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Abstract—Currently, the fastest comparison-based sorting im-
plementation on GPUs is implemented using a parallel pairwise
merge sort algorithm (Thrust library). To achieve fast runtimes,
the number of threads t to sort the input of N elements is fine-
tuned experimentally for each generation of Nvidia GPUs in such
a way that the number of elements E = N/t that each thread
accesses in each merging round results in a small (empirically
measured) number of shared memory contentions, known as bank
conflicts, while balancing the number of global memory accesses
and latency-hiding through thread oversubscription/occupancy.

In this paper, we show that for every choice of E < w, such
that E and w are co-prime, there exists an input permutation
on which every warp of w threads of the Thrust merge sort
is effectively reduced to using at most ⌈w/E⌉ threads due
to sequentialization of shared memory accesses due to bank
conflicts. Note that this matches the trivial worst-case bound
on the loss of parallelism due to memory contentions for any
warp accessing wE contiguous shared memory locations.

Our proof is constructive, i.e., we are able to automatically
construct such permutation for every value of E. We also show
in practice that such constructed inputs result in up to ~50%
slowdown, compared to the performance on random inputs, on
modern GPU hardware.

Index Terms—GPGPU, sorting, bank conflicts, worst-case

I. INTRODUCTION

Graphics Processing Units (GPUs) are highly parallel, with
thousands of cores, supporting hundreds of thousands of
threads, with lightweight context switch. For computations that
are memory bound, massive multithreading with lightweight
context switching capabilities allow GPUs to hide memory
latency and achieve runtimes bounded by the memory through-
put rather than latency. We assume the reader is familiar with a
typical GPU architecture and the standard terminology (global
memory, shared memory, bank conflicts, various synchroniza-
tion tools, thread organization into warps and thread blocks,
occupancy, etc). For a good resource, we refer interested
readers to [1], [2].

The complexity of GPU architecture (combined with the
expectation of fast practical implementations) poses an extra
challenge for theoretical research on GPUs. An algorithm with
optimal runtime must optimize a number of interdependent pa-
rameters, such as multiple levels of memory hierarchy (global
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memory, shared memory, registers, specialized memories (tex-
ture, constant)), each with its own latency and bandwidth, as
well as access patterns for optimal performance. Moreover,
massive multithreading is managed via hierarchical thread
organization, complicating algorithm design and analysis even
further.

As a result, a lot of GPU research is empirical rather
than theoretical in nature. Such research typically consists
of implementing algorithms designed in the classical parallel
models, e.g., PRAM, often forgoing theoretical analysis and
instead validating via experiments on a number of random
inputs. Occasionally, GPU implementations will implement
algorithms with a focus on optimizing for one or two aspects
of the architecture and typically will use heuristics and fine-
grain tuning via benchmarking and experimentation to improve
the overall runtime. Either way, no claims are typically made
about theoretical guarantees about the runtime either in the
worst-case or expected case.

Several algorithmic models for GPUs have been introduced
as an overall algorithmic model for GPUs [15], [21], [23],
[28], [29], yet none of them has been widely accepted.
Instead majority of theoretical research on GPUs has focused
on optimizing one of the optimization criteria (e.g., global
memory accesses, shared memory accesses, register accesses)
[4], [7], [14], [18], [19], [21], [29], [33].

While some metrics, such as global memory accesses, can
significantly dominate the overall performance of an algorithm
(due to its larger latency compared to other memory accesses),
for algorithms that heavily utilize other levels of the memory
hierarchy, the corresponding metrics cannot always be ignored
nor should be hidden in the asymptotic analysis. In fact, it
has been shown that for some algorithms, there is a strong
correlation between the number of memory contentions in
the shared memory, known as bank conflicts, and the overall
runtime of GPU implementations [13], [19], [33].

Unfortunately, analyzing bank conflicts in shared memory
can be difficult, especially for algorithms with data-dependent
accesses. One approach taken in the past is to design al-
gorithms that eliminate bank conflicts altogether, known as
bank conflict free algorithms [4], [7], [18], [20], [33]. As a
simple example, Dotsenko et. al [12] observed that for a simple
parallel scan it is sufficient to pad the input in shared memory,



such that the number of elements that each thread scans is co-
prime with the total number of memory banks.

However, in general bank conflict free algorithms usually
come at a price of increased complexity in the resulting algo-
rithms, e.g., more overall work, higher constant factors, more
complex code, etc. Instead, it would be ideal to theoretically
analyze the number of bank conflicts in the existing simple
algorithms, especially for those algorithms which have been
shown to perform well in practice.

In general, the following result is easy to prove using the
pigeonhole principle:

Lemma 1. Consider a warp of w threads accessing data
stored in k consecutive addresses of memory organized into
w memory banks, such that bank i contains all addresses
x ≡ i (mod w). Then there is a set of w (distinct) addresses,
access to which will result in min

{⌈
k
w

⌉
, w

}
bank conflicts.

Lemma 1 provides a simple worst-case bound on the
number of bank conflicts for every parallel access to shared
memory. However, depending on the particular algorithm’s
access pattern in shared memory, this bound may be too
pessimistic. In particular, the above result does not consider
any dependence between various accesses, which could pre-
clude simultaneous access to the set of addresses defined by
Lemma 1. Instead, a tighter analysis of specific algorithms
needs to be performed to accurately analyze its performance
in shared memory.

This paper takes a step in the direction of addressing this
lack of theoretical analysis of bank conflicts in existing algo-
rithms by showing that in the case of the GPU pairwise merge
sort algorithm, the bound of Lemma 1 is indeed asymptotically
tight.

