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Abstract
Aim: Ectomycorrhizal fungi (ECMF) are partners in a globally distributed tree sym-
biosis implicated in most major ecosystem functions. However, resilience of ECMF 
to future climates is uncertain. We forecast these changes over the extent of North 
American Pinaceae forests.
Location: About 68 sites from North American Pinaceae forests ranging from Florida 
to Ontario in the east and southern California to Alaska in the west.
Taxon: Ectomycorrhizal fungi (Asco- and Basidiomycetes).
Methods: We characterized ECMF communities at each site using molecular methods 
and modelled climatic drivers of diversity and community composition with general ad-
ditive, generalized dissimilarity models and Threshold Indicator Taxa ANalysis (TITAN). 
Next, we projected our models across the extent of North American Pinaceae forests 
and forecast ECMF responses to climate changes in these forests over the next 50 years.
Results: We predict median declines in ECMF species richness as high as 26% in 
Pinaceae forests throughout a climate zone comprising more than 3.5 million square 
kilometres of North America (an area twice that of Alaska state). Mitigation of green-
house gas emissions can reduce these declines, but not prevent them. The existence 
of multiple diversity optima along climate gradients suggest regionally divergent tra-
jectories for North American ECMF, which is corroborated by corresponding ECMF 
community thresholds identified in TITAN models. Warming of forests along the bo-
real–temperate ecotone results in projected ECMF species loss and declines in the 
relative abundance of long-distance foraging ECMF species, whereas warming of east-
ern temperate forests has the opposite effect.
Main Conclusions: Our results reveal potentially unavoidable ECMF species-losses 
over the next 50 years, which is likely to have profound (if yet unclear) effects on 
ECMF-associated biogeochemical cycles.
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1  | INTRODUC TION

Forecasting changes in the diversity and composition of microbial 
communities under anticipated future climates is valuable for con-
centrating conservation efforts (van der Linde et al., 2018) and pre-
dicting changes to ecosystem function (Bissett, Brown, Siciliano, & 
Thrall, 2013, Duffy et al., 2017, Koide, Fernandez, & Malcolm, 2014). 
Loss of host species results in decreased ecosystem productivity and 
stability across a broad range of taxa (Duffy et al., 2017), including ef-
fects on microbes (Duffy et al., 2017, Laforest-Lapointe et al., 2017). 
Recent advances in molecular methods have made it possible to char-
acterize current continental-scale diversity patterns of soil microbes 
(van der Linde et al., 2018; Talbot et al., 2014; Tedersoo et al., 2014; 
Tedersoo, Bahram, et al., 2012). However, continental-scale fore-
casts under future climates are unavailable for most microbial guilds, 
making it difficult to predict the consequences of climate change to 
global biodiversity and ecosystem services. Here we predict how the 
species richness, relative abundance of hyphal exploration strategies 
and composition of ectomycorrhizal fungi (ECMF) in North American 
pine forests will change over the next 50 years.

Ectomycorrhizal fungi are plant symbionts that dominate global 
temperate and boreal forest soil communities and are implicated 
in most major ecosystem processes (Phillips, Brzostek, & Midgley, 
2013). Some ECMF taxa produce extracellular proteolytic and oxi-
dative enzymes that liberate N from organic complexes (Lindahl & 
Tunlid, 2015; Talbot, Allison, & Treseder, 2008). For example, relative 
to ECMF species with short-distance hyphal exploration strategies, 
long-distance foraging ECMF species are associated with higher ac-
tivities of organic N mineralizing enzymes (Hobbie & Agerer, 2010; 
Tedersoo, Naadel, et al., 2012). When ECMF mineralize organic N 
and transfer it to their host trees under elevated CO2, they have 
the potential to fuel increased photosynthetic rates (Terrer, Vicca, 
Hungate, Phillips, & Prentice, 2016). Additionally, by removing N 
from organic complexes, ECMF are hypothesized to competitively 
inhibit free-living soil microbes that require N to decompose and re-
spire soil organic carbon (Averill, Turner, & Finzi, 2014). However, 
because not all ECMF species can mineralize organic N (Pellitier & 
Zak, 2018), diversity losses and shifts in composition could alter 
ECMF-associated functions.

