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Abstract—We consider a class of robotic systems composed
of high-elongation linear actuators connected at universal joints.
We derive the differential kinematics of such robots, and show
that any instantaneous velocity of the nodes can be achieved
through actuator motions if the graph describing the robot’s
configuration is infinitesimally rigid. We formulate physical
constraints that constrain the maximum and minimum length
of each actuator, the minimum distance between unconnected
actuators, the minimum angle between connected actuators, and
constraints that ensure the robot avoids singular configurations.
We present two planning algorithms that allow a linear actuator
robot to locomote. The first algorithm repeatedly solves a
nonlinear optimization problem online to move the robot’s center
of mass in a desired direction for one time step. This algorithm
can be used for an arbitrary linear actuator robot but does
not guarantee persistent feasibility. The second method ensures
persistent feasibility with a hierarchical coarse-fine planning
decomposition, and applies to linear actuator robots with a
certain symmetry property. We compare these two planning
methods in simulation studies.

Index Terms—Kinematics, Motion and Path Planning, Opti-
mization and Optimal Control, Truss Robots.

I. INTRODUCTION

In this paper we present a control methodology for robots
made up of high-elongation linear actuators connected together
at universal joints, which we call Linear Actuator Robots
(LARSs). Such robots can change their shape dramatically
through the coordinated actuation of their linear members. The
control of robots with a large number of degrees of freedom
is important to allow robots to become increasingly flexible
to a wide variety of tasks. In the case of a linear actuator
robot, the robot can change shape to be better suited for a
multitude of tasks including locomotion, manipulation, and
matching of 3D target shapes (shape morphing). Such a robot
would be valuable in search and rescue missions, where a
LAR could flexibly maneuver over uneven terrain and morph
into a custom manipulator to clear debris. LARs can also
serve as a type of “programmable matter”’, changing shape
to represent 3D objects and responding to a human designer’s
digital manipulations in real time.

In this work, we present nonlinear optimization techniques
to enable a linear actuator robot to locomote. We present a
differential kinematic analysis of LARs, relating the velocities
of the nodes in the structure to the rate of change of the
actuator lengths. This allows us to link concepts from graph
rigidity to the control of the robot structure. We use this
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Fig. 1: We present two algorithms for Linear Actuator Robots
(LARSs) to locomote. This figure shows snapshots of an opti-
mized everting gait for a LAR with 10 edges and 5 vertices,
computed with one of our algorithms. The LAR shown is
a passive mockup made from 10 car antennas, and hand-
positioned to illustrate the gate.

kinematic analysis to derive two on-line planning algorithms
for locomotion which are both based on the same underlying
nonlinear optimization algorithm tailored to the kinematics
and constraints of LARs. A passive mock-up of a Linear
Actuator Robot executing one of the optimized locomotion
trajectories presented in this paper is shown in Fig. 1. In
this case, the robot is composed of 10 actuators (passive car
antenna elements), and 5 nodes (with spherical joints formed
by magnets attached to steel balls).

Related Work: To best understand the related work, we first
present an overview of different implementations and applica-
tions of linear actuator robots, and then discuss in detail the
specific control methodologies. Early work on TETROBOTSs
proposed robots composed of linear actuators arranged in
repeated graphical motifs of tetrahedrons or octahedrons to
facilitate kinematic computations [1]-[3]. Robots of this type
have been referred to as variable geometry trusses [4], and
have been proposed as manipulators [5], as platforms that
allows locomotion over various terrains, and as robots with the
ability to change shape to adapt to tasks that may be unknown
a priori [6]. Other physical variants of shape changing robots
based on linear actuators include the modular linear actuator
system presented in [7], an octahedron designed for burrowing
tasks made of high extension actuators presented in [8], and
an active-surface type device that uses prismatic joints to
deform a surface into arbitrary shapes while respecting some
constraints [9]. In [10] a user interface is presented that allows
a novice user to create a large scale truss structure, and then
animate its motion by inserting a few linear actuators. In [11]
a 2D structure is built from a collection of triangles with



linear actuators as their edges, allowing the overall structure
to change shape. Some recent work has focused on a linear
actuator robot where the edges can also actively reconfigure
their connectivity as well as their lengths, which have been
called Variable Topology Trusses, with particular focus on the
application of shoring up rubble in disaster sites [12,13]. Other
work has also focused specifically on the mechanical design
of linear actuator robotic structures [14,15]. Recent work has
produced compact linear actuators that can extend up to 10
times their nominal length [16,17], making large-scale LARs
with significant shape changing capabilities technologically
feasible. In future work we plan to implement the proposed
algorithms on a system composed of pneumatic reel actuators
developed by the authors in [17], as shown in Fig. 2.

Tensegrity robots are conceptually similar to linear actua-
tor robots and have been proposed for similar applications.
Tensegrity robots consist of a number of rigid bars under
compressive loading suspended in a network of compliant
cables in tension. Tensegrity robots move by changing the
lengths of a subset of the members, typically by spooling in
or out the compliant cables, and have been proposed for a
number of applications, with a particular focus on use as a
planetary rover [18,19]. Tensegrity robots have the additional
constraint that some members (the cables) can only experience
tension loads, imposing some limits on their ability to change
their overall shape.

Control and Planning Approaches: A variety of different
control strategies have been used for past implementations of
linear actuator robots and tensegrity robots. These methods
differ in their use of a model, treatment of constraints, and
whether or not they consider dynamic effects or assume that
the motion of the robot leads to only quasistatic motions. The
key challenge is that the large number of independent actuators
create a high dimensional input space that can be challenging
to explore. Existing work on controlling TETROBOTS focuses
on algorithms for propagating kinematic chains of tetrahedrons
or octahedrons [1]. When the motion of certain nodes are spec-
ified, [2,3] provide centralized and decentralized algorithms
for finding dynamically consistent motions for systems with
the requisite chain architecture. In [20,21] hand designed gaits
are presented for use on a particular tetrahedral robot. These
gaits are presented as quasistatic paths (trajectories of how
the edge lengths change with time, with no accounting for the
requisite forces), and they discuss how the target edge lengths
would be used as inputs to a PID controller that would realize
these quasistatic gaits. The authors in [22] present a dynamic
model for a tetrahedral robot, but states that the dynamics
are too complicated for a model based controller, so they use
the kinematic gait presented in [21], but use the dynamics
model to better track the trajectory. In [8] the authors also
specify motion of an octahedral robot in terms of kinematic
motion of the nodes, and in simulation tests a large family of
possible deformations. In [23] a rapidly-exploring random tree
algorithm is used to plan for a kinematic model of the robot by
planning directly in the space of node positions. This method
is generally applicable to arbitrary graph structures, but the
large potential space of motions makes it computationally
challenging to find a solution, and heuristics must be used
to bias the sampling during the RRT algorithm.

Fig. 2: A tetrahedral robot with pneumatic reel actuators
described in [17]. Future work will implement our algorithms
on a robot with similar construction.

Control of tensegrity robots has also received substantial
work. Some approaches use geometric form finding in con-
junction with Monte Carlo simulations to determine useful
shapes [24,25]. If desired trajectories for the node positions
are known, the force density method provides the control
inputs to move the equilibrium state of the robot along a
certain path, neglecting dynamics effects [26,27]. Under a
quasistatic assumption, sampling based planning has been used
to find a feasible, but not optimal, path that avoids collisions
[28]. Due to the large state space and input space for the
dynamic system, randomized kinodynamic planning presents
a potential approach [29]. In [30] a sampling based planning
technique is used in conjunction with a dynamic tensegrity
simulator, which requires parallelization to be able to operate
in a reasonable timescale. In [31] full kinodynamic planning
is used, but in order to make the problem tractable the authors
first introduce an approximate quasi static solution and use that
as a starting point for the kinodynamic sampling. A common
approach in tensegrity robotics is to consider the dynamics
but to do so with a learning or adaptive based approach,
including evolutionary style algorithms [25,32,33], or rein-
forcement learning [34,35]. The gaits and motions resulting
from these approaches leverage the dynamics, but tend to not
fully utilize available information on the known models of
these systems, and it is challenging to adapt these methods to
a specific, prescribed task (moving the center of mass along
a trajectory). Other approaches reduce the problem to a small
number of parameters for periodic trajectories [36,37] using
central pattern generators and bayesian optimization. In [38] a
dynamic model is used for offline model predictive control
simulations that provide a training set for a deep learning
system. In [39] guided policy search and a reduction of the
search space due to the symmetry of the SUPERDball tensegrity
robot is used to enable tensegrity locomotion over non-smooth
surfaces. Also leveraging symmetry, [40] proposes a method
to extend a single motion primitive into longer trajectories. A
variety of control approaches to tensegrity robots are reviewed
in [41].

