
1

Locomotion of Linear Actuator Robots Through
Kinematic Planning and Nonlinear Optimization

Nathan S. Usevitch, Zachary M. Hammond, Mac Schwager

Abstract—We consider a class of robotic systems composed
of high-elongation linear actuators connected at universal joints.
We derive the differential kinematics of such robots, and show
that any instantaneous velocity of the nodes can be achieved
through actuator motions if the graph describing the robot’s
configuration is infinitesimally rigid. We formulate physical
constraints that constrain the maximum and minimum length
of each actuator, the minimum distance between unconnected
actuators, the minimum angle between connected actuators, and
constraints that ensure the robot avoids singular configurations.
We present two planning algorithms that allow a linear actuator
robot to locomote. The first algorithm repeatedly solves a
nonlinear optimization problem online to move the robot’s center
of mass in a desired direction for one time step. This algorithm
can be used for an arbitrary linear actuator robot but does
not guarantee persistent feasibility. The second method ensures
persistent feasibility with a hierarchical coarse-fine planning
decomposition, and applies to linear actuator robots with a
certain symmetry property. We compare these two planning
methods in simulation studies.

Index Terms—Kinematics, Motion and Path Planning, Opti-
mization and Optimal Control, Truss Robots.

I. INTRODUCTION

In this paper we present a control methodology for robots

made up of high-elongation linear actuators connected together

at universal joints, which we call Linear Actuator Robots

(LARs). Such robots can change their shape dramatically

through the coordinated actuation of their linear members. The

control of robots with a large number of degrees of freedom

is important to allow robots to become increasingly flexible

to a wide variety of tasks. In the case of a linear actuator

robot, the robot can change shape to be better suited for a

multitude of tasks including locomotion, manipulation, and

matching of 3D target shapes (shape morphing). Such a robot

would be valuable in search and rescue missions, where a

LAR could flexibly maneuver over uneven terrain and morph

into a custom manipulator to clear debris. LARs can also

serve as a type of “programmable matter”, changing shape

to represent 3D objects and responding to a human designer’s

digital manipulations in real time.

In this work, we present nonlinear optimization techniques

to enable a linear actuator robot to locomote. We present a

differential kinematic analysis of LARs, relating the velocities

of the nodes in the structure to the rate of change of the

actuator lengths. This allows us to link concepts from graph

rigidity to the control of the robot structure. We use this

N. Usevitch and Z. Hammond are with the Department of Mechanical
Engineering, Stanford Univeristy

M. Schwager is with the Department of Aeronautics and Astronautics,
Stanford University

This work is supported by DARPA YFA award D18AP00064, and by NSF
award 1637446

Fig. 1: We present two algorithms for Linear Actuator Robots

(LARs) to locomote. This figure shows snapshots of an opti-

mized everting gait for a LAR with 10 edges and 5 vertices,

computed with one of our algorithms. The LAR shown is

a passive mockup made from 10 car antennas, and hand-

positioned to illustrate the gate.

kinematic analysis to derive two on-line planning algorithms

for locomotion which are both based on the same underlying

nonlinear optimization algorithm tailored to the kinematics

and constraints of LARs. A passive mock-up of a Linear

Actuator Robot executing one of the optimized locomotion

trajectories presented in this paper is shown in Fig. 1. In

this case, the robot is composed of 10 actuators (passive car

antenna elements), and 5 nodes (with spherical joints formed

by magnets attached to steel balls).

Related Work: To best understand the related work, we first

present an overview of different implementations and applica-

tions of linear actuator robots, and then discuss in detail the

specific control methodologies. Early work on TETROBOTs

proposed robots composed of linear actuators arranged in

repeated graphical motifs of tetrahedrons or octahedrons to

facilitate kinematic computations [1]–[3]. Robots of this type

have been referred to as variable geometry trusses [4], and

have been proposed as manipulators [5], as platforms that

allows locomotion over various terrains, and as robots with the

ability to change shape to adapt to tasks that may be unknown

a priori [6]. Other physical variants of shape changing robots

based on linear actuators include the modular linear actuator

system presented in [7], an octahedron designed for burrowing

tasks made of high extension actuators presented in [8], and

an active-surface type device that uses prismatic joints to

deform a surface into arbitrary shapes while respecting some

constraints [9]. In [10] a user interface is presented that allows

a novice user to create a large scale truss structure, and then

animate its motion by inserting a few linear actuators. In [11]

a 2D structure is built from a collection of triangles with





3

a guide). For this reason, we propose that better quasistatic

planning methods are valuable steps towards improved system

performance. We also note that whereas the dynamics of

tensegrity systems often play a large roll in their response,

the linear actuators used in linear actuator robots are often

relatively slow, leading to less emphasis on leveraging the

dynamics. In this work we follow the precedent of the prior

work on linear actuator robots and utilize a kinematic model.

In this paper we present the kinematics of linear actuator

robots with arbitrary graphical structure, including overcon-

strained structures, and utilize an optimization based approach

for planning directly over the position of nodes of the robot.

This optimization approach allows our method to be cus-

tomized to different tasks and cost functions. We consider

actuator constraints (to enforce min-max elongation), physical

constraints (to prevent self-intersection and enforce a mini-

mum angle between connected actuators), and constraints to

avoid kinematic singularities in arbitrary robots in designing

locomotion algorithms. The key contributions of this work are

two algorithms to solve the following problem:

Problem 1: Move the center of mass of the robot in a pre-

scribed direction vcm, or along a prescribed trajectory xcm(τ),
ensuring that the robot is always physically feasible and that

the robot does not pass through any singular configurations.

The first algorithm we propose solves an online optimization

to minimize an objective function that considers only the

current state and motion of the robot while ensuring physical

feasibility. This method applies to any robot that is in an

infinitesimally rigid configuration. However, this method does

not guarantee the persistent feasibility of the robot’s motion,

meaning it is possible the robot will reach a configuration

from which it cannot continue without violating physical

constraints (i.e., it might get tangled up). To ensure persistent

feasibility, we present another method where we solve an

offline optimization that generates periodic motion primitives

to move a robot from a starting configuration to an equivalent

configuration centered on a new support polygon. This motion

primitive is then used by a high-level planner to plan paths

from an initial configuration to a goal. We refer to this method

as the two-tiered planning approach. This method guarantees

persistent feasibility of the trajectory, but requires that the

initial configuration of the robot satisfy certain symmetry

requirements. The performance of the two algorithms is com-

pared in simulation study in which we find that the two-tiered

planning approach gives better performance in terms of cost.

This paper builds upon our past work by the authors

presented in [42] on modeling and providing an algorithmic

foundation for this class of robots. This work adds singularity

constraints and angle constraints to our past work, and the

solution method for the online optimization method has been

improved. The two-tiered planning algorithm using motion

primitives is also new in the present work. We also note that

the work presented in the conference paper has served as the

foundation of the work in [23,43].

The rest of the paper is organized as follows: Sec. II

formalizes a model for LARs and derives the forward and

inverse kinematics relating the change in actuator lengths

to node positions. Sec. III describes the physical constraints

imposed to ensure the robot motion is feasible. Our single

step locomotion algorithm is given in Sec. IV, and our two-

tiered approach is presented in Sec. V. These methods are

compared in Sec. VI. In Sec. VII we discuss the performance

of the kinematic plan in the presence of dynamic effects, and

conclusions are given in Sec. VIII.

II. KINEMATICS

Formally, we model a Linear Actuator Robot (LAR) as a

framework which consists of a graph G and vertex positions

pi ∈ R
d. Our methods are applicable to LARs embedded

in Euclidean space of arbitrary dimension d, but we focus

on the embeddings in 3D (d = 3). The graph is denoted as

G = {V, E}, where V = {1, . . . , N} are the vertices of the

graph, and E = {. . . , {i, j}, . . .} are the undirected edges of

the graph. The geometry of the robot is fully represented by

the concatenation of all vertex positions x = [pT1 , p
T
2 , ..., p

T
n ]

T .