In Section II, we provide an overview of the GPU pairwise
merge sort algorithm, review the model of computation used
in our analysis, and present related work. In Section III,
we perform an analysis of the worst-case number of bank
conflicts incurred by the GPU pairwise merge sort algorithm.
Our proof is constructive: we generate the input that causes
a provable number of bank conflicts for various software
configuration parameters of the algorithm. Then in Section IV,
we experimentally evaluate the performance of the constructed
worst-case inputs. Our results show a peak slowdown of ~50%
and ~40% (compared to the performance on random inputs)
on 2 Nvidia GPUs: a Quadro M4000 (compute capability 5.2)
and a RTX 2080 Ti (compute capability 7.5), respectively.
Lastly, we discuss our conclusions and possible future work
in Section V.

II. PRELIMINARIES

A. Overview of Pairwise Merge Sort on GPUs

Since our analysis is specific to the details of the GPU merge
sort implementation, let us review the details of the algorithm.

The GPU pairwise merge sort algorithm is based on the
GPU Merge Path algorithm [14], which is a high-performance
implementation of pairwise merging on a GPU.

a) GPU Merge Path: Let A and B be two sorted lists
such that |A|+|B| = n and let t be the total number of threads.
GPU Merge Path is divided into two stages: a partitioning
stage and a merging stage. The idea of the partitioning stage
is to identify for each thread i ∈ {1, 2, ..., t} the i-th quantile
(i-th group of n/t smallest elements) to be merged by the
i-th thread during the merging stage independently of other
threads. By using the order-statistics of two sorted lists (via
mutual binary search), each thread is able to compute the
starting location of its quantile in the A and B lists. Then,
in the merging stage, each thread performs a sequential merge
of n/t elements independently of other threads.

b) GPU Pairwise Merge Sort: Let N be the number
of elements and w be the number of threads per warp. The
implementation uses the following tuning parameters, which
are chosen empirically: b is the number of threads per thread
block and E is the number of elements that each thread will
work on in each merging round, i.e., the total number of
threads is chosen to be N/E. The parameter b is chosen to be
a power of two.

The algorithm starts with the base case where chunks of bE
consecutive elements are sorted in shared memory in parallel
using b threads per chunk, i.e., each thread block sorts an
independent partition of bE elements. In order to do this,
each thread first sorts E elements in registers via an odd-
even sorting network [32]. Then, each thread block performs
a pairwise merge sort using log b merge rounds, where in each
round i ∈ {1, 2, ..., log b}, (b/2i) pairs of lists, each of size
2i−1E, are merged via GPU Merge Path using 2i threads.

Once each chunk of bE elements is sorted,
⌈
log N

bE

⌉
pairwise merge rounds are performed, where in each round
i ∈ {1, 2, ...,

⌈
log N

bE

⌉
}, 2i thread blocks work together to

perform a pairwise merge on 2i−1bE elements per list. Thus,
each thread block needs to find its quantile of bE elements
in the two sorted lists. These elements will then be merged
by the thread block in shared memory, independently of other
thread blocks. Similar to GPU Merge Path, each thread block
computes the starting addresses of its quantile in the two sorted
lists via a mutual binary search in global memory. Then, the
thread block proceeds by performing a single round of GPU
Merge Path in shared memory on its bE elements.

Karsin et. al [19] and Karsin [17] perform theoretical
analysis of this algorithm by computing the number of parallel
coalesced accesses in global memory, denoted Ag , and the
number of parallel shared memory accesses (with the number
of bank conflicts parameterized), denoted As. We review their
results briefly.

Let P be the number of physical cores on the GPU, β1

be the average number of bank conflicts per iteration of the
mutual binary search (i.e., the partitioning stage), and β2 be
the average number of bank conflicts per iteration of merging
(i.e., merging stage). Then

Ag = O

(
Nw

PbE
log2

(
N

bE

)
+

N

P
log

N

bE

)



As = O

(
N

PE
log

(
N

bE

)
(β1 log bE + β2E)

)
Karsin et. al [19] found empirically that for Modern GPU on
random inputs, β1 = 3.1 and β2 = 2.2, but also showed that
these numbers grow with the number of inversions in the input.

B. Distributed Memory Machine Model

To analyze the number of bank conflicts incurred by each
warp throughout GPU merge sort we will use the Distributed
Memory Machine (DMM) model [24]. The DMM model con-
sists of w synchronous processors and w memory modules. For
a memory of size M , each of the w memory modules contains
an independent partition of size ⌈M/w⌉. Each memory module
i contains addresses x ≡ i (mod w). Hence, we can view
memory as a 2-dimensional matrix of size w×⌈M/w⌉, where
each row represents a memory module and contiguous address
space is laid out in column-major order. In each time step,
each processor is able to send a memory request to any
of the w memory modules. However, each memory module
is only able to respond to a single memory request at a
time. Thus, multiple memory requests to a single memory
module results in these memory requests being queued in an
arbitrary order and processed sequentially. This is known as
a memory contention and is analogous to bank conflicts in
shared memory on GPUs. We consider the concurrent read
exclusive write (CREW) DMM, where we allow processors to
read the same memory location in the same memory module,1

but writing to the same memory location is forbidden.

C. Related Work

The DMM model was introduced as early as 1984 by
Mehlhorn and Vishkin (initially called the Module Parallel
Computer) [24]. Historically, the DMM has been used to study
the granularity of parallel memories problem, which considers
the simulation of PRAM algorithms on the DMM [8]–[11],
[16], [24], [27], [34].