We note that while many of the tensegrity control ap-
proaches do leverage the dynamics of the tensegrity system,
they do not directly consider a full model based approach of
the dynamics, either treating the dynamics through a data-
driven approach, or employing a method to reduce computa-
tion (leveraging symmetry, or using a kinematic solution as



a guide). For this reason, we propose that better quasistatic
planning methods are valuable steps towards improved system
performance. We also note that whereas the dynamics of
tensegrity systems often play a large roll in their response,
the linear actuators used in linear actuator robots are often
relatively slow, leading to less emphasis on leveraging the
dynamics. In this work we follow the precedent of the prior
work on linear actuator robots and utilize a kinematic model.

In this paper we present the kinematics of linear actuator
robots with arbitrary graphical structure, including overcon-
strained structures, and utilize an optimization based approach
for planning directly over the position of nodes of the robot.
This optimization approach allows our method to be cus-
tomized to different tasks and cost functions. We consider
actuator constraints (to enforce min-max elongation), physical
constraints (to prevent self-intersection and enforce a mini-
mum angle between connected actuators), and constraints to
avoid kinematic singularities in arbitrary robots in designing
locomotion algorithms. The key contributions of this work are
two algorithms to solve the following problem:

Problem 1: Move the center of mass of the robot in a pre-
scribed direction v, or along a prescribed trajectory e, (7),
ensuring that the robot is always physically feasible and that
the robot does not pass through any singular configurations.

The first algorithm we propose solves an online optimization
to minimize an objective function that considers only the
current state and motion of the robot while ensuring physical
feasibility. This method applies to any robot that is in an
infinitesimally rigid configuration. However, this method does
not guarantee the persistent feasibility of the robot’s motion,
meaning it is possible the robot will reach a configuration
from which it cannot continue without violating physical
constraints (i.e., it might get tangled up). To ensure persistent
feasibility, we present another method where we solve an
offline optimization that generates periodic motion primitives
to move a robot from a starting configuration to an equivalent
configuration centered on a new support polygon. This motion
primitive is then used by a high-level planner to plan paths
from an initial configuration to a goal. We refer to this method
as the two-tiered planning approach. This method guarantees
persistent feasibility of the trajectory, but requires that the
initial configuration of the robot satisfy certain symmetry
requirements. The performance of the two algorithms is com-
pared in simulation study in which we find that the two-tiered
planning approach gives better performance in terms of cost.

This paper builds upon our past work by the authors
presented in [42] on modeling and providing an algorithmic
foundation for this class of robots. This work adds singularity
constraints and angle constraints to our past work, and the
solution method for the online optimization method has been
improved. The two-tiered planning algorithm using motion
primitives is also new in the present work. We also note that
the work presented in the conference paper has served as the
foundation of the work in [23,43].

The rest of the paper is organized as follows: Sec. II
formalizes a model for LARs and derives the forward and
inverse kinematics relating the change in actuator lengths
to node positions. Sec. III describes the physical constraints
imposed to ensure the robot motion is feasible. Our single

step locomotion algorithm is given in Sec. IV, and our two-
tiered approach is presented in Sec. V. These methods are
compared in Sec. VL. In Sec. VII we discuss the performance
of the kinematic plan in the presence of dynamic effects, and
conclusions are given in Sec. VIIIL.

II. KINEMATICS

Formally, we model a Linear Actuator Robot (LAR) as a
framework which consists of a graph G and vertex positions
p; € R9 Our methods are applicable to LARs embedded
in Euclidean space of arbitrary dimension d, but we focus
on the embeddings in 3D (d = 3). The graph is denoted as
G = {V,&}, where V = {1,..., N} are the vertices of the
graph, and € = {...,{i,7},...} are the undirected edges of
the graph. The geometry of the robot is fully represented by
the concatenation of all vertex positions x = [p{, pZ, ..., pL]7T.
In this paper we consider a quasistatic model as opposed to a
dynamic model, implicitly assuming that the robot’s motion is
slow enough that inertial effects are negligible, an assumption
that we will further address in Sec. VII. We define a length
vector L, which is a concatenated vector of the lengths of all
edges in the graph

L = llpi = psll - V{i,j} € €. (1)

The vector L is of length ny, equal to the number of
edges of the graph, and can be directly computed from the
framework (G,x). We use the notations L(z) to indicate
the length vector induced by a set of node positions z. We
note that the relationship in (1) is the constraint on the node
positions created by an edge. Note that L(z) represents the
“inverse kinematics” for LAR robots since it is a function
that maps from the vertex positions (analogous to the end
effector position in a serial manipulator) to the lengths of the
linear actuators (analogous to the joint positions in a serial
manipulator), and it is trivial to obtain (as also noted by [1]).

A. Rigidity

While it is trivial to obtain the edge lengths from the node
positions, our task is to invert this relationship and control the
node positions by changing the edge lengths. In a network
of linear actuators, each link length imposes one constraint on
the node positions as given in (1). Finding the vertex positions
from the link lengths means finding node positions that satisfy
all of the constraint equations up to translation and rotation
of the entire network. Several classes of solutions exist based
on the rigidity of the underlying graph. Examples of a few
of these classes are shown in Fig. 3, and our analysis of
the device kinematics in the following section will depend
on the rigidity of the underlying graph of the robot. If the
system of equations has infinite solutions the framework is
not rigid, as it is possible to move the system relative to
itself without violating length constraints as in Fig. 3(i). A
framework is rigid if there are a discrete number of solutions
to the constraint equations, and all deflections of the system
relative to itself violate the length constraints.

Of particular use to our analysis are graphs that are in-
finitesimally rigid, meaning that all infinitesimal deflections
of the system relative to itself violate the length constraints.
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Fig. 3: (i) A non-rigid framework. Arrows show the direction
nodes can be moved with no change to lengths. (i) A
minimally infinitesimally rigid network. (iii) The network has
the same topology as (ii), and is rigid but not infinitesimally
rigid, and hence not controllable. No controlled motion is
possible in the direction of the arrows. (iv) An additional edge
is added to (ii), meaning the structure is no longer minimally
rigid. Motions of the actuators must be coordinated, and can
not always be made independently.

Infinitesimal rigidity is dependent on the configuration z and
is not an inherent characteristic of the graph G. Infinitesimally
rigid frameworks are a subset of rigid frameworks, meaning
a framework can be rigid but not infinitesimally rigid, but all
infinitesimally rigid frameworks are also rigid. Fig. 3(ii) shows
an infinitesimally rigid framework, while the one in Fig. 3(iii)
is rigid but not infinitesimally rigid.

Of particular interest in the design of LARs are minimally
rigid graphs. A minimally rigid graph is a rigid graph where
the removal of any link causes the graph to lose rigidity. These
minimally rigid graphs provide a lower bound on the number
of links necessary to constrain a certain number of nodes. For
a graph in 3 dimensions, at least 3n — 6 edges are necessary
for minimal rigidity, which can be understood intuitively based
on a degree of freedom argument. Each node in R? has three
degrees of freedom, and each edge imposes a constraint that
removes at most one degree of freedom. The final structure has
6 degrees of freedom in its rigid body motion (3 translational,
and 3 rotational). An infinitesimally rigid graph in R3 with
3n — 6 edges is minimally rigid, although 3n — 6 edges
does not necessarily imply rigidity. In Fig. 3 the framework
in (ii) is infinitesimally minimally rigid, framework (iii) is
minimally rigid but not infinitesimally rigid, and framework
(iv) is infinitesimally rigid and over-constrained.

