

PLDI ’20, June 15ś20, 2020, London, UK S. K. Muller, K. Singer, N. Goldstein, U. A. Acar, K. Agrawal and I. Lee

systems involve both compute-heavy tasks (e.g., graphics,
AI, statistics calculations) and interaction. Researchers have
therefore started bridging the two worlds. Muller et al. [48,
49, 51] have developed programming-language techniques
that allow programmers to write cooperatively threaded pro-
grams and also assign priorities to threads, as in competitive
threading. By using a type system [49] and a cost model, the
authors present techniques for reasoning about the respon-
siveness of parallel interactive program.
All of this prior work has made some progress on bridg-

ing collaborative and competitive threading, but it makes an
important assumption: pure functional programming. Specif-
ically, the work does not allow for memory effects, which
are crucial for allowing threads to communicate. This re-
striction can be significant, because nearly all realistic inter-
active applications rely on mutable state and effects. As an
example, consider a basic server consisting of two entities: a
high-priority event loop handling queries from a user and a
low-priority background thread for optimizing the server’s
database. Under Muller et al.’s work, the event loop and back-
ground thread can only communicate by synchronizing, but
such a synchronization would lead to a priority inversion. If
effects were allowed, then the threads could communicate
by using a piece of shared state.

In this paper, we overcome this restriction by developing
programming language support for collaborative and com-
petitive threading in the presence of state. To this end, we
consider λ4i , a core calculus for an implicitly parallel language
with mutable state in the form of references. The parallel
portion of the calculus is based on futures, which represent
asynchronous computations as first-class values. Futures
can be created and synchronized in a very general fashion.
The calculus also allows programmers to assign priorities to
futures, which represent their computational urgency. Be-
cause it combines futures and state, λ4i is very expressive and
enables writing conventional nested-parallel programs as
well as those with more complex and dynamic dependencies.
For example, we can parallelize a dynamic-programming
algorithm by creating an initially empty array of future ref-
erences and then populating the array by creating futures,
which may all be executed in parallel. Similarly, we can ex-
press rich interactive computations, e.g., a network event
can be delegated to a future that sends asynchronous status
updates via a piece of shared state.
The high degree of expressiveness in λ4i makes it tricky

to reason about the cost due to priority inversions and non-
determinism due to scheduling: because of the presence of
state, the computation may depend on scheduling decisions.
For these reasons, traditional graph-based cost models of
parallel computations [13, 14, 62] do not apply to programs
that mix futures and state. Such models typically do not take
priorities into account and assume that scheduling does not
change the computation graph.

We tackle these challenges by using a combination of al-
gorithmic and formal techniques. On the algorithmic side,
we extend traditional graph-based cost models to include in-
formation about priorities as well as łhappens-beforež edges
that capture certain dependencies by reifying execution-
dependent information flow through mutable state. We then
prove that if a computation graph has no priority inversions,
then it can be scheduled by using an extension of greedy
scheduling with priorities to obtain provable bounds on the
response time of any thread (Theorem 2.1). Priority inver-
sions are not simple to reason about, so we present a type
system for λ4i that guarantees that any well-typed program
has no priority inversions. To establish the soundness of the
type system (Theorem 3.1), we model the structure of the
computation by giving a dynamic semantics that, in addi-
tion to evaluating the program, creates a computation graph
that captures both traditional dependencies between threads
and also non-traditionally captures certain happens-before
dependencies to model the impact of mutable state.

Because λ4i is a formal system, it can in principle be imple-
mented in many different languages. For this paper, we chose
to implement such a system in the context of C/C++ because
many real-world interactive applications with stringent per-
formance requirements are written in C/C++. Specifically,
we have developed I-Cilk, a task parallel platform that sup-
ports interactive parallel applications. I-Cilk is based on Cilk,
a parallel dialect of C/C++. As with traditional cooperative
threading systems, I-Cilk consists of a runtime scheduler that
dynamically creates threads and maps them onto available
processing cores. Unlike traditional task-parallel platforms,
however, I-Cilk supports competitive threading by allowing
the programmer to specify priorities of tasks. Perhaps some-
what unexpectedly, I-Cilk also includes an implementation
of the λ4i type system to rule out priority inversions. The
type system is implemented by using inheritance, template
programming, and other features of C++ to encode the re-
strictions necessary to prevent priority inversions. Because
C++ is not a safe language, this implementation of the type
system expects the programmer to obey certain conventions.
The thread scheduler of I-Cilk aims to implement the

scheduling principle that Theorem 2.1 relies on. This is chal-
lenging to do efficiently because it requires maintaining
global information within the scheduler that can only be
achieved via frequent synchronizations. Instead, I-Cilk ap-
proximates optimal scheduling by utilizing a two-level adap-
tive scheduling strategy that re-evaluates the scheduling
decision at a fixed scheduling quantum.
We empirically evaluate I-Cilk using three moderately-

sized application benchmarks (about 1K lines each). These
applications fully utilize the features of I-Cilk (including I/O
and prioritization of tasks). We will dive into one application
in detail to illustrate the use of future references and mutable
states. To demonstrate the efficiency of I-Cilk, we compare
the response times and execution times of tasks at different

578

Responsive Parallelism with Futures and State PLDI ’20, June 15ś20, 2020, London, UK

priority levels running on I-Cilk and on a baseline system
that behaves like I-Cilk but does not account for priority. Em-
pirically we demonstrate that indeed I-Cilk provides much
better response time, illustrating the efficacy of its scheduler.
In summary, the contributions of this paper include:

• a cost model for imperative parallel programs that in-
corporates scheduler-dependence through mutable state
(Section 2);
• a calculus λ4i for imperative parallel programs, equipped
with a type system that guarantees absence of priority
inversions (Section 3);
• I-Cilk, a C/C++-based task parallel platform that supports
interactive parallel applications with a type system and
scheduler that embody the ideas of the threading model,
type system, and cost model of λ4i (Section 4); and
• an empirical evaluation of I-Cilk using three large case
studies written with I-Cilk (Section 5).

2 A DAG Model for Responsiveness

2.1 Preliminaries

For the purpose of this paper, we will consider programs
with first-class threads that implement futures. Because our
models and scheduling algorithms are largely independent
of the language mechanisms by which threads are created,
we will simply refer to łthreadsž here. We assign threads
a priority, written ρ, drawn from a partially ordered set R,
where ρ1 ⪯ ρ2 means that priority ρ1 is lower than prior-
ity ρ2 or ρ1 = ρ2. We write ρ1 ≺ ρ2 for the strict partial-order
relation that does not allow for reflexivity. Note that a total
order is a partial order by definition and threads can be given
priorities from a totally ordered set, e.g., integers.
Threads interact with each other in two ways. First, a

thread a may create a thread b, after which the two threads
run in parallel. We call this operation, which returns a handle
to b, łfuture-createž or simply fcreate. Second, a thread a
may wait for a thread b to complete before proceeding. We
call this operation łfuture-touchž or ftouch. This model
subsumes the classic fork-join (spawn-sync) parallelism.

As is traditionally done, we can represent the execution of
a parallel programwith aDirectedAcyclic Graph or aDAG.
A vertex of the DAG represents an operation (without loss
of generality, we will assume that a single vertex represents
a uniform unit of computation time, such as a processing
core cycle). A directed edge from u to u ′, written (u,u ′),
indicates that the operation represented byu ′ depends on the
operation represented by u. We write u ⊒ u ′ to mean that u
is an ancestor of u ′, i.e., there is a (directed) path from u

to u ′ (it may be that u = u ′). If it is the case that u A u ′

and u ′ A u, then u and u ′ may run in parallel.
A schedule of a DAG is an assignment of vertices to pro-

cessing cores at each time step during the execution of a
parallel program. Schedules must obey the dependences in
the DAG: a vertexmay only be assigned to a core if it is ready,

8

5

3
9

10

(a)

8

5

3
9

(b)

8

5

3
9

10

(c)

Figure 1.DAGs inwhich themain thread reads a valid thread
handle (a) and NULL (b), and a DAG with a weak edge rep-
resenting a read of a valid thread handle (c). Vertices are
labeled with the line of code they represent and threads are
arranged in columns.

that is, if all of its (proper) ancestors have been assigned on
prior time steps. The goal of an efficient scheduler for paral-
lel programs is to construct as short a schedule as possible.
Constructing an optimal schedule is impossible when, as in
many real programs, the DAG unfolds dynamically during
execution and is not known ahead of time (even a relaxed
offline version of the problem in which the DAG is known
ahead of time is NP-hard [63]). However, prior results have
shown that schedules obeying certain scheduling principles
are within a constant factor of optimal length while making
decisions based only on information available online (i.e.,
they need only know the set of ready vertices at any point
in time). One such scheduling principle for DAGs with pri-
orities is prompt scheduling. At each time step, a prompt
schedule assigns to a core a ready vertex u such that no cur-
rently unassigned vertex is higher-priority than u repeatedly
until no cores remain or no ready vertices remain.