The DMM model has been mostly overlooked by the GPU
community and has been reinvented with minor variations to
model accesses in shared memory. Notably, Dotsenko et al.
[12] visualized shared memory as a 2-dimensional matrix;
and Nakano [29] formalized this approach with the Discrete
Memory Machine model, which also factors in the latency
of accessing memory and multi-warp scheduling. Afshani and
Sitchinava [4] simplified the Discrete Memory Machine model
by removing the latency and considering a single warp, which
is equivalent to the DMM model. These minor variations of the
DMM have been used to analyze various algorithms such as:
scanning [12], sorting [4], [19], searching [18], transposition
[7], and permuting [4], [20].

Over the years, various sorting implementations for GPUs
have been developed such as: pairwise merge sort [3], [6],
[14], [32], [33], multiway merge sort [19], [21], multiway
distribution sort [22], shear sort [4], [33], bitonic sort [30],

1One could also differentiate whether a concurrent read of the same memory
location by multiple processors results in a contention. On modern GPUs, it
does not. For the purposes of our analysis in this paper, this detail is irrelevant.

[31] and radix sort [25], [32]. Recent empirical studies have
shown that the current state-of-the-art comparison-based sort-
ing implementation on GPUs is the pairwise merge sort
implementations available in the Thrust and Modern GPU
libraries [19], [26].

Experimental results show that Thrust and Modern GPU
perform well on random inputs [19], [26]. However, typical
experiments are performed on at most a dozen random inputs
with the average runtime reported (often without any mention
of variance or other statistics). For the problem of comparison-
based sorting, out of n! possible permutations, a random sam-
ple of only a dozen inputs represents no statistical significance.

Karsin et al. [19] showed a strong correlation between the
number of bank conflicts and the runtime of Modern GPU
for a fixed input size of 108 integer elements. Furthermore,
the authors constructed so-called conflict-heavy inputs, which
are inputs that cause a “large” number of bank conflicts,
and showed that these inputs increase the runtime of Modern
GPU and Thrust, compared to random inputs. Unfortunately,
these conflict-heavy inputs were constructed manually for two
specific software configuration parameters, the comparison of
these conflict-heavy inputs with random inputs is only shown
for the GTX 770 (compute capability 3.0), and theoretical
analysis of the number of bank conflicts incurred was not
investigated and was left as an open problem. This paper
addresses this open problem.

III. WORST-CASE BANK CONFLICT ANALYSIS

Observe that in the bound for the number of parallel shared
memory accesses (As) in Section II-A, the number of accesses
in the merging stage is larger than the number of accesses
in the partitioning stage when E ≥ log bE. In practice, this
inequality is satisfied for all values of E and b used in Thrust
and Modern GPU [3], [6]. Therefore, we focus on constructing
the worst-case input for the merging stage.

Let w = 2x, for some integer x ≥ 0, be the number of
threads in a warp and the number of memory banks in shared
memory; let b = 2y , for some integer y > x, be the number
of threads in a thread-block; and let E be a positive integer.

We consider the pairwise merge problem, where two sorted
lists A and B, each of size bE

2 , are being merged using b
threads of the same thread block. We assume that each thread
knows the addresses within A and B from where it will start
the merging process (i.e., the partitioning stage of GPU Merge
Path has been performed) and it will read the E elements that
it is assigned in the increasing order of their values.

a) Memory alignment: To simplify our task, we restrict
our attention to a simpler problem: maximizing bank conflicts
that occur within a fixed set of E contiguous memory banks.
This is equivalent to a simpler problem of finding a permu-
tation that maximizes the number of threads synchronously
scanning elements that are located on the chosen E consec-
utive memory banks. Since we are generating a worst-case
input, this restriction only strengthens our result.
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Fig. 1. A depiction of data in sorted order and the resulting access pattern
for a single warp, where w = 16, E = 12, and GCD(w,E) = 4. Rows
represent a memory bank in shared memory and elements are marked with
the corresponding thread (0-indexed) which reads the particular element. In
this case, elements are aligned to the first 12 memory banks, hence, elements
colored green located in memory bank i for i ∈ {0, 1, 2, ..., 11} are accessed
by its assigned thread in the i-th iteration (0-indexed) of the merging stage.
While elements colored red indicate misaligned elements, whose assigned
thread is not able to access the element in the i-th iteration. Elements colored
gray indicate elements whose corresponding thread can perform an arbitrary
scan of its elements in the A and B list (as they do not contribute towards
the number of bank conflicts).

Let s ∈ Zw be the starting memory bank of the chosen E
consecutive memory banks.2 Since execution within a warp is
performed in lock-step, we view each merging round as an
execution of E steps or, equivalently, E accesses to shared
memory. We say an input element e is aligned (with respect
to the E banks), if e is read in time step j ∈ ZE and is
located in bank (s+ j) (mod w). Since a thread is reading its
E elements in increasing order of the values, the alignment is
simply a function of the relative order among the E elements
being merged by the thread.

b) Considered values of E: Let GCD(w,E) = d for
some positive integer d. Notice that using data in sorted order,
every d-th chunk of E elements will be aligned. Notably, if
d = E, i.e., E is a power of 2, then sorted order represents
the worst-case input. Figure 1 depicts an example where
d = 4. Thus, in this work we consider the difficult case where
GCD(w,E) = 1, i.e., E is odd.

c) General Strategy: Recall from Section II-A that in
each merge round, each thread block finds its partition of bE
elements to merge across 2 sorted lists, A and B; and each
thread finds its E elements to merge, within the bE elements
of its corresponding thread block. Thus, when constructing our
worst-case input, we have the freedom to choose the number
of elements in the A and B lists for a thread block, as long
as the total number of elements within a thread block equals
to bE and the total number of elements in the A and B lists

2For any integer c ≥ 1, Zc = {0, 1, 2, ..., c− 1}.

across all thread blocks is equal. Additionally, within a thread
block, we have the freedom to choose the number of elements
in the A and B lists assigned to a warp, as long as the total
number of elements in the A and B lists across all warps in the
thread block is consistent with the total number of elements
given to that particular thread block.

