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ABSTRACT: Large volumes of data from material character-
izations call for rapid and automatic data analysis to accelerate
materials discovery. Herein, we report a convolutional neural
network (CNN) that was trained based on theoretical data and
very limited experimental data for fast identification of
experimental X-ray diffraction (XRD) patterns of metal−organic
frameworks (MOFs). To augment the data for training the model,
noise was extracted from experimental data and shuffled; then it
was merged with the main peaks that were extracted from theoretical spectra to synthesize new spectra. For the first time, one-to-one
material identification was achieved. Theoretical MOFs patterns (1012) were augmented to a whole data set of 72 864 samples. It
was then randomly shuffled and split into training (58 292 samples) and validation (14 572 samples) data sets at a ratio of 4:1. For
the task of discriminating, the optimized model showed the highest identification accuracy of 96.7% for the top 5 ranking on a test
data set of 30 hold-out samples. Neighborhood component analysis (NCA) on the experimental XRD samples shows that the
samples from the same material are clustered in groups in the NCA map. Analysis on the class activation maps of the last CNN layer
further discloses the mechanism by which the CNN model successfully identifies individual MOFs from the XRD patterns. This
CNN model trained by the data augmentation technique would not only open numerous potential applications for identifying XRD
patterns for different materials, but also pave avenues to autonomously analyze data by other characterization tools such as FTIR,
Raman, and NMR spectroscopies.

■ INTRODUCTION
High-throughput-synthesis techniques have shown great
potential in accelerating material innovation.1 Large volumes
of characterization data including X-ray diffraction (XRD),
Raman, nuclear magnetic resonance (NMR), and Fourier
transform infrared (FTIR) patterns are collected during or
after the synthesis. Among them, XRD is a powerful technique
to characterize crystallographic structures, grain size, and
molecular structures.2 Typically, experimental XRD samples
are analyzed via comparing descriptors such as peak positions,
intensities, and full widths at half-maxima (FWHM) against a
known database such as the Crystallography Open Database
and Inorganic Crystal Structure Database, allowing scientists to
identify the compounds of interest and to map phase diagrams
of combinatorial materials. However, the tedious and time-
consuming procedure due to the manual analysis at a relatively
low speed severely hinders fast decision-making.2,3 To fully
exploit the characterization tools, it is becoming urgent to
develop new data assessment tools with automation and
recommendation functions, especially with the emergence of
self-driven laboratories enabled by robots.4−6 Despite recent
progress, it has been and continues to be a grand challenge.
Recently, machine learning (ML) models have shown great

potential in managing the large volumes of characterization
data for rapidly and automatically identifying composition−
phase maps as well as constructing composition−structure−

property relationships, thereby speeding up the materials
discovery.1,7−15 For instance, Iwasaki et al., Kusne et al., Stanev
et al., Aguiar et al., and Yoon et al. implemented machine
learning techniques such as cluster analysis and mean shift for
phase or crystallographic classification.16−20 Ziatdinov et al.
applied deep learning to resolve scanning transmission electron
microscopy images.21 Lee et al. demonstrated a deep learning
technique for application in phase identification of inorganic
compunds.22 Park et al. demonstrated well-trained convolu-
tional neural networks (CNNs) which exhibited satisfactory
accuracy in classifying XRD patterns based on a theoretical
database.23 Oviedo and colleagues proposed a machine
learning approach to predict crystallographic dimensionality
and space groups from a limited number of thin-film XRD
patterns.2 Ziletti’s research group developed a robust CNN
model to classify crystal structures and also unfolded the
internal behavior of the classification model through visual-
ization.14 Miller’s research group implemented a CNN to
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determine crystallography trained on imaging and diffraction
data.15 However, these approaches were applied to identify
several classes or crystal systems into which target materials are
grouped. One-by-one identification of individual spectrum
from millions of spectrum databases is still challenging.
Another big challenge for developing machine learning enabled
methodology is the lack of experimental data for training the
models. Although a technique of Gaussian mixture was
employed to augment the theoretical data,24 it may not fully
reflect the real experiments when distinguished features arise
from the experiments. It is envisioned that directly
incorporating experimental data into theoretical data is a
better approach. Finally, the deep learning models like CNN
are usually treated as a “black box”. Interpreting the underlying
mechanism of such a black box for decision-making or
obtaining the final desired results is still an open problem.
Therefore, developing a procedure that can better interpret the
deep learning models when they are applied to material
research has recently seen a resurgence.
In this paper, we propose a CNN model that was trained for

rapid one-to-one identification of experimental XRD samples
of metal−organic frameworks (MOFs). To increase robustness
of the CNN model, noise was extracted from the experimental
spectra to augment the theoretical spectra for training. In the
cases of very noisy experimental spectra, the fast Fourier
transform (FFT) was applied to reduce the noise before they
were input into the CNN for improving the prediction
accuracy. Theoretical MOF patterns (1012) were augmented
to a whole data set of 72 864 samples. It was then randomly
shuffled and split into training (58 292 samples) and validation
(14 572 samples) data sets at a ratio of 4:1. For the task of
discriminating, the optimized model showed the highest
identification accuracy of 96.7% for the top 5 ranking on a
test data set of 30 hold-out samples. The training, validation,

and testing data allocation is illustrated in Figure S1. Data
dimension reduction analysis on the experimental XRD
samples by neighborhood component analysis (NCA) shows
that the samples from the same MOF are clustered in
individual groups in the NCA map, while the XRD samples
from different MOFs but with very similar characteristics may
have overlapping. Further analysis on the class activation maps
(CAMs) of the last layer before the flatten layer of the CNN
model shows that the grouped samples that are highly
distinguishable in the NCA map exhibit very different
activation characteristics. This observation can well explain
why the CNN can identify individual spectra from the library.
Our work can be summarized as follows. First, to the best of

