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Abstract

Motivated by the increasing shift to multicore computers,
recent work has developed language support for respon-
sive parallel applications that mix compute-intensive tasks
with latency-sensitive, usually interactive, tasks. These de-
velopments include calculi that allow assigning priorities to
threads, type systems that can rule out priority inversions,
and accompanying cost models for predicting responsive-
ness. These advances share one important limitation: all of
this work assumes purely functional programming. This is a
significant restriction, because many realistic interactive ap-
plications, from games to robots to web servers, use mutable
state, e.g., for communication between threads.

In this paper, we lift the restriction concerning the use of
state. We present A}, a calculus with implicit parallelism in
the form of prioritized futures and mutable state in the form
of references. Because both futures and references are first-
class values, A{ programs can exhibit complex dependencies,
including interaction between threads and with the external
world (users, network, etc). To reason about the responsive-
ness of A7 programs, we extend traditional graph-based cost
models for parallelism to account for dependencies created
via mutable state, and we present a type system to outlaw
priority inversions that can lead to unbounded blocking. We
show that these techniques are practical by implementing
them in C++ and present an empirical evaluation.

CCS Concepts: « Software and its engineering — Paral-
lel programming languages; Imperative languages; Con-
current programming languages.

“These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °20, June 15-20, 2020, London, UK

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3386013

Kyle Singer*
kdsinger@wustl.edu
Washington University in St. Louis
USA

Kunal Agrawal
kunal@wustl.edu
Washington University in St. Louis
USA

577

Noah Goldstein
goldstein.n@wustl.edu
Washington University in St. Louis
USA

[-Ting Angelina Lee
angelee@wustl.edu
Washington University in St. Louis
USA

Keywords: responsiveness, futures, shared memory, con-
currency, parallelism, type systems, Cilk

ACM Reference Format:

Stefan K. Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal
Agrawal, and I-Ting Angelina Lee. 2020. Responsive Parallelism
with Futures and State. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Im-
plementation (PLDI "20), June 15-20, 2020, London, UK. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3385412.3386013

1 Introduction

Advances of the past decade have brought multicore com-
puters to the mainstream. Many computers today, from
a credit-card-size Raspberry Pi with four cores to a rack
server, are built with multiple processors (cores). These de-
velopments have led to increased interest in languages and
techniques for writing parallel programs with cooperative
threading. In cooperative threading, the user expresses
parallelism at a high level and a language-supplied sched-
uler manages parallelism at run time. Many languages, li-
braries, and systems for cooperative threading have been
developed, including MultiLisp [34], NESL [15], dialects of
Cilk [25, 30, 45, 59], OpenMP [52], Fork/Join Java [42], di-
alects of Habanero [11, 19, 36], TPL [44], TBB [37], X10 [21],
parallel ML [29, 32, 53, 61, 66], and parallel Haskell [39, 40].
Cooperative threading is well suited for compute-intensive
jobs and may be used to maximize throughput by finishing
a job as quickly as possible. But modern applications also
include interactive jobs where a thread may needed to be
completed as quickly as possible. For such interactive appli-
cations, the main optimization criterion is responsiveness —
how long each thread takes to respond to a user. To meet the
demands of such applications, the systems community has
developed competitive threading techniques, which focus
on hiding the latency of blocking operations by multiplexing
independent sequential threads of control [12, 28, 31, 35].
Historically, collaborative and competitive threading have
been researched largely separately. With the mainstream
availability of parallel computers, this separation is now ob-
solete: many jobs today include both compute-intensive tasks
and interactive tasks. In fact, applications such as games,
browsers, design tools, and all sorts of interesting interactive



PLDI 20, June 15-20, 2020, London, UK

systems involve both compute-heavy tasks (e.g., graphics,
Al statistics calculations) and interaction. Researchers have
therefore started bridging the two worlds. Muller et al. [48,
49, 51] have developed programming-language techniques
that allow programmers to write cooperatively threaded pro-
grams and also assign priorities to threads, as in competitive
threading. By using a type system [49] and a cost model, the
authors present techniques for reasoning about the respon-
siveness of parallel interactive program.

All of this prior work has made some progress on bridg-
ing collaborative and competitive threading, but it makes an
important assumption: pure functional programming. Specif-
ically, the work does not allow for memory effects, which
are crucial for allowing threads to communicate. This re-
striction can be significant, because nearly all realistic inter-
active applications rely on mutable state and effects. As an
example, consider a basic server consisting of two entities: a
high-priority event loop handling queries from a user and a
low-priority background thread for optimizing the server’s
database. Under Muller et al’s work, the event loop and back-
ground thread can only communicate by synchronizing, but
such a synchronization would lead to a priority inversion. If
effects were allowed, then the threads could communicate
by using a piece of shared state.

In this paper, we overcome this restriction by developing
programming language support for collaborative and com-
petitive threading in the presence of state. To this end, we
consider A7, a core calculus for an implicitly parallel language
with mutable state in the form of references. The parallel
portion of the calculus is based on futures, which represent
asynchronous computations as first-class values. Futures
can be created and synchronized in a very general fashion.
The calculus also allows programmers to assign priorities to
futures, which represent their computational urgency. Be-
cause it combines futures and state, /I‘i1 is very expressive and
enables writing conventional nested-parallel programs as
well as those with more complex and dynamic dependencies.
For example, we can parallelize a dynamic-programming
algorithm by creating an initially empty array of future ref-
erences and then populating the array by creating futures,
which may all be executed in parallel. Similarly, we can ex-
press rich interactive computations, e.g., a network event
can be delegated to a future that sends asynchronous status
updates via a piece of shared state.

The high degree of expressiveness in A} makes it tricky
to reason about the cost due to priority inversions and non-
determinism due to scheduling: because of the presence of
state, the computation may depend on scheduling decisions.
For these reasons, traditional graph-based cost models of
parallel computations [13, 14, 62] do not apply to programs
that mix futures and state. Such models typically do not take
priorities into account and assume that scheduling does not
change the computation graph.
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We tackle these challenges by using a combination of al-
gorithmic and formal techniques. On the algorithmic side,
we extend traditional graph-based cost models to include in-
formation about priorities as well as “happens-before” edges
that capture certain dependencies by reifying execution-
dependent information flow through mutable state. We then
prove that if a computation graph has no priority inversions,
then it can be scheduled by using an extension of greedy
scheduling with priorities to obtain provable bounds on the
response time of any thread (Theorem 2.1). Priority inver-
sions are not simple to reason about, so we present a type
system for A} that guarantees that any well-typed program
has no priority inversions. To establish the soundness of the
type system (Theorem 3.1), we model the structure of the
computation by giving a dynamic semantics that, in addi-
tion to evaluating the program, creates a computation graph
that captures both traditional dependencies between threads
and also non-traditionally captures certain happens-before
dependencies to model the impact of mutable state.