B. Differential Kinematics

As opposed to reconstructing node positions from edge
lengths we instead determine the kinematic relationship of
how nodes move from a given start point with changing link
lengths. To find this relationship between L and & we first
square (1) and take its derivative with respect to time to obtain

dL3 ; . .
7 = 2Lkl = 2(pi = p;) Bi +2(p; — i) By @)

Rewriting in matrix form

= R(z) 3)
L,

L

In this equation, R(z) is a scaled version of the well-known
rigidity matrix in the study of rigidity [44,45], or the kinematic
matrix in the study of kinematically indeterminate frameworks
[46]. Each row of R(z) represents a link Lj. For example, let
row k represent the link between nodes ¢ and j. The only

non-zero values of row k are R(2)k (3i—2,3i—1,3i) = %

and R(2)k, (3j-2,3j—1,3j) = (’T‘-Zﬁ":). Note that in the standard
rigidity matrix the entries are of the form (p; — p;) and not

(p‘lf;ﬁ""), hence we refer to R(x) as the scaled rigidity matrix.
For a graph with n vertices, N edges, and the positions
of the vertices given in R?, then R € RN:"?, For d = 3,
the maximum rank of R is 3n — 6. If the matrix R(z) is of

maximum rank, the framework is infinitesimally rigid [45].

C. Contact with the Ground

In addition to the relationship between actuator lengths and
vertex positions, we must capture the robot’s interaction with
the environment. Sufficient constraints between the robot and
the environment must be used to ensure that the location of the
structure is fully defined (6 independent relationships when the
structure is in R?). For this work we assume that three of the
robot’s nodes on the ground form a support polygon, and that
the nodes that make up the support polygon do not slide across
the ground. If after applying some control the center of mass
leaves the support polygon, the structure rolls about the edge
of the support polygon closest to the center of mass until the
next point comes into contact with the ground. This process is
repeated until the center of mass is inside the support polygon.
This assumption is valid for many cases, but it does neglect
the dynamic nature of the rolling transition. The decision that
the support feet do not move along the ground is restrictive,
but means that the gaits are somewhat robust to changes in
the ground properties, and do not depend on friction models
of the ground.

We encode these relationships in terms of the equation
Ci = 0 where each row of C has one nonzero entry that
is equal to 1, such that each row of C' makes one node of
the robot stationary in one coordinate of the environment.
For a minimal set of constraints, C' € R% 3" We choose this
minimum set of constraints such that one of the support feet
is fixed in all three dimensions, another support foot is fixed
in the vertical direction and one of the lateral directions, and
the last support foot is fixed only in the vertical direction.
If we constrain the 3 nodes of the support polygon to be
unable to move, C € R% 3" In the future we cquld expanq
the contact constraints to the form Ci = F where F
represents some motion of the environment and the C' matrix
potentially captures a different type of interaction with the
environment. For example, this framework could enforce an
interaction where the robot’s feet could slide on the ground or
be supported against moving obstacles.

D. Kinematic Model

‘We combine the kinematic model with the contact model to
obtain the following differential kinematics:

m = {R(Cx)] [i] = H(z)d. 4)



If the system is infinitesimally minimally rigid and a min-
imal set of constraints is applied that is linearly independent
of the link constraints, the combined matrix H = [RT CT|T
is full rank and square, and hence invertible, allowing us to
write

&= H(z)™? H . (5)

Note that this is the form of a driftless dynamical system,
and that H(z)~! is the Jacobian matrix relating the motion
of the actuators to the motion of the nodes. The vector L
describes the rates of change of the linear actuators, and hence
is the input to the system. Equation (5) shows that when the
H(z) is invertible, each input channel Lj can be commanded
independently of the others. The fact that this matrix is
invertible means that the input space is all possible length
velocities, allowing us to make the following proposition:

Proposition 1: Given an infinitesimally minimally rigid
framework with the minimum number of constraints to the en-
vironment, the length of each edge can change independently.

This means that it is not necessary to coordinate movements
between lengths as long as the graph remains minimally
infinitesimally rigid.

E. Controlling Over-Constrained Networks

If the system is infinitesimally rigid but not minimally
rigid, it is over-constrained and some motions of the linear
actuators must be coordinated. In this case, the H matrix is
skinny, with more rows than columns. Taking the singular
value decomposition of the combined H matrix,

U” [é] — v, ©)
o
ot o] = [5] v "

The bottom rows of this expression can be expressed as a
constraint which encoding how certain lengths must move in
a coordinated fashion:

vl [g] =0. (8)

By utilizing this constraint, redundant rows of the H matrix
and their corresponding elements in the vector [LT 0] can be
removed until it is square and full rank, and hence invertible.
We call the reduced H matrix and L vector the master group,
and we denote them as H,, and L,, respectively. We refer to
the removed rows as the slave group, and denote as H,, and
the removed actuator inputs as L. We note that the actuators
chosen for the master and slave groups are partially up to
the user’s discretion, and could potentially change based on
configuration. As an example procedure, an algorithm could
initialize H,, = H, and H, as an empty matrix, and then
iterate through each row of the H,, matrix. If it finds a row
linearly dependent on the previous rows from the H,, matrix
and places it in Hy, and removes the corresponding element of
L,, and places it in L. This allows us to express the system
as follows:

i = [H(2)]” {L'(ﬂ ©

(10)

st. Ly= HS(:L')H77L(5L')71 [Lérl:| .

Due to (10) the input space is restricted such that only
combinations of link velocities that satisfy the constraint can
be physically realized. The master inputs L,, can be picked
arbitrarily, but L, must be chosen to satisfy the constraint
equation.

This system can be expressed in the standard form of a
linear dynamical system, & = Ax + Bu where A =0, u =
[LT 0T, and B = H,,(x)~!. We now make the following
proposition:

Proposition 2: A framework that is infinitesimally rigid is
fully actuated.

This means that for an infinitesimally rigid system control
of every degree of freedom can be achieved given control of
the rate of change of the actuator lengths and the motion of
the contact points. This has the key advantage of allowing us
to plan our motion in terms of node positions, and then use
the [RT CT]T matrix to determine what input to apply to the
actuators.

III. PHYSICAL CONSTRAINTS

Locomotion requires finding a method to actuate the robot
to move while it maintains physical feasibility. We define
feasibility as follows:

Definition 1: A framework (G, x) is feasible if it meets three
types of physical constraints: (i) the lengths of all actuators fall
within a fixed maximum and minimum length range, (ii) the
actuators do not physically intersect (except at the endpoints
of two connected actuators), and (iii) the angles defined by
two actuators connected at a joint remain above a minimum
value.

To ensure that all motions of the robot are physically
feasible, we detail the form of the constraints and quantify
how many of each type of constraint occurs in the optimiza-
tion based on the characteristics of the underlying graph.
In addition to these physical constraints, we also present
constraints to prevent the robot from crossing configurations
where infinitesimally rigidity is lost, which correspond to the
singular configurations of the robot.

A. Length Constraints

For physical feasibility to be preserved, all actuators must
be maintained between a maximum and minimum actuator
length. The squared length of actuator & that connects nodes
{4, j} is quadratic in z, and the constraint that it remain within
the set maximum and minimum length can be expressed as

2 T 2
L2 <2l [Ia® Ap| o < L2, (11)

where Ay is a matrix where the only nonzero entries are
Apsi = Arjj = 1, Apij = Agji = —1. We note that

constraints of the quadratic form 2”Qx < ¢, where c is
a positive constant, are convex if and only if @) is positive
semi-definite. We note that Ay is the Laplacian matrix of a



graph that contains only edge k. As the Laplacian matrix is
always positive semi-definite, the maximum length constraint
is convex in the node positions while the minimum length
constraint is not. Thus our algorithms will handle non-convex
and nonlinear constraints.

