houston-Galveston Area Council (H-GAC)
(2018) and 2019 parcel data from Harris County Appraisal
District (HCAD) (2019). The AST inventory developed by
Bernier et al. (2017) is updated in this study through analysis
of 2008 LiDAR data and 2018 aerial imagery from H-GAC
[Houston-Galveston Area Council (H-GAC), 2018] to obtain
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FIGURE 2 | Refineries and ASTs in the HSC area considered in the case study.

the number, locations, and dimensions of the ASTs in the HSC
in 2018. For ASTs identified in the 2018 aerial imagery of the
region not present in the 2008 LiDAR data, the regression model
proposed by Bernier et al. (2017) is used to estimate missing
heights from AST diameters. Berm heights surrounding ASTs are
also derived from the 2008 LiDAR data, and for tanks not present
in 2008, berm heights are estimated based on those of other tanks
at a facility of comparable size.

Land Value Loss (L1)
Land value loss (L1) captures the loss of land value due to facility
inundation and is here estimated based on the method proposed
by Burleson (2015) as:

L1 = R1.VLand (1)

where VLand is the property-appraised value of land, and R1
is the land value loss ratio. As shown in Figure 3A, R1 is a
function of the facility inundation ratio (IRF), which is estimated
here as the ratio of wet land’s area to the facility area using
SWAN+ADCIRC results. Property land values for each refinery
are obtained from tax assessor databases such as the HCAD
(Harris County Appraisal District, 2019) and are presented in
Table A1.

Process-Unit Damage Loss (L2)
As proposed by Hazus (Federal Emergency Management Agency
(FEMA) Mitigation Division, 2018), the loss due to inundation
of process-units within each refinery is estimated by process-unit
damage loss (L2 ):

L2 = R2.VRef (2)

where the economic loss is a function of the refinery value
(

VRef

)

and a damage parameter (R2). VRef is defined based
on the refinery size, which for the refineries located along
the HSC takes on a value of $750 million [Table A1 (Federal
Emergency Management Agency (FEMA) Mitigation Division,
2018)] based on the Hazus classification as either a medium-
or large-sized facility (A Barrel Full, 2019; U.S. Energy
Information Administration, 2019b). As defined by Hazus
[Federal Emergency Management Agency (FEMA) Mitigation
Division, 2018], R2 is a function of inundation depth at the
process-units (IDP) (Figure 3B).

Spill Clean-Up and AST Repair Cost (L3)
Themethodology detailed in this section provides the probability
distributions of AST repair cost, spill volume, and spill clean-
up cost, considering uncertainties due to the friction coefficient
at the AST base, internal liquid height, specific gravity of the
internal liquid, and AST replacement cost. To determine the
probability of failure for ASTs under concurrent surge, wave, and
wind loading, this study utilizes parameterized fragility models
for dislocation and buckling of ASTs developed by Bernier
and Padgett (2019), informed by SWAN+ADCIRC outputs for
surge, wave, current and wind forcing at each AST location.
A parameterized fragility model is a mathematical function
which determines the conditional probability of failure of an
AST in terms of the applied loads and the AST geometric,
structural and material parameters such as diameter (D), height

(H), specific gravity (ρL) of the liquid content, internal liquid
height (B), design stress value (Sd) of the steel shell, and
friction coefficient (ϕ) at the AST base. In this study, AST
dimensions are determined from the derived HSC inventory
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FIGURE 3 | Function to (A) determine land value loss ratio (R1) [adopted from (Burleson, 2015)]; and (B) process-unit damage parameter (R2) [adopted from (Federal

Emergency Management Agency (FEMA) Mitigation Division, 2018)].

database, and the design stress value is assumed to be 160 MPa,
the most common value for steel grade used in the U.S. for
construction of ASTs. The internal liquid specific gravity, liquid
height, and friction coefficient are treated as random variables
with uniform distributions (Bernier et al., 2017). The ASTs
are assumed to be unanchored, which is a common practice
in facilities along the HSC (Bernier et al., 2017), and a series
system is assumed for AST failure. The adopted approach for
damage evaluation of ASTs, i.e., parameterized fragility models,
accounts for common sources of structure-to-structure damage
correlations by using the geometric, structural, and material
properties of ASTs as predictors. However, additional sources
of correlated damage, such as interference of adjacent ASTs on
the loads or failure mechanisms, are not considered herein and
should be implemented in future regional risk assessment studies.

To estimate the expected repair cost (E [CR]) of a failed AST,
the framework developed by Kameshwar and Padgett (2018a) is
employed, in which the AST repair cost is a fraction (α) of its
replacement cost (CAST) and the failuremode and is calculated as:

E [CR] =

∫

α

∫

B

∫

ρL

∫

ϕ

αCASTP
(

Failure
∣

∣D,H, ρL,B, Sd,ϕ, S,Hw,Tw,U,W
)

fϕ (ϕ) fρL (ρL) fB
(

b
)

fα (α) dφdρLdbdα (3)

where α varies uniformly between 0.8 and 1.0
[α ∼ unif (0.8, 1.0)] if the AST fails due to dislocation,
and in the case of buckling, it varies uniformly between 0.15
and 0.8 [α ∼ unif (0.15, 0.8)] (Kameshwar and Padgett,
2018a). The replacement costs of the ASTs are determined from
the Michigan tax assessor’s manual (Michigan Department
of Treasury, 2003) and converted to present values using the
Nelson-Farrar Refinery Construction Index (Nelson-Farrar cost
indexes, 2004, 2017). S, Hw, Tw, U, and W are surge height,
wave height, wave period, current velocity, and wind speed
at each AST location, respectively. Assuming a series-system
assumption for the ASTs failure due to either dislocation or
buckling, the maximum value estimated by the AST fragility
models is used for the conditional probability of failure
[P