Climate change can alter the community composition of ECMF 
by pushing fungi (Kipfer, Egli, Ghazoul, Moser, & Wohlgemuth, 2010) 
or their host plants (Fernandez et al., 2017) outside their ranges of 
physiological tolerance (Pickles, Egger, Massicotte, & Green, 2012). 
However, most studies to date that have examined ECMF or whole 
fungal community responses to simulated climate change have found 
fairly small effects (Fernandez et al., 2017; Mucha et al., 2018; Parrent, 
Morris, & Vilgalys, 2006; Tu et al., 2015) relative to natural changes 
in fungal communities observed along large natural gradients of tem-
perature and precipitation (Jarvis, Woodward, Alexander, & Taylor, 
2013; Nottingham et al., 2018; Peay et al., 2017; Talbot et al., 2014; 
Tedersoo et al., 2014). Yet, few datasets currently exist with spatial res-
olution necessary to make accurate predictions of ECMF response to 
climate change across relevant geographic regions (Mohan et al., 2014).

We used next-generation DNA sequencing to determine the 
ECMF species composition in sites spread across North America 
(Omernik & Griffith, 2014) (Figure 1, Table S1). To isolate the effect 
of climate on ECMF communities while minimizing the known effects 
of vegetation-type variation on microbial community structure and 
function (Fierer et al., 2012, Tedersoo, Naadel, et al., 2012), we placed 
all of our sites in forests dominated by single species of trees, all from 
the family Pinaceae (an obligate ECMF host lineage). The Pinaceae 
are ideal for exploring environment-community–-function relation-
ships across Kingdom Fungi because they have a broad distribution 
across North America and show low levels of host specificity for 
mycorrhizal fungi within the family (Ishida, Nara, & Hogetsu, 2007; 
Rusca, Kennedy, & Bruns, 2006). For example, North American pines 
readily associate with European pine-associated ECMF (Vellinga, 
Wolfe, & Pringle, 2009) and co-occurring Pinaceae and angiosperms 
often share the most common ECMF (Kennedy, Izzo, & Bruns, 2003). 
Thus, while our sampling is restricted to pine-dominated systems, 
the results should be applicable to other forest types.

We fit nonlinear models to the relationships between climate 
and ECMF species richness, relative abundance, and community dis-
similarity. Additionally, to identify ECMF community thresholds to 
changes along temperature gradients, we performed threshold indi-
cator taxa analysis (Baker & King, 2010). In order to project potential 
changes to ECMF communities with climate change, we used the 
climate-envelope approach, which uses statistical models fit along 
spatial–environmental gradients to predict ECMF responses along 
temporal–environmental gradients.

2  | MATERIAL S AND METHODS

2.1 | Sampling

We measured ECMF community composition in 68 sites spread 
across North American forests dominated by a single plant family, 
the Pinaceae (Table S1). Sampling was carried out in 2011 and 2012 
near the period of peak plant biomass production for a given region. 
In each plot, 13 soil cores were collected from a 40 m × 40 m grid 
(Figure 1d, Figure S1). To look at spatial turnover of community and 
function at the local to landscape scales, we ensured that each plot 
had at least one other plot located within a 1–50 km range (Figure S1b). 
At each point in the plot, fresh litter was removed and a 14-cm deep, 
7.6-cm diameter soil core was taken and immediately separated into 
a humic (O) horizon and mineral (M) horizon. This resulted in a total 
of 26 soil samples collected per plot (13 sample points × 2 horizons). 
After removal, soils were kept on ice until processed. Soils were sieved 
through a 2-mm mesh to remove roots and rocks and homogenized 
by hand. A ~0.15 to 0.25 g subsample was placed directly into a bead 
tube from the Powersoil DNA Extraction Kit (MoBio), and the samples 
were stored at 4°C until DNA extraction. Before extraction, samples 
were homogenized for 30 s at 75% power using a Mini-Beadbeater 
(BioSpec). A second subset of soil core x horizon samples was stored 
in −80°C freezer (within 48 hr of collection) for soil chemical analysis.
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2.2 | Soil chemistry