B. Distance Between Actuator Constraints

We also enforce the constraint that actuators do not collide
physically, except for at the vertices where they are joined. To
determine if two actuators cross, the minimum distance be-
tween them must be greater than d,,;,, a positive diameter of
the actuator assuming that the actuator can be represented as a
cylinder. The minimum distance between actuators connecting
vertices i, j and k,[ is denoted as di—"}, and can be expressed
as follows:

it = min||(pi+a(p;—pi)) = (pr+v(Pr—pr)ll @7 € (0,12
(
These links are not in collision if df} > dyn. Efficient
algorithms for this computation have been explored previously
[47]. Checking the pairwise distances between all edges in
a graph requires checking @ constraints of the type
expressed in (12). As we do not compute the distance be-
tween actuators that are connected at a node, the number of
constraints is reduced by the number of pairwise distances
betwgen edges that meet at a node, which for node i is given
by 259 where g; is the degree of the node. Thus the total
number of constraints to avoid collisions between actuators is

N} =Ny 9 -y
—_— — - A 13
5 2_; 5 (13)

C. Angle Constraints

Another key physical constraint is that the angle between
connected actuators remain above a certain value, which is
especially important when the actuators have a high elongation
ratio. An angle constraint between two edges is a function of
3 vertices. We define p; as the position of the shared node
between two edges, and p; and p;, as the other vertices of the
two edges. The angle constraint is:

co3(Byin) < (pj — )" (1. — pi)
Ip; — pillllpx — pill

The number of angle constraints can also be expressed in

terms of the degree of the nodes of the graph:

NL+;;Q$.

(14)

15)

D. Rigidity Maintenance Constraint

Our proposed optimization approach is based on the obser-
vation that if the robot is infinitesimally rigid, we can directly
optimize a path for the node positions and recreate the needed
actuator trajectories. For this assumption to remain valid, the
robot must maintain its infinitesimal rigidity, meaning the
rigidity matrix R must remain of rank 3n — 6. Designing
controllers that maintain infinitesimal rigidity has been a topic
in formation control of multi-agent systems [48,49]. In [48]

the rigidity eigenvalue for frameworks in R? is defined as the
7th smallest eigenvalue of R(z)T R(x) and the gradient of the
rigidity eigenvalue with respect to the node positions is used
as part of a controller. In the general case, infinitesimal rigidity
can be enforced using the following constraint:

)\7 > )\crit (16)

where )7 is the 7th smallest eigenvalue of the R(x)” R(x)
matrix and A.,;; 1s its minimum allowable value.

One problem with (16) is that the magnitude of A; changes
quadratically with network size. To provide a constraint that
is invariant to network scale, we instead use the worst case
rigidity metric, taken directly from [50], and defined as:

A7 _ A7 _ A7
2321 Ai

= = > )\cri 17
WR@TR@) 3 (n@z — o

It has been noted that if a framework is infinitesimally
rigid in one configuration it is infinitesimally rigid almost
everywhere, meaning that for a graph with one infinitesimally
rigid configuration, the set of non-rigid configurations is a
set of zero measure [51]. We make the observation that the
configurations where the robot loses rigidity often divide the
state space into disconnected regions. We define each of these
regions as a rigidity equivalence class as follows:

Definition 2: (Rigidity Equivalence Class) The framework
F = (G, X,) and the framework F, = (G, X3) are in the
same rigidity equivalence class if a continuous path x(t) exists
such that 2(0) = X3, 2(T) = X, and the rigidity matrix
R(G,z(t)) is maximal rank for all ¢ € (0, 7).

Analytically characterizing these rigidity equivalence
classes for an arbitrary graph has proved challenging. How-
ever, we are able to make a statement for the case of graphs
that contains 3-simplex (a complete tetrahedron) as a subgraph.

Worst Case Rigidity Index

Fig. 4: The values of the Worst Case Rigidity index (17) as
the position of node E changes linearly between the left and
right configurations. Without edge CE (shown in yellow) the
worst case rigidity index goes to 0 when E is co-planar with
DAB, while with the yellow edge, the worst case rigidity index
remains greater than 1.



For each complete tetrahedron, we define its orientation as the
sign of the signed volume which is computed as

V = (ps—p1)"(p3 — p1) X (p2 — p1). (18)

These preliminaries allow us to make the following state-
ment:

Theorem 1: Let Fi = (G,X1) and Fy = (G, X3) be two
minimally rigid frameworks in R3. If there exists a subgraph
of G that is a 3-simplex and F} and F5 contain the simplex
with opposite orientation, the two frameworks lie in different
equivalence classes.

Proof: Finding a smooth path x(t) for the vertices of a
simplex from one orientation to the other requires the signed
volume to smoothly change signs, passing a configuration
where V' = 0. When V = 0 for a simplex, one of the edges
of the simplex is a linear combination of the others, meaning
there is a redundant edge in the R matrix. For a minimally
rigid graph the R matrix has 3n — 6 rows, so any linearly-
dependent edges indicate the matrix is not maximal rank and
hence not infinitesimally rigid. ]

One general question in the design of linear actuator robots
is if an over-constrained network is necessary, or if a minimally
rigid network is sufficient. We give an example where an over-
constrained robot can achieve motion through a configuration
that would represent a singularity were the robot minimally
rigid (shown in Fig. 4). In this example, we first consider the
robot to be only composed of the blue edges (edge CE is not
present). In this case both the left and right configurations are
infinitesimally rigid and simplex ABED has different orienta-
tion in each configuration, meaning that the two configurations
lie in different rigidity equivalence classes by theorem 1. If
the node positions are linearly interpolated between the two
configurations, the rigidity index in (17) goes to 0 when node
E is coplanar with nodes ABD. The addition of the yellow
edge, which makes the robot over-constrained, allows rigidity
to be maintained throughout the transition, as shown by the
plot in Fig. 4. We note that with the yellow edge this graph
is the fully connected 5-node graph, known as the K5 graph.
The K5 graph displays another interesting property:

Theorem 2: The rigidity matrix R(x) for a robot represented
by a complete graph of 5 or more nodes only loses rank at
configurations where the robot has actuators in collision.

Proof: For a node in a complete graph to have an
unconstrained infinitesimal motion, its neighboring edges must
not span R?®, meaning that all nodes must lie in the plane.
Complete graphs with 5 or more nodes do not have planar
non-crossing embeddings. [ ]

This result means enforcing the constraint that no actuators
collide for the K5 graph naturally enforces the graph rigidity
constraint. Whenever we evaluate a K5 robot in this paper, we
leverage this result and do not enforce the rigidity maintenance
constraint.

E. Constraint Satisfaction Between Timesteps

Our approach to finding a trajectory for a linear actuator
robot is to use an optimization to solve for a discretized
trajectory containing Nconfig configurations we denote as
27 where j = 1,2,...Nconfig- The optimization solution

guarantees that the configurations 27 satisfy the constraints
defined above which we now succinctly express as f(z7) < 0.
However, the nonconvex nature of the constraints means that
it is possible that the intermediate configurations (the config-
urations between z7 and z7%!) may violate the constraints.
To address this, we enforce a constraint that two sequential
configurations must be close together in terms of the distance
each node travels. We define this constraint as

— M| < dmove Vi (19)

We assume that the intermediate configurations between ]

and ] ! are given by linear interpolation. From work on
sampling-based motion planning [52], the maximum violation
of a constraint between two configurations can be bounded by
using the Lipschitz constant, K of the constraint as follows

|f(@?) — f(=*)| < K27 — 2F|. (20)

llp?]

Given the Lipschitz constant for each constraint function, it is
possible to augment the constraints with a buffer such that
satisfying the buffered constraints and the constraint in 19
ensures satisfaction of the true constraint. In our case, we
assume that the constraints already include this buffer. In
practice we choose d,,oye to ensure that two edges can not
jump over each other without violating the collision constraint
by plelIlg 2dmo’ue S d’m,i’rw

IV. SINGLE STEP LOCOMOTION

Our first approach to solving the locomotion problem in-
volves solving an online optimization to move the center of
mass to a desired position for one time step. It acts greedily
to minimize an objective function for a time step, and does
not account for making and breaking contact with the ground.
Our second method, presented in Sec. V and referred to
as a two-tiered planning approach, extends this single step
computation to an optimization over multiple steps. The two-
tiered approach directly accounts for the rolling behavior in
the computation, but imposes restrictions that the robot must
satisfy certain symmetry requirements.