(

Failure
∣

∣D,H, ρL,B, Sd,ϕ, S,Hw,Tw,U,W
)

], and fϕ (ϕ),
fρL (ρL), and fB

(

b
)

are the probability density functions for
friction coefficient at the AST base, the specific gravity of
internal liquid, and internal liquid height, respectively, with the
following lower and upper bounds 0.3 ≤ ϕ ≤ 0.7, 0.5 ≤ ρL ≤ 1,

and 0 ≤ B ≤ 0.9H (Bernier and Padgett, 2019). fα (α) is the
probability density function for α with the aforementioned
lower and upper bounds (Kameshwar and Padgett, 2018a). To
propagate uncertainty effects in the estimation of CR and the
integral in Equation (3), a Monte Carlo simulation (MCS) is
employed, which generates samples of the ASTs based on the
aforementioned parameter distributions and estimates repair
cost of each AST. For each sample in the MCS, the total repair
cost

(

CRepair

)

equals the summation of the repair costs of all the
failed ASTs at a target refinery:

CRepair =

N
∑

i=1

CR,i (4)

where N is the total number of ASTs at the target refinery, and
CR,i is the repair cost of each AST.

A similar approach is employed to calculate the expected
spill volume. It is assumed that the ASTs completely spill their
contents upon structural failure, although the internal liquid level

is considered a random variable. While this assumption may
result in conservative spill volumes, it is deemed acceptable due
to the environmental and economic consequences of hazardous
material spills (Bernier et al., 2018). The expected spill volume

(E [SV]) of each AST under surge, wave, and wind loading is
calculated as:

E [SV] =

∫

B

∫

ρL

∫

ϕ

πD2B

4
P

(

Failure
∣

∣D,H, ρL,B, Sd,ϕ, S,Hw,Tw,U,W
)

fϕ (ϕ) fρL (ρL) fB
(

b
)

dφdρLdb (5)

By regulation, containment berms are constructed at the
perimeter of ASTs to contain hazardous material spills. In
cases that the surge elevation is lower than the top of
the berm, the surge does not reach the ASTs and the
corresponding spill volume is zero. MCS is conducted to
estimate the spill volumes for the ASTs, and for each
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sample in the MCS, the total clean-up cost
(

CClean−up

)

of
petrochemical spills from all of the ASTs at a target refinery is
calculated as:

CClean−up = β
∑

i=1

NSVi (6)

where SVi is the spill volume for each AST (in liters),
and β is the clean-up cost rate, which is taken here
as an estimated $12/liter (U.S. Coast Guard (USCG),
2006). Finally, L3 is the summation of the total
AST repair cost (Equation 4) and spill clean-up cost
(Equation 6):

L3 = CRepair + CClean−up (7)

Productivity Loss (L4)
During hurricanes, refineries may need to shut down operations
due to environmental concerns as well as the safety of their
employees and neighboring communities. The losses incurred by
refineries during this downtime are captured by productivity loss,
which encompasses both losses from lack of production of new
petrochemical products (LP) and the selling of existing products

(LS). While the loss of production may not be compensated,
the facilities can sell existing products after the hurricane has
dissipated. To estimate LP and LS, the downtime duration,
volumes of production and sale, production prices, and sale
profits need to be determined. In this study, facility downtime

(T) is estimated using the method proposed by Burleson (2015)
where the total downtime at a facility is taken as a sum of the
downtime attributed to three different factors:

T = T1 + T2 + T3 (8)

where T1, T2, and T3 are time parameters that depend on
the inundation ratio of the refinery, inundation ratio of the
process-units (IRP), and spill volume at the refinery, respectively
(Figure 4). It is acknowledged herein that these downtimes
may be conservative as their computation implies compounding
downtime over these factors rather than any parallel restoration
efforts. The spill volume at each refinery (SVT) is determined by
adding up the spills from individual ASTs:

SVT =

∑

N
i=1SVi (9)

It is noted that the MCS performed herein generates
probability distributions for SVi and SVT , which, due to the
dependency of downtime on the total spill volume, results in a
probability distribution for downtime as well.