Because A7 is a formal system, it can in principle be imple-
mented in many different languages. For this paper, we chose
to implement such a system in the context of C/C++ because
many real-world interactive applications with stringent per-
formance requirements are written in C/C++. Specifically,
we have developed I-Cilk, a task parallel platform that sup-
ports interactive parallel applications. I-Cilk is based on Cilk,
a parallel dialect of C/C++. As with traditional cooperative
threading systems, I-Cilk consists of a runtime scheduler that
dynamically creates threads and maps them onto available
processing cores. Unlike traditional task-parallel platforms,
however, I-Cilk supports competitive threading by allowing
the programmer to specify priorities of tasks. Perhaps some-
what unexpectedly, I-Cilk also includes an implementation
of the A} type system to rule out priority inversions. The
type system is implemented by using inheritance, template
programming, and other features of C++ to encode the re-
strictions necessary to prevent priority inversions. Because
C++ is not a safe language, this implementation of the type
system expects the programmer to obey certain conventions.

The thread scheduler of I-Cilk aims to implement the
scheduling principle that Theorem 2.1 relies on. This is chal-
lenging to do efficiently because it requires maintaining
global information within the scheduler that can only be
achieved via frequent synchronizations. Instead, I-Cilk ap-
proximates optimal scheduling by utilizing a two-level adap-
tive scheduling strategy that re-evaluates the scheduling
decision at a fixed scheduling quantum.

We empirically evaluate I-Cilk using three moderately-
sized application benchmarks (about 1K lines each). These
applications fully utilize the features of I-Cilk (including I/O
and prioritization of tasks). We will dive into one application
in detail to illustrate the use of future references and mutable
states. To demonstrate the efficiency of I-Cilk, we compare
the response times and execution times of tasks at different
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priority levels running on I-Cilk and on a baseline system

that behaves like I-Cilk but does not account for priority. Em-

pirically we demonstrate that indeed I-Cilk provides much

better response time, illustrating the efficacy of its scheduler.
In summary, the contributions of this paper include:

e a cost model for imperative parallel programs that in-
corporates scheduler-dependence through mutable state
(Section 2);

e a calculus A} for imperative parallel programs, equipped
with a type system that guarantees absence of priority
inversions (Section 3);

e I-Cilk, a C/C++-based task parallel platform that supports
interactive parallel applications with a type system and
scheduler that embody the ideas of the threading model,
type system, and cost model of A} (Section 4); and

e an empirical evaluation of I-Cilk using three large case
studies written with I-Cilk (Section 5).

2 A DAG Model for Responsiveness
2.1 Preliminaries

For the purpose of this paper, we will consider programs
with first-class threads that implement futures. Because our
models and scheduling algorithms are largely independent
of the language mechanisms by which threads are created,
we will simply refer to “threads” here. We assign threads
a priority, written p, drawn from a partially ordered set R,
where p; < p; means that priority p; is lower than prior-
ity ps or p1 = p2. We write p; < p;, for the strict partial-order
relation that does not allow for reflexivity. Note that a total
order is a partial order by definition and threads can be given
priorities from a totally ordered set, e.g., integers.

Threads interact with each other in two ways. First, a
thread a may create a thread b, after which the two threads
run in parallel. We call this operation, which returns a handle
to b, “future-create” or simply fcreate. Second, a thread a
may wait for a thread b to complete before proceeding. We
call this operation “future-touch” or ftouch. This model
subsumes the classic fork-join (spawn-sync) parallelism.

As is traditionally done, we can represent the execution of
a parallel program with a Directed Acyclic Graph or a DAG.
A vertex of the DAG represents an operation (without loss
of generality, we will assume that a single vertex represents
a uniform unit of computation time, such as a processing
core cycle). A directed edge from u to u’, written (u,u’),
indicates that the operation represented by u” depends on the
operation represented by u. We write u 3 u’ to mean that u
is an ancestor of u’, i.e., there is a (directed) path from u
to u’ (it may be that u = u’). If it is the case that u 2 u’
and u’ 2 u, then u and u’ may run in parallel.

A schedule of a DAG is an assignment of vertices to pro-
cessing cores at each time step during the execution of a
parallel program. Schedules must obey the dependences in
the DAG: a vertex may only be assigned to a core if it is ready,
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Figure 1. DAGs in which the main thread reads a valid thread
handle (a) and NULL (b), and a DAG with a weak edge rep-
resenting a read of a valid thread handle (c). Vertices are
labeled with the line of code they represent and threads are
arranged in columns.

that is, if all of its (proper) ancestors have been assigned on
prior time steps. The goal of an efficient scheduler for paral-
lel programs is to construct as short a schedule as possible.
Constructing an optimal schedule is impossible when, as in
many real programs, the DAG unfolds dynamically during
execution and is not known ahead of time (even a relaxed
offline version of the problem in which the DAG is known
ahead of time is NP-hard [63]). However, prior results have
shown that schedules obeying certain scheduling principles
are within a constant factor of optimal length while making
decisions based only on information available online (i.e.,
they need only know the set of ready vertices at any point
in time). One such scheduling principle for DAGs with pri-
orities is prompt scheduling. At each time step, a prompt
schedule assigns to a core a ready vertex u such that no cur-
rently unassigned vertex is higher-priority than u repeatedly
until no cores remain or no ready vertices remain.

2.2 Weak Edges

Traditionally, cost models for parallel programs assume that
scheduling does not change the DAG of a parallel compu-
tation. This assumption is reasonable for deterministic pro-
grams and provides a nice layer of abstraction over schedul-
ing — we can assume that any schedule of a DAG corresponds
to a valid execution. This fundamental assumption breaks in
our setting where threads are first class values and state can
be used to communicate in an unstructured fashion, leading
to determinacy races.
Consider as an example the following program.

i thread t = NULL; 7 void main() {
fcreate (f);

s void g() {2

if (t != NULL) {
+ void () { 10 ftouch (t);
t = fcreate (g); 11 3
6 ) 12}

The DAG for this program, in particular whether there is
an edge from g to main representing the ftouch on line 10,
depends crucially on whether f performs the fcreate and
assignment to t before main reads t, that is, on whether the
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conditional on line 9 returns true or false. In fact, depending
on the outcome of the condition, this program gives rise to
one of two DAGs, both shown in Figure 1: one in which the
conditional is true and one in which it is false. Applying the
traditional separation between DAGs and schedules, given
DAG (a), the scheduler could execute the vertices in the
following order: 8, 9, 5, 3, 10. But under this schedule, the
read on line 9 should read NULL, and thus line 10 should not
be executed at all! Similarly, the scheduler could execute
DAG (b) in the order 8, 5, 3, 9, in which case the read would
read a valid thread handle.

The issue is that each DAG is valid for only certain sched-
ules but not all. To encode this information, we extend the
traditional notion of DAGs with a new type of edge we call
a weak edge. A weak edge from u to u’ records the fact that
the given DAG makes sense only for schedules where u is
executed before u’. We call such a schedule admissible. As
an example, DAG (c) of Figure 1 includes a weak edge (shown
as a dotted line) from 5 to 9. The schedule 8, 5, 9, 3, 10 is an
admissible schedule of DAG (c), but 8, 9, 5, 3, 10 is not.

At first sight, the reader may feel that we can replace a
weak edge with an ordinary (strong) edge. This is not quite
correct, as strong and weak edges are treated differently
in determining whether a schedule is prompt. Recall that
a schedule is prompt if it assigns ready vertices in priority
order. In the presence of weak edges, we define a vertex u to
be ready when all of its strong parents, that is, vertices u’
such that there exists a strong edge (u’, u), have executed.