A. Controlling the Velocity of the Center of Mass

The position of the center of mass is defined in terms of
the mass matrix of the system, M € R3*3", Without loss of
generality, the quasistatic model allows us to assume that all
mass is concentrated at the nodes of the system. In our case,
we assume that all actuators are of uniform, evenly distributed
mass, and thus half of the mass is assigned to each end of the
actuator. The position of the center of mass is given by

Tcom = Mx = [m'uec oy ISJ x (21)

where My, is the sum of all of the partial masses assigned
to node ¢. In the uniformly distributed case, Myec,i = 2dTL
With this mass matrix, we can express the velocity of the
center of mass as a function of the actuator velocities

Feom = Mi = MH L. (22)



We can now pick any L that achieves a desired motion of
the center of mass. The maximum rank of M is d, so for
a system with many vertices M H ! will have more columns
than rows, and there is freedom in which 7 is selected to move
the center of mass. We define an optimization problem to pick
a value of L that minimizes an objective function.

B. Optimization Setup

The kinematic relationships derived in the Sec. II apply
to a continuous time system. To optimize the trajectory we
work in discrete time, denoting the configuration of the robot
with the superscript 7. In practice we determine the node
velocities by linearly interpolate from the current configuration
to the configuration that is the result of the optimization, and
determine the necessary actuator velocities using the kine-
matic relationships. The optimization procedure takes as an
input the configuration at 7! and optimize the next desired
configuration 7. We seek to find a trajectory that maximizes
some cost function J(z) while satisfying constraints. As this
optimization minimizes the cost function over only one step,
we refer to this optimization approach as the greedy method.
The complete optimization problem is given as follows:

n}i_n J(xj) (23)
subject to
Crl =0 (24)
Gzl >0 (25)
f@’) <0 (26)

|2 — 27 < dmove Vi (27)

The choice of cost function J(x) will be discussed in the
following section. Eq. (24) fixes the contact points and is the
discrete time version of the ground constraint, where b is a
vector of locations of the vertices in the support polygon.
In the locomotion optimization we also enforce the linear
constraint that no nodes pass through the ground, Gx > 0,
where G = I,, ®diag([0 0 1]). We denote all of the feasibility
constraints, including maximum and minimum actuator length
(11), actuator collision constraints (12), angle constraints (14),
and singularity avoidance constraints (17) as f(z7) < 0 as
given in (26).

C. Objective Function

By defining this problem as an optimization problem, the
system will take the action that instantaneously optimizes
some objective, J(x). One intuitive choice for the cost func-
tion is J(z) = || L(z)||?> = ||R(z)&||?, which penalizes large
actuator velocities. In discrete time, we approximate this cost
as:

J(x) = ||L(z?) — L(z")|]? (28)

As mentioned previously, one potential issue with a single-
step method is that persistent feasibility is not guaranteed. One
heuristic to prevent the robot from getting tangled up in an
unfavorable configuration is to try and keep the network as
close as possible to a fixed operating point, such as attempting

to keep all actuators close to a nominal length /. This can
be encoded with an objective function

J(x) = ||L(z7) — Ix|?. (29)

We will quantitatively compare the results of using both of
these cost functions in Section VI.

D. One Step Optimization Results

We find a feasible solution to the optimization problem
using the sequential quadratic programming algorithm avail-
able in the matlab fmincon toolbox. The most computationally
expensive part of this algorithm is repeatedly checking to
see if the nonlinear constraints are violated, a process that
could be parallelized in a future implementation. To speed
computation, % is computed analytically before operation.
We demonstrate the character of the solutions that result
from this optimization we will show the types of trajectories
generated when it is applied to different robots in the following
sections.

1) Randomly Generated Robot: To show the generality of
the algorithm to a wide variety of robots, the locomotion of
a randomly generated minimally rigid 7 node robot is shown
in Fig. 5. The initial configuration of the robot is obtained by
starting with a triangular base and iteratively adding one node
and connecting it with 3 randomly selected existing nodes.
For each node, the node position is randomly regenerated until
all constraints are satisfied. The objective function presented
in (28) is used. For these simulations (and for simulations
throughout this paper) the actuator lengths were constrained to
remain between 0.5 and 4 units, the minimum angle between
connected actuators was 10 degrees, and the minimum distance
between actuators was set at 0.15 units. The minimum value
of the worst case rigidity index was set at 0.005. The robot
has an emergent, almost amoeba-like gait as it moves. Videos
of this motion are available in the supplementary materials.

2) Trajectory Tracking: In order to demonstrate the ability
of the system to follow a trajectory the K5 robot was controlled
to move its center of mass towards waypoints that make up
the corners of a predefined trajectory. The resulting trajectories
when both (28) and (29) are used as the objective are shown
in Fig. 6. We use the same values for the physical constraints
as for the random robot, but do not enforce the rigidity
maintenance constraint for the K5 robot due to Theorem 2.
The variance from the prescribed trajectory occurs because of
the rolling motion when the center of mass leaves the support
polygon. In order to illustrate the effectiveness of this method
in preventing constraints from being violated, Fig. 7 shows that
during the trajectories shown in Fig. 6, the various physical
constraints on the robot are often active but are not violated.

This trajectory tracking test also gives a sense of the robust-
ness of the control algorithm. A downside to the approach of
repeatedly solving the optimization is that persistent feasibility
is not guaranteed, meaning it is possible that the network
reaches a configuration where it cannot continue without
violating some constraint. In the case where the objective
function was (28), a configuration was reached where the
device could not continue to match the desired center of mass
motion without violating constraints (the blue trajectory in Fig.



Fig. 5: The movement of a linear actuator robot using the objective function given in (28). The robot is minimally rigid with

7 nodes and 15 actuators.

6). With the objective presented in (29), the planner finds a
feasible path that completes the trajectory (the red trajectory
in Fig. 6). Simulation results on a variety of trajectories
show that a common failure mode of the system is if the
robot rolls onto a very large support polygon, it may not
have the ability to extend its center of mass and roll again.
This failure mode may become less significant if future work
included a frictional model of the ground and allowed the
support nodes to slide along the ground. Interestingly, relaxing
constraints does not necessarily guarantee the robot will be
able to travel further before reaching a configuration with no
feasible solution. Often, relaxed constraints such as a higher
upper limit on actuator length lead to failure sooner, as the
robot tends to reach more jumbled configurations early in
the trajectory. Computation for completing the “S” trajectory
involved solving the one-step optimization 1893 times, which
took approximately 120 seconds on a laptop computer (Intel
Core 17 Processor, 4 cores, 2.80 GHz, 16GB RAM). The
average time to solve each optimization was 63 ms, with a
standard deviation of 10 ms and a maximum time of 153 ms.

Note that at each time step these methods instantaneously
minimize an objective while a desired motion of the center
of mass is obtained. The algorithm can be thought of as
greedily trying to move the center of mass. However, motion
is not optimal for the entirety of the trajectory. The algorithm
does not explicitly take into account making and breaking of
contact with the surface, which would be required to discuss
the optimality of an entire trajectory. To enable discussion of
optimality over several steps as well as to directly consider
the rolling behavior of the robot, we extend this method to a
tiered planning approach.

V. TWO-TIERED PLANNING APPROACH

In this section we extend the one-step optimization of the
previous section to an optimization over many configurations
of the robot. This multi-step optimization directly accounts for
the rolling behavior, whereas the previous method moved the
center of mass without consideration for the rolling motion.
We use an offline optimization to compute trajectories from a
predefined configuration centered on one support polygon to
the same predefined configuration centered at the next support
polygon, but with the node correspondences changed. This
precomputed trajectory serves as a motion primitive for a
high level planner that computes a series of support polygons
that lead from the robot’s initial position to a goal region.
When deviations occur from the preplanned trajectory, the only

=== Formation Controller
=== Least Norm Controller
= = Desired Path
Start
' Least Norm Failure

Fig. 6: The path of the center of mass as it travels to each
waypoint of an “S”. Note that when using the objective in
(28) the LAR reaches a point from which it cannot continue.
With (29) as the objective the robot completes the trajectory.

computation that occurs online is using the high level planner
to adjust the path of support polygons. As the final path of
the robot is composed entirely of feasible motion primitives,
the resulting path is guaranteed to be feasible. In this section
we discuss the necessary symmetry requirements for such a
trajectory to exist, present the optimization setup to solve for
the motion primitive and our use of a high level planner to
combine the motion primitives. We then discuss methods of
smoothing the motion primitives during trajectories over a
series of support polygons.