In order to consider each thread block independently, we
design our input so that each thread block is always given
bE
2 elements from both the A and B lists. For each warp,

we decide to give (E+1
2 )w elements in one list and (E−1

2 )w
elements in the other list. This choice allows us to fix the
start of the A and B lists for each warp to the 0-th memory
bank, as well as allow us to consider each warp independently
(without loss of generalization).

Formally, we partition a thread block into 2 disjoint sets L
and R, such that L and R both contain b

2w warps. For every
warp l ∈ L, we assign (E+1

2 )w elements of the A list and
(E−1

2 )w elements of the B list. And for warps r ∈ R, we
perform the symmetric assignment of (E−1

2 )w elements of
the A list and (E+1

2 )w elements of the B list.
Ideally, our goal is to generate an input for each warp such

that E threads perform a scan of E consecutive elements
starting at memory bank s. Therefore, we design our input
such that every thread performs a scan of one list then the
other list, i.e., for some integer 0 ≤ k ≤ E, the first k
elements merged belong to one list and the remaining E − k
elements belong to the other list. Furthermore, our inputs are
generated with a strategy that ensures that for each thread, only
elements from a single list will reside within the E consecutive
banks, which makes it clear which list to scan first. Thus, we
can indirectly describe our input by assigning the number of
elements in each list that a particular thread reads. Once again,
we note that this restriction only strengthens our result.

In general, our strategy is to assign thread(s) w−E elements
in a particular list, which allows the next thread to do a full
scan of E elements that are aligned to the E consecutive
banks. We consider two cases: “small” E where E < w

2 and
“large” E where w

2 < E < w.

A. “Small” E (E < w
2 )

As each threads first access (rank iE-th element, for i =
0, 1, ..., w − 1) can reside in a different bank depending on
the number of elements assigned in each list to the previous
threads, we parameterize the location of the start of the A
and B list for a particular thread. Similarly, each threads last
access (rank (iE+E−1)-th element) can reside in a different
bank depending on the number of elements assigned in each
list to the subsequent threads.

For i = 0, 1, ..., w − 1, let α
(i)
↑ and β

(i)
↑ be the number

of elements at the start of the A and B list, respectively,
that are located before the E consecutive banks for the i-
th thread in a warp. And symmetrically, let α

(i)
↓ and β

(i)
↓

be the number of elements at the end of the A and B list,
respectively, that are located after the E consecutive banks.
Note that 0 ≤ α

(i)
↑ , β

(i)
↑ , α

(i)
↓ , β

(i)
↓ ≤ w − E. Moreover, we

consider α(i)
↑ and β

(i)
↑ to be undefined if the previous threads



have not yet been assigned any elements or if the i-th thread
starts within the E consecutive banks; and symmetrically for
α
(i)
↓ and β

(i)
↓ .

For some integer m ≥ 1, we say that the A list has m

full columns if |A| = α
(0)
↑ + (m − 1)w + E + α

(w−1)
↓ , i.e.,

the A list has m columns which reside in the E consecutive
banks. (Similarly defined for the B list.) Figure 2 shows and
illustration of the defined parameters for |A| = tE, for some
positive integer t, with m full columns.

Lemma 2. For some positive integer t, given m ≥ 1 full
columns of each A and B with |A|+ |B| = tE, α(0)

↑ +β
(0)
↑ ≥

E, and α
(t−1)
↓ + β

(t−1)
↓ ≥ E we can align⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2mE if MIN(α
(0)
↑ , β

(0)
↑ ) = α

(0)
↑ and α

(t−1)
↓ ≥ E

2mE if MIN(α
(0)
↑ , β

(0)
↑ ) = β

(0)
↑ and β

(t−1)
↓ ≥ E

2mE if MIN(α
(t−1)
↓ , β

(t−1)
↓ ) = α

(t−1)
↓

and α
(0)
↑ ≥ E

2mE if MIN(α
(t−1)
↓ , β

(t−1)
↓ ) = β

(t−1)
↓

and β
(0)
↑ ≥ E

2mE if MIN(α
(0)
↑ , β

(0)
↑ ) = α

(0)
↑

and MIN(α
(t−1)
↓ , β

(t−1)
↓ ) = β

(t−1)
↓

2mE if MIN(α
(0)
↑ , β

(0)
↑ ) = β

(0)
↑

and MIN(α
(t−1)
↓ , β

(t−1)
↓ ) = α

(t−1)
↓

2mE − E otherwise

total elements (out of 2mE total possible).

Proof. (Sketch) The idea of the proof is to apply what we intu-
itively call the “front-to-back”, “back-to-front”, and “outside-
in” alignment strategies. The general approach in each of these
strategies is to align a single column in both the A list and B
list and use induction on the remaining m−1 columns. In the
“front-to-back” alignment strategy, we align the first columns
of the A and B lists; and symmetrically in the “back-to-front”
strategy, we align the last columns of the A and B lists. The
“outside-in” strategy is a synthesis of the “front-to-back” and
“back-to-front” strategy, where we align the first column of
one list and the last column of the other list.

In all of these alignment strategies, we rely on the fact that
w−E ≥ E because E < w/2, which is the number of memory
banks that we do not need to align elements to. To illustrate
the importance of this inequality, let us go through an example.
Without loss of generality, assume that MIN(α

(0)
↑ , β

(0)
↑ ) =

α
(0)
↑ . In order to align the first column of the A list, we assign

α
(0)
↑ elements in A list and

(⌈
α

(0)
↑
E

⌉
E − α

(0)
↑

)
elements in

the B list to the first t↑ =

⌈
α

(0)
↑
E

⌉
threads (in any order).