2.2 Weak Edges

Traditionally, cost models for parallel programs assume that
scheduling does not change the DAG of a parallel compu-
tation. This assumption is reasonable for deterministic pro-
grams and provides a nice layer of abstraction over schedul-
ingÐwe can assume that any schedule of a DAG corresponds
to a valid execution. This fundamental assumption breaks in
our setting where threads are first class values and state can
be used to communicate in an unstructured fashion, leading
to determinacy races.
Consider as an example the following program.

1 thread t = NULL;

2

3 void g() {}

4 void f() {

5 t = fcreate (g);

6 }

7 void main() {

8 fcreate (f);

9 if (t != NULL) {

10 ftouch (t);

11 }

12 }

The DAG for this program, in particular whether there is
an edge from g to main representing the ftouch on line 10,
depends crucially on whether f performs the fcreate and
assignment to t before main reads t, that is, on whether the

579

PLDI ’20, June 15ś20, 2020, London, UK S. K. Muller, K. Singer, N. Goldstein, U. A. Acar, K. Agrawal and I. Lee

conditional on line 9 returns true or false. In fact, depending
on the outcome of the condition, this program gives rise to
one of two DAGs, both shown in Figure 1: one in which the
conditional is true and one in which it is false. Applying the
traditional separation between DAGs and schedules, given
DAG (a), the scheduler could execute the vertices in the
following order: 8, 9, 5, 3, 10. But under this schedule, the
read on line 9 should read NULL, and thus line 10 should not
be executed at all! Similarly, the scheduler could execute
DAG (b) in the order 8, 5, 3, 9, in which case the read would
read a valid thread handle.

The issue is that each DAG is valid for only certain sched-
ules but not all. To encode this information, we extend the
traditional notion of DAGs with a new type of edge we call
a weak edge. A weak edge from u to u ′ records the fact that
the given DAG makes sense only for schedules where u is
executed before u ′. We call such a schedule admissible. As
an example, DAG (c) of Figure 1 includes a weak edge (shown
as a dotted line) from 5 to 9. The schedule 8, 5, 9, 3, 10 is an
admissible schedule of DAG (c), but 8, 9, 5, 3, 10 is not.
At first sight, the reader may feel that we can replace a

weak edge with an ordinary (strong) edge. This is not quite
correct, as strong and weak edges are treated differently
in determining whether a schedule is prompt. Recall that
a schedule is prompt if it assigns ready vertices in priority
order. In the presence of weak edges, we define a vertex u to
be ready when all of its strong parents, that is, vertices u ′

such that there exists a strong edge (u ′,u), have executed.
Consider again DAG (c) from Figure 1, but now suppose

we wish to construct a prompt schedule on two cores. By the
above definition, a prompt schedule must execute vertex 8,
followed by 5 and 9 in parallel, followed by 3, followed by 10.
This is, in fact, the only prompt schedule of DAG (c), but it
is not admissible because it does not execute 5 before 9. We
thus conclude that there are no prompt admissible schedules
of DAG (c) on two cores and DAG (b) is the only valid DAG
for a two-core execution of this program (as DAG (b) has
no weak edges, any prompt schedule of it is admissible). If
we were to replace the weak edge (5, 9) with a strong edge,
there would be a prompt schedule of DAG (c) that executes
8, followed by 5, followed by 9 and 3, followed by 10. As
always, a strong edge forces vertex 9 to wait for vertex 5,
but this violates the intended semantics of the program as a
simple read operation should not have to block waiting for
a write.
In summary, strong edges determine what schedules are

valid for a given DAG, while weak edges determine whether
a DAG is valid for a given schedule. That is, weak edges inter-
nalize information about schedules into the DAG, breaking
what would otherwise be a circular dependency between
constructing a DAG and constructing a schedule of it.
We extend the notions of ancestors and paths to distin-

guish between weak and strong edges. We say that a path is
strong if it contains no weak edges. If u ⊒ u ′ and all paths

from u to u ′ are strong, then we say that u is a strong an-

cestor of u ′ and write u ⊒s u ′. On the other hand, if there
exists a weak path (i.e., a path with a weak edge) from u

to u ′, we say u is a weak ancestor of u ′ and write u ⊒w u ′.
We will continue to drop the superscript if it not important
whether u is a weak or strong ancestor.

In formal notation, we represent a DAG д as a quadruple
(T ,Ec ,Et ,Ew). The first component of the quadruple is a
mapping from thread symbols, for which we will use the
metavariables a, b and variants, to a pair of that thread’s
priority and the vertices it comprises. We use the notation ®u
for a sequence of verticesu1 · . . . ·un making up a thread, and
write [] when n = 0. Such a sequence implies that д contains
the edges (u1,u2), . . . (un−1,un). We will refer to such edges
as continuation edges. For a thread with priority ρ and
vertices ®u, we write a −֒→

ρ
®u ∈ T . We write Prioд(u) to refer

to the priority of the thread containing vertex u in д.
The remaining three components are sets of edges. The

set Ec contains fcreate edges (u,a) indicating that vertex u
creates thread a. It is shorthand for (u, s) where s is the
first vertex of a. The set Et contains ftouch edges (a,u)
indicating that vertex u touches thread a. It is shorthand
for (t ,u) where t is the last vertex of a. Finally, the set Ew

contains weak edges.

2.3 Well-Formedness and Response Time

Our goal is to bound the response time T (a) of a thread a

in a DAG. If a −֒→
ρ

s · . . . · t ∈ д, for a particular schedule

of д, we define T (a) to be the number of time steps between
when s becomes ready and when t is executed, inclusive.

Intuitively, in a well-designed program and an appropriate
schedule, if thread a has priority ρ, its response time should
depend only on parts of the graph thatmay happen in parallel
with a (i.e. are not ancestors or descendants of a) and have
priority not less than ρ. This is known as the competitor

workW⊀ρ (↛↓a) of a thread a and is defined formally:

W⊀ρ (↛↓a) ≜ |{u ∈ д | u A s ∧ t A u ∧ Prioд(u) ⊀ ρ}|

We must also define a metric corresponding to the critical
path of a. We will call this metric the a-span, because it
corresponds to the traditional notion of span in a parallel
cost DAG, but we will defer its formal definition for now,
because we will need other definitions first.
Bounding the response time of a in terms of only the

competitor work and a-span is not possible for all DAGs:
if a depends on lower-priority code along its critical path,
this code must be included in the response time of a. This
situation essentially corresponds to the well-known idea of
a priority inversion. Our response time bound guarantees
efficient scheduling of any DAG that is well-formed, that is,
free of this type of priority inversion. Well-formedness must,
at a minimum, require that no ftouch edges go from lower-
to higher-priority threads. This requirement is formalized

580

Responsive Parallelism with Futures and State PLDI ’20, June 15ś20, 2020, London, UK

s
u0

u
u ′

t

(a)

s
u0

w

u
u ′

t

(b)

Figure 2. (a) a DAG that is not well-formed because of the
strong path from u0 to t (b) a well-formed version of the
DAG with a weak path from u0 to t .

in the first bullet point of Definition 1. There is another,
more subtle, way in which priority inversions could arise.
Consider the DAG in Figure 2(a), in which shaded vertices
represent high-priority work. Although no ftouch edges
violate the first requirement of the definition, it would be
possible, in a prompt schedule of the DAG, for high-priority
vertex t to be delayed indefinitely waiting for low-priority
vertex u0 to execute due to the chain of strong dependences
through u. Note that the problem is not that u depends on
a lower-priority vertexÐas this is a fcreate edge, such a
dependence is allowed. The issue is that u’s thread is then
ftouched by t with no other dependence relation betweenu0
and t . The second bullet point of Definition 1 requires that,
in such a situation, this dependence be mitigated by, e.g., the
weak edge added in Figure 2(b).