A. Symmetry Requirements

We now detail the symmetry requirements that allow a
motion primitive to be optimized offline and then stitched
together online into long trajectories. This means that the robot
must finish a motion primitive in a configuration identical to
the starting configuration, but with different node correspon-
dences. If the robot begins in an arbitrary configuration, a
path between the initial configuration and the symmetric con-
figuration must be computed and executed. For the symmetric
configuration, we restrict the shape of the support polygon
of the robot to be an equilateral triangle, meaning that the
robot’s motion will be over a grid of equilateral triangles.
The symmetry requirements are illustrated in Fig. 8. To enable
the same primitive to be reused repeatedly, we constrain the
starting configuration to have mirror symmetry about the three
lines that originate at the vertices of the support polygon and
bisect the opposite edge of the triangle, as shown by the red
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Fig. 7: Plots showing the lengths of the longest and shortest
actuators, the minimum distance between any two links that
do not share a joint, and the smallest angles throughout the
trajectories shown in Fig. 6. While constraints are active, they
are never violated.

lines in Fig. 8A. The final configuration of the robot must be
identical to the initial configuration reflected across line 23, but
with different nodes occupying different locations in the graph.
Note that the nodes at locations 2 and 3 are identical between
the two configurations. Fig. 8(B,C) shows two examples of
starting and ending configurations for the K5 graph that satisty
all symmetry constraints. While these configurations in Fig. 8B
and C look identical, the node correspondences between the
two are different. This demonstrates that for some graphs,
more than one permutation of the nodes between the starting
and ending configuration is possible.

We also note that having a starting and ending configuration
that satisfies the symmetry requirements does not guarantee
that a valid motion primitive can be found that moves between
the configurations without violating constraints. The simplest
shape that satisfies the symmetry criteria is the tetrahedron,
but a tetrahedron cannot roll from one face to an equal
sized face without having all four of its nodes in a plane-
a configuration where actuators are in collision and the graph
loses infinitesimal rigidity. In this work, we will analyze the
K5 graph with both node correspondences given in Fig. 8,
as well as an octahedron robot. We note that for the K5
and octahedron graph, a variety of different configurations of
these graphs exist that satisfy the symmetry requirements, for
example, the height of the nodes not on the ground can be
uniformly increased to create a different nominal configuration
that still satisfies the symmetry requirements. For simplicity,
we utilize graphs such that the longest actuators are of unit
length.
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Fig. 8: Illustration of the required symmetry for the starting
and ending configurations for the robot. A) shows the inital
support polygon, which must have mirror symmetry about
the three red lines. The ending configuration, which has the
support polygon 234, must appear as the mirrored version.
In B) and C) two configurations of the K5 graph are shown
that satisfy the symmetry requirements, but with different node
correspondences.

B. Optimizing a Motion Primitive

Our optimization approach for finding the motion primitives
begins with choosing a starting and ending configuration zg
and x; that satisfy the symmetry requirements and have
support polygons that share a common edge. We discretize
the trajectory between the starting and ending configurations
into Ngieps different configurations. We denote each of the
configurations j with the superscript 27, and the variable being
optimized is the concatenation of all of these configurations
Tyor = [w}, 22, ...2Nsters]. We preassign a tipping configura-
tion x/*, where the center of mass of the robot is exactly
on the edge of the support polygon, to be midway through
the configuration of steps. The robot tips from one predefined
support polygon to the next between the configurations 27"
and x7"+1. The total optimization to be solved is as follows,
with the details of the different constraints discussed in the
following sections:
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Fig. 9: The resulting motions obtained from the optimization given in (30). The top row shows a rolling gait of the K5 graph,
the middle row an everting gait of the K5 graph, and the bottom row shows a rolling gait for an octahedral robot.

Nsteps

in Z IL(27) = L(z 1) (30)
subject to
All Configurations:
Clad = b, (31)
gl (Ma?) + b <0 (32)
Gzl >0 (25)
f(z7) <0 (33)
Non-Tipping Configurations:
27" = 27| < dimove @7)

Additional Constraints at Tipping Configurations:

K (Ma7") + by =0 (34)
23" =2l = i ' =2l (35)
2" — ol = flad 1 — 22, (36)
||L(xj*+1)i — L(:L‘j*)iH <c Vi (37)
Ending Configuration:

stteps =xy (38)

The objective function (30) is a multi-step extension of
(28), where L(x7) is the vector of all of the edge lengths
of the graph with node locations given by x7. This objective
penalizes sudden and large changes in the lengths of the
actuators, and hence favors trajectories that require small
changes in actuator lengths. The linear equality constraint
in (31) constrains the location of the contact points for
each configuration. Note that C' = C* Vk < j*, and

CNsters = CF V¥V k > j*, as only two support polygons
are used throughout the optimization. In (32) three linear
inequality constraints keep .., Within the support polygon at
each configuration to prevent premature rolling. The variable
g! and h! describe the parameters of the line along edge i
of the support triangle. For each configuration, we denote
f(x7) < 0 to represent all of the physical feasibility constraints
for one configuration. We write the constraint z™Nsters = 7
to ensure the proper final configuration.

We note that for the transition between the tipping con-
figuration and the next configuration (z7° and 27 1) large
motions of the node positions are possible due to the rolling,
even though change in the edge lengths may be small. For the
rolling step alone, we constrain the change in edge lengths
to be below a fixed threshold as shown in (37) to prevent
the robot from jumping over a physical constraint, such as an
actuator collision constraint, between configurations.

1) Tipping Constraints: In addition to the constraints that
ensure that each configuration is feasible, we also impose
additional constraints that ensure that the robot tips at the
predefined tipping configuration. The linear equality constraint
in (34) ensures that at the tipping configuration the center of
mass lie on the tipping edge of the support polygon. We denote
the new node in the support polygon after the tip as node s.
The two quadratic equality constraints 1n (35) and (36) ensure
that the positions of node s, denoted =7 is the proper d1stance
away from each node on the rolling edge, denoted z”; and :cCQ
Note that these constraints do not fix the height from which the
robot tips onto the next support polygon. Were the height and
position of the next point specified exactly, the two quadratic
constraints would be replaced by three linear constraints, but
the optimization would lose the ability to change the tipping
height.



2) Optimization Results: The motion primitives produced
by solving the optimization problem are shown in Fig. 9.
For these results, we use Ngps = 40, with the tipping
configuration j* = 20. We initialize the optimization such
that every configuration or after the tipping configuration is
exactly the starting or ending configuration respectively. We
initialize the tipping configuration with, all nodes of the initial
and final support polygon in place, and the nodes that are not
part of the support polygon positioned such that the center
of mass is on the tipping edge. The optimization was solved
using the fmincon solver available with Matlab.

The top two rows of Fig. 9 correspond to the two different
node correspondences for the K5 graph discussed previously.
The first row is the resulting motion primitives when using
the correspondence in Fig. 8B. Here the center node of the
robot before rolling remains the center node after rolling. The
second row is the resulting motion when the correspondence
in Fig. 8C is used. In this case the node initially in the center
of the robot becomes the new node in the support polygon,
and the top node of the robot remains the same both before
and after rolling. We will refer to the gait with a constant
internal node as the rolling gait, and the gait with the switching
center node as an everting gait, as the robot seems to be
everting its inside and outside as it moves. From a practical
perspective, the fact that the top node of the everting gait
always remains off the ground could allow it to house cameras
or other components. We note that this everting gait requires an
over-constrained network, as it requires that a simplex present
in the initial graph switch its orientation as demonstrated in
Fig. 4. The resulting motion primitive for the octahedron is
shown in the third row of Fig. 9. The computation time for
these offline primitives was 127, 134, and 166 seconds for
the K5 inverting gait, K5 rolling gait, and octahedron gait
respectively.

We can also compare the resulting motions in terms of cost.
As computed by (30), the optimized motion primitive for the
everting K5 has a cost of 0.198, the rolling K5 primitive has a
cost of 0.062, and the octahedron has a cost of 0.025. Another
interesting comparison between the motion primitives is the
ratio of the maximum and minimum actuator length. The ratio
of the overall longest actuator to the overall shortest actuator is
3.11 for the everting gait, 2.85 for the rolling gait, and 1.58 for
the octahedron. These results demonstrate the need for high
elongation actuators.