In this paper we consider a quasistatic model as opposed to a

dynamic model, implicitly assuming that the robot’s motion is

slow enough that inertial effects are negligible, an assumption

that we will further address in Sec. VII. We define a length

vector L, which is a concatenated vector of the lengths of all

edges in the graph

Lk = ‖pi − pj‖ ∀ {i, j} ∈ E . (1)

The vector L is of length nL, equal to the number of

edges of the graph, and can be directly computed from the

framework (G, x). We use the notations L(x) to indicate

the length vector induced by a set of node positions x. We

note that the relationship in (1) is the constraint on the node

positions created by an edge. Note that L(x) represents the

“inverse kinematics” for LAR robots since it is a function

that maps from the vertex positions (analogous to the end

effector position in a serial manipulator) to the lengths of the

linear actuators (analogous to the joint positions in a serial

manipulator), and it is trivial to obtain (as also noted by [1]).

A. Rigidity

While it is trivial to obtain the edge lengths from the node

positions, our task is to invert this relationship and control the

node positions by changing the edge lengths. In a network

of linear actuators, each link length imposes one constraint on

the node positions as given in (1). Finding the vertex positions

from the link lengths means finding node positions that satisfy

all of the constraint equations up to translation and rotation

of the entire network. Several classes of solutions exist based

on the rigidity of the underlying graph. Examples of a few

of these classes are shown in Fig. 3, and our analysis of

the device kinematics in the following section will depend

on the rigidity of the underlying graph of the robot. If the

system of equations has infinite solutions the framework is

not rigid, as it is possible to move the system relative to

itself without violating length constraints as in Fig. 3(i). A

framework is rigid if there are a discrete number of solutions

to the constraint equations, and all deflections of the system

relative to itself violate the length constraints.

Of particular use to our analysis are graphs that are in-

finitesimally rigid, meaning that all infinitesimal deflections

of the system relative to itself violate the length constraints.





5

If the system is infinitesimally minimally rigid and a min-

imal set of constraints is applied that is linearly independent

of the link constraints, the combined matrix H = [RT CT ]T

is full rank and square, and hence invertible, allowing us to

write

ẋ = H(x)−1

[

L̇

0

]

. (5)

Note that this is the form of a driftless dynamical system,

and that H(x)−1 is the Jacobian matrix relating the motion

of the actuators to the motion of the nodes. The vector L̇

describes the rates of change of the linear actuators, and hence

is the input to the system. Equation (5) shows that when the

H(x) is invertible, each input channel L̇k can be commanded

independently of the others. The fact that this matrix is

invertible means that the input space is all possible length

velocities, allowing us to make the following proposition:

Proposition 1: Given an infinitesimally minimally rigid

framework with the minimum number of constraints to the en-

vironment, the length of each edge can change independently.

This means that it is not necessary to coordinate movements

between lengths as long as the graph remains minimally

infinitesimally rigid.

E. Controlling Over-Constrained Networks

If the system is infinitesimally rigid but not minimally

rigid, it is over-constrained and some motions of the linear

actuators must be coordinated. In this case, the H matrix is

skinny, with more rows than columns. Taking the singular

value decomposition of the combined H matrix,

UT

[

L̇

0

]

= ΣV T ẋ, (6)

[

UT
1

UT
2

] [

L̇

0

]

=

[

Σ
0

]

V T ẋ. (7)

The bottom rows of this expression can be expressed as a

constraint which encoding how certain lengths must move in

a coordinated fashion:

UT
2

[

L̇

0

]

= 0. (8)

By utilizing this constraint, redundant rows of the H matrix

and their corresponding elements in the vector [L̇T 0]T can be

removed until it is square and full rank, and hence invertible.

We call the reduced H matrix and L vector the master group,

and we denote them as Hm and Lm respectively. We refer to

the removed rows as the slave group, and denote as Hs, and

the removed actuator inputs as L̇s. We note that the actuators

chosen for the master and slave groups are partially up to

the user’s discretion, and could potentially change based on

configuration. As an example procedure, an algorithm could

initialize Hm = H , and Hs as an empty matrix, and then

iterate through each row of the Hm matrix. If it finds a row

linearly dependent on the previous rows from the Hm matrix

and places it in Hs, and removes the corresponding element of

Lm and places it in Ls. This allows us to express the system

as follows:

ẋ =
[

Hm(x)
]

−1
[

L̇m

0

]

(9)

s.t. L̇s = Hs(x)Hm(x)−1

[

L̇m

0

]

. (10)

Due to (10) the input space is restricted such that only

combinations of link velocities that satisfy the constraint can

be physically realized. The master inputs L̇m can be picked

arbitrarily, but L̇s must be chosen to satisfy the constraint

equation.

This system can be expressed in the standard form of a

linear dynamical system, ẋ = Ax + Bu where A = 0, u =
[L̇T 0T ]T , and B = Hm(x)−1. We now make the following

proposition:

Proposition 2: A framework that is infinitesimally rigid is

fully actuated.

This means that for an infinitesimally rigid system control

of every degree of freedom can be achieved given control of

the rate of change of the actuator lengths and the motion of

the contact points. This has the key advantage of allowing us

to plan our motion in terms of node positions, and then use

the [RT CT ]T matrix to determine what input to apply to the

actuators.

III. PHYSICAL CONSTRAINTS

Locomotion requires finding a method to actuate the robot

to move while it maintains physical feasibility. We define

feasibility as follows:

Definition 1: A framework (G, x) is feasible if it meets three

types of physical constraints: (i) the lengths of all actuators fall

within a fixed maximum and minimum length range, (ii) the

actuators do not physically intersect (except at the endpoints

of two connected actuators), and (iii) the angles defined by

two actuators connected at a joint remain above a minimum

value.

To ensure that all motions of the robot are physically

feasible, we detail the form of the constraints and quantify

how many of each type of constraint occurs in the optimiza-

tion based on the characteristics of the underlying graph.

In addition to these physical constraints, we also present

constraints to prevent the robot from crossing configurations

where infinitesimally rigidity is lost, which correspond to the

singular configurations of the robot.

A. Length Constraints

For physical feasibility to be preserved, all actuators must

be maintained between a maximum and minimum actuator

length. The squared length of actuator k that connects nodes

{i, j} is quadratic in x, and the constraint that it remain within

the set maximum and minimum length can be expressed as

L2
min ≤ xT

[

Id ⊗Ak

]

x ≤ L2
max. (11)

where Ak is a matrix where the only nonzero entries are

Ak,ii = Ak,jj = 1, Ak,ij = Ak,ji = −1. We note that

constraints of the quadratic form xTQx ≤ c, where c is

a positive constant, are convex if and only if Q is positive

semi-definite. We note that Ak is the Laplacian matrix of a



6

graph that contains only edge k. As the Laplacian matrix is

always positive semi-definite, the maximum length constraint

is convex in the node positions while the minimum length

constraint is not. Thus our algorithms will handle non-convex

and nonlinear constraints.