Frozen soils were thawed and analysed for pH in a 1:1 water ratio 
using a glass electrode. Total extractable ammonium and nitrate 
concentrations were analysed in 2.0 M potassium chloride extracts 
of each soil sample using a WestCo SmartChem 200 discrete ana-
lyzer at Stanford University. For site-level values, we took the aver-
age of all soil cores processed for each site. Soil chemical variables 
were included in statistical models but later dropped during model 
selection (see Statistical Analysis and Supplemental Materials).

2.3 | Molecular methods

To characterize fungal communities, we sequenced the inter-
nal transcribed spacer (ITS) region of the nuclear ribosomal RNA 
genes, the official barcode of life for fungi (Schoch et al., 2012). 
Because of improvements in technology during the course of this 
project, soil samples were sequenced using two different plat-
forms. Soil samples from 25 sites were sequenced via 454 py-
rosequencing as per Talbot et al. (2014). The remaining 43 sites 
were sequenced on an Illumina MiSeq at the Stanford Functional 
Genomics Facility using the primer constructs and protocols from 

Smith and Peay (2014). Using a common set of soil samples from 
this study sequenced on both platforms we have previously dem-
onstrated that both richness and species composition are highly 
reproducible and strongly correlated between the two platforms 
(Smith & Peay, 2014) so that combining samples should not cause 
any bias in our analyses.

2.4 | Bioinformatics

Samples sequenced on the 454 platform were cleaned and denoized 
in QIIME (Caporaso et al., 2010; Reeder & Knight, 2010), after which 
we extracted the ITS1 region (Nilsson et al., 2010). For samples se-
quenced on the Illumina platform, samples were first trimmed using 
Cutadapt (Martin, 2011) and Trimmomatic (Bolger, Lohse, & Usadel, 
2014), and then merged using USEARCH (Edgar, 2010). At this point 
cleaned 454 and Illumina sequences were merged into a single FASTA 
file, where sequences were dereplicated, and clustered into species-
level operational taxonomic units (OTUs) at 97% sequence similar-
ity using USEARCH. We removed all singletons and chimeras, and 
dropped occurrences <0.025% of relative sequence abundance within 
a sample to account for tag-swapping (Carlsen et al., 2012). We first 
used the BLAST tool with the UNITE reference database (Koljalg et 

F I G U R E  1   (a) Scatter-plots of all pairwise combinations of climatic variables from the = 68 sites spread across North America. Shaded 
polygons define the range of climates where we project our models of ectomycorrhizal species richness and composition. Points are 
coloured in red, green and blue according to scaled latitude and longitude, as shown in the map (b), which has a shaded region that 
corresponds to the geographic distribution of Pine trees from our plot network and the distribution of climate variables from (a). The 
ectomycorrhizal fungal community of each site was characterized from 13 soil cores in a nested sampling design in each site (c), with samples 
from the (O)rganic and (M)ineral horizon from each core (d)
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al., 2013) to eliminate potentially non-fungal taxa; and then used the 
naïve Bayesian classifier from the Ribosomal Database Project (Wang, 
Garrity, Tiedje, & Cole, 2007) along with the Warcup ITS reference set 
(Deshpande et al., 2016) to assign taxonomy. OTUs with sufficiently 
confident taxonomic assignments were then matched to functional 
guilds using FUNGuild (Nguyen et al., 2016). The relative abundance of 
ECMF exploration strategies (% of ECMF OTUs) per site were assigned 
by matching ECMF genera against published lists (Agerer, 2001, 2006;  
Tedersoo & Smith, 2013), which are available online (www.deemy.de).  
Strategies were assigned to the following categories according to 
Fernandez et al. (2017): contact short (CS), contact medium (CM) and 
medium long (ML). Because of potential differences in the relationship 
between DNA copy number and fungal biomass, particularly among 
functional groups known to differ in their morphology, we restricted 
our analyses to intraguild comparisons (e.g. differences in relative 
abundance of ML among sites). Full description of the bioinformatic 
methods is available in the online supplement.