Since we know that α
(0)
↑ + β

(0)
↑ ≥ E and α

(0)
↑ ≤ β

(0)
↑ , we

are able to perform these assignments without any of the
elements overflowing into the E consecutive banks. We are
now able to align the next E elements in the A list to the next

α
(t−1)
↓ w

m

E

α
(0)
↑

Fig. 2. An illustration of the parameter definitions for |A| = tE, for some
positive integer t, with m full columns. In this example, we want elements
to be aligned to the first E memory banks. The parameters for the B list are
similarly defined.

thread. We now have β
(t↑+1)
↑ = β

(0)
↑ −

(⌈
α

(0)
↑
E

⌉
E − α

(0)
↑

)
and α

(t↑+1)
↑ = w − E. We apply the same strategy to

align the first column of the B list as we did with the
first column of A, where we assign β

(t↑+1)
↑ elements in

B and
(⌈

β
(t↑+1)

↑
E

⌉
E − β

(t↑+1)
↑

)
elements in A. However

to be able to perform these assignments, we need to know
that α

(t↑+1)
↑ + β

(t↑+1)
↑ ≥ E and β

(t↑+1)
↑ ≤ α

(t↑+1)
↑ . Since

α
(t↑+1)
↑ = w−E ≥ E, we are able to guarantee that we meet

these two conditions.

Theorem 3. For E < w
2 , there exists an input with E2 total

bank conflicts.

Proof. We choose to align the elements to the first E memory
banks, i.e., s = 0.

For every warp l ∈ L, we assign E elements in A and
E elements in B to the first and second thread, respectively,
which aligns the first column of the A and B list. We then use
the next t↑ =

⌈
w−E
E

⌉
threads and assign (w−E) elements in

A and (t↑E − (w−E)) elements in B; and E elements in A
to the next thread, which aligns the second column of A.

We now have α
(t↑+3)
↑ = w−E, α(w−1)

↓ = w−E, β(t↑+3)
↑ =

w−E − (t↑E − (w−E)), β(w−1)
↓ = w−E, and

(
E−1
2 − 1

)
full columns of each A and B remaining to align. Notice that
α
(t↑+3)
↑ +β

(t↑+3)
↑ ≥ E and α

(w−1)
↓ +β

(w−1)
↓ ≥ E, thus, we can

apply Lemma 2 (using the second, third, or sixth condition) to
align the remaining m =

(
E−1
2 − 1

)
full columns of each A

and B. Therefore, in total we have aligned all 3E+(E−3)E =
E2 elements.

For every warp r ∈ R, we perform the symmetric strategy
where we switch α↑ & β↑, α↓ & β↓, and A & B.

It follows from Theorem 3 that there does indeed exist an
input which can cause the maximum number of bank conflicts
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Fig. 3. A depiction of a constructed worst-case input for a single warp with
w = 16. The left subfigure (first A and B pair) uses E = 7 (i.e., “small”
E case, where E < w

2
) and the right subfigure (second A and B pair) uses

E = 9 (i.e., “large” E case, where w
2

< E < w). Rows represent a memory
bank in shared memory and elements are marked with the corresponding
thread (0-indexed) which reads the particular element. In the left subfigure,
elements are aligned to the first 7 memory banks, hence, elements colored
green located in memory bank i ∈ {0, 1, 2, .., 6} are accessed by its assigned
thread in the i-th iteration (0-indexed) of the merging stage. In the right
subfigure, elements are aligned to the last 9 memory banks, hence, elements
colored green located in memory bank 7 + i for i ∈ {0, 1, 2, ..., 8} are
accessed by its assigned thread in the i-th iteration (0-indexed) of the merging
stage. Elements colored gray indicate elements whose corresponding thread
can perform an arbitrary scan of its elements in the A and B list (as they do
not contribute towards the number of bank conflicts).

possible for all values of E < w
2 , i.e., β2 = E. Figure 3 (left

subfigure) depicts a constructed worst-case input for a single
warp.

B. “Large” E (w2 < E < w)

Let r = w − E < E and observe that r is odd, since w is
even and E is odd (the difference of an even integer and an
odd integer is always an odd integer).

Lemma 4. GCD(E, r) = 1, i.e., E and r are co-prime.

Proof. If r = 1, then it is trivial to see that GCD(E, 1) = 1.
Thus, we focus on the case where r ̸= 1.

Let GCD(E, r) = d, for some positive integer d. Because
both E and r is odd, E+r = d

(
E
d

)
+d

(
r
d

)
, where d, E

d , and
r
d are all odd. Let i, j, and k be integers such that d = 2i+1,
E
d = 2j + 1, and r

d = 2k + 1.

d

(
E

d

)
+ d

( r
d

)
= (2i+ 1)(2j + 1) + (2i+ 1)(2k + 1)

= 2(2i+ 1)(j + k + 1) = w

Since w is a power of 2, it must be true that both d = 2i+ 1
and j+k+1 must also be a power of 2. Therefore, d = 2i+1
must be equal to 1 (i.e., i = 0).

Lemma 4 allows us to make use of the following well-
known elementary number theory results [5].

Fact 5. Let a, b,m be integers such that m > 0 and
GCD(a,m) = 1. The linear congruence ax ≡ b (mod m)
has exactly 1 solution in Zm.

Fact 6. Let a,m be integers such that m > 0 and gcd(a,m) =
1. The inverse of a, denoted a−1, exists and is unique modulo
m.