B. Distance Between Actuator Constraints

We also enforce the constraint that actuators do not collide

physically, except for at the vertices where they are joined. To

determine if two actuators cross, the minimum distance be-

tween them must be greater than dmin, a positive diameter of

the actuator assuming that the actuator can be represented as a

cylinder. The minimum distance between actuators connecting

vertices i, j and k, l is denoted as dklij , and can be expressed

as follows:

dklij = min‖(pi+α(pj−pi))−(pk+γ(pl−pk))‖ α, γ ∈ (0, 1)
(12)

These links are not in collision if dklij > dmin. Efficient

algorithms for this computation have been explored previously

[47]. Checking the pairwise distances between all edges in

a graph requires checking
N2

L−NL

2 constraints of the type

expressed in (12). As we do not compute the distance be-

tween actuators that are connected at a node, the number of

constraints is reduced by the number of pairwise distances

between edges that meet at a node, which for node i is given

by
g2

i−gi
2 where gi is the degree of the node. Thus the total

number of constraints to avoid collisions between actuators is

N2
L −NL

2
−

n
∑

i=1

g2i − gi

2
. (13)

C. Angle Constraints

Another key physical constraint is that the angle between

connected actuators remain above a certain value, which is

especially important when the actuators have a high elongation

ratio. An angle constraint between two edges is a function of

3 vertices. We define pi as the position of the shared node

between two edges, and pj and pk as the other vertices of the

two edges. The angle constraint is:

cos(θmin) ≤
(pj − pi)

T (pk − pi)

‖pj − pi‖‖pk − pi‖
(14)

The number of angle constraints can also be expressed in

terms of the degree of the nodes of the graph:

−NL +
1

2

n
∑

i=1

g2i . (15)

D. Rigidity Maintenance Constraint

Our proposed optimization approach is based on the obser-

vation that if the robot is infinitesimally rigid, we can directly

optimize a path for the node positions and recreate the needed

actuator trajectories. For this assumption to remain valid, the

robot must maintain its infinitesimal rigidity, meaning the

rigidity matrix R must remain of rank 3n − 6. Designing

controllers that maintain infinitesimal rigidity has been a topic

in formation control of multi-agent systems [48,49]. In [48]

the rigidity eigenvalue for frameworks in R
3 is defined as the

7th smallest eigenvalue of R(x)TR(x) and the gradient of the

rigidity eigenvalue with respect to the node positions is used

as part of a controller. In the general case, infinitesimal rigidity

can be enforced using the following constraint:

λ7 > λcrit (16)

where λ7 is the 7th smallest eigenvalue of the R(x)TR(x)
matrix and λcrit is its minimum allowable value.

One problem with (16) is that the magnitude of λ7 changes

quadratically with network size. To provide a constraint that

is invariant to network scale, we instead use the worst case

rigidity metric, taken directly from [50], and defined as:

λ7
∑3n

i=1 λi

=
λ7

tr(R(x)TR(x))
=

λ7
∑NL

i=1(L(x)i)
2
≥ λcrit (17)

It has been noted that if a framework is infinitesimally

rigid in one configuration it is infinitesimally rigid almost

everywhere, meaning that for a graph with one infinitesimally

rigid configuration, the set of non-rigid configurations is a

set of zero measure [51]. We make the observation that the

configurations where the robot loses rigidity often divide the

state space into disconnected regions. We define each of these

regions as a rigidity equivalence class as follows:

Definition 2: (Rigidity Equivalence Class) The framework

F1 = (G,X1) and the framework F2 = (G,X2) are in the

same rigidity equivalence class if a continuous path x(t) exists

such that x(0) = X1, x(T ) = X2, and the rigidity matrix

R(G, x(t)) is maximal rank for all t ∈ (0, T ).
Analytically characterizing these rigidity equivalence

classes for an arbitrary graph has proved challenging. How-

ever, we are able to make a statement for the case of graphs

that contains 3-simplex (a complete tetrahedron) as a subgraph.

Fig. 4: The values of the Worst Case Rigidity index (17) as

the position of node E changes linearly between the left and

right configurations. Without edge CE (shown in yellow) the

worst case rigidity index goes to 0 when E is co-planar with

DAB, while with the yellow edge, the worst case rigidity index

remains greater than 1.



7

For each complete tetrahedron, we define its orientation as the

sign of the signed volume which is computed as

V = (p4 − p1)
T (p3 − p1)× (p2 − p1). (18)

These preliminaries allow us to make the following state-

ment:

Theorem 1: Let F1 = (G,X1) and F2 = (G,X2) be two

minimally rigid frameworks in R
3. If there exists a subgraph

of G that is a 3-simplex and F1 and F2 contain the simplex

with opposite orientation, the two frameworks lie in different

equivalence classes.

Proof: Finding a smooth path x(t) for the vertices of a

simplex from one orientation to the other requires the signed

volume to smoothly change signs, passing a configuration

where V = 0. When V = 0 for a simplex, one of the edges

of the simplex is a linear combination of the others, meaning

there is a redundant edge in the R matrix. For a minimally

rigid graph the R matrix has 3n − 6 rows, so any linearly-

dependent edges indicate the matrix is not maximal rank and

hence not infinitesimally rigid.

One general question in the design of linear actuator robots

is if an over-constrained network is necessary, or if a minimally

rigid network is sufficient. We give an example where an over-

constrained robot can achieve motion through a configuration

that would represent a singularity were the robot minimally

rigid (shown in Fig. 4). In this example, we first consider the

robot to be only composed of the blue edges (edge CE is not

present). In this case both the left and right configurations are

infinitesimally rigid and simplex ABED has different orienta-

tion in each configuration, meaning that the two configurations

lie in different rigidity equivalence classes by theorem 1. If

the node positions are linearly interpolated between the two

configurations, the rigidity index in (17) goes to 0 when node

E is coplanar with nodes ABD. The addition of the yellow

edge, which makes the robot over-constrained, allows rigidity

to be maintained throughout the transition, as shown by the

plot in Fig. 4. We note that with the yellow edge this graph

is the fully connected 5-node graph, known as the K5 graph.

The K5 graph displays another interesting property:

Theorem 2: The rigidity matrix R(x) for a robot represented

by a complete graph of 5 or more nodes only loses rank at

configurations where the robot has actuators in collision.

Proof: For a node in a complete graph to have an

unconstrained infinitesimal motion, its neighboring edges must

not span R
3, meaning that all nodes must lie in the plane.

Complete graphs with 5 or more nodes do not have planar

non-crossing embeddings.

This result means enforcing the constraint that no actuators

collide for the K5 graph naturally enforces the graph rigidity

constraint. Whenever we evaluate a K5 robot in this paper, we

leverage this result and do not enforce the rigidity maintenance

constraint.

E. Constraint Satisfaction Between Timesteps

Our approach to finding a trajectory for a linear actuator

robot is to use an optimization to solve for a discretized

trajectory containing Nconfig configurations we denote as

xj where j = 1, 2, ...Nconfig . The optimization solution

guarantees that the configurations xj satisfy the constraints

defined above which we now succinctly express as f(xj) ≤ 0.

However, the nonconvex nature of the constraints means that

it is possible that the intermediate configurations (the config-

urations between xj and xj+1) may violate the constraints.

To address this, we enforce a constraint that two sequential

configurations must be close together in terms of the distance

each node travels. We define this constraint as

‖pji − p
j−1
i ‖ ≤ dmove ∀i. (19)

We assume that the intermediate configurations between x
j
i

and x
j−1
i are given by linear interpolation. From work on

sampling-based motion planning [52], the maximum violation

of a constraint between two configurations can be bounded by

using the Lipschitz constant, K of the constraint as follows
∣

∣f(xj)− f(xk)
∣

∣ ≤ K‖xj − xk‖. (20)

Given the Lipschitz constant for each constraint function, it is

possible to augment the constraints with a buffer such that

satisfying the buffered constraints and the constraint in 19

ensures satisfaction of the true constraint. In our case, we

assume that the constraints already include this buffer. In

practice we choose dmove to ensure that two edges can not

jump over each other without violating the collision constraint

by picking 2dmove ≤ dmin.

IV. SINGLE STEP LOCOMOTION

Our first approach to solving the locomotion problem in-

volves solving an online optimization to move the center of

mass to a desired position for one time step. It acts greedily

to minimize an objective function for a time step, and does

not account for making and breaking contact with the ground.