We note that this second requirement actually places no
additional restrictions on programs. DAGs such as the one
in Figure 2(a) could not arise from real programs because
in order for t to ftouch u’s thread, it must have access to
its thread handle, which will have been returned by the
fcreate call represented by u0. This thread handle must be
propagated to t through a chain of dependences including at
least one dependence through memory effects. There must
therefore be a weak path from u0 to t , as in DAG 2(b), which
reflects a write (w) of the thread handle followed by a read
(u ′).

Definition 1 formalizes the above intuitions.

Definition 1. A DAG д = (T ,Ec ,Et ,Ew) is well-formed if
for all threads a −֒→

ρ
s · . . . · t ∈ T ,

• For all u ∈ д, if u ⊒s t and u A s , then ρ ⪯ Prioд(u).
• For all strong edges (u0,u) such that u ⊒s t and u0 A s

and Prioд(u) ⪯̸ Prioд(u0), there exists u
′ such that u0 ⊒

w

u ′ ⊒s t and u A u ′.

To a first approximation, we may define the a-span of a
thread s · . . . · t as the longest path ending at t consisting
of non-ancestors of s (i.e., the longest chain of vertices that
might delay the completion of a). In the presence of weak
edges, however, the definition is not so simple. Consider

s
u0

u
u ′

t

(a)

s
u0

u
u ′

t

(b)

Figure 3. (a) a DAG; (b) its strengthening
the DAG on the left of Figure 3, in which shaded nodes are
high-priority. Under the above definition, thea-span includes
low-priority node u0, but in any admissible schedule, u ′ runs
after u0, so u0 is not actually on the critical path. We thus
transform the DAG into one, the strengthening, that reflects
this implicit dependence.

Definition 2. Let д be a well-formed DAG with a thread
a −֒→

ρa
s · . . . · t . We derive the a-strengthening, written д̂a ,

fromд as follows. For every strong edge (u0,u) such thatu ⊒
s

t and Prioд(u) ⪯̸ Prioд(u0) and u A s ,

• Remove the edge (u0,u).
• Let u ′ ∈ д such that u ′ ⊒s t and u0 ⊒

w u ′. If u ′ A s , then
add the edge (u ′,u) in place of the weak edge between u0
and u.

The strengthening of the example DAG is shown in the
right side of the figure. For a thread a −֒→

ρ
s · . . . · t ∈ д, we

define the a-span, written Sa(↛↓a), to be the length of the
longest path in д̂a ending at t consisting only of vertices that
are not ancestors of s . More generally, we write Sa(V) to be
the length of the longest path in д̂a ending at t consisting only
of vertices in V . Intuitively, the a-span corresponds to the
critical path of a because, in a valid and admissible schedule,
it is possible that all of the vertices along this path may need
to be executed sequentially while a is being executed.

Theorem 2.1 gives a bound on the response times of threads
in admissible, prompt schedules of well-formed DAGs. The
intuitive explanation of the bound also gives a sketch of the
proof: at every time step, such a schedule is doing one of
two types of work: (1) executing P vertices of competitor
work or (2) executing all available vertices on the a-span.
The amount of work of type (1) to be done is bounded by the
competitor work divided by P . Work of type (2) can only be
done during Sa(↛↓a) time steps, during which P − 1 of the P
cores might be idle. Adding these amounts of work together
gives the bound on response time.

Theorem 2.1. Let д be a well-formed DAG and let a be a

thread of priority ρ in д. For any admissible prompt schedule

on P processing cores,

T (a) ≤
1

P

[

W⊀ρ (↛↓a) + (P − 1)Sa(↛↓a)
]

581

PLDI ’20, June 15ś20, 2020, London, UK S. K. Muller, K. Singer, N. Goldstein, U. A. Acar, K. Agrawal and I. Lee

Constraints C ::= ρ ⪯ ρ | C ∧C

Types τ ::= unit | nat | τ → τ | τ × τ | τ + τ

| τ ref | τ thread [ρ] | τ cmd[ρ]

Values v ::= x | ⟨⟩ | n | λx .e | (v,v) | inl v | inr v

| ref[s] | tid[a] | cmd[ρ] {m}

Expressions e ::= v | let x = e in e | ifz v {e;x .e}
| v v | fst v | snd v

| case v {x .e;y.e} | fixx :τ is e

Commands m ::= fcreate[ρ;τ]{m} | ftouch e
| dcl [τ] s := e inm

| !e | e := e | x ← e;m | ret e

Figure 4. Syntax of λ4i

3 Type System for Responsiveness

We describe a type system that can be used to ensure that a
program results in a well-formed cost graph, by way of a core
calculus λ4i , which extends λ4 [49], with the key addition of
mutable references (memory locations). Section 3.1 presents
the calculus and type system. Section 3.2 equips λ4i with a
cost semantics that evaluates a λ4i program to produce a
cost graph of the form described in Section 2. We prove that,
for a well-typed program, the resulting graph is well-formed,
and thus the program is free of priority inversions.

3.1 The λ4i Core Calculus

The syntax of λ4i is shown in Figure 4, in A-normal form
(for most expressions, any subexpressions that are not under
binders are values; computations can be sequenced using let-
bindings). We differentiate between expressions, language
constructs that do not depend on the state of memory or
threads, and commands, which do.
The non-standard types of λ4i are a type τ ref indicating

references to memory locations holding values of type τ ; a
type τ thread [ρ] representing handles to running threads
of type τ at priority ρ and a type τ cmd[ρ] representing
encapsulated commands which run at priority ρ and have re-
turn type τ . Priorities are drawn from a given fixed (partially
ordered) set R.
The novel values of the calculus are references ref[s],

which allow access to a memory location s; thread han-
dles tid[a], which reference a running thread referred to
by a; and cmd[ρ] {m}, which encapsulates the commandm
at priority ρ. The expression layer is otherwise standard.

Commands include operations to manipulate threads and
state, including commands to create and touch threads1 The
command dcl [τ] s := e inm declares a new mutable mem-
ory location s , initialized with the expression e , in the scope
ofm. The read command !e evaluates e to a reference ref[s]

1while the syntax for fcreate and ftouch is drawn from the fact that our

threading model is based on futures, we simply use the term łthreadsž

to refer to running asynchronous threads of control and łthread handlesž

to refer to the first-class values that refer to threads. This avoids some

terminological confusion frequently associated with futures.

Γ ⊢R
Σ
m ∼: τ@ρ ′

Γ ⊢R
Σ
fcreate[ρ ′;τ]{m} ∼: τ thread [ρ ′]@ρ

(Create)

Γ ⊢R
Σ
e : τ thread [ρ ′] Γ ⊢R ρ ⪯ ρ ′

Γ ⊢R
Σ
ftouch e ∼: τ@ρ

(Touch)

Γ ⊢R
Σ
e : τ Γ ⊢R

Σ,s∼τ m ∼: τ ′@ρ

Γ ⊢R
Σ
dcl [τ] s := e inm ∼: τ ′@ρ

(Dcl)

Γ ⊢R
Σ
e : τ ref

Γ ⊢R
Σ
!e ∼: τ@ρ

(Get)
Γ ⊢R

Σ
e1 : τ ref Γ ⊢R

Σ
e2 : τ

Γ ⊢R
Σ
e1 := e2 ∼: τ@ρ

(Set)

Figure 5. Selected command typing rules.