We start by defining a sequence and proving some useful
properties about it. For i = 1, 2, ..., E − 1, let xi = i(E −
r) (mod E) ≡ −ir (mod E) and yi = ir (mod E) ≡ −i(E−
r) (mod E).

Lemma 7. For all i = 1, 2, ..., E − 1,
1) xi + yi = E
2) For any j ∈ {1, 2, ..., E − 1} such that i ̸= j, xi ̸= xj

and yi ̸= yj
3) xi = yE−i

Proof. (Proof of 1) We have that xi + yi (mod E) ≡
(−ir (mod E)) + (ir (mod E)) ≡ 0. Thus, to show that
xi + yi = E, it suffices to show that xi + yi ̸= 0, i.e.,
both xi and yi are never 0. From Lemma 4, we know
that GCD(r, E) = 1. Thus, from Fact 5 we know that for
b = 0, 1, ..., E − 1, ir = b (mod E) has exactly 1 solution in
ZE . Notably, for yi = ir ≡ 0 (mod E), the solution is i = 0
which is not included in our sequence.

(Proof of 2) Let b1 and b2 be integers such that such that
b1 ̸≡ b2 (mod E) and let i1, i2 be the respective solutions
to the equations ai1 ≡ b1 (mod E) and ai2 ≡ b2 (mod E).
Assume (for the sake of contradiction) that i1 ≡ i2 (mod E).
Then, from Fact 6 we have that

i1 ≡ b1r
−1 (mod E) ≡ i2 (mod E)

and i2 ≡ b2r
−1 (mod E) ≡ i1 (mod E) ,

which implies that b1 ≡ b2 (mod E), a contradiction. Thus,
it must be true that i1 ̸≡ i2 (mod E). Therefore, for each
b = 1, 2, .., E − 1 there exists exactly 1 solution in ZE and
the solutions are unique modulo E, which implies that each
yi is unique. A similar argument applies to xi = (−i)r ≡
0 (mod E).

(Proof of 3) Lastly, we have that xi = −ir (mod E)
and yE−i = (E − i)r (mod E) ≡ Er − ir (mod E) ≡
−ir (mod E).

Lemma 8. Let n and m be integers such that 0 < n ≤ r and
0 < m < E − r. For i = 1, 2, ..., E − 2,

1) xi = r − n if and only if yi+1 = n
2) xi = E −m if and only if yi+1 = m+ r

3) xi + yi+1 =

{
r if xi < r

w if xi > r

Proof. (Proof of 1) Assume xi = r−n, then from Lemma 7.1
we know that xi + yi = E =⇒ yi = E − r + n. Hence,
yi+1 = yi + r (mod E) ≡ E − r + n+ r (mod E) = n.

Assume yi+1 = n, then from Lemma 7.1 we know that
xi+1 + yi+1 = E =⇒ xi+1 = E − n. Hence, xi = xi+1 +
r (mod E) ≡ E − n+ r (mod E) = r − n.



(Proof of 2) Assume xi = E − m, then from Lemma 7.1
we know that xi + yi = E =⇒ yi = E − E + m = m.
Hence, yi+1 = yi + r (mod E) = m+ r.

Assume yi+1 = m + r, then from Lemma 7.1 we know
that xi+1 + yi+1 = E =⇒ xi+1 = E − m − r. Hence,
xi = xi+1 + r (mod E) = E −m.

(Proof of 3) We first note that y1 = r (by definition) and
from Lemma 7.3 we know that y1 = xE−1 = r. Thus,
since we know that each value of xi and yi are unique (from
Lemma 7.2), all values of xi for i = 1, 2, ..., E − 2 is either
greater than r or less than r. Therefore, it follows from the
first 2 points of this lemma that

xi + yi+1 =

{
r − n+ n = r

E −m+m+ r = E + r = w

From Lemma 7 and Lemma 8, we know that there are
exactly (r − 1) values of i such that xi + yi+1 = r and
(E − r − 1) values of i such that xi + yi+1 = w.

Let S = (a1, b1), (a2, b2), ..., (aE−1, bE−1) such that

ai =

{
xi if i is even
yi otherwise

bi =

{
yi if i is even
xi otherwise

In order to use the sequence S to assign elements to threads,
we assign E elements after every sum of r element assigned
to either the A list (ai’s) or B list (bi’s). The pairs of elements
which sum up to w will cause some misalignment, however,
we never misalign all E elements in a column.

Formally, we create a new sequence, denoted T , by per-
forming the following modifications to the sequence S:

1) Insert (E, 0) after (a1, b1) = (y1, x1) = (r, E − r) and
(aE−1, bE−1) = (xE−1, yE−1) = (r, E − r)

2) For k = 1, 2, ..., E−1
2 − 1, if a2k + a2k+1 = x2k +

y2k+1 = r then we insert (E, 0) after (a2k+1, b2k+1).
3) For k = 1, 2, ..., E−1

2 , if b2k−1+b2k = x2k−1+y2k = r
then we insert (0, E) after (a2k, b2k).

Theorem 9. For E > w
2 , we can align a total of

1
2

(
E2 + E + 2Er − r2 − r

)
elements.

Proof. We choose to align the elements to the last E memory
banks, i.e., s = r.

For every warp l ∈ L, we use the sequence T to assign the
number of elements to assign to each thread.