Although oil refineries produce a wide range of
petrochemicals, this study only estimates the productivity
loss for gasoline and distillate fuel oils, which together represent
more than 66% of petrochemicals produced at a typical refinery
(U.S. Energy Information Administration, 2019c). Price data
related to production volumes

(

VolP
)

and sale volumes
(

VolS
)

for
gasoline and distillate fuel oils (Table A2) are collected from the
U.S. Energy Information Administration (USEIA) databases for
the Gulf Coast region (U.S. Energy Information Administration,
2019d) for three different time spans to encapsulate temporal
variability in volumes and prices: average values for the 2018
calendar year, average values for the 2018 hurricane season
(June-November), and average values for August and September
of 2018 (peak hurricane season). The prices are assumed to be
the same for the refineries along the HSC. The commodities
produced at each refinery in the Gulf Coast are determined from
(A Barrel Full, 2019), and the production and sale volumes for
each target refinery are assumed to be proportional to the relative
capacity of the refinery to the total capacity of the Gulf Coast
refineries (Table A3). Production loss is then calculated as:

LP,j = T.VolP,j. PrP,j (10)

where j represents gasoline or distillate fuel oils, and PrP is the
production price of gasoline or distillate fuel oils, which are taken
as 66% and 63% of their retail prices (PrR), respectively (U.S.
Energy Information Administration, 2019a):

Pr P, Gasoline = 0.66 Pr R,Gasoline (11.a)

Pr P,Distillates = 0.63 Pr R,Distillates (11.b)

Similarly, sale loss is calculated as:

LS,j = T.VolS,j . PtS,j (12)

where PtS is the sale profit that is determined by subtracting the
wholesale price (PrW) and production price:

PtS,j = PrW,j − Pr P,j (13)

FIGURE 4 | Time parameters in the estimation of refinery downtime due to (A) refinery inundation (B) process-units inundation and (C) petrochemical spill [adopted

from (Burleson, 2015)].
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Finally, productivity loss (L4) is calculated by summation of
production loss and sale loss of the two commodities:

L4 =
∑

j

(

LP,j + LS,j
)

(14)

Civil Fine (L5 )

Petroleum facilities are not only obligated to pay for spill
clean-ups but are also subject to state and federal fines for
petrochemical spills on land or in waterways. Civil penalties
associated with petrochemical spills differ by state. For the state
of Texas, civil penalties can include fines of up to $6.3/liter
($1,000/barrel) for any oil and gas liquid spill on land exceeding
795 liters (5 barrels) and any oil and gas liquid spill in
state waterways causing a sheen (Texas Statutes, 2005; Texas
Administrative Code, 2007). Given the nature of this study,
spills larger than 795 liters are expected herein. Also, the
maximum penalty limits are the same for spills on land or
in state waterways, resulting in similar estimates for the state
fines from the two categories. Therefore, only spills in state
waterways are incorporated in the loss analysis framework. In
addition to the state penalties, federal civil penalties include fines
up to $6.92/liter ($1,100/barrel) spilled in any federal waters
causing a sheen in the absence of negligence and up to $27/liter
($4,300/barrel) spilled if resulting from negligence (Clean Water
Act, 1972). Here, absence of negligence and pursuit of fines by
state/federal officials are assumed, and the facility is subject to
either state fines, federal fines, or some combination of both. The
maximum amount of fine is used herein in the analysis, modeled
with a uniform probability distribution with $6.3 and $6.92 as
the lower and upper bounds. The resulting civil fine (L5) is then
estimated as:

L5 = SVT .γ (15)

where SVT (Equation 9) here is the spill volume in units of liters,
and γ is the civil fine per unit volume, taken here as a uniform
distribution with lower and upper bounds based on the estimates
for state and federal penalties [γ ∼ unif (6.3, 6.92) ] in units of
$/liter. It is noted that the MCS performed herein generates a
probability distribution for SVT , which results in a probability
distribution for the civil fine as well.

Refinery Total Loss (LT) and the HSC Aggregated

Loss (LHSC )

Upon calculation of the loss components, refinery total (LT) loss
is given by

LT = L1 + L2 + L3 + L4 + L5 (16)

and the HSC aggregated loss (LHSC) is calculated as:

LHSC =

∑

7
k=1LT,k (17)

where LT,k is the total loss at Refinery k.
Asmentioned previously, the loss analysis framework employs

MCS in which the effects of uncertainty sources such as the
friction coefficient at the AST base, internal liquid height,

TABLE 1 | Parameters and estimation methods used in the loss analysis

framework.

Input parameters Intermediate

parameters

Loss

estimates

Probabilistic ϕ, B, ρL, α SV, SVT
T3, T

CR, CRepair ,

CClean−up

LP, LS

L3, L4, L5

LT , LHSC

Deterministic S, Hw, Tw, U, W R1, R2

VLand , VRef IRF , IRP, IDP L1, L2

D, H, Sd , CAST T1, T2

N, β, γ

VolP, VolS, PrP, PrR, PrW , PtS

specific gravity of the internal liquid, and AST replacement cost
are propagated by generating 200,000 samples for each AST,
assuring convergence of the expected values and coefficients of
variation of the estimated parameters. As a result, some of the
intermediate parameters and final loss estimates are evaluated
probabilistically, while the rest of the parameters are calculated
via a deterministic approach (Table 1). In the following sections,
the deterministically-calculated parameters and expected values
of the probabilistically-estimated parameters are presented, along
with the probability distribution of refinery total loss estimates.