and returns the current contents of s . The assignment com-
mand e1 := e2 evaluates e1 to a reference ref[s] and writes
the value of e2 to s ; the command also returns the new value.
Commands are sequenced with an operator x ← e;m,

which evaluates e to an encapsulated command, executes
the command, binds its return value to x and continues asm.
Expressions may be embedded into the command layer using
the command ret e which evaluates e and returns its value.
These commands may be thought of as the monadic bind
and return operators, respectively.
Figure 5 shows the key rules of the type system for λ4i ,

namely the rules for threads and references. Due to space
constraints, we omit more standard features and present
them in the full version [50].
The command typing rules in the figure define the judg-

ment Γ ⊢R
Σ
m∼: τ@ρ. The signature Σ tracks type information

for threads and memory locations, as well as the priorities
of threads. The typing judgment is also parameterized by a
partially-ordered set R of priorities and a typing context Γ.
The context Γ, as usual, contains premises of the form x :τ ,
indicating that the variable x has type τ . In addition to the
return type τ of the command, the typing judgment indicates
that the command may run at priority ρ. The rules Create
and Touch contain notable features relating to priorities.
In particular, Touch requires that e be a handle to a thread
running at priority ρ ′ and that this priority be higher than
or equal to the priority ρ of the current thread. It is this re-
quirement that prevents priority inversion. The Create rule
requires that a command run in a new thread at priority ρ ′

indeed be able to run at priority ρ ′. Note, however, that the
fcreate command itself may run at any priority; the lan-
guage does not enforce any priority relationship between a
thread and its parent. We refer the reader to the presentation
of λ4 [49] for a more thorough description of these rules.
We describe the rules for allocating and accessing refer-

ences in more detail. Rule Dcl types the initialization expres-
sion e at type τ and introduces a new location s in typingm.
Rule Get requires that its subexpression have reference type.

582

Responsive Parallelism with Futures and State PLDI ’20, June 15ś20, 2020, London, UK

Frames f ::= let x = ś in e | x ← ś;m | ftouch ś

| dcl [τ] s := ś inm |!ś | ś := e

| v := ś | ret ś

Stacks k ::= ϵ | k ; f

States K ::= k ▷ e | k ◁ v | k ▶m | k ◀ ret v

Figure 6. Stack, frame and state syntax.

Rule Set requires that e1 have type τ ref and that e2 have
type τ . Note that this requires memory locations to have a
consistent type throughout execution. The return type of
an assignment to a τ reference is τ . All of these commands
may type at any priority as state operations and priorities
are orthogonal.
The judgment Γ ⊢R C indicates that the premises con-

tained in Γ entail the priority constraintsC . The rules (which
follow standard rules of logic) are found in the full ver-
sion [50]

3.2 Cost Semantics and Time Bounds

In this section, we equip λ4i with a small-step dynamic seman-
tics that tracks two notions of cost. First, in a straightforward
sense, the number of steps taken by the semantics to exe-
cute a program gives an abstract measure of execution time.
Second, we equip the dynamic semantics to construct a cost
graph for the program that captures the parallelism oppor-
tunities in the execution, and also uses weak edges to record
happens-before relations as described in Section 2.

We present the dynamic semantics of λ4i as a stack-based
parallel abstract machine that serves as a rough model of
the program’s execution time on realistic parallel hardware.
A stack k consists of a sequence of stack frames f (or is the
empty stack, ϵ). Each frame is a command or expression
with a hole, written ś, to be filled with the result of the
next frame. The stack thus represents the continuation of
the current computation. At each step, each thread active in
the machine is either executing a command or expression
from the top of the stack (łpoppingž) or returning a resulting
value to the stack (łpushingž). These states are represented
by k ▷ e and k ◁v , respectively, for expressions (and similar
syntax with filled triangles for commands). The syntax of
stack frames, stacks, and stack states is given in Figure 6.
A full configuration of the stack machine includes the

current heap σ and set of threads µ. A heap, essentially, is
a mapping from memory locations to values. For technical
reasons, we also record two pieces of metadata in the heap
at each location: the DAG vertex that performed the last
write to that memory location (which will be used to add
weak edges to the cost graph) and a signature containing
threads that one might łlearn aboutž by reading this memory
location. For example, suppose thread a creates thread b and
writes tid[b] into a memory location s . If thread c later
reads from s , it must łlearn aboutž the existence of thread b
in order to preserve typing. We write an element of the heap
as s 7→ (v,u, Σ). We denote the empty heap ∅, and let σ [s 7→

(v,u, Σ)] be the extension of σ with the binding s 7→ (v,u, Σ).
If s ∈ dom(σ), the new binding is assumed to overwrite the
existing binding. A thread pool µ maps thread symbols a to a
triple consisting of thread a’s priority, its stack state and a
signature Σ consisting of the threads that a łknows about,ž
as motivated above.
Figure 7 presents a subset of the rules for the command

transition judgment

σ | µ ⊗ ai −֒−−→
ρi ;Σi

Ki ⇒ ai −֒−−→
ρi ;Σ

′
i

K ′i ⊗ µ ′i | Σ
′′
i | σ

′
i | д

′
i

In this judgment,K ′i is the new state of thread ai , Σ
′′
i contains

the memory locations allocated by the step and σ ′i contains
any heap writes performed by the step. The graphд′i contains
a vertex corresponding to this step as well as any additional
fcreate, ftouch or weak edges added by this step. The full
semantics for the abstract machine also includes a single rule
that steps some number of threads in parallel and combines
the resulting states and graphs. The full set of rules can be
found in the full version [50]
An fcreate command simply creates a new thread sym-

bol b and adds a thread b to the thread pool to execute the
commandm. It returns the thread handle, and adds a fcreate
edge to the graph. An ftouch command first evaluates its
subexpression (D-Touch1). When the thread handle tid[b]
is returned, rule D-Touch2 inspects the thread pool for the
entry b −֒−−→

ρ′;Σ′
ϵ ◀ ret v (if b’s stack is not of this form, b

has not finished executing and the ftouch will block until
it does). The command returns the value v and adds the ap-
propriate ftouch edge. It also adds Σ′ to the set of threads
that a łknows about,ž because v might contain handles to
threads in Σ

′.
Rule D-Set3 adds a binding to the heap for the new value

of the memory location, and includes as metadata the new
graph vertex u and the signature Σ. Rule D-Get2 inspects
the heap for the binding of s , returns its value, adds a weak
edge (u ′,u) (recall thatu ′ is the vertex corresponding to most
recent write to s) and adds Σ′ to the signature of a.
The soundness theorem for the type system states that

well-typed programs have well-formed cost graphs.

Theorem 3.1. Letm be such that · ⊢R· m ∼: τ@ρ. If

· | ∅ | ∅ | a −֒→
ρ ;·

ϵ ▷m⇒∗ Σ | σ | д | µ

then д is well-formed and acyclic.

The proof of this theorem consists of showing that all
steps maintain two invariants:

1. No strong edges go from lower to higher priority
2. Σ correctly reflects the łknows aboutž relation moti-

vated above.

These invariants respectively imply the two well-formedness
requirements of Section 2. Full proof details are available in
the full version [50].

583

PLDI ’20, June 15ś20, 2020, London, UK S. K. Muller, K. Singer, N. Goldstein, U. A. Acar, K. Agrawal and I. Lee

u fresh b fresh

σ | µ ⊗ a −֒−→
ρ ;Σ

k ▶ fcreate[ρ ′;τ]{m} ⇒ a −֒−−−−−−−−−→
ρ ;Σ,b∼τ@ρ′

k ◀ ret tid[b] ⊗ b −֒−−→
ρ′;Σ

ϵ ▶m | · | σ | (a −֒→
ρ
u, {(u,b)}, ∅, ∅)

(D-Create)

u fresh

σ | µ ⊗ b −֒−−−→
ρ′;Σ′

ϵ ◀ ret v ⊗ a −֒−−−−−−−−−−→
ρ ;Σ,b∼ρ′@τ ′

k ; ftouch ś◁ tid[b]

⇒a −֒−−−−−−−−−−−−→
ρ ;Σ,b∼ρ′@τ ′,Σ′

k ◀ ret v ⊗ ∅ | · | σ | (a −֒→
ρ
u, ∅, {(b,u)}, ∅)

(D-Touch2)

u fresh σ (s) = (v,u ′, Σ′)

σ | µ ⊗ a −֒−−−−−−→
ρ ;Σ,s∼τ ′

k ; !ś◁ ref[s]⇒ a −֒−−−−−−−−→
ρ ;Σ,s∼τ ′,Σ′

k ◀ ret v ⊗ ∅ | · | σ | (a −֒→
ρ
u, ∅, ∅, {(u ′,u)})

(D-Get2)

u fresh

σ | µ ⊗ a −֒−−−−−−→
ρ ;Σ,s∼τ ′

k ; ref[s] := ś◁v⇒ a −֒−−−−−−→
ρ ;Σ,s∼τ ′

k ◀ ret v ⊗ ∅ | · | σ [s 7→ (v,u, Σ)] | (a −֒→
ρ
u, ∅, ∅, ∅)

(D-Set3)

Figure 7. Cost semantics for threads

4 Implementation of I-Cilk

This section presents the design and implementation of I-
Cilk, our prototype task-parallel platform that supports paral-
lel interactive applications. I-Cilk is based on an open-source
implementation [60] of Cilk (a parallel dialect of C/C++)
called Cilk-F [59] that extends Cilk with support for futures.
The implementation of I-Cilk consists of two main compo-
nents, a type system to rule out priority inversions (closely
following the typing rules discussed in Section 3) and a run-
time scheduler that automates load balancing while priori-
tizing high-priority tasks over lower-priority ones.