Our second method, presented in Sec. V and referred to

as a two-tiered planning approach, extends this single step

computation to an optimization over multiple steps. The two-

tiered approach directly accounts for the rolling behavior in

the computation, but imposes restrictions that the robot must

satisfy certain symmetry requirements.

A. Controlling the Velocity of the Center of Mass

The position of the center of mass is defined in terms of

the mass matrix of the system, M ∈ R
3×3n. Without loss of

generality, the quasistatic model allows us to assume that all

mass is concentrated at the nodes of the system. In our case,

we assume that all actuators are of uniform, evenly distributed

mass, and thus half of the mass is assigned to each end of the

actuator. The position of the center of mass is given by

xcom = Mx =
[

mvec ⊗ I3,
]

x (21)

where mvec,i is the sum of all of the partial masses assigned

to node i. In the uniformly distributed case, mvec,i = di

2NL
.

With this mass matrix, we can express the velocity of the

center of mass as a function of the actuator velocities

ẋcom = Mẋ = MH−1L̇. (22)



8

We can now pick any L̇ that achieves a desired motion of

the center of mass. The maximum rank of M is d, so for

a system with many vertices MH−1 will have more columns

than rows, and there is freedom in which ẋ is selected to move

the center of mass. We define an optimization problem to pick

a value of L̇ that minimizes an objective function.

B. Optimization Setup

The kinematic relationships derived in the Sec. II apply

to a continuous time system. To optimize the trajectory we

work in discrete time, denoting the configuration of the robot

with the superscript xj . In practice we determine the node

velocities by linearly interpolate from the current configuration

to the configuration that is the result of the optimization, and

determine the necessary actuator velocities using the kine-

matic relationships. The optimization procedure takes as an

input the configuration at xj−1 and optimize the next desired

configuration xj . We seek to find a trajectory that maximizes

some cost function J(x) while satisfying constraints. As this

optimization minimizes the cost function over only one step,

we refer to this optimization approach as the greedy method.

The complete optimization problem is given as follows:

min
xj

J(xj) (23)

subject to

Cxj = b (24)

Gxj ≥ 0 (25)

f(xj) ≤ 0 (26)

‖xj
i − x

j−1
i ‖ ≤ dmove ∀i (27)

The choice of cost function J(x) will be discussed in the

following section. Eq. (24) fixes the contact points and is the

discrete time version of the ground constraint, where b is a

vector of locations of the vertices in the support polygon.

In the locomotion optimization we also enforce the linear

constraint that no nodes pass through the ground, Gx > 0,

where G = In⊗diag([0 0 1]). We denote all of the feasibility

constraints, including maximum and minimum actuator length

(11), actuator collision constraints (12), angle constraints (14),

and singularity avoidance constraints (17) as f(xj) ≤ 0 as

given in (26).

C. Objective Function

By defining this problem as an optimization problem, the

system will take the action that instantaneously optimizes

some objective, J(x). One intuitive choice for the cost func-

tion is J(x) = ‖L̇(x)‖2 = ‖R(x)ẋ‖2, which penalizes large

actuator velocities. In discrete time, we approximate this cost

as:

J(x) = ‖L(xj)− L(xj−1)‖2 (28)

As mentioned previously, one potential issue with a single-

step method is that persistent feasibility is not guaranteed. One

heuristic to prevent the robot from getting tangled up in an

unfavorable configuration is to try and keep the network as

close as possible to a fixed operating point, such as attempting

to keep all actuators close to a nominal length lN . This can

be encoded with an objective function

J(x) = ‖L(xj)− lN‖2. (29)

We will quantitatively compare the results of using both of

these cost functions in Section VI.

D. One Step Optimization Results

We find a feasible solution to the optimization problem

using the sequential quadratic programming algorithm avail-

able in the matlab fmincon toolbox. The most computationally

expensive part of this algorithm is repeatedly checking to

see if the nonlinear constraints are violated, a process that

could be parallelized in a future implementation. To speed

computation,
∂f(x)
∂x

is computed analytically before operation.

We demonstrate the character of the solutions that result

from this optimization we will show the types of trajectories

generated when it is applied to different robots in the following

sections.

1) Randomly Generated Robot: To show the generality of

the algorithm to a wide variety of robots, the locomotion of

a randomly generated minimally rigid 7 node robot is shown

in Fig. 5. The initial configuration of the robot is obtained by

starting with a triangular base and iteratively adding one node

and connecting it with 3 randomly selected existing nodes.

For each node, the node position is randomly regenerated until

all constraints are satisfied. The objective function presented

in (28) is used. For these simulations (and for simulations

throughout this paper) the actuator lengths were constrained to

remain between 0.5 and 4 units, the minimum angle between

connected actuators was 10 degrees, and the minimum distance

between actuators was set at 0.15 units. The minimum value

of the worst case rigidity index was set at 0.005. The robot

has an emergent, almost amoeba-like gait as it moves. Videos

of this motion are available in the supplementary materials.

2) Trajectory Tracking: In order to demonstrate the ability

of the system to follow a trajectory the K5 robot was controlled

to move its center of mass towards waypoints that make up

the corners of a predefined trajectory. The resulting trajectories

when both (28) and (29) are used as the objective are shown

in Fig. 6. We use the same values for the physical constraints

as for the random robot, but do not enforce the rigidity

maintenance constraint for the K5 robot due to Theorem 2.

The variance from the prescribed trajectory occurs because of

the rolling motion when the center of mass leaves the support

polygon. In order to illustrate the effectiveness of this method

in preventing constraints from being violated, Fig. 7 shows that

during the trajectories shown in Fig. 6, the various physical

constraints on the robot are often active but are not violated.

This trajectory tracking test also gives a sense of the robust-

ness of the control algorithm. A downside to the approach of

repeatedly solving the optimization is that persistent feasibility

is not guaranteed, meaning it is possible that the network

reaches a configuration where it cannot continue without

violating some constraint. In the case where the objective

function was (28), a configuration was reached where the

device could not continue to match the desired center of mass

motion without violating constraints (the blue trajectory in Fig.



9

Fig. 5: The movement of a linear actuator robot using the objective function given in (28). The robot is minimally rigid with

7 nodes and 15 actuators.

6). With the objective presented in (29), the planner finds a

feasible path that completes the trajectory (the red trajectory

in Fig. 6). Simulation results on a variety of trajectories

show that a common failure mode of the system is if the

robot rolls onto a very large support polygon, it may not

have the ability to extend its center of mass and roll again.

This failure mode may become less significant if future work

included a frictional model of the ground and allowed the

support nodes to slide along the ground. Interestingly, relaxing

constraints does not necessarily guarantee the robot will be

able to travel further before reaching a configuration with no

feasible solution. Often, relaxed constraints such as a higher

upper limit on actuator length lead to failure sooner, as the

robot tends to reach more jumbled configurations early in

the trajectory. Computation for completing the “S” trajectory

involved solving the one-step optimization 1893 times, which

took approximately 120 seconds on a laptop computer (Intel

Core i7 Processor, 4 cores, 2.80 GHz, 16GB RAM). The

average time to solve each optimization was 63 ms, with a

standard deviation of 10 ms and a maximum time of 153 ms.

Note that at each time step these methods instantaneously

minimize an objective while a desired motion of the center

of mass is obtained. The algorithm can be thought of as

greedily trying to move the center of mass. However, motion

is not optimal for the entirety of the trajectory. The algorithm

does not explicitly take into account making and breaking of

contact with the surface, which would be required to discuss

the optimality of an entire trajectory. To enable discussion of

optimality over several steps as well as to directly consider

the rolling behavior of the robot, we extend this method to a

tiered planning approach.

V. TWO-TIERED PLANNING APPROACH

In this section we extend the one-step optimization of the

previous section to an optimization over many configurations

of the robot. This multi-step optimization directly accounts for

the rolling behavior, whereas the previous method moved the

center of mass without consideration for the rolling motion.