RESULTS AND DISCUSSION

In this study, the total loss incurred by a refinery during a
hurricane event consists of five types of losses: land value loss,
process-unit damage loss, spill clean-up and AST repair cost,
productivity loss, and civil fine. The magnitude of each of these
losses is primarily a function of the maximum water level at
the facility location (i.e., storm surge). As explained in the Loss
Analysis Framework section, the land value loss and process-unit
damage loss depend on the facility inundation ratio (Equation 1
and Figure 3A) and inundation depth at process-units (Equation
2 and Figure 3B), respectively, which both depend on the depth
of storm surge at the facility. Likewise, Bernier and Padgett (2019)
showed that, while multi-hazard effects are important, storm
surge is the most dominant load acting on ASTs during hurricane
events; consequently, themodeled spill clean-up, AST repair cost,
and civil fine (proportional to spill volume) are all driven by
the maximum surge at each AST location. Lastly, productivity
loss is dependent on the facility downtime (Equations 10, 12,
and 14) which is a function of the facility inundation ratio,
the process-unit inundation ratio, as well as the spill volume
(Equation 8 and Figure 4), again, all of which are influenced
by the water elevation. Given the importance of the maximum
water elevation in the loss estimation, the results of the case
study are organized to first identify large-scale changes in storm
surge both regionally and within the HSC due to the simulated
climate impacts and then investigate the sensitivity of monetary
losses at the seven target refineries to the observed changes in
hurricane hazards.
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Hurricane Hazards
Figure 5 provides a regional overview of the maximum water
elevations for the baseline Hurricane Ike, FEMA 33, and FEMA
36 simulations, as well as the upper and lower range of forward
speeds simulated in this study for each storm (all with SLR =

0). The highest surge levels within the HSC are generated by
the slowest variants of FEMA 33 and FEMA 36

(

Vf = 3 m/s
)

.
Recalling that the baseline FEMA 33 and FEMA 36 storms (i.e.,
SLR = 0 and Vf = 5.6 m/s) correspond to ∼100- and 500-year
return period still-water flood elevations in the HSC, this landfall
location west of Galveston Bay directs the most intense winds
at the bay coastline and therefore ideal conditions to maximize
surge generation (via wind setup) and propagation toward the
Houston/Galveston region. In contrast, Hurricane Ike makes
landfall directly over the bay which directs themost intense winds
to the east of the Houston/Galveston region. Hence, Hurricane
Ike does not produce large surge elevations within the HSC, and
interestingly, surge elevations are larger for the original hurricane
forward speed than the slower or faster modifications. Consistent
with the findings of Bass et al. (2018), the surge response at the
coast does not significantly vary with forward speed for all three
storms, and thus the increase in peak surge as well as inundated
area in the HSC due to the decreasing forward translation speed

of FEMA 33 and FEMA 36 is likely a result of the increase in the
storm residence time over Galveston Bay. Likewise, an increase
in forward translation speed for FEMA 33 and FEMA 36 results
in a decrease in storm residence time over the bay, producing a
lower maximum surge and a smaller inundation extent within
the HSC. Hence, the effect of changing hurricane forward speed
on water levels in the HSC depends on both the storm track and
landfall location.

The sensitivity of the maximum water elevation to both
hurricane forward speed (increase and decrease) and SLR is
shown in detail for the HSC in Figure 6. For simplicity, only
FEMA 33 is shown in Figure 6 as Hurricane Ike and its simulated
synthetic variants did not produce significant surge in the HSC
and trends in maximum water levels were consistent between
FEMA 33 and FEMA 36. For all storm scenarios, an increase in
mean sea level results in higher maximum water levels in the
HSC. In summary, the effect of the simulated climate impacts
(i.e., increase in mean sea level and decrease in storm forward
speed) on maximum water levels in the HSC are only significant
for the probabilistic storms (FEMA 33 and FEMA 36) due to their
landfall location, which as discussed in the following section,
results in larger economic losses at the target refineries due to
larger inundation depths.

FIGURE 5 | Maximum water elevations for the baseline, slowest and fastest hurricane scenarios (SLR = 0 cm).
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FIGURE 6 | Effect of SLR and (select) forward speeds on the maximum water elevations of FEMA 33 in the HSC and the target refineries.

Economic Impacts
The hurricane hazard intensity measures, i.e., surge level,
wave height, current velocity, and wind speed from the
SWAN+ADCIRC simulations, are used to estimate economic
losses in the HSC via calculation of intermediate parameters
at the target refineries, including the facility inundation ratio,
inundation depth at process-units, expected spill volume, and
expected downtime. In the following section, the sensitivity of
the intermediate parameters to variations in maximum water
elevation is first presented, followed by a discussion of the role of
refinery features. Estimates of the loss components, refinery total
losses, and the HSC aggregated loss are presented, and the profile
and probability distribution of refinery total loss are explained.

To study the effects of temporal variations of the refineries’
production and sale volumes and prices, the data from three
different time spans are used here: average values for the 2018
calendar year, average values for the 2018 hurricane season, and
average values for August and September of 2018. The analysis
results show that the difference between the maximum and
minimum refinery total loss estimates for the time spans is <6%
in the majority of the simulations and reaches 10% in a few cases.
Accordingly, such differences are not discussed further in this
paper, and only the loss estimates from the average values of
production and sale volumes and prices in 2018 are reported.