2.5 | Statistical analyses

To correct for variability in DNA sequencing depth between samples 
from the two sequencing platforms, we first rarefied our sequences 
from each site (Figure 1a) to an even depth of 17,273 sequences per 
site. Although rarefaction should account for most differences in cov-
erage between sequencing platforms, it is still possible that some rare 
species remained unsequenced by the 454 platform. To determine the 
role of climate in shaping the current and future distributions of ECMF 
species richness and community composition, we extracted data from 
global rasters describing the 30-year mean (1960–1990) and pro-
jected future (2070) bioclimatic variables from WorldClim version 1.4 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005): mean annual tem-
perature (°C), temperature seasonality (standard deviation of monthly 
temperatures, °C), mean annual precipitation (mm) and seasonality of 
precipitation (coefficient of variation in monthly precipitation). These 
variables capture both the range and central tendency of climate fac-
tors that are demonstrated to affect fungal communities and exhibit 
low collinearity (variance inflation factor <3).

We fit generalized additive models (GAMs) of the ECMF spe-
cies richness and relative abundance of CS, CM and ML exploration 
strategies of each site as a function of the bioclimatic variables using 
the ‘mgcv’ package in R. We choose to use nonparametric GAMs, 
rather than linear models, so that our statistical models would have 
sufficient flexibility to capture curvilinear responses of ECMF diver-
sity and abundance to environmental factors. We set the maximum 
number of knots in all GAM models to 4, which constrains against 
over-fitting but allows the fitted splines sufficient flexibility to capture 
potential saturating, sigmoidal, uni- and bi-modal responses of ECMF 
communities to environmental gradients. Additionally, we performed 
k-fold cross validation of model results to measure the extent that 
model performance is stable to data inclusion/exclusion. We divided 
the data in k = 10 random partitions, each with a different partition 
of ~10% of data withheld and manually calculated R2 values for each 

of the models when compared with the full n = 68 sites using the fol-
lowing equation: R2 = 1 − sum (actual − predicted response)2/sum(ac-
tual − mean response)2. For models that are ‘over-fit’, the range of R2 
values should be large, whereas for relatively stable models, the range 
should be narrow and not substantially less than the R2 of models fit 
with data when all k = 10 partitions were present.

In addition to the four climatic variables for which we have recent 
historical and projected 2070 data, we also considered GAM mod-
els with the following covariates: (a) only in situ soil pH and NH4-N; 
(b) only soil predictors from global rasters of surface horizon chem-
istry [soil pH in KCl (Hengl et al., 2017) and total N density (Task, 
2000)], (c) only estimates of total atmospheric N-deposition (Hember, 
2018), and (d) combinations of climate with soil in situ, soil raster, and 
N-deposition predictors. We selected our climate-only model based 
on its superior performance relative to model-complexity according to 
the generalized cross validation statistic (Tables S2–S7, Figures S2–S6).

Model extrapolations are valid only within the range of conditions 
used to fit those models. To account for this, we projected our models 
exclusively within the geographic distributions of the 12 most abun-
dant pine tree species from our plots (Table S1) and inside polygons fit 
around all pairwise combinations of climatic predictors (Figure 1a,b). 
The resulting extrapolations occur within both the geographic range 
of Pinaceae hosts from our plot network and the multivariate distribu-
tion of the environmental predictors used to fit our models.