Consider again DAG (c) from Figure 1, but now suppose
we wish to construct a prompt schedule on two cores. By the
above definition, a prompt schedule must execute vertex 8,
followed by 5 and 9 in parallel, followed by 3, followed by 10.
This is, in fact, the only prompt schedule of DAG (c), but it
is not admissible because it does not execute 5 before 9. We
thus conclude that there are no prompt admissible schedules
of DAG (c) on two cores and DAG (b) is the only valid DAG
for a two-core execution of this program (as DAG (b) has
no weak edges, any prompt schedule of it is admissible). If
we were to replace the weak edge (5, 9) with a strong edge,
there would be a prompt schedule of DAG (c) that executes
8, followed by 5, followed by 9 and 3, followed by 10. As
always, a strong edge forces vertex 9 to wait for vertex 5,
but this violates the intended semantics of the program as a
simple read operation should not have to block waiting for
a write.

In summary, strong edges determine what schedules are
valid for a given DAG, while weak edges determine whether
a DAG is valid for a given schedule. That is, weak edges inter-
nalize information about schedules into the DAG, breaking
what would otherwise be a circular dependency between
constructing a DAG and constructing a schedule of it.

We extend the notions of ancestors and paths to distin-
guish between weak and strong edges. We say that a path is
strong if it contains no weak edges. If u 3 u’ and all paths
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from u to u’ are strong, then we say that u is a strong an-
cestor of u’ and write u 3° u’. On the other hand, if there
exists a weak path (i.e., a path with a weak edge) from u
to u’, we say u is a weak ancestor of u’ and write u 3% u’.
We will continue to drop the superscript if it not important
whether u is a weak or strong ancestor.

In formal notation, we represent a DAG g as a quadruple
(7,E€,E',E™). The first component of the quadruple is a
mapping from thread symbols, for which we will use the
metavariables a, b and variants, to a pair of that thread’s
priority and the vertices it comprises. We use the notation #
for a sequence of vertices u; - . . .- u, making up a thread, and
write [| when n = 0. Such a sequence implies that g contains
the edges (uy, uz2), . . . (Un—1, un). We will refer to such edges
as continuation edges. For a thread with priority p and
vertices i, we write a °;> i € T. We write Priog(u) to refer

to the priority of the thread containing vertex u in g.

The remaining three components are sets of edges. The
set E€ contains fcreate edges (u, a) indicating that vertex u
creates thread a. It is shorthand for (u,s) where s is the
first vertex of a. The set E' contains ftouch edges (a,u)
indicating that vertex u touches thread a. It is shorthand
for (t,u) where t is the last vertex of a. Finally, the set E"
contains weak edges.

2.3 Well-Formedness and Response Time

Our goal is to bound the response time T(a) of a thread a
inaDAG.Ifa <= s- ...t € g, for a particular schedule

p
of g, we define T(a) to be the number of time steps between
when s becomes ready and when ¢ is executed, inclusive.

Intuitively, in a well-designed program and an appropriate
schedule, if thread a has priority p, its response time should
depend only on parts of the graph that may happen in parallel
with a (i.e. are not ancestors or descendants of a) and have
priority not less than p. This is known as the competitor
work W ,(% a) of a thread a and is defined formally:

W74p($a)é Hueg|ludsAtZuA Priog(u) A p}l

We must also define a metric corresponding to the critical
path of a. We will call this metric the a-span, because it
corresponds to the traditional notion of span in a parallel
cost DAG, but we will defer its formal definition for now,
because we will need other definitions first.

Bounding the response time of a in terms of only the
competitor work and a-span is not possible for all DAGs:
if a depends on lower-priority code along its critical path,
this code must be included in the response time of a. This
situation essentially corresponds to the well-known idea of
a priority inversion. Our response time bound guarantees
efficient scheduling of any DAG that is well-formed, that is,
free of this type of priority inversion. Well-formedness must,
at a minimum, require that no ftouch edges go from lower-
to higher-priority threads. This requirement is formalized



Responsive Parallelism with Futures and State

1% B

(a)

Figure 2. (a) a DAG that is not well-formed because of the
strong path from u, to t (b) a well-formed version of the
DAG with a weak path from uj to .

in the first bullet point of Definition 1. There is another,
more subtle, way in which priority inversions could arise.
Consider the DAG in Figure 2(a), in which shaded vertices
represent high-priority work. Although no ftouch edges
violate the first requirement of the definition, it would be
possible, in a prompt schedule of the DAG, for high-priority
vertex t to be delayed indefinitely waiting for low-priority
vertex ug to execute due to the chain of strong dependences
through u. Note that the problem is not that u depends on
a lower-priority vertex—as this is a fcreate edge, such a
dependence is allowed. The issue is that u’s thread is then
ftouched by ¢ with no other dependence relation between u
and t. The second bullet point of Definition 1 requires that,
in such a situation, this dependence be mitigated by, e.g., the
weak edge added in Figure 2(b).

We note that this second requirement actually places no
additional restrictions on programs. DAGs such as the one
in Figure 2(a) could not arise from real programs because
in order for ¢ to ftouch u’s thread, it must have access to
its thread handle, which will have been returned by the
fcreate call represented by uy. This thread handle must be
propagated to ¢ through a chain of dependences including at
least one dependence through memory effects. There must
therefore be a weak path from u to ¢, as in DAG 2(b), which
reflects a write (w) of the thread handle followed by a read
@)

Definition 1 formalizes the above intuitions.

Definition 1. ADAG g = (7, E°, E', E¥) is well-formed if
for all threadsa —>s- ...t €T,
P

e Forallu € g,ifu 2° t and u Z s, then p < Priog(u).

e For all strong edges (up, u) such that u 3° t and uy 2 s
and Priog(u) A Priog(uo), there exists u’ such that uy 3"
u 2¥tandu 2 u'.

To a first approximation, we may define the a-span of a
thread s - ... -t as the longest path ending at ¢ consisting
of non-ancestors of s (i.e., the longest chain of vertices that
might delay the completion of a). In the presence of weak
edges, however, the definition is not so simple. Consider
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® I
: 13

Figure 3. (a) a DAG; (b) its strengthening
the DAG on the left of Figure 3, in which shaded nodes are
high-priority. Under the above definition, the a-span includes
low-priority node ug, but in any admissible schedule, 4" runs
after ug, so ug is not actually on the critical path. We thus
transform the DAG into one, the strengthening, that reflects
this implicit dependence.

Definition 2. Let g be a well-formed DAG with a thread

a<—s- ...-t. We derive the a-strengthening, written g,,
Pa

from g as follows. For every strong edge (ug, u) such thatu 3°

t and Priog(u) 2 Priog(ug) and u Z s,

e Remove the edge (uo, u).

o Letu’ € gsuchthatu’ 2° tand uy 3% u’. If u’ Z s, then
add the edge (u’, u) in place of the weak edge between u
and u.

()
O

The strengthening of the example DAG is shown in the
right side of the figure. For a threada —> s- ... -t € g, we

P
define the a-span, written S,(% a), to be the length of the
longest path in g, ending at ¢ consisting only of vertices that
are not ancestors of s. More generally, we write S,(V) to be
the length of the longest path in g, ending at ¢ consisting only
of vertices in V. Intuitively, the a-span corresponds to the
critical path of a because, in a valid and admissible schedule,
it is possible that all of the vertices along this path may need
to be executed sequentially while a is being executed.