4.1 Programming Interface

Thread creation. In I-Cilk, like in λ4i , a function f can in-
voke another function д with fcreate, which indicates that
the execution of д is logically in parallel with the contin-
uation of f after fcreate. A function invocation prefixed
with fcreate returns a handle to the new thread, on which
one can later invoke ftouch to ensure that the thread termi-
nates before the control passes beyond the ftouch statement.
Since a thread handle can be stored in a data structure or
global variable and retrieved later, the use of fcreate and
ftouch can generate irregular parallelism with arbitrary de-
pendences. In I-Cilk, as is common in C-like languages, it
is possible to allocate a variable of thread handle type with-
out associating it to a thread, and later pass this variable by
reference to fcreate, to associate it with the created thread.
This is in contrast to λ4i , where the allocation of the handle
and the creation of the thread happen simultaneously. 2

I/O Operations. I-Cilk supports the use of I/O opera-
tions via a special type of thread, called an io_future, that
performs an I/O operation in a latency-hiding way. Specifi-
cally, I-Cilk provides special versions of the cilk_read and

2I-Cilk additionally supports spawn and sync for nested parallelism. The

use of spawn and sync can be subsumed by fcreate and ftouch from the

type checking perspective and hence we omit the discussion here.

cilk_write functions that behave similarly to the Linux
read and write except that they return a io_future ref-
erence representing the I/O operation. Upon invocation,
cilk_read and cilk_write create a thread to perform the
I/O without occupying the processor, and then the returned
io_future can be used to wait on the I/O by calling ftouch
on it.

4.2 Type System

The type system in I-Cilk does not provide full type safety
guarantees, as C++ is not type safe. Nevertheless, provided
that the programmer follows a set of simple rules, the C++-
based type system can ensure that a program that type checks
will result in strongly well-formed DAGs when executed.
The type system enables us to type check moderately large
benchmarks that implement interesting functionalities in-
volving the use of low-level system calls and concurrent data
structures (discussed in Section 5.1).

Enforcing Typing Rules. We utilize templates and other
C++11 language features to encode the type system. In the
C++ encoding, each priority is represented as a class. The
relationship between two priorities is captured through the
class hierarchy via inheritance; if priority ρ inherits from
priority ρ ′ or some descendant of ρ ′, then ρ ≻ ρ ′ (i.e., ρ has
higher priority than ρ ′). Such relationships can be tested
at compile time using is_base_of, which tests whether one
class is either the same as or the ancestor of another. Unlike
in λ4i , priorities are thus user-defined types rather than a
pre-defined set of constants.
In λ4i , there is a separation between the command layer

and expression layer. In I-Cilk, the separation is not as clear.
However, we must enforce restrictions on which functions
can be invoked with fcreate (generating a handle that can
be ftouched later) and which function can execute ftouch,
because the priority of such functions must be retrievable at

584

Responsive Parallelism with Futures and State PLDI ’20, June 15ś20, 2020, London, UK

compile time in order to enforce the typing rules. We require
these functions to be wrapped in a command class whose
type relies on a template that specifies its execution priority.
For ease of discussion, we will refer to such a function as a
command function. Unlike in λ4i , fcreate is not a command
Ð code at any priority may safely invoke a function with
fcreate; this causes no difficulties in enforcing the typing
guarantees. Also unlike in λ4i , code in I-Cilk does not require
special syntax for invoking an expression (e.g., function that
is not a command) within a command.

The encoding of the type system is realized by C++macros
that transform fcreate, ftouch, and declarations / invoca-
tions of command functions into the necessary C++ encod-
ings.3 The templated types of command functions allow their
priority to be known at compile time, and the type system
checks for priority inversion at the execution of ftouch.
First, a function invoked with fcreate (which must be a
command function) returns a thread handle whose type is
templated with its priority and return type (i.e., what its
corresponding thread returns when done executing, which
may be void). Second, an ftouch can only be executed from
within a command function, and ftouch on a thread handle
fptr is translated to:

1 fptr->touch();

2 static_assert(is_base_of<this->Priority,

3 fptr->Priority>::value,

4 "ERROR:␣priority␣inversion␣on␣future␣touch");

The static assert ensures that the thread invoking the ftouch
has priority lower than or equal to that of the thread whose
handle is ftouched, causing a compiler error otherwise.

Lastly, we enforce that a command function д, if invoked by
another command function f , must be invoked with fcreate

or inherits the priority of f .4 Doing so ensures that another
command function h joining with f (with lower priority than
f but higher priority than д) does not suffer from priority
inversion by waiting on д. In λ4i such an issue does not arise
because call is an expression whereas fcreate is a command,
and therefore the two do not mix. This issue is an artifact of
the fact that the distinction between the command and the
expression is not clear in I-Cilk.

Discussion: Type Safety. Ideally we would like to guar-
antee that programs which type check using our API will
always generate strongly well-formed DAGs when executed.
However, we cannot make this guarantee in full because C++
is not a type-safe language. Nevertheless, provided that the
programmer follows a few simple rules, our type system can
statically prevent cases of priority inversions, and a program

3We additionally provide macros for declaring and defining a command

function to ease the use of command functions.
4Currently this is enforced by name mangling command functions which

can be circumvented, but in principle this can be enforced with better

compiler support.

that type checks will result in strongly well-formed DAGs
when executed.

The first rule is that the programmer should not use unsafe
type casts, which circumvent the type system and allow the
programmer to modify priority types in ways that the type
system cannot detect.
The second rule is that the programmer should always

ensure that a thread handle is already associated with a
thread (via fcreate) before invoking ftouch on it. This rule
is important because a strongly well-formed DAG must have
a path between the vertex that invokes the fcreate and the
vertex that invokes the ftouch. This is trivially satisfied in
λ4i because allocation and creation are inextricably linked,
but in I-Cilk a thread handle allocation can be separate from
its thread creation. Thus, such a requirement is not trivially
satisfied, and the programmer has to manually ensure the
thread has been created before an ftouch.

4.3 Runtime Scheduler

An execution of an I-Cilk program generates a computation
DAG as described in Section 2 that dynamically unfolds on
the fly, and the underlying runtime schedules the compu-
tation in a way that respects the dependences in the DAG.
I-Cilk, like Cilk-F, schedules the computation using proactive
work stealing [59] but in addition, prioritizes threads.

Recall from Section 2 that one can bound the response
times of threads in a well-formed DAG (Theorem 2.1), pro-
vided that the schedule is admissible and prompt, i.e., the
schedule assigns a ready vertex u such that no currently
unassigned vertex is higher-priority than u. Any schedule
produced by an actual execution is admissible by construc-
tion. Promptness, however, requires the scheduler to find
ready vertices of high-priority threads in the system to assign
before vertices of lower-priority threads. Doing so requires
maintaining centralized information, which becomes inef-
ficient in practice due to frequent synchronizations. Thus,
I-Cilk implements a scheduler that approximates prompt-
ness.
Specifically, I-Cilk uses a two-level scheduling scheme,

similar to the scheme proposed by prior work A-STEAL [6, 7].
The top-levelmaster scheduler determines how to best as-
sign processing cores to different priority levels, and threads
within each priority level are scheduled with a second-level
work-stealing scheduler [8, 16], known for its decentral-
ized scheduling protocol with low overhead and provably
efficient execution time bound. I-Cilk utilizes a variant of
work stealing called proactive work stealing [59] inherited
from Cilk-F, the baseline scheduler I-Cilk extends.