To project our statistical models to future climates (the year 2070) 
while offseting prediction errors associated with individual GCMs 
(e.g. (Pierce, Barnett, Santer, & Gleckler, 2009), we averaged the fore-
casts from 17 spatially explict global climate models (GCMs) that have 
been incorporated into the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) (Table S8). We compared two scenarios of anthropo-
genic greenhouse emissions, corresponding to Relative Concentration 
Pathways (RCP) of 4.5 and 8.5 (Allen et al., 2014). However, though 
emissions in RCP 4.5 peak around 2040 and then decline (reflecting 
mitigation strategies to global climate change), for RCP 8.5 emissions 
rise steadily throughout the 21st century (worst case scenario). To 
plot the per cent change in species richness, we took the predicted 
[(future richness − historical richness)/(historical richness)].

In order to analyse ECMF community composition, we derived a 
Sorensen dissimilarity matrix for each pair of sites based on the pres-
ence/abence of each OTU. The relationship between geographic dis-
tance and difference in climate predictors of each site was analysed 
using generalized dissimilarity models (GDM) with the package ‘gdm’ 
in R. We used the fitted GDM model to project the multivariate ECMF 
composition in terms of the first three PC axes of predicted commu-
nity composition from 0 to 255 and plotted the points using three-di-
mensional colour scaling [PCA 1 (green), PCA 2 (red), PCA 3 (blue)].

In order to identify responses of individual ECMF taxa to changes 
in temperature gradients, we performed Threshold Indicator Taxa 
ANalysis (TITAN) using the ‘TITAN2’ package in R (Baker & King, 
2010). First, we aggregated our OTU table to the level of assigned 
species name and removed all species that occurred in fewer than 
four sites. Next, we used TITAN to find the individual ECMF spe-
cies responses to gradients of mean annual temperature, which our 

http://www.deemy.de
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analyses identified as having two different ECMF diversity optima. 
The analysis returns two metrics for each species: (a) a change point, 
which splits each species’ abundances into two classes along an en-
vironmental gradient (above and below a set temperature) in a way 
that maximizes the fidelity of species’ association for one of the two 
classes; and (b) a standardized z-score, where the magnitude is pro-
portional to the sensitivity of the species to change and the sign indi-
cates that the species’ increases or decreases in relative abundance 
when temperatures exceed the change point (positive and negative 
z-scores, respectively). For plotting purposes, we display only in-
dicator taxa that are pure and reliable, which are metrics based on 
the robustness of the sign and magnitude of species response when 
abundance data are resampled via bootstrapping (e.g. [Baker & King, 
2010; van der Linde et al., 2018]). We identified the temperature 
thresholds for ECMF communities as the peaks in the cumulative dis-
tributions of the negative and positive-z values respectively.

3  | RESULTS

Climate variables explained 58% of the deviance in ECMF species 
richness and 41% of variability in species composition among sites 
(Table 1). K-fold cross validation demonstrates that for both ECMF 
species richness and community composition that model perfor-
mance is stable, with coefficients of variation in R2 values of ~1%. 
The most species-rich ECMF communities are associated with sites 
with high seasonality in temperature and precipitation (Figure 2a). 
Seasonality also explains the most variability in ECMF species com-
position, with the greatest community turnover associated with dif-
ferences in temperature seasonality (Figure 2b).

ECMF respond to historical climates differently by region. The 
most species-rich ECMF communities in the northern and north-
west mountain forests are cold and dry (0°C and <1 m mean annual 
temperature and precipitation respectively). By contrast, the most 

(a) species richness (mean = 97.4, median = 98.5, iqr = 59.5)

Climate variable
Estimated degrees of 
freedom (df) Ref.df F-value p-value

Mean annual temperature 2.89 2.98 9.98 <.001***

Temperature seasonality 2.59 2.89 10.64 <.001***

Mean annual precipitation 2.15 2.54 5.45 .01**

Precipitation seasonality 3.00 3.00 7.59 <.001***

Note: Deviance explained = 58.3%; GCV = 845.43; Scale est. = 700.78.
Abbreviations: ECMF, Ectomycorrhizal fungi; GAM, generalized additive model; GCV, generalized 
cross validation. 
**p ≤ 0.01, ***p ≤ 0.001. 