Theorem 2.1 gives a bound on the response times of threads
in admissible, prompt schedules of well-formed DAGs. The
intuitive explanation of the bound also gives a sketch of the
proof: at every time step, such a schedule is doing one of
two types of work: (1) executing P vertices of competitor
work or (2) executing all available vertices on the a-span.
The amount of work of type (1) to be done is bounded by the
competitor work divided by P. Work of type (2) can only be
done during S,(} a) time steps, during which P — 1 of the P
cores might be idle. Adding these amounts of work together
gives the bound on response time.

Theorem 2.1. Let g be a well-formed DAG and let a be a
thread of priority p in g. For any admissible prompt schedule
on P processing cores,

T(@) < 5 [Wyp(b0) + (P - DSu(ta)]
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Constraints C == p=<p|CAC

Types T unit |nat|r o rt|tX7t|T+7
rref | r thread [p] | r cmd[p]

Values v x| |n|Ax.e]|(v,v)|inlo | inrv

refls] | tid[al | cmd[p] {m}
v|letx=eine|ifzv {e;x.e}
vo|fsto|sndo

casev {x.e;y.e} | fixx:r ise
fcreatelp;r]{m} | ftouche
dcl [r]s:=einm
lele:=e|x<—em|rete

Expressions e

Commands

Figure 4. Syntax of 1}

3 Type System for Responsiveness

We describe a type system that can be used to ensure that a
program results in a well-formed cost graph, by way of a core
calculus A}, which extends A* [49], with the key addition of
mutable references (memory locations). Section 3.1 presents
the calculus and type system. Section 3.2 equips A} with a
cost semantics that evaluates a A} program to produce a
cost graph of the form described in Section 2. We prove that,
for a well-typed program, the resulting graph is well-formed,
and thus the program is free of priority inversions.

3.1 The A} Core Calculus

The syntax of A} is shown in Figure 4, in A-normal form
(for most expressions, any subexpressions that are not under
binders are values; computations can be sequenced using let-
bindings). We differentiate between expressions, language
constructs that do not depend on the state of memory or
threads, and commands, which do.

The non-standard types of A are a type 7 ref indicating
references to memory locations holding values of type 7; a
type 7 thread [p] representing handles to running threads
of type t at priority p and a type 7 cmd[p] representing
encapsulated commands which run at priority p and have re-
turn type 7. Priorities are drawn from a given fixed (partially
ordered) set R.

The novel values of the calculus are references ref[s],
which allow access to a memory location s; thread han-
dles tid[a], which reference a running thread referred to
by a; and cmd[p] {m}, which encapsulates the command m
at priority p. The expression layer is otherwise standard.

Commands include operations to manipulate threads and
state, including commands to create and touch threads! The
command dcl [7] s := e in m declares a new mutable mem-
ory location s, initialized with the expression e, in the scope
of m. The read command !e evaluates e to a reference ref[s]

Iwhile the syntax for fcreate and ftouch is drawn from the fact that our
threading model is based on futures, we simply use the term “threads”
to refer to running asynchronous threads of control and “thread handles”
to refer to the first-class values that refer to threads. This avoids some
terminological confusion frequently associated with futures.
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r |—§ m~t@p

= (CREATE)
T +5 fereate[p’;71{m} + r thread [p'1@p

T+Re:rthread[p’] THRp<p’

R (ToucH)
[ty ftouche~t@p
Fl—ge:f Fl—}gyhrm%f’@p
R - - (Dcr)
Frydel [rls:=einm~1T @p
Fkgezfref Fkgelzrref Fkgezzr
e (GeT) R (SeT)
Fryle~t@p Fry e1:=e2~v7@p

Figure 5. Selected command typing rules.

and returns the current contents of s. The assignment com-
mand e; := e, evaluates e; to a reference ref[s] and writes
the value of e, to s; the command also returns the new value.

Commands are sequenced with an operator x « e;m,
which evaluates e to an encapsulated command, executes
the command, binds its return value to x and continues as m.
Expressions may be embedded into the command layer using
the command ret e which evaluates e and returns its value.
These commands may be thought of as the monadic bind
and return operators, respectively.

Figure 5 shows the key rules of the type system for 17,
namely the rules for threads and references. Due to space
constraints, we omit more standard features and present
them in the full version [50].

The command typing rules in the figure define the judg-
ment T’ I—g m~7@p. The signature X tracks type information
for threads and memory locations, as well as the priorities
of threads. The typing judgment is also parameterized by a
partially-ordered set R of priorities and a typing context I'.
The context I', as usual, contains premises of the form x : 7,
indicating that the variable x has type 7. In addition to the
return type 7 of the command, the typing judgment indicates
that the command may run at priority p. The rules CREATE
and ToucH contain notable features relating to priorities.
In particular, ToucH requires that e be a handle to a thread
running at priority p’ and that this priority be higher than
or equal to the priority p of the current thread. It is this re-
quirement that prevents priority inversion. The CREATE rule
requires that a command run in a new thread at priority p’
indeed be able to run at priority p’. Note, however, that the
fcreate command itself may run at any priority; the lan-
guage does not enforce any priority relationship between a
thread and its parent. We refer the reader to the presentation
of A* [49] for a more thorough description of these rules.

We describe the rules for allocating and accessing refer-
ences in more detail. Rule Dct types the initialization expres-
sion e at type 7 and introduces a new location s in typing m.
Rule GET requires that its subexpression have reference type.
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Frames f == letx=-1ine|x « —;m | ftouch-
| dellzls=-inm|!-|-:=e
| v:i=-|ret-

Stacks  k = €|kf

States K == kb>el|k<v|kw»m|k<dreto

Figure 6. Stack, frame and state syntax.

Rule SET requires that e; have type 7 ref and that e, have
type 7. Note that this requires memory locations to have a
consistent type throughout execution. The return type of
an assignment to a 7 reference is 7. All of these commands
may type at any priority as state operations and priorities
are orthogonal.

The judgment I' +R C indicates that the premises con-
tained in T entail the priority constraints C. The rules (which
follow standard rules of logic) are found in the full ver-
sion [50]

3.2 Cost Semantics and Time Bounds

In this section, we equip A} with a small-step dynamic seman-
tics that tracks two notions of cost. First, in a straightforward
sense, the number of steps taken by the semantics to exe-
cute a program gives an abstract measure of execution time.
Second, we equip the dynamic semantics to construct a cost
graph for the program that captures the parallelism oppor-
tunities in the execution, and also uses weak edges to record
happens-before relations as described in Section 2.

We present the dynamic semantics of A} as a stack-based
parallel abstract machine that serves as a rough model of
the program’s execution time on realistic parallel hardware.
A stack k consists of a sequence of stack frames f (or is the
empty stack, €). Each frame is a command or expression
with a hole, written -, to be filled with the result of the
next frame. The stack thus represents the continuation of
the current computation. At each step, each thread active in
the machine is either executing a command or expression
from the top of the stack (“popping”) or returning a resulting
value to the stack (“pushing”). These states are represented
by k > e and k < v, respectively, for expressions (and similar
syntax with filled triangles for commands). The syntax of
stack frames, stacks, and stack states is given in Figure 6.