C. Optimizing a Path over Motion Primitives

Given a motion primitive developed by the optimization,
we need a planner to specify a series of support polygons
from the initial configuration to the goal. This task corresponds
to planning a path on a triangular grid of candidate support
polygons. We use the A* algorithm for this task, but note
that any discrete planning algorithm could be used for this
task. An example of A* finding a path through obstacles is
shown in Fig. 10. If a feasible trajectory is found that solves
the optimization and a feasible path is found between the
starting configuration and the goal region, a feasible path that
satisfies all constraints is possible from the start to the goal
region. Note that in the case of an environment with obstacles,
the collision checking performed as part of the A* algorithm
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Fig. 10: An example of the A* planning algorithm. The black
boxes are obstacles, the red triangles the closed set (reachable
configurations explored by A*), and the green triangles the
open set (configurations that the planner will consider adding
to the closed set).

depends in part on the robot gait. The maximum extent of the
computational gait must be used by the planner to ensure that
it is possible to move from one support polygon to another. If
a path of collision free support polygons that leads from the
start to the goal exists, the A* algorithm is guaranteed to find
it. However, it is possible that if A* fails to find a path, the
robot could pass through the environment by using a different
motion primitive.

D. Smoothing Between Primitives

In this section we leverage symmetry in the robot and the
triangular grid of candidate support polygons to consider mo-
tion primitives for moving between several support polygons,
as opposed to just moving from one support polygon to its
neighbor. We present two approaches: one where we relax the
requirement to return to the symmetric configuration between
every step to a requirement to return to the configuration at
larger numbers of intermediate steps, and a second approach
where we optimize a trajectory that enables a robot to con-
tinue in a straight line indefinitely without returning to the
symmetric configuration.

1) Smoothing over Multiple Support Polygons: In the ex-
treme, we could optimize directly over the entire trajectory
from beginning to end, but such a procedure may be expensive
to compute online. Instead, we quantify the marginal gain of
optimizing over trajectories of increasing length, but while
maintaining the same support polygons. We note that for a
robot traveling through a triangular grid, if we eliminate the
option to move backwards at every step the robot can choose
to roll over the left or right edge. Shown in Fig. 11 is a partial
triangular grid that gives the sequence of turns to arrive at each
cell, assuming the initial motion is from the “start” to the “1”
cell. Each path can be represented by a p — 2 digit binary
word, where p is the number of transitions between support
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Fig. 11: The number of possible trajectories available when the
robot rolls over one edge. Note that the trajectories denoted
with a prime are the same as their counterparts, but with each
letter switched. The marginal gain of adding more steps seems
to be decreasing.

polygons or rolling events. By symmetry of the robot and the
grid of support polygons, switching all entries in the binary
word results in a mirrored trajectory. This means that for p
(where p > 2) steps there are 2P~2 possible paths to compute.
This means that for paths with two rolling events there is only
a single motion primitive possible, meaning there is no loss
of generality for optimizing the trajectory over two steps as
opposed to a single step.

To understand the cost savings of optimizing over multiple
support polygons, we compute the cost of moving 1 to 4 steps
along the pattern of support polygons shown in Fig. 12, along
with the direct comparison of the center of mass path when
both 1 and 4 steps were used. The cost to complete a single
roll is shown in Fig. 13. We note initial improvement in the
cost when moving from one step to two steps, but observe
diminishing returns by using longer and longer primitives.
Qualitatively, the motion of the center of mass in the smoothed
and unsmoothed trajectories is shown in Fig. 12. For the K5
graph a reasonable compromise appears to be to always use
the two step motion primitives unless the robot is within one
step of the goal. We illustrate combined behavior of the A*
planner and the smoothed primitives to navigate between the
waypoints of the “S” trajectory shown in Fig. 14.

2) Gaits with no return to the nominal configuration:
The smoothing methods presented previously in this section
relaxed the requirement of returning to the symmetric con-
figuration from every step to every N steps, where N is
some integer number of steps. An equivalent optimization
approach could also be used to develop primitives that enable
moving between different intermediate configurations without
passing through the symmetric configuration. A key question
with this approach is how to define the best intermediate
configurations. One option is to include the shape of the

intermediate configuration as part of the optimization itself.
As a demonstration, we develop primitives that allow the
octahedron and K5 robots to locomote along an arbitrarily long
straight path of support polygons, similar to the motion shown
in Fig. 12. Whereas we previously optimized a trajectory
that starting at a given symmetric configuration and ending
at equivalent symmetric configuration, we now optimize a
trajectory that starts at a tipping configuration and ends at an
equivalent tipping configuration for the next support polygon,
where the shape of the tipping configuration itself is part of
the optimization. We encode the symmetry between the first
and last configurations as follows

Aro+b=TNco i (39)

Where A and b define a linear transform and necessary assign-
ment of node correspondences to ensure that the initial and
final configurations are equivalent. We repeat the optimization
presented in (30)-(38), but including the initial configuration
as one of the optimization variables, and replacing (38) with
(39). The resulting gaits are demonstrated in the supplementary
video. The cost of this smoothed gait for the octahedron, K5
inverting gait, and K5 rolling gait is 76%, 51% and 46%
the cost of the repeatedly using the one step trajectory that
starts and ends in the symmetric configuration, representing
a substantial savings. Utilizing these gaits online in the robot
requires storing the repeating gait as well as the trajectory
to move to and from the symmetric configuration to be used
at the beginning and end of the straight line trajectory. This
means that the memory required to store this gait is equivalent
to the memory required to store a two-roll primitive. Due to
the cost to move from the initial configuration to the rolling
configuration, the multi-step primitives such as those shown in
Fig. 12 are superior for short sequences of support polygons.
However, as the length of the trajectory increases, the cost
of using the repeated gaits approaches the cost obtained by
optimizing over the entire trajectory, but requires a smaller
amount of memory to store. Future work could seek to
define intermediate gaits and other shapes that enable different
behaviors such as turning.
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Fig. 12: A series of one step trajectories stitched together (red)
compared with the smoothed optimization over three steps
(black) for the rolling gait of the K5 network. Note that the
path of the center of mass is more direct for the smoothed
primitive than the compilation of single step primitives.
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Fig. 14: The trajectories of the center of mass following the
“S” trajectory when both the one-step and the two-step motion
primitives are used. The support polygons are shown in gray.

VI. COMPARISON OF THE GREEDY AND TwO-TIERED
APPROACH

We now compare the behaviors of the greedy, roll-unaware
planning method presented in Section IV with the two-tiered
planning method presented in V. We find that, on average, the
two-tiered planning method finds more efficient trajectories
than the greedy approach. In addition, the two-tiered planning
approach always finds a successful trajectory if a sequence
of support polygons exists that leads to the goal, while the
greedy approach is often unable to find a successful trajectory.

However, we note that the one-step planning method applies to
every infinitesimally rigid robot, while the two-tiered planning
approach applies only to robots of a restrictive symmetry class.

Conceptually, we can compare the behavior of the two plan-
ners by comparing the resulting center of mass trajectories in
Fig. 6 and Fig. 14. With the two tiered planning approach, the
trajectory of the center of mass takes a less direct path between
waypoints, as the constraint to move the support polygon along
the triangular grid ensures that the center of mass does not
move in a straight line. Despite the apparent inefficiency of the
trajectory from the two-tiered planner, we find that it results in
lower cost trajectories. We hypothesize that this occurs because
the robot remains in a better conditioned state. The two-tiered
planner generates trajectories with consistent motion of all of
the free nodes, while in the trajectories of the greedy planner
free nodes seem to be flailing about a relatively steady center
of mass trajectory.