Sensitivity of Intermediate Parameters to Changing

Climate Forcing
The forward speed and SLR affect water elevations, and
therefore, influence the intermediate parameters and loss
estimates. Existing research predicts both an increase (Chan,
2019; Hassanzadeh et al., 2020; Yamaguchi et al., 2020) and
decrease (Gutmann et al., 2018; Zhang et al., 2020) in the

forward speed of hurricanes due to changing climate conditions.
To account for the potential changes of this parameter, typical
hurricane forward speeds for the case study region [3–12m/s (Liu
and Irish, 2019)] are investigated herein. Also, three future sea
levels (20, 96.5, and 173 cm above mean sea level) are imposed
for the slowest, fastest, and baseline storm scenarios, which
correspond to the projected minimum, average, and maximum
SLR in the study region between 2,030 and 2,100 within the 95%
confidence bounds (Kopp et al., 2014). While FEMA 33 is used
here to discuss such effects, similar patterns are observed for the
other hurricanes. Figures 7, 8 show variations of the intermediate
parameters due to the changes in forward speed of FEMA 33 and
SLR, respectively. These figures reveal that the facility inundation
ratio and inundation depth at process-units go up for slower
forward speeds and larger SLR (Figures 7A,B, 8A,B). This can be
attributed to higher water elevations across the HSC (Figure 6)
in the case of slower speeds of FEMA 33 and higher SLR values.
It is noted that the increase in the inundation depth at process-
units due to an increase in sea level is non-linear, and in almost
all cases is less than the amount of SLR (Figure 8B). Also,
the hurricane scenarios with higher water elevations produce
stronger impacts on more ASTs, leading to increased expected
spill volume (Figures 7C, 8C). Downtime is a function of spill
volume and inundation ratio of the facility and its process-units,
which all increase due to higher water elevations. It is noted that
downtime of a refinery is determined by the summation of three
time parameters, i.e., T1, T2, and T3 (Equation 8 and Figure 4).
Since these parameters are step functions of the intermediate
parameters, expected downtime does not increase in some cases,
in which it takes the minimum value of 7 days, e.g., Refinery 6 in
Figures 7D, 8D. In such cases, inundation ratio of the process-
units and expected spill volume are negligible, resulting in T2 =
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FIGURE 7 | Effect of forward speed of FEMA 33 (SLR = 0 cm) on the intermediate parameters used in the loss analysis. (A) Facility inundation, (B) Process-units

inundation, (C) Spill volume, (D) Refinery downtime.

T3 = 0, and while the inundation ratio of the facility increases
due to the variations in forward speed and SLR, it remains<20%,
resulting in T1 = 7.

Role of Refinery Features
As Figures 7, 8 show, the intermediate parameters at Refineries
1, 3, 4, and 7 are usually more sensitive to the changes in
hurricane forward speed and SLR. The sensitivity is attributed to
the refineries’ features such as facility average elevation, process-
unit average elevation, average elevation of ASTs, and storage
capacity of refinery, which are compared for the seven refineries
in Figure 9. As the figure shows, Refineries 1, 3, and 7 are always
among the four facilities with the lowest elevation parameters.
Accordingly, the facility inundation ratio and inundation depth
at process-units are very sensitive to the water elevation at these
refineries as influenced by changes in the forward speed and
SLR. Similarly, the ASTs located at these three refineries are
susceptible to storm surge and consequent damages. Refineries
2 and 6, on the other hand, are often the ones with the highest
elevation parameters, making these two facilities less vulnerable
to water level variations caused by the forward speed and SLR.
Compared to the sensitive facilities, i.e., Refineries 1, 3, and 7,
because of the higher elevation parameters of Refinery 5, this
facility displays less sensitivity to the changes in the forward
speed and SLR. Refinery 4 displays unique features. On one side,
due to low average elevation of its process-units and ASTs and

its considerable storage capacity, inundation depth at process-
units and expected spill volume of Refinery 4 are very sensitive
to variations of the forward speed and SLR. On the other side,
Refinery 4 has the highest average facility elevation among the
seven refineries. Therefore, <10% of Refinery 4 is inundated
in hurricanes with relatively low water elevations (Figure 7A).
However, the facility inundation ratio increases in more severe
hurricanes (Figure 8A) due to its location relative to the HSC
(Figure 2), which is significantly inundated as sea level increases
(Figure 6).

Estimates of the Loss Components and Loss Risk

Profile
With a better understanding of the relative effect of different
climate impacts (i.e., storm forward speed and SLR) on the
intermediate parameters, this section presents estimated loss
components to help understand the relative contribution of
different loss components to the total loss, termed the loss risk
profile. Moreover, the influence of climate impacts on these loss
components is explored. Although all of the seven refineries
display similar loss risk profiles, for expository purposes, the
discussion here focuses on Refinery 7. Figure 10 displays
estimates for the loss components at Refinery 7 subjected to
FEMA 33, for which slower hurricanes and larger SLR result in
higher water elevations. Along with the intermediate parameters
(Figures 7, 8), the various loss components (Figure 10) increase
as the forward speed of FEMA 33 decreases or when sea level
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FIGURE 8 | Effect of SLR of FEMA 33 (original forward speed, i.e., 5.6 m/s) on the intermediate parameters used in the loss analysis. (A) Facility inundation, (B)

Process-units inundation, (C) Spill volume, (D) Refinery downtime.

increases. Different loss risk profiles are observed for different
scenarios. That is, for hurricanes with low water elevations,
AST damage and spill volume are insignificant, and the total
loss is dominated by production loss. However, for hurricanes
with higher water elevations, the AST damage and spill volume
increase, considerably increasing the contribution of spill clean-
up cost and civil fine to refinery total loss. In other words,
depending on the hurricane severity, two general loss profiles
exist: (a) hurricanes generating low water elevations, in which
refinery total loss is dominated by production loss, often
accounting for more than 70% of the total loss; (b) severe
hurricanes with high water elevations, resulting in significant
AST damage and spill, in which refinery total loss is dominated
by production loss and spill clean-up cost. It should be noted
that larger spill volumes not only increase the spill clean-up cost
and civil fine but also lengthen the refinery downtime, which
indirectly increases the production loss.