A full configuration of the stack machine includes the
current heap o and set of threads u. A heap, essentially, is
a mapping from memory locations to values. For technical
reasons, we also record two pieces of metadata in the heap
at each location: the DAG vertex that performed the last
write to that memory location (which will be used to add
weak edges to the cost graph) and a signature containing
threads that one might “learn about” by reading this memory
location. For example, suppose thread a creates thread b and
writes tid[b] into a memory location s. If thread c later
reads from s, it must “learn about” the existence of thread b
in order to preserve typing. We write an element of the heap
as s — (v,u, ). We denote the empty heap 0, and let o[s —
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(v, u, 2)] be the extension of o with the binding s — (v, u, 2).
If s € dom(o), the new binding is assumed to overwrite the
existing binding. A thread pool ;1 maps thread symbols a to a
triple consisting of thread a’s priority, its stack state and a
signature ¥ consisting of the threads that a “knows about,”
as motivated above.

Figure 7 presents a subset of the rules for the command
transition judgment

olp®a—Ki=a, — K/ ®u, | |0} |g;
Pisi pisZ;

In this judgment, K7 is the new state of thread a;, X’ contains
the memory locations allocated by the step and o] contains
any heap writes performed by the step. The graph g; contains
a vertex corresponding to this step as well as any additional
fcreate, ftouch or weak edges added by this step. The full
semantics for the abstract machine also includes a single rule
that steps some number of threads in parallel and combines
the resulting states and graphs. The full set of rules can be
found in the full version [50]

An fcreate command simply creates a new thread sym-
bol b and adds a thread b to the thread pool to execute the
command m. It returns the thread handle, and adds a fcreate
edge to the graph. An ftouch command first evaluates its
subexpression (D-ToucH1). When the thread handle tid[b]
is returned, rule D-ToucH?2 inspects the thread pool for the
entry b W € 4 ret v (if b’s stack is not of this form, b

has not finished executing and the ftouch will block until
it does). The command returns the value v and adds the ap-
propriate ftouch edge. It also adds ¥’ to the set of threads
that a “knows about,” because v might contain handles to
threads in 3.

Rule D-SET3 adds a binding to the heap for the new value
of the memory location, and includes as metadata the new
graph vertex u and the signature X. Rule D-GET2 inspects
the heap for the binding of s, returns its value, adds a weak
edge (u’,u) (recall that u’ is the vertex corresponding to most
recent write to s) and adds X’ to the signature of a.

The soundness theorem for the type system states that
well-typed programs have well-formed cost graphs.

Theorem 3.1. Let m be such that - R m ~ t@p. If
0|0 |a—e>m=>"3|olg|p
i

then g is well-formed and acyclic.

The proof of this theorem consists of showing that all
steps maintain two invariants:
1. No strong edges go from lower to higher priority
2. % correctly reflects the “knows about” relation moti-
vated above.

These invariants respectively imply the two well-formedness
requirements of Section 2. Full proof details are available in
the full version [50].
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u fresh b fresh
(D-CrEATE)
o|lp®a— kw fcreate[p’;r1{m} = a ———— k < ret tid[b] ®@b—oewm|-|o|(@a=>u{wb)}o0)
P p:Z,b~t@p’ pix P
u fresh
(D-ToucH2)
olp®b— cdretv®a———— k;ftouch - < tid[b]
pY p:E,b~p' @1’
Sa— > kqretv®0|-|o|(a—>u0,{(b,u)}0)
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)= ) , (D-GET2)
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Figure 7. Cost semantics for threads

4 Implementation of I-Cilk

This section presents the design and implementation of I-
Cilk, our prototype task-parallel platform that supports paral-
lel interactive applications. I-Cilk is based on an open-source
implementation [60] of Cilk (a parallel dialect of C/C++)
called Cilk-F [59] that extends Cilk with support for futures.
The implementation of I-Cilk consists of two main compo-
nents, a type system to rule out priority inversions (closely
following the typing rules discussed in Section 3) and a run-
time scheduler that automates load balancing while priori-
tizing high-priority tasks over lower-priority ones.

4.1 Programming Interface

Thread creation. In I-Cilk, like in /1‘1.‘, a function f can in-
voke another function g with fcreate, which indicates that
the execution of g is logically in parallel with the contin-
uation of f after fcreate. A function invocation prefixed
with fcreate returns a handle to the new thread, on which
one can later invoke ftouch to ensure that the thread termi-
nates before the control passes beyond the ftouch statement.
Since a thread handle can be stored in a data structure or
global variable and retrieved later, the use of fcreate and
ftouch can generate irregular parallelism with arbitrary de-
pendences. In I-Cilk, as is common in C-like languages, it
is possible to allocate a variable of thread handle type with-
out associating it to a thread, and later pass this variable by
reference to fcreate, to associate it with the created thread.
This is in contrast to A7, where the allocation of the handle
and the creation of the thread happen simultaneously. 2
I/0 Operations. I-Cilk supports the use of I/O opera-
tions via a special type of thread, called an io_future, that
performs an I/O operation in a latency-hiding way. Specifi-
cally, I-Cilk provides special versions of the cilk_read and

2I-Cilk additionally supports spawn and sync for nested parallelism. The
use of spawn and sync can be subsumed by fcreate and ftouch from the
type checking perspective and hence we omit the discussion here.
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cilk_write functions that behave similarly to the Linux
read and write except that they return a io_future ref-
erence representing the I/O operation. Upon invocation,
cilk_read and cilk_write create a thread to perform the
I/O without occupying the processor, and then the returned
io_future can be used to wait on the I/O by calling ftouch
on it.

4.2 Type System

The type system in I-Cilk does not provide full type safety
guarantees, as C++ is not type safe. Nevertheless, provided
that the programmer follows a set of simple rules, the C++-
based type system can ensure that a program that type checks
will result in strongly well-formed DAGs when executed.
The type system enables us to type check moderately large
benchmarks that implement interesting functionalities in-
volving the use of low-level system calls and concurrent data
structures (discussed in Section 5.1).

Enforcing Typing Rules. We utilize templates and other
C++11 language features to encode the type system. In the
C++ encoding, each priority is represented as a class. The
relationship between two priorities is captured through the
class hierarchy via inheritance; if priority p inherits from
priority p” or some descendant of p’, then p > p’ (i.e., p has
higher priority than p’). Such relationships can be tested
at compile time using is_base_of, which tests whether one
class is either the same as or the ancestor of another. Unlike
in A, priorities are thus user-defined types rather than a
pre-defined set of constants.

In A%, there is a separation between the command layer
and expression layer. In I-Cilk, the separation is not as clear.
However, we must enforce restrictions on which functions
can be invoked with fcreate (generating a handle that can
be ftouched later) and which function can execute ftouch,
because the priority of such functions must be retrievable at
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compile time in order to enforce the typing rules. We require
these functions to be wrapped in a command class whose
type relies on a template that specifies its execution priority.
For ease of discussion, we will refer to such a function as a
command function. Unlike in /1‘1.*, fcreate is not a command
— code at any priority may safely invoke a function with
fcreate; this causes no difficulties in enforcing the typing
guarantees. Also unlike in /1‘}, code in I-Cilk does not require
special syntax for invoking an expression (e.g., function that
is not a command) within a command.