It follows from Lemma 7.2 and Lemma 8.3 that there are
exactly (r − 1) pairs which sum up to r and (E − r − 1)
pairs which sum up to w in the sequence S. Hence, including
(a1, b1) and (aE−1, bE−1), we have inserted a total of (r+1)
tuples of either (E, 0) or (0, E) into S to create T . Therefore,
T is comprised of E groups of consecutive entries which sum
up to w, with

(
E−1
2 + 1

)
groups in the A list and

(
E−1
2

)
groups in the B list. Moreover, by inserting E after every
sum of r elements, we have perfectly aligned that particular

column. Hence, we have (r + 1) columns that are aligned
perfectly and (E−r−1) columns that are partially misaligned.

To count the number of misaligned elements, we focus on
the (E − r − 1) values of i ∈ {1, 2, ..., E− 2} such that xi +
yi−1 = w. Because we know that there are (E−r−1) unique
values of xi such that xi > r, for each of the considered
(E − r − 1) values of i we misalign (xi − r) elements and
align yi elements. As each value of xi is unique, in total T
misaligns (r − 1 − r) + (r + 2 − r) + ... + (E − 1 − r) =
1+2+...+(E−r−1) =

∑E−r−1
k=1 k = 1

2 (E−r)(E−r−1) =
1
2

(
E2 − 2Er − E + r2 + r

)
total elements.

Thus, in total we have aligned E2 −
1
2

(
E2 − 2Er − E + r2 + r

)
= 1

2

(
E2 + E + 2Er − r2 − r

)
total elements.

For warps r ∈ R, we use the symmetric strategy, where we
use the sequence T with tuple values switched.

For E = w
2 + 1 (i.e., the minimum value of E

for this case), we have that r = E − 2. Hence,
1
2

(
E2 + E + 2Er − r2 − r

)
= E2 − 1. Similarly, for E =

w − 1 (i.e., the maximum value of E for this case), we have
that r = 1. Thus, 1

2

(
E2 + E + 2Er − r2 − r

)
= E2

2 + 3
2E−

1. Therefore, we have that 1
2

(
E2 + E + 2Er − r2 − r

)
=

Θ(E2) and we can achieve the asymptotic worst-case number
of bank conflicts, i.e., β2 = Θ(E). Figure 3 (right subfigure)
depicts a constructed worst-case input for a single warp.

C. Putting it all together

We have showed that for values of E such that
GCD(w,E) = 1, E < w

2 results in E2 total bank conflicts;
and w

2 < E < w results in between E2

2 and E2 bank
conflicts, depending on the value of E. Since each warp
performs wE work in total (per merge round), this effectively
reduces the parallelism from w threads down to

⌈
w
E

⌉
threads,

i.e., the parallel time is increased from Θ
(
wE
w

)
= Θ(E)

up to Θ
(

wE
w/E

)
= Θ(E2), which is the worst-case possible.

Although for values close to w, we are a factor of 2 off from
the absolute worst-case (considering leading constants), this
still effectively reduces the parallelism from w threads down
to 2 threads per warp.

Notice that for small values of E (i.e., E < w
2 ), while we

are able to achieve the worst-case of E2 total bank conflicts
per warp, the total number of bank conflicts is at most w2

4
as E approaches w

2 . In contrast, for large values of E (i.e.,
w
2 < E < w), the total number of bank conflicts per warp
converges towards E2

2 = w2

2 bank conflicts as E gets closer
to w.

Overall, it may seem that choosing a small value of E is
best for performance, as the worst-case does not penalize the
possible parallelism as much as the worst-case of a larger E
value. However, decreasing E increases the number of binary
searches that needs to be performed in the global memory
partitioning stage (i.e., partitioning elements to thread blocks).
Thus, a larger E value is desired to decrease the amount of
work performed in global memory. Therefore, an E value
which balances these factors seems to be the best choice.



IV. EXPERIMENTAL RESULTS

A. Methodology

We perform our experiments on 2 Nvidia GPUs: a Quadro
M4000 (compute capability 5.2), which contains 1664 physical
processors across 13 SM’s, 8 GB of global memory, and 96
KiB of shared memory per SM; and an RTX 2080 Ti (com-
pute capability 7.5), which contains 4352 physical processors
across 68 SM’s, 11 GB of global memory, and 96 KiB of
unified L1 cache and shared memory per SM (configured at
runtime to be either 32 KiB of L1 cache and 64 KiB of shared
memory, or vice versa)3.

We use the Thrust library included with the CUDA 10.1
toolkit, which defines the software parameters of E = 15
and b = 512 for the Quadro M4000. However, the software
parameters are not explicitly defined for the RTX 2080 Ti
and by default it uses the parameters defined for compute
capability 6.0, which is E = 17 and b = 256. For these
software parameters, each thread block requires 17 KiB of
shared memory space, thus, 3 thread blocks (768 total threads)
using a total of 51 KiB of shared memory space (13 KiB
unused) can be resident on each SM. Compared to E = 15
and b = 512, each thread block uses 30 KiB of shared memory
space, which results in 2 resident thread blocks (1024 total
threads) using a total of 60 KiB of shared memory space (4
KiB unused). As the RTX 2080 Ti can support up to 1024
resident threads per SM, the latter parameters provides 100%
theoretical occupancy while the former parameters provides
only 75% theoretical occupancy. Therefore, we expect E = 15
and b = 512 to outperform E = 17 and b = 256. In our
experiments we use both of these parameters for the RTX
2080 Ti.

The Modern GPU library defines E = 15 and b = 128 for
the Quadro M4000 and, similar to Thrust, does not explicitly
define parameters for the RTX 2080 Ti. Hence, we run
experiments using the same two sets of parameters as in our
Thrust experiments.