In Figure 10A, production loss and sale loss resemble step
functions. This is due to the definition of refinery downtime
(Equation 8) and the step functions used in the determination
of downtime (Figure 4). Comparison of the components of
productivity loss shows that production loss is significantly larger
than sale loss, which is attributed to relatively large production
volumes and small sale volumes as reported in Table A3. In
this regard, while the facilities lose the opportunity to produce
petrochemicals during a shutdown, they are able to sell existing
products once the refinery operations are resumed, which

eventually reduces the contribution of the sale loss to the refinery
total loss. Comparison of spill clean-up cost and AST repair cost
provides additional insight, indicating that AST repair cost is
considerably smaller and could be neglected without impacting
the total loss estimates. Predictive modeling of AST performance,
however, is essential to estimating facility level losses given their
direct impact on estimated spill volumes and associated losses
(e.g., clean-up cost, civil fines, and productivity loss).

Total Loss Estimates
The expected values of total loss estimates for each of the
refineries subjected to Hurricane Ike, FEMA 33, and FEMA
36 are presented in Figure 11 for hurricanes with different
forward speeds and in Figure 12 for different SLR values. As
the figures show, the refineries’ expected losses vary in a large
range from $10 million to $8 billion, depending on the hurricane
scenario. The expected value of the aggregated loss of the seven
refineries varies from $600 million to $21.5 billion. The loss
estimates generally follow the trend ofmaximumwater elevations
generated by the hurricanes, although facility and structural
features can have a significant influence on the damage and
subsequent losses. That is, in the case of Hurricane Ike without
SLR (Figures 11A,B), the water elevations are maximum at Vf =

6 m/s. Similarly, the HSC aggregated loss is maximum at Vf =

6 m/s (Figure 11B). Although Refineries 4 and 7 follow the
same pattern, the total loss at the rest of the refineries does not
change with the forward speed. That is, in the case of Refineries
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1, 2, 3, 5, and 6 subjected to Hurricane Ike without SLR, all
of the expected loss components are negligible except for the
productivity loss, which is proportional to the refinery downtime
as well as the production and sale volumes. In this case, the
refinery downtime takes the minimum value of 7 days, making
the refinery total loss estimates proportional to the production
and sale volumes provided in Table A3, which follow the same
order as the one in Figure 11A. In the case of FEMA 33 and
FEMA 36, the hurricanes create higher water elevations than Ike,
causing additional losses and increasing the refinery total loss
estimates. For these two hurricanes, the maximum water level
is higher for slower hurricanes, and the loss estimates follow
the same pattern as displayed in Figures 11C–F. Particularly,
slower versions of FEMA 33 and FEMA 36 result in considerable
spills at the refineries, which not only increase the total loss
estimates, but also, depending on the refineries’ features, change
the order of the refinery total losses compared to Hurricane Ike
(Figure 11A). For faster versions of FEMA 33 and FEMA 36, the
order of refinery total loss is the same as the order observed for
Hurricane Ike. As the figure shows, some of the refineries, e.g.,
Refineries 1, 3, 4, and 7, are more sensitive to the variations of
forward speed for FEMA 33 and FEMA 36, a pattern similar to
the one observed for the intermediate parameters in previous
sections. In the case of Hurricane Ike, however, water elevations
are often lower than FEMA 33 and FEMA 36, and effect of
the refineries’ features (i.e., storage capacity and the elevation
parameters) is insignificant.

Figure 12 shows the effect of SLR on the estimates for the
refineries’ losses and the HSC aggregated loss. In this case, higher
SLR produces higher water elevations which result in larger
loss estimates. In other words, the refinery total loss estimates
increase with SLR. However, variation of loss at some facilities,
e.g., Refineries 1, 3, 4, and 7, is more sensitive to the sea level
variations, which is attributed to the refineries’ features such
as the elevation parameters and storage capacity, displayed in
Figure 9 and discussed in previous sections. The HSC aggregated
loss follows the same pattern as the refinery total loss estimates
and increases with SLR, almost linearly in the case of FEMA 33
and FEMA 36.

Probability Distribution of Refinery Total Loss
In addition to exploring the loss estimates and loss risk profile
based on the expected losses in the prior sections, this section
explores the uncertainty in that total loss per refinery, and
the probability distribution of the total losses is evaluated. The
uncertainties related to AST failure and spill volumes (which
affect a number of loss components) are considered, such as
the internal liquid height and consequently volume of contents,
specific gravity of the internal liquid, AST replacement costs,
and the friction coefficient at AST base. As discussed in the
Loss Analysis Framework section, MCS with 200,000 samples
is conducted to determine the probability distributions with
converged estimates for the expected values and corresponding
coefficients of variation.