The encoding of the type system is realized by C++ macros
that transform fcreate, ftouch, and declarations / invoca-
tions of command functions into the necessary C++ encod-
ings.” The templated types of command functions allow their
priority to be known at compile time, and the type system
checks for priority inversion at the execution of ftouch.
First, a function invoked with fcreate (which must be a
command function) returns a thread handle whose type is
templated with its priority and return type (i.e., what its
corresponding thread returns when done executing, which
may be void). Second, an ftouch can only be executed from
within a command function, and ftouch on a thread handle
fptr is translated to:

1 fptr->touch();

» static_assert(is_base_of<this->Priority,

3 fptr->Priority>::value,
4+ "ERROR:_priority_inversion_on_future_touch");

The static assert ensures that the thread invoking the ftouch
has priority lower than or equal to that of the thread whose
handle is ftouched, causing a compiler error otherwise.

Lastly, we enforce that a command function g, if invoked by
another command function f, must be invoked with fcreate
or inherits the priority of f.* Doing so ensures that another
command function A joining with f (with lower priority than
f but higher priority than g) does not suffer from priority
inversion by waiting on g. In A} such an issue does not arise
because call is an expression whereas fcreate is a command,
and therefore the two do not mix. This issue is an artifact of
the fact that the distinction between the command and the
expression is not clear in I-Cilk.

Discussion: Type Safety. Ideally we would like to guar-
antee that programs which type check using our API will
always generate strongly well-formed DAGs when executed.
However, we cannot make this guarantee in full because C++
is not a type-safe language. Nevertheless, provided that the
programmer follows a few simple rules, our type system can
statically prevent cases of priority inversions, and a program

3We additionally provide macros for declaring and defining a command
function to ease the use of command functions.

4Currently this is enforced by name mangling command functions which
can be circumvented, but in principle this can be enforced with better
compiler support.
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that type checks will result in strongly well-formed DAGs
when executed.

The first rule is that the programmer should not use unsafe
type casts, which circumvent the type system and allow the
programmer to modify priority types in ways that the type
system cannot detect.

The second rule is that the programmer should always
ensure that a thread handle is already associated with a
thread (via fcreate) before invoking ftouch on it. This rule
is important because a strongly well-formed DAG must have
a path between the vertex that invokes the fcreate and the
vertex that invokes the ftouch. This is trivially satisfied in
/1;L because allocation and creation are inextricably linked,
but in I-Cilk a thread handle allocation can be separate from
its thread creation. Thus, such a requirement is not trivially
satisfied, and the programmer has to manually ensure the
thread has been created before an ftouch.

4.3 Runtime Scheduler

An execution of an I-Cilk program generates a computation
DAG as described in Section 2 that dynamically unfolds on
the fly, and the underlying runtime schedules the compu-
tation in a way that respects the dependences in the DAG.
I-Cilk, like Cilk-F, schedules the computation using proactive
work stealing [59] but in addition, prioritizes threads.

Recall from Section 2 that one can bound the response
times of threads in a well-formed DAG (Theorem 2.1), pro-
vided that the schedule is admissible and prompt, i.e., the
schedule assigns a ready vertex u such that no currently
unassigned vertex is higher-priority than u. Any schedule
produced by an actual execution is admissible by construc-
tion. Promptness, however, requires the scheduler to find
ready vertices of high-priority threads in the system to assign
before vertices of lower-priority threads. Doing so requires
maintaining centralized information, which becomes inef-
ficient in practice due to frequent synchronizations. Thus,
I-Cilk implements a scheduler that approximates prompt-
ness.

Specifically, I-Cilk uses a two-level scheduling scheme,
similar to the scheme proposed by prior work A-STEAL [6, 7].
The top-level master scheduler determines how to best as-
sign processing cores to different priority levels, and threads
within each priority level are scheduled with a second-level
work-stealing scheduler [8, 16], known for its decentral-
ized scheduling protocol with low overhead and provably
efficient execution time bound. I-Cilk utilizes a variant of
work stealing called proactive work stealing [59] inherited
from Cilk-F, the baseline scheduler I-Cilk extends.

The master scheduler evaluates the cores-to-priority-level
assignments in a fixed scheduling interval, called the sched-
uling quantum. The master assigns cores based on the
desired number of cores reported by the work-stealing sched-
ulers of each priority-level, but in a way that prioritizes high-
priority threads — it always assigns cores in the order of
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priority. Thus, the highest priority always gets its requested
cores up to the limit of what is available on the system, and
the next levels get the left-over cores.

The work-stealing scheduler at each priority level main-
tains its desire, the number of cores it wishes to get. At the
end of a quantum, the scheduler for a given priority level de-
termines its core utilization in this quantum and re-evaluates
its desire based on the measured utilization and whether its
desire was satisfied in this quantum. Because a work-stealing
scheduler is either doing useful work (making progress on
the computation), or attempting to steal (which leads to load
balancing), its utilization is computed by the fraction of
processing cycles that went into doing work. If its utilization
exceeded a fixed threshold (e.g., 90%) and its desire was sat-
isfied (i.e., it got its desired number of cores), it increases its
desire by a multiplicative factor of the growth parameter y.
For instance, if y = 2, double the desire. On the other hand,
if the utilization exceeded the threshold but its desire was
not met, it keeps the same desire. Finally, if the utilization
did not meet the threshold, it reduces its desire by a factor
of y (e.g., if y = 2, halve the desire).

Prior work [4, 5, 7] has analyzed similar two-level strate-
gies and shown that one can bound the wasted cycles (i.e.,
due to low utilization) and the execution time of computa-
tions scheduled by the second-level schedulers. The prior
analyses do not directly apply in our case, however, for two
reasons. First, I-Cilk utilizes proactive work stealing for the
second-level schedulers, which differs from the ones ana-
lyzed in prior work. Second, in prior work, the computations
scheduled by the second-level schedulers are independent,
whereas in our case, each second-level scheduler corresponds
to a priority level, and threads in different priority levels
can have dependences. Nevertheless, in Section 5, we show
that our scheduler does appropriately prioritize high-priority
threads over low-priority ones and provides better response
time for high-priority threads compared to the baseline sys-
tem that does not account for priorities.

5 Evaluation of I-Cilk

This section empirically evaluates I-Cilk. To evaluate the
practicality and usability of the type system, we wrote three
moderately sized application benchmarks: a proxy server
(proxy, 1.5K LoC), a multi-user email client (email, 1.1K
LoC), and a job server (jserver, 1.1K LoC).’ The type sys-
tem helps the programmer ensure that there is no priority
inversion, which is not always easy to tell, as thread handles
are often used to coordinate interactions among different
application components. We also use the same applications
to evaluate the efficiency of the scheduler by comparing
I-Cilk against Cilk-F, the baseline system that utilizes proac-
tive work stealing but does not account for the priority of
threads (and thus does not incur the two-level scheduling

5LoC exclude comments, system libraries, and runtime code.
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overhead). For fair comparison, Cilk-F is also equipped with
the same io_future library that performs I/O operations in
a latency-hiding way. We use this library for the I/O opera-
tions in the benchmarks so that I/O-blocked threads do not
hinder parallelism. The empirical results indicate that I-Cilk
was able to prioritize high-priority threads and thus provide
shorter response times.