All experiments are performed on 4-byte integers with the
average over 10 runs being reported. Runtimes are recorded
using cudaEventRecord and bank conflict counts are
gathered via Nvidia’s provided profilers. Specifically, for the
RTX 2080 Ti, nv-nsight-cu-cli is used to record the
l1tex__data_bank_conflicts.sum metric. The test
harness program for Thrust is compiled with the -03 opti-
mization flag and the test harness program for Modern GPU
is compiled with its provided Makefile.

B. Results

Figure 4 shows both the Thrust and Modern GPU through-
put results for their respectively defined software parameters
on the Quadro M4000. We find that the constructed worst-
case inputs cause a peak slowdown of 50.49% (occurring
at 7,864,320 elements) and 33.82% (occurring at 62,914,560
elements) for Thrust and Modern GPU, respectively. Overall,
we have an average slowdown of 43.53% and 27.3% for Thrust

3GB = 109 B and KiB = 210 B

Fig. 4. Throughput results for both Thrust and Modern GPU on the Quadro
M4000. Thrust results are in blue and Modern GPU results are in yellow. The
solid lines represent the constructed worst-case inputs and the dashed lines
represent random inputs. The x-axis is on a logarithmic scale.

and Modern GPU, respectively. Moreover, as expected, Thrust
outperforms Modern GPU for both random and constructed
worst-case inputs.

Figure 5 shows the throughput results for both software
parameters in Thrust and Modern GPU on the RTX 2080 Ti.
We find that for E = 15 and b = 512, the constructed worst-
case inputs cause a peak slowdown of 42.43% (occurring
at 31,457,280 elements) and 42.62% (occurring at 3,932,160
elements) for Thrust and Modern GPU, respectively. The
average slowdown is 33.31% and 35.25% for Thrust and
Modern GPU, respectively. For E = 17 and b = 256,
the constructed worst-case inputs cause a peak slowdown
of 22.94% (occurring at 35,651,584 elements) and 20.34%
(occurring at 285,212,672 elements) for Thrust and Modern
GPU, respectively. The average slowdown is 16.54% and
12.97% for Thrust and Modern GPU, respectively.

On the RTX 2080 Ti, results from both Thrust and Modern
GPU confirm that for random inputs, E = 15 and b = 512
provide increased performance over E = 17 and b = 256.
However, it is interesting that for the constructed worst-case
inputs, the opposite is true: E = 17 and b = 256 outperforms
E = 15 and b = 512. This results in a much larger slowdown
for E = 15 and b = 512 compared to E = 17 and b = 256.
To investigate this, we compare the runtime per element and
the bank conflicts per element for both software parameters
(Figure 6 shows this comparision for Thrust). We find that
the relative performance of the number of bank conflicts per
element predicts the relative performance of the runtime per
element. In other words, there is indeed a correlation between
the runtime and the number of bank conflicts. Moreover, as
we expect, the number of bank conflicts per element shows
logarithmic growth; and while there is some noise from the
base case, we also see logarithmic growth in the runtime per
element.



Fig. 5. Throughput results for Thrust (left) and Modern GPU (right) on the RTX 2080 Ti. The blue lines represent parameters E = 15 and b = 512 and
the yellow lines represent the parameters E = 17 and b = 256. The solid lines represent the constructed worst-case inputs and the dashed lines represent
random inputs. The x-axis is on a logarithmic scale.

Fig. 6. Runtime (in milliseconds) per element and bank conflicts per element for Thrust on the RTX 2080 Ti. The left figure displays the data with the x-axis
on a logarithmic scale, to clearly show each individual data point. While the right figure displays the data without data points shown and with the x-axis on
a linear scale in order to emphasize the resulting logarithmic shape of the curves. In both figures, the solid lines represent the runtime (in milliseconds) per
element and the dashed lines represent the bank conflicts per element.

V. CONCLUSION

In this paper we showed that for every value of E < w, such
that w and E are co-prime, there exists an input that reduces
the effective parallelism of each warp on the GPU from w
down to ⌈w/E⌉ due to memory contention in shared memory.
This translates into non-trivial slowdown on such inputs in
practice.

One natural question that might arise from this work is:
the constructed worst-case input is a very specific permutation
and, thus, is very unlikely to occur with high frequency in real
world inputs. So why should we care about the worst-case
performance?

This is a philosophical question that can be addressed from
several aspects:

1) Every undergraduate algorithms course teaches that we
should analyze algorithm runtimes on the worst-case

inputs. Why should we ignore such analysis for GPU
algorithms? Moreover, such analysis might lead to the
discovery of better algorithmic techniques on GPUs.

2) The goal of this paper was to prove the existence of
a single permutation that asymptotically matches the
pessimistic bound of Lemma 1 for the parallel pairwise
merge sort algorithm. However, observe that our con-
struction can actually produce a family of permutations,
as many of the elements in the non-aligned w − E
memory banks can be permuted without affecting the
total number of bank conflicts.

3) We could relax our requirement for an absolute worst-
case and produce a permutation that has slightly fewer
bank conflicts than our constructed permutation. There-
fore, there are many more permutations that still incur
a significant number of bank conflicts.



4) Observe that the runtimes on the worst-case inputs
represent an extreme end of the possible runtime vari-
ance. With the constructed inputs causing an average
slowdown of ~43% and ~33% on a Quadro M4000 and
a RTX 2080 Ti, respectively, the possible variance in
runtime is quite significant.

A better question to ask is: can we analyze the expected
number of bank conflicts for a given algorithm, for a specific
input distribution? This seems to be a very difficult problem
for any non-trivial data-dependent algorithm. Understanding
how such data dependencies can be modeled so we can apply
standard randomized analysis techniques is an interesting open
problem. We hope that the analysis presented here will act as
the first step in this direction.

ACKNOWLEDGMENT

We would like to thank John Iacono and Aurélien Ooms for
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