TA B L E  1   Summary statistics for 
GAM of ECMF species richness, along 
with significance of climate variables in 
general-additive models [(k)nots = 4]

F I G U R E  2   The predictions of partial regression and best-fit splines for general-additive models for species richness (a), with shading 
along the 95% confidence interval. Total species richness and relative abundance for each site are equal to the sum of the four partial 
predictions and an intercept value (97.04 for species richness). Points are coloured according to geographic origin as in the map inset on the 
far right. (b) The expected difference in ECMF community composition, measured as the partial ecological distance, among sites according to 
generalized dissimilarity models, with lines on the x-axis indicating empirical values, while shading represents the ±1 standard deviation after 
sampling 70% of sites 10 times. ECMF, Ectomycorrhizal fungi
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species-rich ECMF communities in eastern temperate forests are hot 
and wet (>12°C, >1 m precipitation, Figure 2a). Using GAMs, which 
fit continuous, curvilinear responses along temperature gradients, 
we found a bimodal relationship between species richness and mean 
temperature, with separate cold- and hot-diversity optima (Figure 2a). 
As a result, our models predict that warming decreases species rich-
ness in the relatively cold north/northwest forests and increases spe-
cies richness in the eastern temperate forests (Figure 4a,b).

Similar to our models of ECMF species richness, the relative abun-
dance of long-distance foraging strategies increases with mean tem-
perature in eastern temperate forests with mean annual temperatures 
>12°C and declines with mean temperature in southern boreal forests 
(Figure S7c). By contrast, both short- and medium-distance foragers in-
crease with rising temperatures (Figure S7a,b). As a result, our models 
predict that sites that lose species with increased temperatures should 
also decline in the abundance of long-distance foraging strategies.

TITAN models identify ECMF species that reliably respond ei-
ther negatively or positively to increases in mean annual temperature 
(Figure 3a). Based on the peaks of the cumulative distributions of 
the change points for ECMF species with negative and positive tem-
perature associations (Figure 3b), we identify two ECMF community 
thresholds: a cold threshold at 3°C, which is associated with declines 
among threshold indicator species with negative z-scores; and a hot 
threshold at 12°C, which is associated with increases among threshold 
indicator species with positive z-scores. Notably, these ECMF com-
munity thresholds occur near the inflection points for the response of 
overall ECMF species richness to mean annual temperature (Figure 2a).

We compared model predictions using 30-year mean climates 
(1960–1990, Figure 4a,b) to climate projections for 2070 both with 
and without mitigation in greenhouse gas emissions (RCP 4.5 and 
8.5 respectively). Our models predict that both ECMF diversity and 
the abundance of long-distance foragers decline at the temperate–
boreal ecotone (Figure 5a,b). With mitigation in greenhouse gas 
emissions, median loss of species richness shrinks from 26% to 18%. 
By contrast, our models predict increases in ECMF species richness 
in south/southeastern forests, including the southern extent of the 
eastern temperate (Figure 5a,b).