The master scheduler evaluates the cores-to-priority-level
assignments in a fixed scheduling interval, called the sched-
uling quantum. The master assigns cores based on the
desired number of cores reported by the work-stealing sched-
ulers of each priority-level, but in a way that prioritizes high-
priority threads Ð it always assigns cores in the order of

585

PLDI ’20, June 15ś20, 2020, London, UK S. K. Muller, K. Singer, N. Goldstein, U. A. Acar, K. Agrawal and I. Lee

priority. Thus, the highest priority always gets its requested
cores up to the limit of what is available on the system, and
the next levels get the left-over cores.
The work-stealing scheduler at each priority level main-

tains its desire, the number of cores it wishes to get. At the
end of a quantum, the scheduler for a given priority level de-
termines its core utilization in this quantum and re-evaluates
its desire based on the measured utilization and whether its
desire was satisfied in this quantum. Because a work-stealing
scheduler is either doing useful work (making progress on
the computation), or attempting to steal (which leads to load
balancing), its utilization is computed by the fraction of
processing cycles that went into doing work. If its utilization
exceeded a fixed threshold (e.g., 90%) and its desire was sat-
isfied (i.e., it got its desired number of cores), it increases its
desire by a multiplicative factor of the growth parameter γ .
For instance, if γ = 2, double the desire. On the other hand,
if the utilization exceeded the threshold but its desire was
not met, it keeps the same desire. Finally, if the utilization
did not meet the threshold, it reduces its desire by a factor
of γ (e.g., if γ = 2, halve the desire).
Prior work [4, 5, 7] has analyzed similar two-level strate-

gies and shown that one can bound the wasted cycles (i.e.,
due to low utilization) and the execution time of computa-
tions scheduled by the second-level schedulers. The prior
analyses do not directly apply in our case, however, for two
reasons. First, I-Cilk utilizes proactive work stealing for the
second-level schedulers, which differs from the ones ana-
lyzed in prior work. Second, in prior work, the computations
scheduled by the second-level schedulers are independent,
whereas in our case, each second-level scheduler corresponds
to a priority level, and threads in different priority levels
can have dependences. Nevertheless, in Section 5, we show
that our scheduler does appropriately prioritize high-priority
threads over low-priority ones and provides better response
time for high-priority threads compared to the baseline sys-
tem that does not account for priorities.

5 Evaluation of I-Cilk

This section empirically evaluates I-Cilk. To evaluate the
practicality and usability of the type system, we wrote three
moderately sized application benchmarks: a proxy server
(proxy, 1.5K LoC), a multi-user email client (email, 1.1K
LoC), and a job server (jserver, 1.1K LoC).5 The type sys-
tem helps the programmer ensure that there is no priority
inversion, which is not always easy to tell, as thread handles
are often used to coordinate interactions among different
application components. We also use the same applications
to evaluate the efficiency of the scheduler by comparing
I-Cilk against Cilk-F, the baseline system that utilizes proac-
tive work stealing but does not account for the priority of
threads (and thus does not incur the two-level scheduling

5LoC exclude comments, system libraries, and runtime code.

overhead). For fair comparison, Cilk-F is also equipped with
the same io_future library that performs I/O operations in
a latency-hiding way. We use this library for the I/O opera-
tions in the benchmarks so that I/O-blocked threads do not
hinder parallelism. The empirical results indicate that I-Cilk
was able to prioritize high-priority threads and thus provide
shorter response times.
Experimental Setup. Our experiments ran on a com-

puter with 2 Intel Xeon Gold 6148 processors with 20 2.40-
GHz cores. Each core has a 32-kB L1 data and 32-KB L1
instruction cache, and a private 1 MB L2 cache. Hyperthread-
ing was enabled, and each core had 2 hardware threads. Both
processors have a 27.5 MB shared L3 cache, and there are
768 GB of main memory. I-Cilk and all benchmarks were
compiled using the Tapir compiler [57] (based on clang 5.0.0),
with -O3 and -flto. Experiments ran in Linux kernel 4.15.

5.1 Application Case Studies

We evaluate the type system with three applications rep-
resentative of interactive applications in the real world in
that they utilize interesting features commonly used to write
such applications, such as low-level file system and network
libraries, and concurrent data structures implemented using
primitives such as fetch-and-add and compare-and-swap.
Due to space limitations, we discuss the email client in detail
but only summarize the other two applications.
Proxy server. The first application, proxy, allows multi-

ple clients to connect and request websites by their URL. The
server fetches the website on the client’s behalf, masking the
client’s IP address. As an optimization, the server maintains
a cache of website contents using a concurrent hashtable. If a
website is cached, the server can respond with it immediately.
The application utilizes components with four priority levels,
listed in order from highest to lowest: a) the loop that accepts
client connections and the per-client event loop that handles
the client requests, b) a component that fetches websites in
the event of a cache miss, c) a component that logs statis-
tics, and the lowest is d) the main function that performs
server startup / shutdown. The priority specification favors
response time for client requests.
Email client. The second application email is a multi-

user, shared email client that allows users with individual
mailboxes to sort messages, send messages, and print mes-
sages; a background task also runs periodically to reduce
storage overhead by compressing each user’s messages us-
ing Huffman codes [24][Chp. 16.3]. The application contains
components with six priority levels, listed in order from
highest to lowest: a) an event loop to handle user requests, b)
a send component that sends email, c) a sort component that
sorts emails, d) a compress component to compress emails
and a print component to uncompress and send the uncom-
pressed emails to the printer, e) a check component that
periodically checks for the need to compress and fires off
compression, f) the main function that performs shutdown.

586

Responsive Parallelism with Futures and State PLDI ’20, June 15ś20, 2020, London, UK

One interesting feature is that the application requires the
print and compress to interact with one another Ð if the user
asks to print a particular email but it is in the midst of being
compressed, the print component needs to coordinate with
the compress component and wait for it to finish. Similarly,
the compress component may encounter an email that it is
about to compress, but it is in the midst of being printed, and
thus the compress needs to wait for the print to complete.
To enable this, within each user’s inbox data structure

is an array indexed using the email ID where any thread
attempting to print or compress the email will store its own
handle. For instance, say there is an ongoing print thread for
an email. The array slot corresponding to the email stores
(a pointer to) the handle of the print thread. If a compress
thread for the same email is created, the first thing the com-
press thread does is perform a compare-and-swap (CAS) on
the same array slot, swapping out the handle of the print
thread and inserting a pointer to its own handle into the slot.
Assuming that CAS returns a non-null reference, the com-
press thread invokes ftouch on the reference to ensure that
the printing is done before proceeding with the compress.
A print thread performs similar operations on the array

to coordinate with an ongoing compress thread for the same
email. Such an interaction is achieved by utilizing the thread
handles and mutable state in an interesting way.
Job server. The jserver application executes jobs that

arrive in the system using a smallest-work-first policy, i.e.,
given different types of jobs, the server knows the amount
of work entailed for each type, and it prioritizes jobs with
the least amount of work. We simulate user inputs using a
Poisson process to generate jobs at random intervals and
execute them. The priority levels correspond to the types
of jobs. We simulated four different types of jobs with fixed
input size n, listed in order of priority (high to low): a)
parallel divide-and-conquer matrix multiplication (matmul,
n = 1024), b) fibonacci (fib, n = 36), c) parallel merge sort
(sort, n = 1.1 × 107), and d) Smith-Waterman for sequence
alignment (sw, n = 1024). This application differs from the
previous two in that threads in different priority levels are
independent of each other, and it is constructed so that we
can easily modify the workload to simulate a server that is
lightly loaded to heavily loaded.
Compilation time. Because the type system heavily uti-

lizes templates, we measure its effect by comparing the com-
pilation time and resulting binary sizes between code that
uses priorities and code that does not.6 As shown in Figure 1,
the use of templates for enforcing the typing rules incurs
acceptable overhead.