Experimental Setup. Our experiments ran on a com-
puter with 2 Intel Xeon Gold 6148 processors with 20 2.40-
GHz cores. Each core has a 32-kB L1 data and 32-KB L1
instruction cache, and a private 1 MB L2 cache. Hyperthread-
ing was enabled, and each core had 2 hardware threads. Both
processors have a 27.5 MB shared L3 cache, and there are
768 GB of main memory. I-Cilk and all benchmarks were
compiled using the Tapir compiler [57] (based on clang 5.0.0),
with -O3 and -flto. Experiments ran in Linux kernel 4.15.

5.1 Application Case Studies

We evaluate the type system with three applications rep-
resentative of interactive applications in the real world in
that they utilize interesting features commonly used to write
such applications, such as low-level file system and network
libraries, and concurrent data structures implemented using
primitives such as fetch-and-add and compare-and-swap.
Due to space limitations, we discuss the email client in detail
but only summarize the other two applications.

Proxy server. The first application, proxy, allows multi-
ple clients to connect and request websites by their URL. The
server fetches the website on the client’s behalf, masking the
client’s IP address. As an optimization, the server maintains
a cache of website contents using a concurrent hashtable. If a
website is cached, the server can respond with it immediately.
The application utilizes components with four priority levels,
listed in order from highest to lowest: a) the loop that accepts
client connections and the per-client event loop that handles
the client requests, b) a component that fetches websites in
the event of a cache miss, c¢) a component that logs statis-
tics, and the lowest is d) the main function that performs
server startup / shutdown. The priority specification favors
response time for client requests.

Email client. The second application email is a multi-
user, shared email client that allows users with individual
mailboxes to sort messages, send messages, and print mes-
sages; a background task also runs periodically to reduce
storage overhead by compressing each user’s messages us-
ing Huffman codes [24][Chp. 16.3]. The application contains
components with six priority levels, listed in order from
highest to lowest: a) an event loop to handle user requests, b)
a send component that sends email, c) a sort component that
sorts emails, d) a compress component to compress emails
and a print component to uncompress and send the uncom-
pressed emails to the printer, e) a check component that
periodically checks for the need to compress and fires off
compression, f) the main function that performs shutdown.
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One interesting feature is that the application requires the
print and compress to interact with one another — if the user
asks to print a particular email but it is in the midst of being
compressed, the print component needs to coordinate with
the compress component and wait for it to finish. Similarly,
the compress component may encounter an email that it is
about to compress, but it is in the midst of being printed, and
thus the compress needs to wait for the print to complete.

To enable this, within each user’s inbox data structure
is an array indexed using the email ID where any thread
attempting to print or compress the email will store its own
handle. For instance, say there is an ongoing print thread for
an email. The array slot corresponding to the email stores
(a pointer to) the handle of the print thread. If a compress
thread for the same email is created, the first thing the com-
press thread does is perform a compare-and-swap (CAS) on
the same array slot, swapping out the handle of the print
thread and inserting a pointer to its own handle into the slot.
Assuming that CAS returns a non-null reference, the com-
press thread invokes ftouch on the reference to ensure that
the printing is done before proceeding with the compress.

A print thread performs similar operations on the array
to coordinate with an ongoing compress thread for the same
email. Such an interaction is achieved by utilizing the thread
handles and mutable state in an interesting way.

Job server. The jserver application executes jobs that
arrive in the system using a smallest-work-first policy, i.e.,
given different types of jobs, the server knows the amount
of work entailed for each type, and it prioritizes jobs with
the least amount of work. We simulate user inputs using a
Poisson process to generate jobs at random intervals and
execute them. The priority levels correspond to the types
of jobs. We simulated four different types of jobs with fixed
input size n, listed in order of priority (high to low): a)
parallel divide-and-conquer matrix multiplication (matmul,
n = 1024), b) fibonacci (fib, n = 36), c) parallel merge sort
(sort, n = 1.1 X 107), and d) Smith-Waterman for sequence
alignment (sw, n = 1024). This application differs from the
previous two in that threads in different priority levels are
independent of each other, and it is constructed so that we
can easily modify the workload to simulate a server that is
lightly loaded to heavily loaded.

Compilation time. Because the type system heavily uti-
lizes templates, we measure its effect by comparing the com-
pilation time and resulting binary sizes between code that
uses priorities and code that does not.® As shown in Figure 1,
the use of templates for enforcing the typing rules incurs
acceptable overhead.

5The use of template can increase code size as each type instantiation of a
given template gets its own code clone.
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Table 1. The compilation times and resulting binary sizes of
application code without and with priority. The compilation
time is in seconds and the maximum out of the three compile
runs. The binary size is in KB. The numbers in parentheses
show overhead compared to the no priority version.

case study compilation time binary size
proxy (w/out) 1.95 (1.00x) 824.0 (1.00%)
proxy (with) 2.48 (1.27%) 974.7 (1.18%)
email (w/out) 4.66 (1.00x)  1241.16 (1.00x)
email (with) 5.40 (1.16x)  1454.58 (1.17x)
jserver (w/out) 2.10 (1.00x) 851.2 (1.00%)
jserver (with) 2.67 (1.27%) 987.7 (1.16X)

5.2 Empirical Evaluation

To evaluate the efficiency of our implementation, we com-
pare the applications’ running times on I-Cilk and on Cilk-F
with the same latency-hiding I/O support. The main distinc-
tions between the two systems are that a) I-Cilk prioritizes
high-priority threads whereas Cilk-F does not; and b) I-Cilk
utilizes the two-level scheduling scheme discussed in Sec-
tion 4 whereas Cilk-F utilizes proactive work stealing only.
For I-Cilk, we ran all applications with the following runtime
parameters: utilization threshold of 90%, quantum length of
500 microseconds, and growth parameter of 2. These param-
eter values seem to work well in general.

Each of the applications represents different workload
characteristics. The proxy server has the most I/O latency
and very little computation. The email has a fair amount of
I/0 latency and slightly more computation than proxy. The
jserver has little I/O latency with compute-intensive work-
loads. We use one socket (20 cores) to run the server and
the second socket to simulate clients that generate inputs.
Each application is evaluated with multiple server load con-
figurations that range from lightly loaded to heavily loaded.
For proxy and email, we ran with 90, 120, 150, and 180 con-
nections. As we increase the number of connections, each
core needs to multiplex among more connections. For email,
the computation load also increases as the number of clients
increases. For jserver, we simulated the job generations so
that the workload results server machine utilization of 64%,
77%, 95%, and > 95% respectively.

For each application, we run the server for at least 15
seconds, during which tens of thousands of threads from
various priority levels (which correspond to different ap-
plication components) are created, and we measure their
duration. Specifically, we measure the response time of the
application, which corresponds to the time elapsed between
when the user / client sends the request to when the server
handles the request (which is always handled by the highest
priority thread), and the compute time for each thread of
different priority levels.