For a quantitative comparison of the performance of the
planners, we generated 100 sequences of 5 random waypoints
in a 5 unit by 5 unit region and use the proposed planning
methods to find a trajectory to visit the waypoints sequentially.
As the output of the optimization is a kinematic trajectory, we
scale the trajectories such that completing the entire trajectory
takes 1 unit of time, and convert the trajectory to continuous
time by linearly interpolating the node positions between
the discrete configurations returned by the optimization. This
rescaling ensure an equivalent average velocity between the
different experiments, and allows a direct comparison in terms
of the cost. To evaluate the cost of the trajectories we use the
following cost function:

_ Jo IL(a(e)|2dt
d

where d is the sum of the straight line distances between the
waypoints. This cost is a continuous time version of (28),
divided by the path length to give an efficiency metric as the
average cost to move a unit distance. Using both the K5 and
the octahedron robot, Fig. 15 compares the efficiency of the
paths resulting from the two-tiered planning method (using
both the rolling and everting primitive for the K5 graph), and
the greedy method using both (28) and (29) as the objective.
For both the octahedron and the K5 graph, the two-tiered
planning approach attains lower cost and lower variance than
the greedy approach for the same robot. Interestingly, for
both the octahedron and the K5 graph, a lower overall cost
is obtained by using (29), the cost function that penalizes
actuator for deviating from a nominal length, as the cost as
opposed to (28), which penalizes changes in actuator length
at each time step and is the single-step version of (40). This
seems to indicate that long term efficiency is achieved by
keeping the robot in a relatively well-conditioned state.

In addition to cost, the other key criteria by which to
evaluate the planners is their ability to find a complete path
without violating constraints. For the 100 randomly generated
trajectories and using the K5 robot, the one-step optimization
method successfully found a path between all waypoints for
12% of the trials when using (28) as the objective, and for
70% of the trials when using the formation-control based
objective given in (29). We repeated the experiments with

J (40)
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Fig. 15: Comparison of the results obtained by applying both
the greedy planning methods and the two-tiered planning
method. The two tiered planning method resulted in trajec-
tories with the lowest cost. With more nodes, the octahedron
is also more efficient than the K5 graph.

the octahedron, and found convergence occurred for 85% of
the trajectories when using the objective in (28), and 75%
when using the objective in (29). Interestingly, for the K5
graph the formation objective (29) leads to more frequent
convergence than the minimum norm objective (28), but for
the octahedron the results are reversed. The most common
failure mode for the K5 graph is rolling onto a support polygon
with extremely long actuator lengths between the support
nodes, and then being unable to move the remaining nodes far
enough to cause a tip without violating constraints. The use
of the formation objective that seeks to keep the edge lengths
at a nominal operating point tends to avoid this scenario.
For the octahedron, failure most commonly occurred through
inability to satisfy the rigidity maintenance constraint. The
approximately equal edge lengths favored by the formation
objective seem to be slightly more likely to put the robot into
a configuration with low rigidity.

The two-tiered planning approach has the valuable guar-
antee of persistent feasibility and performs better than the
one step method in terms of cost, probably because the robot
remains in a relatively well conditioned state throughout the
motion. However, this method only applies to robots that meet
strict symmetry requirements. The one-step method is general
to any infinitesimally rigid robot, but contains no guarantee of
persistent feasibility.

VII. TRANSLATING A QUASISTATIC PLAN TO A DYNAMIC
RoBOT

The planning methods presented in this paper provide
quasistatic trajectories, but implementation on a real robotic
system means that dynamic effects will be present. To address
this discrepancy we utilize the quasistatic trajectories that are a
result of the optimization as an input to a controller that forms
a part of a dynamic simulation. We use the inverse kinematic to
transform the trajectories in terms of node positions (x(t)) into
trajectories of desired actuator lengths (L4(¢)) and actuator
velocities (Lg(t)), and then utilize a simple PID controller to
compute the force (7(t)) to be applied by each actuator as
follows,

t
T(t) = Kpe(t) + Kqé(t) + KI/ e(t)dt, (41)
0

where e(t) = L(t) — Lq(t).

For this controller, the robot only has knowledge of the
lengths of its actuators, and requires no knowledge of the
position of its nodes in space. For this proof-of-concept imple-
mentation, we assume that each actuator can be approximated
as having half of its mass at each node. Knowing the forces
applied by the actuator, we determine the forces on each node
as follows:

Mi = Fpy = [R(z)T C7] {g((?)} Py 42)

Where E(t) are the ground reaction forces and F,; are
the external forces applied on the robot, which in this case is
the gravity acting on each node. We solve for E(t) such that
the resultant force (Fj,;) on the ground nodes are equal to 0.
Rolling occurs when the reaction force at any ground node is
negative in the vertical direction. When his occurs, we remove
the node from the support polygon (and the corresponding
constraints from the C' matrix) and continue propagating the
dynamics until a new node makes contact with the ground.
We assume that all collisions with the ground are perfectly
inelastic, meaning that the velocity of the node that contacts
the ground immediately becomes 0. We use Matlab ode45 to
perform the dynamic simulation.

To evaluate our system, we utilize the gaits shown in Fig. 9
as inputs to the PID controller. The videos of the simulated
dynamics are shown in the supplementary video. For these
simulations, we assume that the initial length of the longest
actuator in each robot has a length of 1 m, and that each node
has a mass of 1 kg. To evaluate the gaits, we compute the
average error between the nodes in the dynamic simulation
and their expected location from the quasistatic plan. As the
quasistatic gaits do not account for the rolling behavior, we do
not compute the error for the portion of the trajectory where
only two nodes of the dynamic robot are on the ground. Fig. 16
shows how the average error changes based on how many
seconds it takes to execute the gait. If the gaits are performed
in 6 seconds or longer, the average error is below 1 cm for
each of the different gaits. The exact magnitude of the error
will depend on the tuning of the controller, the size and mass
properties of the robot, and characteristics of the gait, but these
experiments demonstrate the overall trend of better agreement
between the quasistatic plan and the physical trajectory as the
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planned quasistatic trajectory and the position of the nodes
in a dynamic simulation where the quasistatic input serves as
an input to a PID controller. The error is compared against
the overall time that it takes to complete the trajectory.
The average error decreases as the movement proceeds more
slowly.

overall speed of the robot decreases. These demonstrations
also illustrate that the quasistatic trajectories lead to useful
behaviors in a fully dynamic system.

VIII. CONCLUSION

In this paper we have derived the differential kinematics
for networks of linear actuators connected at universal joints
and have shown that if the embedded graph describing the
robot is infinitesimally rigid, any desired motion of the nodes
can be achieved through some motion of the edges. We then
frame the locomotion problem as a nonlinear optimization over
the node positions, while enforcing constraints that guarantee
the feasibility of the robot. We also discuss that constraints
to maintain the infinitesimal rigidity of the robot tend to
divide the state space of the robot into separated regions, even
though the singular configurations themselves make up a set
of zero measure. We discuss the control of both minimally
rigid graphs and over-constrained graphs, and demonstrate
that over-constrained graphs can achieve some behaviors that
minimally rigid graphs cannot, such as the everting locomotion
gait of the K5 graph. We present two planning schemes: one
where we solve a single step nonlinear optimization online to
achieve a desired instantaneous motion of the center of mass,
and another where we optimize over many configurations that
compose a motion primitive, including in the optimization
direct consideration of the rolling behavior. The single-step
approach is applicable to robots of arbitrary configuration,
but there is the possibility that the robot will reach a state
from which it cannot continue in the desired direction without
violating physical constraints. While these is no guarantee
of persistent feasibility with this approach, we have found
that long trajectories can be achieved based on the choice of

the cost function. The two-tiered approach ensures persistent
feasibility, but requires the robot to satisfy certain symmetry
properties.

In future work we will attempt to blend the properties
of these two control approaches, namely by finding ways to
guarantee persistent feasibility for robots composed of linear
actuators in arbitrary infinitesimally rigid configurations. We
will also extend our planning approach to directly consider
dynamic effects, explicitly considering forces in the members
and incorporating the inertia properties of the system. One
possibility is to use these kinematic trajectories as starting
points for a dynamic model, similar to the methods in [31]. We
will also explore taking the centralized controllers presented
in this paper and finding a distributed version of a similar
controller, where computation is performed locally at the
actuators in the system.

In future work we will demonstrate this system with novel
robotic hardware of the type presented in [17]. We have noted
that the current optimization procedure does not have any
guarantees on global optimality. We will work to find convex
relaxations of the non-convex constraint such that we are able
to find suboptimality guarantees for certain frameworks.
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