We use an offline optimization to compute trajectories from a

predefined configuration centered on one support polygon to

the same predefined configuration centered at the next support

polygon, but with the node correspondences changed. This

precomputed trajectory serves as a motion primitive for a

high level planner that computes a series of support polygons

that lead from the robot’s initial position to a goal region.

When deviations occur from the preplanned trajectory, the only

-3 -2 -1 0 1 2 3 4 5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Formation Controller

Least Norm Controller

Desired Path

Start

Least Norm Failure

Fig. 6: The path of the center of mass as it travels to each

waypoint of an “S”. Note that when using the objective in

(28) the LAR reaches a point from which it cannot continue.

With (29) as the objective the robot completes the trajectory.

computation that occurs online is using the high level planner

to adjust the path of support polygons. As the final path of

the robot is composed entirely of feasible motion primitives,

the resulting path is guaranteed to be feasible. In this section

we discuss the necessary symmetry requirements for such a

trajectory to exist, present the optimization setup to solve for

the motion primitive and our use of a high level planner to

combine the motion primitives. We then discuss methods of

smoothing the motion primitives during trajectories over a

series of support polygons.

A. Symmetry Requirements

We now detail the symmetry requirements that allow a

motion primitive to be optimized offline and then stitched

together online into long trajectories. This means that the robot

must finish a motion primitive in a configuration identical to

the starting configuration, but with different node correspon-

dences. If the robot begins in an arbitrary configuration, a

path between the initial configuration and the symmetric con-

figuration must be computed and executed. For the symmetric

configuration, we restrict the shape of the support polygon

of the robot to be an equilateral triangle, meaning that the

robot’s motion will be over a grid of equilateral triangles.

The symmetry requirements are illustrated in Fig. 8. To enable

the same primitive to be reused repeatedly, we constrain the

starting configuration to have mirror symmetry about the three

lines that originate at the vertices of the support polygon and

bisect the opposite edge of the triangle, as shown by the red





11

Fig. 9: The resulting motions obtained from the optimization given in (30). The top row shows a rolling gait of the K5 graph,

the middle row an everting gait of the K5 graph, and the bottom row shows a rolling gait for an octahedral robot.

min
xtot

Nsteps
∑

j=1

‖L(xj)− L(xj−1)‖2 (30)

subject to

All Configurations:

Cjxj = bj (31)

g
j
i (Mxj) + h

j
i ≤ 0 (32)

Gxj ≥ 0 (25)

f(xj) ≤ 0 (33)

Non-Tipping Configurations:

‖xj+1
i − x

j
i‖ ≤ dmove (27)

Additional Constraints at Tipping Configurations:

k
j∗

1 (Mxj∗) + b1 = 0 (34)

‖xj∗

s − x
j∗

c1‖ = ‖xj∗+1
s − x

j∗+1
c1 ‖ (35)

‖xj∗

s − x
j∗

c2‖ = ‖xj∗+1
s − x

j∗+1
c2 ‖ (36)

‖L(xj∗+1)i − L(xj∗)i‖ < c ∀i (37)

Ending Configuration:

xNsteps = xf (38)

The objective function (30) is a multi-step extension of

(28), where L(xj) is the vector of all of the edge lengths

of the graph with node locations given by xj . This objective

penalizes sudden and large changes in the lengths of the

actuators, and hence favors trajectories that require small

changes in actuator lengths. The linear equality constraint

in (31) constrains the location of the contact points for

each configuration. Note that C1 = Ck, ∀k ≤ j∗, and

CNsteps = Ck, ∀ k > j∗, as only two support polygons

are used throughout the optimization. In (32) three linear

inequality constraints keep xcom within the support polygon at

each configuration to prevent premature rolling. The variable

g
j
i and h

j
i describe the parameters of the line along edge i

of the support triangle. For each configuration, we denote

f(xj) ≤ 0 to represent all of the physical feasibility constraints

for one configuration. We write the constraint xNsteps = xf

to ensure the proper final configuration.

We note that for the transition between the tipping con-

figuration and the next configuration (xj∗ and xj∗+1) large

motions of the node positions are possible due to the rolling,

even though change in the edge lengths may be small. For the

rolling step alone, we constrain the change in edge lengths

to be below a fixed threshold as shown in (37) to prevent

the robot from jumping over a physical constraint, such as an

actuator collision constraint, between configurations.

1) Tipping Constraints: In addition to the constraints that

ensure that each configuration is feasible, we also impose

additional constraints that ensure that the robot tips at the

predefined tipping configuration. The linear equality constraint

in (34) ensures that at the tipping configuration the center of

mass lie on the tipping edge of the support polygon. We denote

the new node in the support polygon after the tip as node s.

The two quadratic equality constraints in (35) and (36) ensure

that the positions of node s, denoted xj∗

s is the proper distance

away from each node on the rolling edge, denoted x
j∗

c1 and x
j∗

c2 .

Note that these constraints do not fix the height from which the

robot tips onto the next support polygon. Were the height and

position of the next point specified exactly, the two quadratic

constraints would be replaced by three linear constraints, but

the optimization would lose the ability to change the tipping

height.



12

2) Optimization Results: The motion primitives produced

by solving the optimization problem are shown in Fig. 9.

For these results, we use Nsteps = 40, with the tipping

configuration j∗ = 20. We initialize the optimization such

that every configuration or after the tipping configuration is

exactly the starting or ending configuration respectively. We

initialize the tipping configuration with, all nodes of the initial

and final support polygon in place, and the nodes that are not

part of the support polygon positioned such that the center

of mass is on the tipping edge. The optimization was solved

using the fmincon solver available with Matlab.

The top two rows of Fig. 9 correspond to the two different

node correspondences for the K5 graph discussed previously.

The first row is the resulting motion primitives when using

the correspondence in Fig. 8B. Here the center node of the

robot before rolling remains the center node after rolling. The

second row is the resulting motion when the correspondence

in Fig. 8C is used. In this case the node initially in the center

of the robot becomes the new node in the support polygon,

and the top node of the robot remains the same both before

and after rolling. We will refer to the gait with a constant

internal node as the rolling gait, and the gait with the switching

center node as an everting gait, as the robot seems to be

everting its inside and outside as it moves. From a practical

perspective, the fact that the top node of the everting gait

always remains off the ground could allow it to house cameras

or other components. We note that this everting gait requires an

over-constrained network, as it requires that a simplex present

in the initial graph switch its orientation as demonstrated in

Fig. 4. The resulting motion primitive for the octahedron is

shown in the third row of Fig. 9. The computation time for

these offline primitives was 127, 134, and 166 seconds for

the K5 inverting gait, K5 rolling gait, and octahedron gait

respectively.

We can also compare the resulting motions in terms of cost.

As computed by (30), the optimized motion primitive for the

everting K5 has a cost of 0.198, the rolling K5 primitive has a

cost of 0.062, and the octahedron has a cost of 0.025. Another

interesting comparison between the motion primitives is the

ratio of the maximum and minimum actuator length. The ratio

of the overall longest actuator to the overall shortest actuator is

3.11 for the everting gait, 2.85 for the rolling gait, and 1.58 for

the octahedron. These results demonstrate the need for high

elongation actuators.

