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Abstract

A classical method for risk-sensitive nonlinear control is
the iterative linear exponential quadratic Gaussian algorithm.
We present its convergence analysis from a first-order opti-
mization viewpoint. We identify the objective that the algo-
rithm actually minimizes and we show how the addition of a
proximal term guarantees convergence to a stationary point.

Introduction

We present a convergence analysis of the classical iterative
linear quadratic exponential Gaussian controller (ILEQG)
[Whittle, 1981] for finite-horizon risk-sensitive or safe non-
linear control. The ILEQG algorithm is particularly popu-
lar in robotics applications [Li and Todorov, 2007] and can
be seen as a risk-sensitive counterpart of the iterative linear
quadratic Gaussian (ILQG) algorithm . We adopt here the
viewpoint of the modern complexity analysis of first-order
optimization algorithms as done by Roulet et al. [2019b] for
ILQG.

We address the following questions: (i) what is the con-
vergence rate of ILEQG to a stationary point? (ii) how
can we set the step-size to guarantee a decreasing objec-
tive along the iterations? The analysis we present here sheds
light on these questions by highlighting the objective min-
imized by ILEQG which is a Gaussian approximation of a
risk-sensitive cost around the linearized trajectory. We un-
derscore the importance of the addition of a proximal regu-
larization component for [LEQG to guarantee a worst-case
convergence to a stationary point of the objective.

The main result of the paper is Theorem 2.5, where a suf-
ficient decrease condition to choose the strength of the proxi-
mal regularization is given. The result also yields a complex-
ity bound in terms of calls to a dynamic programming pro-
cedure. We illustrate the variant of the iterative regularized
linear quadratic exponential Gaussian controller we recom-
mend on simple risk-sensitive nonlinear control examples.

Related work. The linear exponential quadratic Gaussian
algorithm is a fundamental algorithm for risk-sensitive or
safe control [Whittle, 1981, Jacobson, 1973, Speyer et al.,
1974]. The algorithm builds upon a risk-sensitive measure, a
less conservative and more flexible framework than the H*
theory also used for robust control; see [Glover and Doyle,
1988, Hassibi et al., 1999, Helton and James, 1999] and
references therein. An excellent review of the classical re-
sults in abstract dynamic programming and control theory,
in particular for risk-sensitive control, was done by Bert-
sekas [2018]. Risk-measures were analyzed as instances of
the optimized certainty equivalent applied to specific utility
functions [Ben-Tal and Teboulle, 1986, 2007]. Risk-averse
model predictive control was also studied to account for am-
biguity in the knowledge of the underlying probability dis-
tribution [Sopasakis et al., 2019].

Algorithms for nonlinear control problems are usually
derived by analogy to the linear case, which is solved in
linear time with respect to the horizon by dynamic pro-
gramming [Bellman, 1971]. In particular, the iterative lin-
ear quadratic regulator (ILQR) and iterative linear quadratic
Gaussian (ILQG) algorithms are usually informally moti-
vated as iterative linearization algorithms [Li and Todorov,
2007]. A risk-sensitive variant without theoretical guaran-
tees was considered by Farshidian and Buchli [2015], Ponton
et al. [2016].

On the first-order optimization front, optimization sub-
problems such as Newton or Gauss-Newton-steps were
shown to be implementable by using dynamic programming
in classical works [De O. Pantoja, 1988, Dunn and Bertsekas,
1989, Sideris and Bobrow, 2005]. Iterative linearized meth-
ods such as ILQR or ILQG were recently analyzed as Gauss-
Newton-type algorithms and improved using proximal regu-
larization and acceleration by extrapolation in [Roulet et al.,
2019b]. This work shares the same viewpoint and establishes
worst-case complexity bounds for iterative linear quadratic
exponential Gaussian controller (ILEQG) algorithms.

The companion code is available at https://github.
com/vroulet/ilqge. All proofs and notations are provided
in the long version [Roulet et al., 2019a].
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