4  | DISCUSSION

We predict climate changes in the next 50 years will result in a median 
loss of ECMF species richness of 21% in Pinaceae forests through-
out a boreal–temperate climate zone comprising more than 3.5 mil-
lion square kilometres of North America (an area twice that of Alaska 
state). The boreal–temperate ecotone is already vulnerable to global 
change due to warming-associated declines in growth and photosyn-
thetic rates of southern boreal trees (Reich & Oleksyn, 2008) and pre-
dicted declines in the dominance of ectomycorrhizal trees (Steidinger 
et al., 2019). Our results suggest that this same transitional region will 
experience a loss in below-ground diversity and relative abundance of 
long-distance foraging ECMF species. Moreover, even if greenhouse 
gas emissions are mitigated—reaching a peak around 2040, followed 

by a decline into 2100—ECMF species declines may be unavoidable. 
Together, these results frame the urgency with which ecologists must 
fill the knowledge gap separating ECMF community composition and 
diversity with ecosystem processes.

Our models explain a substantial amount of variability in ECMF di-
versity (58%) and community structure (48%) using only four climate 
variables, with soil N-availability and anthropogenic N-deposition 
being dropped as predictors during model selection due to their 
low predictive power relative to model complexity (Supplementary 

F I G U R E  3   (a) The change points (circles) and 95% confidence 
intervals for ECMF species with negative and positive responses 
to increasing mean annual temperature (−z and +z respectively). 
(b) The sum of z-scores (lines with points, left axis) and cumulative 
distribution of change points (right axis) for ECMF species with 
negative and positive z-scores. Peaks in the unfiltered sum(z) and 
sharp increases in cumulative frequency indicate ECMF community 
thresholds for change along mean annual temperature gradients. 
ECMF, Ectomycorrhizal fungi



778  |     STEIDINGER et al.

Materials). This negative result with respect to N-deposition con-
trasts with some regional studies of ECMF (Batstone, Dutton, Wang, 
Yang, & Frederickson, 2017; Jarvis et al., 2013; Pardo et al., 2011; Suz 
et al., 2014), including a recent continental-scale analysis of ECMF 
community composition across western Europe (van der Linde et al., 
2018). Possibly these differences reflect the relatively steeper cli-
matic (and shallower N-deposition) gradients in North America rela-
tive to Europe. While we acknowledge that there are many potential 
drivers of ECMF community structure, our study design, which fo-
cuses exclusively on ECMF in Pinaceae-dominated forest stands, 

allowed us to isolate the large and regionally divergent responses of 
ECMF communities to spatial–temporal climate gradients.

The most diverse EMCF forests in our network had highly sea-
sonal temperature and precipitation. Seasonal forests are also as-
sociated with ephemeral flushes of nutrients (Voříšková, Brabcová, 
Cajthaml, & Baldrian, 2014), which ECMF can rapidly absorb, store 
in networks of soil mycelia and transfer to tree hosts at later times 
(Read, 1991). The higher predicted ECMF diversity associated with 
seasonality in precipitation mirror results from experimental manip-
ulations on fungal communities (Hawkes et al., 2011) and suggests 

F I G U R E  4   Predicted (a) ECMF species richness and (b) ECMF community composition for North American Pinaceae forests using the 
most recent 30-year climate data. For (a) species richness, the colour legend also shows the cumulative area containing ≤ the same predicted 
number of species. For community composition (b), pixels with similar colours are predicted to have similar ECMF community compositions, 
according to the first three axes of PCA of generalized dissimilarity model predictions, which are broken into constituent subplots with red, 
green and blue colour scaling. ECMF, Ectomycorrhizal fungi
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that ECMF diversity may be associated with a storage effect of sea-
sonal specialists (Chesson, 2000).

The regionally opposite effects of temperature gradients we ob-
served for ECMF diversity and composition are consistent with re-
gionally opposite effects of climate on host-tree physiology. We found 
that ECMF diversity and long-distance forager abundance decline with 
increasing mean temperatures, but only in relatively cold sites from 
northern and northwest mountain forests. Warming of boreal tree spe-
cies growing near the boreal–temperate ecotone has also been shown 
to reduce tree growth and photosynthetic rate (Reich & Oleksyn, 
2008; Reich et al., 2015), which causes trees to allocate less C to ECMF 
(Fernandez et al., 2017). By contrast, simulated warming does not result 
in declines in photosynthetic rates for temperate tree species, which 
are adapted to warmer climates, or in boreal tree species growing at 
their colder, northern range limits (Reich & Oleksyn, 2008). Thus, global 
warming may reduce ECMF species richness only at the same southern 
boreal frontier where it can reduce ECMF host tree performance.