6The use of template can increase code size as each type instantiation of a

given template gets its own code clone.

Table 1. The compilation times and resulting binary sizes of
application code without and with priority. The compilation
time is in seconds and the maximum out of the three compile
runs. The binary size is in KB. The numbers in parentheses
show overhead compared to the no priority version.

case study compilation time binary size

proxy (w/out) 1.95 (1.00×) 824.0 (1.00×)

proxy (with) 2.48 (1.27×) 974.7 (1.18×)

email (w/out) 4.66 (1.00×) 1241.16 (1.00×)

email (with) 5.40 (1.16×) 1454.58 (1.17×)

jserver (w/out) 2.10 (1.00×) 851.2 (1.00×)

jserver (with) 2.67 (1.27×) 987.7 (1.16×)

5.2 Empirical Evaluation

To evaluate the efficiency of our implementation, we com-
pare the applications’ running times on I-Cilk and on Cilk-F
with the same latency-hiding I/O support. The main distinc-
tions between the two systems are that a) I-Cilk prioritizes
high-priority threads whereas Cilk-F does not; and b) I-Cilk
utilizes the two-level scheduling scheme discussed in Sec-
tion 4 whereas Cilk-F utilizes proactive work stealing only.
For I-Cilk, we ran all applications with the following runtime
parameters: utilization threshold of 90%, quantum length of
500 microseconds, and growth parameter of 2. These param-
eter values seem to work well in general.
Each of the applications represents different workload

characteristics. The proxy server has the most I/O latency
and very little computation. The email has a fair amount of
I/O latency and slightly more computation than proxy. The
jserver has little I/O latency with compute-intensive work-
loads. We use one socket (20 cores) to run the server and
the second socket to simulate clients that generate inputs.
Each application is evaluated with multiple server load con-
figurations that range from lightly loaded to heavily loaded.
For proxy and email, we ran with 90, 120, 150, and 180 con-
nections. As we increase the number of connections, each
core needs to multiplex among more connections. For email,
the computation load also increases as the number of clients
increases. For jserver, we simulated the job generations so
that the workload results server machine utilization of 64%,
77%, 95%, and > 95% respectively.

For each application, we run the server for at least 15
seconds, during which tens of thousands of threads from
various priority levels (which correspond to different ap-
plication components) are created, and we measure their
duration. Specifically, we measure the response time of the
application, which corresponds to the time elapsed between
when the user / client sends the request to when the server
handles the request (which is always handled by the highest
priority thread), and the compute time for each thread of
different priority levels.
The standard deviation for such time measurements can

be high for interactive applications, due to multiple factors.
First, the timing includes the I/O latency, which is not always

587

PLDI ’20, June 15ś20, 2020, London, UK S. K. Muller, K. Singer, N. Goldstein, U. A. Acar, K. Agrawal and I. Lee

[4] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson.

2006. Adaptive Task Scheduling with Parallelism Feedback. In Pro-

ceedings of the Annual ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP).

[5] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson.

2008. Adaptive scheduling with parallelism feedback. ACM Transac-

tions on Computing Systems 16, 3 (2008), 7:1ś7:32.

[6] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. 2006. An

Empirical Evaluation of Work Stealing with Parallelism Feedback. In

Proceedings of the International Conference on Distributed Computing

Systems (ICDCS). Lisboa, Portugal.

[7] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. 2007. Adaptive

work stealing with parallelism feedback. In Proceedings of the 12th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP ’07). ACM, San Jose, California, USA, 112ś120.

[8] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread

Scheduling for Multiprogrammed Multiprocessors. Theory of Comput-

ing Systems 34, 2 (2001), 115ś144.

[9] Arvind and K. P. Gostelow. 1978. The Id Report: An Asychronous Lan-

guage and Computing Machine. Technical Report TR-114. Department

of Information and Computer Science, University of California, Irvine.

[10] Özalp Babaoğlu, Keith Marzullo, and Fred B. Schneider. 1993. A Formal-

ization of Priority Inversion. Real-Time Systems 5, 4 (1993), 285ś303.

[11] Rajkishore Barik, Zoran Budimlić, Vincent Cavè, Sanjay Chatterjee, Yi

Guo, David Peixotto, Raghavan Raman, Jun Shirako, Sağnak Taşırlar,

Yonghong Yan, Yisheng Zhao, and Vivek Sarkar. 2009. The Habanero

Multicore Software Research Project. In Proceedings of the 24th ACM

SIGPLAN Conference Companion on Object Oriented Programming Sys-

tems Languages and Applications (OOPSLA ’09). ACM, Orlando, Florida,

USA, 735ś736.

[12] Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, and Krisztián

Flautner. 2010. Evolution of Thread-level Parallelism in Desktop Ap-

plications. In Proceedings of the 37th Annual International Symposium

on Computer Architecture (ISCA ’10). 302ś313.

[13] Guy Blelloch and John Greiner. 1995. Parallelism in sequential func-

tional languages. In Proceedings of the 7th International Conference on

Functional Programming Languages and Computer Architecture (FPCA

’95). ACM, 226ś237.

[14] Guy E. Blelloch and John Greiner. 1996. A provable time and space effi-

cient implementation of NESL. In Proceedings of the 1st ACM SIGPLAN

International Conference on Functional Programming. ACM, 213ś225.

[15] Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha,

and Siddhartha Chatterjee. 1994. Implementation of a Portable Nested

Data-Parallel Language. J. Parallel Distrib. Comput. 21, 1 (1994), 4ś14.

[16] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling mul-

tithreaded computations by work stealing. J. ACM 46 (Sept. 1999),

720ś748. Issue 5.

[17] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,

Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-

mons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect

system for deterministic parallel Java. In Proceedings of the 24th ACM

SIGPLAN conference on Object oriented programming systems languages

and applications (OOPSLA ’09). 97ś116.

[18] Richard P. Brent. 1974. The parallel evaluation of general arithmetic

expressions. J. ACM 21, 2 (1974), 201ś206.

[19] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.

Habanero-Java: the new adventures of old X10. In Proceedings of the

9th International Conference on Principles and Practice of Programming

in Java (PPPJ ’11). 51ś61.

[20] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton

Jones, Gabriele Keller, and Simon Marlow. 2007. Data parallel Haskell:

a status report. In Proceedings of the POPL 2007Workshop on Declarative

Aspects of Multicore Programming, DAMP 2007, Nice, France, January

16, 2007. 10ś18.

[21] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster

computing. In Proceedings of the 20th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications

(OOPSLA ’05). ACM, 519ś538.

[22] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko

Yoshida. 2015. Dynamic Deadlock Verification for General Barrier

Synchronisation. (2015), 150ś160. https://doi.org/10.1145/2688500.

2688519

[23] Tiago Cogumbreiro, Rishi Surendran, Francisco Martins, Vivek Sarkar,

Vasco T. Vasconcelos, and Max Grossman. 2017. Deadlock Avoidance

in Parallel Programs with Futures: Why Parallel Tasks Should Not

Wait for Strangers. Proc. ACM Program. Lang. 1, OOPSLA, Article 103

(Oct. 2017), 26 pages. https://doi.org/10.1145/3143359

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. 2009. Introduction to Algorithms (third ed.). The MIT Press.

[25] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. 2008.

Programming with exceptions in JCilk. Science of Computer Program-

ming 63, 2 (Dec. 2008), 147ś171.

[26] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. 1989.

Speedup versus efficiency in parallel systems. IEEE Transactions on

Computing 38, 3 (1989), 408ś423.

[27] Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of

Determinacy Races in Cilk Programs. In ACM Symposium on Parallel

Algorithms and Architectures. 1ś11.

[28] Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge.

2000. Thread-level Parallelism and Interactive Performance of Desk-

top Applications. In Proceedings of the Ninth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS IX). 129ś138.

[29] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Im-

plicitly threaded parallelism in Manticore. Journal of Functional Pro-

gramming 20, 5-6 (2011), 1ś40.

[30] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

Implementation of the Cilk-5 Multithreaded Language. In Proceedings

of the ACM SIGPLAN 1998 conference on Programming language design

and implementation. 212ś223.