FIGURE 9 | Comparison of the refineries’ features: (A) Refinery average elevation, (B) Process-unit average elevation, (C) AST base average elevation, (D) storage

capacity.
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FIGURE 10 | Effect of (A) the forward speed and (B) SLR of FEMA 33 on the loss components at Refinery 7.

FIGURE 11 | Effect of forward speed of Hurricane Ike, FEMA 33, and FEMA 36 on the refinery total losses and the HSC aggregated loss (SLR = 0 cm).
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FIGURE 12 | Effect of SLR on the refinery total losses and the HSC aggregated loss caused by Hurricane Ike, FEMA 33, and FEMA 36 with their original forward

speed.

As a result of probabilistic modeling, uncertainty is
propagated in estimating the spill volume, AST repair cost,
and refinery downtime, resulting in distributions for the spill
clean-up cost, AST repair cost, productivity loss, and civil
fine, while land value loss and process-unit damage loss are
taken as deterministic for the present study. The uncertainties
considered herein result in coefficients of variation for refinery
total loss which are relatively low, and in a few cases reach up
to 0.44 for refineries and 0.10 for the HSC aggregated loss. It
is acknowledged that this study has not taken into account
several potential sources of uncertainty such as those in the
loading conditions, refineries’ valuations, rate of clean-up cost,
production and sale volumes and prices, and civil fines per
unit volume of spill. Such uncertainties should be explored in

the future to obtain a richer understanding of the distribution
of total losses per refinery and uncertainty in the aggregate
HSC losses.

For the proposed framework and included sources of
uncertainty, the distribution of total losses is derived as presented
in Figure 13 for Refinery 7. As this figure reveals, the total
loss distribution varies based on severity of the hurricane
scenario. For hurricanes with relatively low water elevation
and consequently insignificant AST damage and spill volume
(Figure 13A), the spill clean-up cost and AST repair cost are
low and vary in a small range. Furthermore, the downtime due
to spill and inundation of process-units is zero (T2 = T3 = 0)
for these samples, and the refinery downtime takes on its
minimum value, resulting in nearly deterministic productivity
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FIGURE 13 | Histogram of the total loss at Refinery 7 subjected to FEMA 33 with different forward speeds and SLR = 0 cm.

loss estimates. In such cases, the summation of land value loss,
process-unit damage loss, and productivity loss yield a spike on
the left side of the distribution, and samples with non-zero spill
and AST damage result in higher and more variable total losses,
although at much lower frequency. For other scenarios with
higher water elevations, like Figure 13B, where uncertainties
related to AST damage and spill volumes play a larger role
and losses are generally higher, the total loss distribution tends
toward a normal distribution. For extremely severe hurricanes,
e.g., Figure 13C, uncertainties in the loss estimates increase and
the loss distribution tends toward a bimodal or multimodal
distribution. This can be attributed primarily to the adopted
downtime model (Figure 4), where distinct downtime estimates
are assumed per level of spill volume, coupled with the fact that
larger yet uncertain spill volumes are estimated for such severe
storms. While only Refinery 7 is presented here for illustration,
the probability distribution of total loss at other refineries and the
HSC aggregated loss generally follow the same pattern discussed
in this section.

Policy Considerations
The results in previous sections illustrate how the proposed
framework can uncover the implications of climate risks
to petroleum infrastructure including hazard impacts and
losses. Such insights can support sustainability and resilience
planning for facilities. Although theoretical expected outcomes
from sustainability and resilience planning are seemingly
straightforward, implementation of plans that comprehensively
consider operational obligations is complex. While facilities tend
to become multidimensional and interdependent, they also have
to face rapidly-diversifying risks, making current risk assessment
policies insufficient. To complement existing policies, a paradigm
shift is required to integrate practices from all lines of business
within a facility. In the hazardous industries, companies deal with
numerous challenges and policy obligations from internal and
external agencies (Center for Chemical Process Safety (CCPS),
1995, 1998; American Society of Civil Engineers, 2014). Although
well-organized emergency plans result in less damage and
quick resumption of operations in extreme events (FM Global,
2004), robust polices that prepare facilities for facing extreme
weather events are generally lacking (U.S. Chemical Safety
Hazard Investigation Board, 2018). The standards provided

by the U.S. Occupational Safety Health Administration (2000)
and the U.S. Environmental Protection Agency (1996) cover
hazardous substances, however, the explicit requirements of these
standards for flood and storm surge events are ambiguous. In
this regard, state and federal policies and industry practices
need to be improved, and gaps, overlaps, discrepancies, and
redundancies within and between different agencies should be
identified. Furthermore, future research can evaluate the policies
that determine shutdown and startup of refineries in hurricane
events, and the costs associated with different policies can
be estimated using the framework developed in this study.
Such avenues are ripe for future research contributions and
benefit from the integration of quantifiable frameworks, such
as that posed in this paper, within a more nuanced and often
qualitative policy analysis that extends well beyond the risk
metrics considered herein.