C. Optimizing a Path over Motion Primitives

Given a motion primitive developed by the optimization,

we need a planner to specify a series of support polygons

from the initial configuration to the goal. This task corresponds

to planning a path on a triangular grid of candidate support

polygons. We use the A* algorithm for this task, but note

that any discrete planning algorithm could be used for this

task. An example of A* finding a path through obstacles is

shown in Fig. 10. If a feasible trajectory is found that solves

the optimization and a feasible path is found between the

starting configuration and the goal region, a feasible path that

satisfies all constraints is possible from the start to the goal

region. Note that in the case of an environment with obstacles,

the collision checking performed as part of the A* algorithm

Fig. 10: An example of the A* planning algorithm. The black

boxes are obstacles, the red triangles the closed set (reachable

configurations explored by A*), and the green triangles the

open set (configurations that the planner will consider adding

to the closed set).

depends in part on the robot gait. The maximum extent of the

computational gait must be used by the planner to ensure that

it is possible to move from one support polygon to another. If

a path of collision free support polygons that leads from the

start to the goal exists, the A* algorithm is guaranteed to find

it. However, it is possible that if A* fails to find a path, the

robot could pass through the environment by using a different

motion primitive.

D. Smoothing Between Primitives

In this section we leverage symmetry in the robot and the

triangular grid of candidate support polygons to consider mo-

tion primitives for moving between several support polygons,

as opposed to just moving from one support polygon to its

neighbor. We present two approaches: one where we relax the

requirement to return to the symmetric configuration between

every step to a requirement to return to the configuration at

larger numbers of intermediate steps, and a second approach

where we optimize a trajectory that enables a robot to con-

tinue in a straight line indefinitely without returning to the

symmetric configuration.

1) Smoothing over Multiple Support Polygons: In the ex-

treme, we could optimize directly over the entire trajectory

from beginning to end, but such a procedure may be expensive

to compute online. Instead, we quantify the marginal gain of

optimizing over trajectories of increasing length, but while

maintaining the same support polygons. We note that for a

robot traveling through a triangular grid, if we eliminate the

option to move backwards at every step the robot can choose

to roll over the left or right edge. Shown in Fig. 11 is a partial

triangular grid that gives the sequence of turns to arrive at each

cell, assuming the initial motion is from the “start” to the “1”

cell. Each path can be represented by a p − 2 digit binary

word, where p is the number of transitions between support



13

Fig. 11: The number of possible trajectories available when the

robot rolls over one edge. Note that the trajectories denoted

with a prime are the same as their counterparts, but with each

letter switched. The marginal gain of adding more steps seems

to be decreasing.

polygons or rolling events. By symmetry of the robot and the

grid of support polygons, switching all entries in the binary

word results in a mirrored trajectory. This means that for p

(where p ≥ 2) steps there are 2p−2 possible paths to compute.

This means that for paths with two rolling events there is only

a single motion primitive possible, meaning there is no loss

of generality for optimizing the trajectory over two steps as

opposed to a single step.

To understand the cost savings of optimizing over multiple

support polygons, we compute the cost of moving 1 to 4 steps

along the pattern of support polygons shown in Fig. 12, along

with the direct comparison of the center of mass path when

both 1 and 4 steps were used. The cost to complete a single

roll is shown in Fig. 13. We note initial improvement in the

cost when moving from one step to two steps, but observe

diminishing returns by using longer and longer primitives.

Qualitatively, the motion of the center of mass in the smoothed

and unsmoothed trajectories is shown in Fig. 12. For the K5

graph a reasonable compromise appears to be to always use

the two step motion primitives unless the robot is within one

step of the goal. We illustrate combined behavior of the A*

planner and the smoothed primitives to navigate between the

waypoints of the “S” trajectory shown in Fig. 14.

2) Gaits with no return to the nominal configuration:

The smoothing methods presented previously in this section

relaxed the requirement of returning to the symmetric con-

figuration from every step to every N steps, where N is

some integer number of steps. An equivalent optimization

approach could also be used to develop primitives that enable

moving between different intermediate configurations without

passing through the symmetric configuration. A key question

with this approach is how to define the best intermediate

configurations. One option is to include the shape of the

intermediate configuration as part of the optimization itself.

As a demonstration, we develop primitives that allow the

octahedron and K5 robots to locomote along an arbitrarily long

straight path of support polygons, similar to the motion shown

in Fig. 12. Whereas we previously optimized a trajectory

that starting at a given symmetric configuration and ending

at equivalent symmetric configuration, we now optimize a

trajectory that starts at a tipping configuration and ends at an

equivalent tipping configuration for the next support polygon,

where the shape of the tipping configuration itself is part of

the optimization. We encode the symmetry between the first

and last configurations as follows

Ax0 + b = xNConfig
(39)

Where A and b define a linear transform and necessary assign-

ment of node correspondences to ensure that the initial and

final configurations are equivalent. We repeat the optimization

presented in (30)-(38), but including the initial configuration

as one of the optimization variables, and replacing (38) with

(39). The resulting gaits are demonstrated in the supplementary

video. The cost of this smoothed gait for the octahedron, K5

inverting gait, and K5 rolling gait is 76%, 51% and 46%

the cost of the repeatedly using the one step trajectory that

starts and ends in the symmetric configuration, representing

a substantial savings. Utilizing these gaits online in the robot

requires storing the repeating gait as well as the trajectory

to move to and from the symmetric configuration to be used

at the beginning and end of the straight line trajectory. This

means that the memory required to store this gait is equivalent

to the memory required to store a two-roll primitive. Due to

the cost to move from the initial configuration to the rolling

configuration, the multi-step primitives such as those shown in

Fig. 12 are superior for short sequences of support polygons.

However, as the length of the trajectory increases, the cost

of using the repeated gaits approaches the cost obtained by

optimizing over the entire trajectory, but requires a smaller

amount of memory to store. Future work could seek to

define intermediate gaits and other shapes that enable different

behaviors such as turning.

0 0.5 1 1.5 2 2.5 3

x (m)

0

0.2

0.4

0.6

0.8

y
 (

m
)

Fig. 12: A series of one step trajectories stitched together (red)

compared with the smoothed optimization over three steps

(black) for the rolling gait of the K5 network. Note that the

path of the center of mass is more direct for the smoothed

primitive than the compilation of single step primitives.



14

1 2 3 4

Number of Rolls

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
C

o
s
t 
P

e
r 

R
o
ll

Inverting Gait

Rolling Gait

Fig. 13: A comparison of the cost per roll when optimized over

multiple rolls. The cost per roll is monotonically decreasing.

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2
Waypoint Trajectory

Two Step Primitive

One Step Primitive

Fig. 14: The trajectories of the center of mass following the

“S” trajectory when both the one-step and the two-step motion

primitives are used. The support polygons are shown in gray.

VI. COMPARISON OF THE GREEDY AND TWO-TIERED

APPROACH

We now compare the behaviors of the greedy, roll-unaware

planning method presented in Section IV with the two-tiered

planning method presented in V. We find that, on average, the

two-tiered planning method finds more efficient trajectories

than the greedy approach. In addition, the two-tiered planning

approach always finds a successful trajectory if a sequence

of support polygons exists that leads to the goal, while the

greedy approach is often unable to find a successful trajectory.

However, we note that the one-step planning method applies to

every infinitesimally rigid robot, while the two-tiered planning

approach applies only to robots of a restrictive symmetry class.

Conceptually, we can compare the behavior of the two plan-

ners by comparing the resulting center of mass trajectories in

Fig. 6 and Fig. 14. With the two tiered planning approach, the

trajectory of the center of mass takes a less direct path between

waypoints, as the constraint to move the support polygon along

the triangular grid ensures that the center of mass does not

move in a straight line. Despite the apparent inefficiency of the

trajectory from the two-tiered planner, we find that it results in

lower cost trajectories. We hypothesize that this occurs because

the robot remains in a better conditioned state. The two-tiered

planner generates trajectories with consistent motion of all of

the free nodes, while in the trajectories of the greedy planner

free nodes seem to be flailing about a relatively steady center

of mass trajectory.

For a quantitative comparison of the performance of the

planners, we generated 100 sequences of 5 random waypoints

in a 5 unit by 5 unit region and use the proposed planning

methods to find a trajectory to visit the waypoints sequentially.