[31] Cao Gao, Anthony Gutierrez, Ronald G. Dreslinski, Trevor Mudge,

Krisztian Flautner, and Geoffery Blake. 2014. A study of thread level

parallelism on mobile devices. In Performance Analysis of Systems and

Software (ISPASS), 2014 IEEE International Symposium on. 126ś127.

[32] Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut A. Acar, and

Matthew Fluet. 2018. Hierarchical memory management for mutable

state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,

February 24-28, 2018. 81ś93.

[33] Robert H. Halstead. 1985. MULTILISP: a language for concurrent

symbolic computation. ACM Transactions on Programming Languages

and Systems 7 (1985), 501ś538.

[34] Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on a

Multiprocessor. In Proceedings of the 1984 ACM Symposium on LISP

and functional programming (LFP ’84). ACM, 9ś17.

[35] Carl Hauser, Christian Jacobi, Marvin Theimer, Brent Welch, and Mark

Weiser. 1993. Using Threads in Interactive Systems: A Case Study.

SIGOPS Oper. Syst. Rev. 27, 5 (Dec. 1993), 94ś105.

[36] Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library:

a Java 8 framework for multicore programming. In 2014 International

Conference on Principles and Practices of Programming on the Java

Platform Virtual Machines, Languages and Tools, PPPJ ’14. 75ś86.

[37] Intel. 2011. Intel Threading Building Blocks. (2011). https://www.

threadingbuildingblocks.org/.

[38] Suresh Jagannathan, Armand Navabi, KC Sivaramakrishnan, and

Lukasz Ziarek. 2010. The Design Rationale for Multi-MLton. In ML

590

Responsive Parallelism with Futures and State PLDI ’20, June 15ś20, 2020, London, UK

’10: Proceedings of the ACM SIGPLAN Workshop on ML. ACM.

[39] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon

Peyton Jones, and Ben Lippmeier. 2010. Regular, shape-polymorphic,

parallel arrays in Haskell. In Proceedings of the 15th ACM SIGPLAN

international conference on Functional programming (ICFP ’10). 261ś

272.

[40] Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt, and Ryan R. New-

ton. 2014. Taming the Parallel Effect Zoo: Extensible Deterministic

Parallelism with LVish. In Proceedings of the 35th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’14). ACM, New York, NY, USA, 2ś14. https://doi.org/10.1145/2594291.

2594312

[41] Butler W. Lampson and David D. Redell. 1980. Experience with Pro-

cesses and Monitors in Mesa. Commun. ACM 23, 2 (1980), 105ś117.

[42] Doug Lea. 2000. A Java fork/join framework. In Proceedings of the

ACM 2000 conference on Java Grande (JAVA ’00). 36ś43.

[43] I-Ting Angelina Lee and Tao B. Schardl. 2015. Efficiently Detect-

ing Races in Cilk Programs That Use Reducer Hyperobjects. In Pro-

ceedings of the 27th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA ’15). ACM, New York, NY, USA, 111ś122.

https://doi.org/10.1145/2755573.2755599

[44] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The

design of a task parallel library. In Proceedings of the 24th ACM SIG-

PLAN conference on Object Oriented Programming Systems Languages

and Applications (OOPSLA ’09). 227ś242.

[45] Charles E. Leiserson. 2010. The Cilk++ Concurrency Platform. J.

Supercomputing 51, 3 (2010), 244ś257.

[46] Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. 2008. A Cost Seman-

tics for Self-Adjusting Computation. Technical Report CMU-CS-08-141.

Department of Computer Science, Carnegie Mellon University.

[47] Stefan K. Muller and Umut A. Acar. 2016. Latency-Hiding Work Steal-

ing: Scheduling Interacting Parallel Computations with Work Stealing.

In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA,

USA, July 11-13, 2016. 71ś82. https://doi.org/10.1145/2935764.2935793

[48] Stefan K. Muller, Umut A. Acar, and Robert Harper. 2017. Respon-

sive Parallel Computation: Bridging Competitive and Cooperative

Threading. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI 2017). ACM,

New York, NY, USA, 677ś692.

[49] Stefan K. Muller, Umut A. Acar, and Robert Harper. 2018. Competitive

Parallelism: Getting Your Priorities Right. In Proceedings of the 14th

ACM SIGPLAN International Conference on Functional Programming

(ICFP ’18).

[50] Stefan K. Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal

Agrawal, and I-Ting Angelina Lee. 2020. Responsive Parallelism with

Futures and State. (2020). arXiv:cs.PL/2004.02870

[51] Stefan K. Muller, Sam Westrick, and Umut A. Acar. 2019. Fairness

in Responsive Parallelism. In Proceedings of the 24th ACM SIGPLAN

International Conference on Functional Programming (ICFP 2019).

[52] OpenMP 5.0 2018. OpenMP Application Programming Interface, Version

5.0. Accessed in July 2018.

[53] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch.

2016. Hierarchical Memory Management for Parallel Programs. In

Proceedings of the 21st ACM SIGPLAN International Conference on Func-

tional Programming (ICFP 2016). ACM, New York, NY, USA, 392ś406.

[54] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection for

Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’12). ACM, Beijing, China, 531ś542.

[55] Mads Rosendahl. 1989. Automatic complexity analysis. In FPCA ’89:

Functional Programming Languages and Computer Architecture. ACM,

144ś156.

[56] David Sands. 1990. Complexity Analysis for a Lazy Higher-Order

Language. In ESOP ’90: Proceedings of the 3rd European Symposium on

Programming. Springer-Verlag, London, UK, 361ś376.

[57] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir:

Embedding Fork-Join Parallelism into LLVM’s Intermediate Represen-

tation. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP ’17). ACM, Austin,

Texas, USA, 249ś265. http://doi.acm.org/10.1145/3018743.3018758

[58] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. 2005. Op-

erating system concepts (7. ed.). Wiley.

[59] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. 2019. Proactive Work

Stealing for Futures. In Proceedings of the 24th Symposium on Principles

and Practice of Parallel Programming (PPoPP ’19). ACM, New York, NY,

USA, 257ś271. https://doi.org/10.1145/3293883.3295735

[60] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. 2019. ProWS - Proactive

Work Stealing for Futures. Available at https://github.com/wustl-

pctg/ProWS. (2019). Accessed on July 2019.

[61] K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014.

MultiMLton: A multicore-aware runtime for Standard ML. Journal of

Functional Programming FirstView (6 2014), 1ś62.

[62] Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B.

Gibbons. 2008. Space Profiling for Parallel Functional Programs. In

International Conference on Functional Programming.

[63] J.D. Ullman. 1975. NP-complete scheduling problems. J. Comput.

System Sci. 10, 3 (1975), 384 ś 393.

[64] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting An-

gelina Lee. 2016. Provably Good and Practically Efficient Parallel Race

Detection for Fork-Join Programs. In Proceedings of the 28th ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA ’16).

ACM, Asilomar State Beach, CA, USA, 83ś94.

[65] Caleb Voss, Tiago Cogumbreiro, and Vivek Sarkar. 2019. Transitive

Joins: A Sound and Efficient Online Deadlock-avoidance Policy. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel

Programming (PPoPP ’19). ACM, New York, NY, USA, 378ś390. https:

//doi.org/10.1145/3293883.3295724

[66] Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020.

Disentanglement in Nested-Parallel Programs. In Proceedings of the

47th Annual ACM Symposium on Principles of Programming Languages

(POPL).

[67] Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal. 2018. Efficient

Parallel Determinacy Race Detection for Two-dimensional Dags. In

Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP ’18). ACM, New York, NY,

USA, 368ś380. https://doi.org/10.1145/3178487.3178515

591

	Abstract
	1 Introduction
	2 A DAG Model for Responsiveness
	2.1 Preliminaries
	2.2 Weak Edges
	2.3 Well-Formedness and Response Time

	3 Type System for Responsiveness
	3.1 The 4i Core Calculus
	3.2 Cost Semantics and Time Bounds

	4 Implementation of I-Cilk
	4.1 Programming Interface
	4.2 Type System
	4.3 Runtime Scheduler

	5 Evaluation of I-Cilk
	5.1 Application Case Studies
	5.2 Empirical Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