CONCLUSIONS

Vulnerability of the petroleum industry to hurricane events
and expected effects due to a changing climate on hurricane
characteristics such as return period, size, intensity, and forward
speed influence the risk posed to petroleum infrastructures
in hurricane-prone regions such as the Gulf Coast. This
study developed an integrated risk assessment framework
which considers the effects of future climate conditions on
hurricanes and calculates the risk in storm surge events
in terms of monetary losses. The framework consists of
determining potential future hurricane scenarios, employment
of SWAN+ADCIRC hydrodynamic models to simulate the
hurricane scenarios, vulnerability assessment of target petroleum
infrastructure subjected to the hurricanes effects, and estimation
of loss, including land value loss, process-unit damage loss, spill
clean-up and AST repair cost, productivity loss (comprised of
production loss and sale loss), and civil fine.

In a case study, seven refineries along the HSC and the ASTs
within the refineries’ boundaries were studied subjected to three
hurricane scenarios with different forward speeds and SLR. The
selected hurricanes include Hurricane Ike, a historical surge
event in the HSC area, and two synthetic hurricanes, i.e., FEMA
Storm 33 and FEMA Storm 36, respectively, representing 100-
and 500-year return period still-water flood elevations in the
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region. The information on the refineries, their process-units,
ASTs, production and sale volumes and prices were collected
from publicly accessible sources including the literature, H-
GAC and HCAD, the USEIA databases. Refined estimates with
reduced uncertainty could leverage in-house data by owners.
Gasoline and distillate fuel oils were considered in the loss
analysis, covering more than 66% of petrochemicals produced at
a typical refinery. Furthermore, different sources of uncertainty
such as friction coefficient at ASTs base, internal liquid height,
specific gravity of the internal liquid, and ASTs replacement
cost were considered in the analyses. To study the effects
of temporal variations in production and sale volumes and
prices, three different time spans were considered. Comparison
of the mean loss estimates from different time spans (i.e.,
average values of 2018, average values for hurricane season
of 2018, and average values for August and September of
2018) revealed very small differences between the maximum
and minimum estimates, reaching up to 10% in a few
cases only.

The hazard analysis showed that depending on the hurricane
track, different forward speeds affect the maximum water
elevations differently, providing new insight about the effects
of hurricane forward speed on inland surge. In the case of
FEMA 33 and FEMA 36 which follow a similar track, maximum
water elevations in the HSC are higher for slower hurricanes.
However, in the case of Hurricane Ike, water elevations are
higher for the original hurricane than its slower or faster
modifications. SLR influences water elevations consistently,
producing higher water elevations due to higher SLR values.
The loss analyses indicate that the maximum water elevation
is a good indicator of the risk posed to the facilities, resulting
in larger losses for hurricane scenarios with higher maximum
water elevations. The intermediate parameters in the loss analysis
framework, i.e., the facilities’ inundation ratio, inundation
depth, expected spill volume, and expected downtime, follow
a similar pattern and increase with the maximum water
elevations, resulting in a similar pattern for the loss components,
refinery total loss, and the HSC aggregated loss. Some of the
refineries, however, exhibit more sensitivity to the changes in
maximum water elevations, which is attributed to the refineries’
features such as storage capacity and the elevation parameters,
i.e., average elevations of the facility, its process-units and
its ASTs.

For the hurricane scenarios analyzed in this study, the
refinery total loss estimates vary between $10 million and $8
billion, and the HSC aggregated loss varies between $600 million
and $21.5 billion. In addition to the magnitude of losses, the
loss risk profile and the probability distribution of the loss
estimates are influenced by hurricane severity. In hurricane
scenarios with lower water elevations, refinery total loss is
dominated by production loss, and the loss histogram displays
a spike for the lowest loss estimate and larger loss values with
lower weights. In the case of hurricanes with higher water
elevations, the histogram tends toward a normal distribution.
Such hurricane scenarios often produce larger spill volumes,
resulting in larger spill clean-up costs and larger civil fines.

Extremely severe scenarios result in a bimodal or multimodal
probability distribution for refinery total loss. The coefficient
of variation of loss estimates is often small for the uncertainty
treatment considered, reaching a maximum of 0.44 for the
refinery total loss estimates and 0.10 for the HSC aggregated loss
in a handful of cases.

The integrated risk assessment framework developed in
this study enables a comprehensive analysis of the risk posed
to petroleum infrastructure subjected to multiple hurricane
hazards by taking into account the effects of changing climate
conditions, different types of losses, and various sources of
uncertainty. In the future, additional sources of uncertainty,
e.g., hazard uncertainty or other factors affecting the cost and
loss modeling, should be incorporated in the analyses, and the
framework should be expanded to enable risk assessment of
petroleum facilities subjected to extreme rainfalls and pluvial
flooding events. Furthermore, the risk assessment framework
could be coupled with statistical-dynamical hurricane/surge
models such as the one used in Marsooli et al. (2019) to
comprehensively account for effects of changing climate on
hurricane-induced storm surge. Finally, future research will
leverage the proposed framework for quantitative evaluation of
different policies and mitigation strategies, e.g., elevating critical
equipment, regulating the siting of certain infrastructure such as
storage tanks, or investing in local or regional scale hurricane
protection systems like dikes and levees, providing insight on the
effectiveness of different policies and strategies and their impacts
on the industry.
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