As the output of the optimization is a kinematic trajectory, we

scale the trajectories such that completing the entire trajectory

takes 1 unit of time, and convert the trajectory to continuous

time by linearly interpolating the node positions between

the discrete configurations returned by the optimization. This

rescaling ensure an equivalent average velocity between the

different experiments, and allows a direct comparison in terms

of the cost. To evaluate the cost of the trajectories we use the

following cost function:

J =

∫ 1

0
‖L̇(x(t))‖2dt

d
(40)

where d is the sum of the straight line distances between the

waypoints. This cost is a continuous time version of (28),

divided by the path length to give an efficiency metric as the

average cost to move a unit distance. Using both the K5 and

the octahedron robot, Fig. 15 compares the efficiency of the

paths resulting from the two-tiered planning method (using

both the rolling and everting primitive for the K5 graph), and

the greedy method using both (28) and (29) as the objective.

For both the octahedron and the K5 graph, the two-tiered

planning approach attains lower cost and lower variance than

the greedy approach for the same robot. Interestingly, for

both the octahedron and the K5 graph, a lower overall cost

is obtained by using (29), the cost function that penalizes

actuator for deviating from a nominal length, as the cost as

opposed to (28), which penalizes changes in actuator length

at each time step and is the single-step version of (40). This

seems to indicate that long term efficiency is achieved by

keeping the robot in a relatively well-conditioned state.

In addition to cost, the other key criteria by which to

evaluate the planners is their ability to find a complete path

without violating constraints. For the 100 randomly generated

trajectories and using the K5 robot, the one-step optimization

method successfully found a path between all waypoints for

12% of the trials when using (28) as the objective, and for

70% of the trials when using the formation-control based

objective given in (29). We repeated the experiments with





16

0 2 4 6 8 10 12 14 16 18 20

Time to Complete Gait (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
A

v
e

ra
g

e
 E

rr
o

r 
(c

m
)

Octahedron

K5 Rolling

K5 Everting

Fig. 16: A comparison of the average error between the

planned quasistatic trajectory and the position of the nodes

in a dynamic simulation where the quasistatic input serves as

an input to a PID controller. The error is compared against

the overall time that it takes to complete the trajectory.

The average error decreases as the movement proceeds more

slowly.

overall speed of the robot decreases. These demonstrations

also illustrate that the quasistatic trajectories lead to useful

behaviors in a fully dynamic system.

VIII. CONCLUSION

In this paper we have derived the differential kinematics

for networks of linear actuators connected at universal joints

and have shown that if the embedded graph describing the

robot is infinitesimally rigid, any desired motion of the nodes

can be achieved through some motion of the edges. We then

frame the locomotion problem as a nonlinear optimization over

the node positions, while enforcing constraints that guarantee

the feasibility of the robot. We also discuss that constraints

to maintain the infinitesimal rigidity of the robot tend to

divide the state space of the robot into separated regions, even

though the singular configurations themselves make up a set

of zero measure. We discuss the control of both minimally

rigid graphs and over-constrained graphs, and demonstrate

that over-constrained graphs can achieve some behaviors that

minimally rigid graphs cannot, such as the everting locomotion

gait of the K5 graph. We present two planning schemes: one

where we solve a single step nonlinear optimization online to

achieve a desired instantaneous motion of the center of mass,

and another where we optimize over many configurations that

compose a motion primitive, including in the optimization

direct consideration of the rolling behavior. The single-step

approach is applicable to robots of arbitrary configuration,

but there is the possibility that the robot will reach a state

from which it cannot continue in the desired direction without

violating physical constraints. While these is no guarantee

of persistent feasibility with this approach, we have found

that long trajectories can be achieved based on the choice of

the cost function. The two-tiered approach ensures persistent

feasibility, but requires the robot to satisfy certain symmetry

properties.

In future work we will attempt to blend the properties

of these two control approaches, namely by finding ways to

guarantee persistent feasibility for robots composed of linear

actuators in arbitrary infinitesimally rigid configurations. We

will also extend our planning approach to directly consider

dynamic effects, explicitly considering forces in the members

and incorporating the inertia properties of the system. One

possibility is to use these kinematic trajectories as starting

points for a dynamic model, similar to the methods in [31]. We

will also explore taking the centralized controllers presented

in this paper and finding a distributed version of a similar

controller, where computation is performed locally at the

actuators in the system.

In future work we will demonstrate this system with novel

robotic hardware of the type presented in [17]. We have noted

that the current optimization procedure does not have any

guarantees on global optimality. We will work to find convex

relaxations of the non-convex constraint such that we are able

to find suboptimality guarantees for certain frameworks.

REFERENCES

[1] G. J. Hamlin and A. C. Sanderson, “Tetrobot: A modular approach to
parallel robotics,” IEEE Robotics & Automation Magazine, vol. 4, no. 1,
pp. 42–50, 1997.

[2] W. H. Lee and A. C. Sanderson, “Dynamics and distributed control of
tetrobot modular robots,” IEEE International Conference on Robotics
and Automation, vol. 4, pp. 2704–2710, 1999.

[3] W. H. Lee and A. Sanderson, “Dynamic rolling locomotion and control
of modular robots,” IEEE Transactions on robotics and automation,
vol. 18, no. 1, pp. 32–41, 2002.

[4] B. K. Wada, J. L. Fanson, and E. F. Crawley, “Adaptive structures,”
Journal of Intelligent Material Systems and Structures, vol. 1, no. 2, pp.
157–174, 1990.

[5] P. C. Hughes, W. G. Sincarsin, and K. A. Carroll, “Trussarm—a variable-
geometry-truss manipulator,” Journal of Intelligent Material Systems and
Structures, vol. 2, no. 2, pp. 148–160, 1991.

[6] S. Curtis, M. Brandt, G. Bowers, G. Brown, C. Cheung, C. Cooperider,
M. Desch, N. Desch, J. Dorband, K. Gregory et al., “Tetrahedral
robotics for space exploration,” IEEE Aerospace and Electronic Systems
Magazine, vol. 22, no. 6, pp. 22–30, 2007.

[7] C.-H. Yu, K. Haller, D. Ingber, and R. Nagpal, “Morpho: A self-
deformable modular robot inspired by cellular structure,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3571–
3578, 2008.

[8] J. C. Zagal, C. Armstrong, and S. Li, “Deformable octahedron burrowing
robot,” In Proc. Int. Conf. on the Synthesis and Simulation of Living
Systems, pp. 431–438, 2012.

[9] A. Mazzone and A. Kunz, “Sketching the future of the smartmesh wide
area haptic feedback device by introducing the controlling concept for
such a deformable multi-loop mechanism,” Links, vol. 3, p. 248, 2005.

[10] R. Kovacs, A. Ion, P. Lopes, T. Oesterreich, J. Filter, P. Otto, T. Arndt,
N. Ring, M. Witte, A. Synytsia et al., “Trussformer: 3d printing large
kinetic structures,” Proc. ACM Symposium on User Interface Software
and Technology, pp. 113–125, 2018.

[11] M. Pieber, R. Neurauter, and J. Gerstmayr, “An adaptive robot for build-
ing in-plane programmable structures,” IEEE International Conference
on Intelligent Robots and Systems, pp. 5320–5327, 2018.

[12] A. Spinos and M. Yim, “Towards a variable topology truss for shoring,”
in Proc. IEEE Ubiquitous Robots and Ambient Intelligence, pp. 244–
249, 2017.

[13] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Variable topology
truss: Design and analysis,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2717–2722, 2017.

[14] A. Sofla, D. Elzey, and H. Wadley, “Shape morphing hinged truss
structures,” Smart Materials and Structures, vol. 18, no. 6, pp. 065 012–
065 020, 2009.