Additionally, adaptation of ECMF species to different climate en-
velopes can explain qualitatively different community responses to 
temperature and precipitation (Lehto, Brosinsky, Heinonen-Tanski, 
& Repo, 2008; Malcolm, Lopez-Gutierrez, Koide, & Eissenstat, 
2009) (Hawkes & Keitt, 2015). ECMF communities from different 
plots had almost no overlap in species compositions (mean dissimi-
larity of 0.97 out of 1, 42% species endemic to a single plot), which is 
consistent with the generally high spatial turnover among soil fungal 

communities (Talbot et al., 2014). The most dissimilar ECMF commu-
nities also have the most contrasting climates (e.g. high and low tem-
perature seasonality in boreal/temperate vs. Mediterranean forests, 
respectively, Figures 2b and 4b), such that different ECMF species 
are associated with the cold- and hot-diversity optima. Threshold 
indicator taxa analysis also identifies a group of cold-adapted 
ECMF species that decrease in abundance with rising temperature 
(Figure 3a).

The magnitude of ECMF species losses and gains are contin-
gent on the decisions of human policymakers, though even with 
mitigation of greenhouse gas emissions the outcomes are not 
qualitatively different. If greenhouse gas emissions are capped by 
2040, median loss of species richness shrinks from 26% to 18%, 
although the extent of the climate zone where those declines 
occur shrinks by only 2%. Thus, our models predict that substan-
tial losses in ECMF diversity may be unavoidable. At present, it is 
not clear what effects these ECMF diversity losses would have on 
their ecosystems.

ECMF differ in foraging and dispersal strategy and enzymatic 
abilities, which can lead to a positive relationship between ECMF 
diversity and seedling growth from a range of 1–4 ECMF species in 
experimental tree seedlings (Baxter & Dighton, 2001, 2005). Recent 
work suggests that species loss results in declines in ecosystem pro-
ductivity and resiliency across a broad range of taxa (Duffy et al., 
2017), including plant–microbial symbionts (Laforest-Lapointe et al., 

F I G U R E  5   The projected changes in (a) ECMF species richness and (b) the % in long-distance (ML) foraging ECMF abundance using 
projected future climates for the year 2070 both with and without mitigations in greenhouse gas emissions (RCP 4.5 and 8.5, respectively). 
For both (a) and (b), the colour legends to the right also show the cumulative area predicted to change in % by ≤ the amount of the y-axis 
(dotted and solid lines for RCP 4.5 and 8.5, respectively), with the line segment at the top showing total land area of Alaska (AK) state. ECMF, 
Ectomycorrhizal fungi; RCP, Relative Concentration Pathways
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2017). However, it remains unclear how a system with ~100 ECMF 
species will respond to a 25%–30% loss or gain in ECMF diversity. 
Given that our study and others (van der Linde et al., 2018) detect 
major shifts in the diversity and composition of ECMF at the conti-
nental scale, understanding the contribution of ECMF communities to 
tree physiology and ecosystem function is a pressing knowledge gap.

Forecasting continental changes in ECMF communities is a first 
step in projecting the functional consequences of those changes. 
Our models identify the boreal–temperate ecotone, which is already 
identified as a tipping point in the Earth system, as being particularly 
sensitive to warming-associated diversity declines, as it exists in a 
region where increases in mean annual temperature can drive ECMF 
communities into the valley between cold-boreal and warm-eastern 
temperate diversity optima. Based on our continental-scale models 
of ECMF-climate relationships, we predict substantial and regionally 
divergent trajectories for North American ECMF communities under 
future climates.
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