The standard deviation for such time measurements can
be high for interactive applications, due to multiple factors.
First, the timing includes the I/O latency, which is not always
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Figure 8. The relative responsiveness of proxy and email,
measured as the response time running on Cilk-F normal-
ized by I-Cilk response time, so higher means I-Cilk is more
responsive. Grey bars show the responsiveness calculated
using average response time and black bars show that calcu-
lated using the response time at 95! percentile. The x-axis
shows the number of client connections used. The numbers
shown on top of the bars are the latency measured in mi-
croseconds for I-Cilk.

uniform. Second, the server is time-multiplexing among mul-
tiple client connections, and thus the measured time of a
thread includes not only its computation time but also the
time it took the server to get to the threads. As such, for
many interactive applications, what one cares about is the
latency near the tail. Thus, for all timing data, we show both
the average time and the 95!” percentile running time (i.e.,
95% of the measured time is below that value).

Figure 8 shows the response time ratio for proxy and
email (the job server does not have a response time mea-
surement as the jobs are generated in the same process as
the server). We normalize the response time of Cilk-F by
that of I-Cilk, and thus higher means I-Cilk is more respon-
sive. As can be seen, I-Cilk provides much better response
time, appropriately prioritizing the highest priority threads.
I-Cilk appears to be much more responsive for email than for
proxy. This is because proxy is very lightly-loaded — most
of the time cores are idling, as there isn’t much computation
in the server execution (mostly I/O operations). In contrast,
email has more computations to keep cores occupied, and
thus high-priority threads can be delayed much longer in
Cilk-F as the cores are pre-occupied by computations gener-
ated by lower-priority threads.

The high responsiveness is achieved by prioritizing the
high-priority threads, sometimes at the expense of the lower
priority threads. Figure 9 shows the computation times of
threads from different components. For a given application
and a given configuration (e.g., proxy with 90 clients), the
bars from left to right show the normalized compute time
for threads from higher to lower priority. As the figures
show, I-Cilk provides better compute time than Cilk-F for the
highest priority threads in the figures (which is the second
highest priority for proxy and email). However, the lower
priority threads can run slower. This trend can be seen across
different server loads, where the compute time ratio for the
higher priority threads grows larger as the load gets heavier.
This is because the compute time for the higher priority
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threads on Cilk-F degrades as the server gets more heavily
loaded, whereas I-Cilk is able to maintain similar level of
quality of service. For the lower-priority threads, compute
time on both systems degrades, with I-Cilk degrading more
especially when the load gets heavy.

6 Related Work

Cooperative Parallelism. Many languages and systems
have been developed for cooperative parallelism over the
years. A large number of these, such as Id [9], Multilisp [33],
NESL [15] and parallel versions of Haskell [20, 39] and ML [29,
32, 38, 53, 66], have focused on functional programming lan-
guages, in which the issues of races and deadlock do not arise
or are limited; progress, however, has also been made toward
handling some effects efficiently [32, 66]. These languages
typically assume the fork-join model of parallelism, but there
have also been advances in generalizing them to include the
broader set of parallelism primitives such as futures [2].

Some parallel language extensions have targeted popu-
lar imperative programming languages such as C [30] and
Java[17, 21, 36, 42]. Many papers have been devoted over the
years to taming races (e.g. [27, 43, 54, 64, 67]) and deadlock
(e.g. [3, 22, 23, 65]). None of these languages allow the coop-
erative threads to be prioritized; doing so, as we do in this
work, requires reasoning about priority inversions in addition
to the problems mentioned above.

Scheduling for Responsiveness. Responsiveness has long
been a concern in the systems community, as operating sys-
tems must schedule processes and threads, many of which
are interactive. A thorough overview of this topic can be
found in a text by Silberschatz et al. [58]. In contrast to coop-
erative parallel systems, OS schedulers deal with relatively
small numbers of threads.

Many threading systems for which responsiveness is a
concern incorporate some notion of priority. The problem
of priority inversion has been noted in systems as early as
Mesa [41]. Babaoglu et al. [10] formalized the idea of priority
inversions and discussed some techniques by which they
could be prevented.

Recent work [48, 49] has introduced thread priorities into
a cooperative parallel system and developed type systems
for ruling out priority inversions that arise through touch-
ing a future. That work, however, targets purely functional
programming, and so future handles can essentially only be
passed through calls and returns, leading to a well-behaved
DAG structure. In this paper, future handles can addition-
ally be passed through mutable state, leading to much more
complicated reasoning about priority inversions.

Cost Semantics. Cost semantics (e.g., [46, 55, 56]) are used
to reason statically about the resource usage, broadly con-
strued, of programs. Cost semantics for parallel programs [1,
13, 14, 62] typically represent the parallel structure of the
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Figure 9. The relative compute time for proxy, email, and jserver, measured as the compute time running on Cilk-F
normalized by that running on I-Cilk, so higher means I-Cilk computes faster. For a given application and a given configuration
(e.g., proxy with 90 clients), the bars from left to right show the compute time ratio for threads from the highest to the lowest
priority. The grey bars show the compute time ratio calculated using average compute time and the black bars show that
calculated using the compute time at 95/ percentile. The x-axis shows the number of client connections used for proxy and

email, and the server utilization for jserver.

program as a DAG. Offline scheduling results bound the time
required to execute such a DAG on P processors in terms
of the work and span of the DAG. Classic offline scheduling
results have shown that a “level-by-level” schedule [18] and
any greedy schedule [26] are within a factor of two of opti-
mal. Although the full details of the DAG model are usually
reserved for proofs, the metrics of work and span and the
scheduling results above are quite useful in practice for ana-
lyzing programs by thinking in terms of the parallel structure
of the underlying algorithm (e.g., the branching factor and
problem size in a divide-and-conquer algorithm). Even in
cases where the input is unknown, one can reason asymptot-
ically about work and span, much like asymptotic reasoning
in sequential algorithms. Recent work has extended parallel
cost semantics to reason about I/O latency [47] and respon-
sivenesss [48, 49]. This paper further extends the state of the
art by adding weak edges that allow DAGs to reflect informa-
tion passed between threads through global state.

Much of the above prior work has drawn a distinction
between the cost semantics, which uses a very abstract eval-
uation model to produce a cost DAG from a program, and
a provably-efficient or bounded implementation [14, 48, 49],
which counts the steps of an abstract machine. A proof that
the abstract machine actually meets the bounds promised by
the cost semantics can be quite technical and involved. In this
work, we present one dynamic semantics that both counts
steps and produces a cost graph. This semantics reflects ex-
ecution ordering, which is important in our calculus, and
simplifies the proof that the steps of the abstract machine
are bounded by the cost semantics.

7 Conclusion

This paper bridges cooperative and competitive threading
models by bringing together a classic threading construct,
futures, with priorities and mutable state. To facilitate reason-
ing about efficiency and responsiveness, the paper extends
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the traditional graph-based cost models for parallelism to ac-
count for priorities and mutable state. The cost model applies
only to computations that are free of priority inversions. To
guarantee their absence, we present a formal calculus called
A% and a type system that disallows priority inversions. The
cost model and the type system both rely on a novel technical
device, called weak edges, that represent run-time happens-
before dependencies that arise due to communication via
mutable shared state. We show that these theoretical results
are practical by presenting a reasonably faithful implemen-
tation that extends C++ with futures and priorities. This
extension offers an expressive substrate for writing interac-
tive parallel programs and is able to enforce the absence of
priority inversions if the programmer avoids certain unsafe
constructs of C++. Our empirical evaluation shows that the
techniques work well in practice.
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