17

[15] A. Lyder, R. F. M. Garcia, and K. Stoy, “Mechanical design of
odin, an extendable heterogeneous deformable modular robot,” in Proc.
IEEE/RSJ Intelligent Robots and Systems, pp. 883–888, 2008.

[16] F. Collins and M. Yim, “Design of a spherical robot arm with the
spiral zipper prismatic joint,” in Proc. IEEE International Conference
on Robotics and Automation, pp. 2137–2143, 2016.

[17] Z. Hammond, N. Usevitch, E. Hawkes, and S. Follmer, “Pneumatic
reel actuator: Design, modeling, and implementation,” in Proc. IEEE
International Conference on Robotics and Automation, pp. 883–888,
2017.

[18] J. Bruce, A. P. Sabelhaus, Y. Chen, D. Lu, K. Morse, S. Milam,
K. Caluwaerts, A. M. Agogino, and V. SunSpiral, “Superball: Exploring
tensegrities for planetary probes,” 2014.

[19] A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi,
S. Dobi, A. M. Agogino, and V. SunSpiral, “System design and
locomotion of superball, an untethered tensegrity robot,” in 2015 IEEE
international conference on robotics and automation (ICRA). IEEE,
2015, pp. 2867–2873.

[20] M. Abrahantes, A. Silver, and L. Wendt, “Gait design and modeling of
a 12-tetrahedron walker robot,” Proc. IEEE Southeastern Symposium on
System Theory, pp. 21–25, 2007.

[21] X. Wang, X. Wang, Z. Zhang, and Y. Zhao, “Motion planning of kine-
matically redundant 12-tetrahedral rolling robot,” International Journal
of Advanced Robotic Systems, vol. 13, no. 1, p. 23, 2016.

[22] X. Wang, X. Wang, and Z. Zhang, “Dynamical modelling and a
decentralized adaptive controller for a 12-tetrahedral rolling robot,”
Transactions of FAMENA, vol. 42, no. 2, pp. 51–66, 2018.

[23] S. Jeong, B. Kim, S. Park, E. Park, A. Spinos, D. Carroll, T. Tsabedze,
Y. Weng, T. Seo, M. Yim, F. C. Park, and J. Kim, “Variable topology
truss: Hardware overview, reconfiguration planning and locomotion,” in
Proc. IEEE International Conference on Ubiquitous Robots (UR), pp.
616–621, 2018.

[24] K. Kim, A. K. Agogino, A. Toghyan, D. Moon, L. Taneja, and A. M.
Agogino, “Robust learning of tensegrity robot control for locomotion
through form-finding,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 5824–5831.

[25] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control
of tensegrity robots for locomotion,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 944–957, 2006.

[26] J. Friesen, A. Pogue, T. Bewley, M. de Oliveira, R. Skelton, and
V. Sunspiral, “Ductt: A tensegrity robot for exploring duct systems,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 4222–4228.

[27] A. P. Sabelhaus and A. K. Agogino, “Inverse kinematics for control
of tensegrity soft robots: Existence and optimality of solutions,” arXiv
preprint arXiv:1808.08252, 2018.

[28] X. Xu, F. Sun, Y. Luo, and Y. Xu, “Collision-free path planning of
tensegrity structures,” Journal of Structural Engineering, vol. 140, no. 4,
p. 04013084, 2013.

[29] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[30] Z. Littlefield, K. Caluwaerts, J. Bruce, V. SunSpiral, and K. E. Bekris,
“Integrating simulated tensegrity models with efficient motion planning
for planetary navigation.” i-SAIRAS, 2016.

[31] Z. Littlefield, D. Surovik, W. Wang, and K. E. Bekris, “From quasi-
static to kinodynamic planning for spherical tensegrity locomotion,” in
In International Symposium on Robotics Research (ISRR), 2017.

[32] C. Paul, J. W. Roberts, H. Lipson, and F. V. Cuevas, “Gait production in a
tensegrity based robot,” in Proc. International Conference on Advanced
Robotics, pp. 216–222, 2005.

[33] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Controlling
tensegrity robots through evolution,” in Proceedings of the 15th annual
conference on Genetic and evolutionary computation. ACM, 2013, pp.
1293–1300.

[34] M. Zhang, X. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. Sun-
Spiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for
tensegrity robot locomotion,” in Proc. IEEE International Conference
on Robotics and Automation, pp. 634–641, 2017.

[35] J. Rieffel and J.-B. Mouret, “Adaptive and resilient soft tensegrity
robots,” Soft robotics, vol. 5, no. 3, pp. 318–329, 2018.

[36] C. Rennie and K. E. Bekris, “Discovering a library of rhythmic gaits for
spherical tensegrity locomotion,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 2290–2295.

[37] K. Caluwaerts, M. D’Haene, D. Verstraeten, and B. Schrauwen, “Lo-
comotion without a brain: physical reservoir computing in tensegrity
structures,” Artificial life, vol. 19, no. 1, pp. 35–66, 2013.

[38] B. Cera and A. M. Agogino, “Multi-cable rolling locomotion with
spherical tensegrities using model predictive control and deep learning,”

in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1–9.

[39] D. Surovik, K. Wang, M. Vespignani, J. Bruce, and K. E. Bekris, “Adap-
tive tensegrity locomotion: Controlling a compliant icosahedron with
symmetry-reduced reinforcement learning,” The International Journal
of Robotics Research, p. 0278364919859443, 2019.

[40] M. Vespignani, C. Ercolani, J. Friesen, and J. Bruce, “Steerable loco-
motion controller for six-strut icosahedral tensegrity robots,” in Proc.
IEEE International Conference on Intelligent Robots and Systems, pp.
2886–2892, 2018.

[41] K. Caluwaerts, J. Despraz, A. Işçen, A. P. Sabelhaus, J. Bruce,
B. Schrauwen, and V. SunSpiral, “Design and control of compliant
tensegrity robots through simulation and hardware validation,” Journal
of the royal society interface, vol. 11, no. 98, p. 20140520, 2014.

[42] N. Usevitch, Z. Hammond, S. Follmer, and M. Schwager, “Linear
actuator robots: Differential kinematics, controllability, and algorithms
for locomotion and shape morphing,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5361–5367, 2017.

[43] S. Park, E. Park, M. Yim, J. Kim, and T. Seo, “Optimization-based
nonimpact rolling locomotion of a variable geometry truss,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 747–752, 2019.

[44] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinites-
imally rigid formations of multi-robot networks,” International Journal
of Control, vol. 82, no. 3, pp. 423–439, 2009.

[45] L. Asimow and B. Roth, “The rigidity of graphs,” Transactions of the
American Mathematical Society, vol. 245, pp. 279–289, 1978.

[46] S. Pellegrino and C. R. Calladine, “Matrix analysis of statically and kine-
matically indeterminate frameworks,” International Journal of Solids
and Structures, vol. 22, no. 4, pp. 409–428, 1986.

[47] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193–203, 1988.

[48] D. Zelazo, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano, “De-
centralized rigidity maintenance control with range measurements for
multi-robot systems,” The International Journal of Robotics Research,
vol. 34, no. 1, pp. 105–128, 2015.

[49] D. Zelazo, A. Franchi, F. Allgöwer, H. H. Bülthoff, and P. R. Gior-
dano, “Rigidity maintenance control for multi-robot systems,” Robotics:
Science and Systems, pp. 473–480, 2012.

[50] M. H. Trinh, M.-C. Park, Z. Sun, B. D. Anderson, V. H. Pham, and H.-
S. Ahn, “Further analysis on graph rigidity,” in Proc. IEEE Conference
on Decision and Control, pp. 922–927, 2016.

[51] H. Gluck, “Almost all simply connected closed surfaces are rigid,”
Geometric topology, pp. 225–239, 1975.

[52] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.