our knowledge, this is the first demonstration that a CNN
enables one-by-one identification of XRD patterns for
individual materials. The previously reported machine learning
algorithms only classify several classes or crystal systems into
which target materials are grouped. Second, the model was
trained by theoretical data combined with very limited
experimental data. Third, the noise-based data augmentation
technique is very easy and straightforward to implement, but it
results in very effective outcomes. Fourth, the trained CNN
model can successfully and robustly perform one-by-one
classification with the help of a noise filtering procedure
even though the experimental XRD samples exhibit peak shift,
scaling in peak intensities, or FWHM broadening compared to
the theoretical spectra. Last but not least, the study on the
CAMs of the convolutional layers discloses the mechanism of
how the CNN model makes the decision, thus shedding new
light on the interpretable deep learning for materials
characterization data analysis. Consequently, the proposed
solution is of great interest and appears to be very promising,
not only because of the applications of XRD to characterize
different types of materials, but also because of the possible

Figure 1. (a) Flowchart showing the process of XRD pattern identification. (b) Architecture of proposed convolutional neural network.
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extension to samples collected by other characterization
techniques including Raman, NMR, and FTIR spectroscopies.

■ RESULTS AND DISCUSSION

The flowchart showing the procedure for rapid identification of
XRD patterns enabled by the CNN is illustrated in Figure 1a.
First, theoretical CIF files of MOFs downloaded from
Cambridge Crystallographic Data Centre (CCDC)25 were
converted into theoretical XRD patterns. Experimental XRD
samples were collected from as-synthesized MOFs powders in
a Bruker D8 Advance. Detailed synthesis and characterization
can be found in the Experimental Section in the Supporting
Information. Then, the noise was extracted from experimental
data and shuffled, and then merged with the main peaks that
were extracted from theoretical data to obtain new synthesized
data. By this data augmentation method, sufficient training
data were realized. The experimental XRD samples that were
used as the testing data sets were filtered to reduce the noise
level if needed. The detailed procedure of data augmentation
and noise reduction is described in the following paragraph. A
CNN was built from scratch based on famous networks whose
fully connected layers are from Lenet5 and convolutional
blocks are from VGG16.26,27 Its architecture is shown in Figure
1b and Table S1. Basically, the CNN consists of one input
layer, four convolutional layers, three fully connected layers,
and one output layer.28,29 The first layer inputs are synthesized
XRD samples with 2θ ranging from 5 to 50°. Then the data are
fed subsequently into four convolution layers with kernel filters
followed by a “max pooling” layer. The kernels for these
convolutional layers are 6, 16, 32, and 64 filters with a size of 5
× 1 and a stride of 1. The max pooling layer has two filters with

a stride of 2 and a dropout with a dropout rate of 0.2.29−31 All
convolutional layers were activated by the function of the
rectified linear unit (ReLU). After one flatten layer, the data
were fed to three dense layers with sizes of 120, 84, and 1012,
respectively. The Adam optimizer was applied to minimize the
categorical cross-entropy loss function.32,33 The hyperpara-
meters of the CNN are shown in Table S2.32

Figure 2 exhibits the detailed procedure of preprocessing
and augmenting theoretical data, and reducing the noise level
of experimental data. The data used for training were
synthesized by merging extracted peaks from the theoretical
data and baseline noise from the experimental data. The main
peaks were extracted from a theoretical spectrum containing
the largest 400 points. The noise was collected from the
baseline of raw experimental data after the main peaks were
removed. As shown in Figure S2, it is found that the noise
extracted from experimental XRD patterns does not follow
Gaussian or Poisson distributions. To well preserve the noise
characteristics, we randomly shuffled the noise samples, which
were combined with the theoretical XRD pattern for data
augmentation. Then these two components were super-
imposed to form a new spectrum. Since the noise can be
randomly sampled and shuffled, the data can be largely
augmented for training the CNN model. These training data
were synthesized from a library of a total of 1012 theoretical
patterns. Next, FFT and inverse FFT (iFFT) were applied to
smooth the experimental data for the purpose of reducing their
noise level. A total of 30 experimental samples collected from
10 types of MOFs after noise filtering were used as the testing
data sets. FFT converts the signal in an original domain to a
representation in a frequency domain.34 After the raw XRD

Figure 2. Flowchart showing process of augmenting theoretical data and filtering noise of experimental data.
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data were converted to FFT data in the frequency range of 0−
200 discrete frequency bins, the data beyond the frequency of
200 is the white noise. Here, we use the mean peak value of the
white noise as a criterion to determine whether iFFT should be
applied to reduce the noise of experimental XRD samples. If
the mean value is larger than 1, it means that the noise has high
intensity and the iFFT is applied to the first original 200
discrete frequency bins with the rest of bins set to 0.
Otherwise, the original data can be directly used as testing
data. Compared to previous reports on the procedure of
preprocessing XRD samples, only the threshold for noise
filtering needs to be set by humans and intervention steps such
as background removal, smoothing and interpolation, region
exclusion, and peak shifting were not involved,3,18 thereby
significantly improving autonomy of the model for data
analysis.
After the data preprocessing, the synthesized data and noise-

reduced experimental data were used as the training and test
data sets, respectively, to train and test various supervised ML
models for evaluating one-by-one identification performance.
We first tested five classical ML algorithms such as naiv̈e Bayes
(NB), k-nearest neighbors (kNN), logistic regression (LR),
random forest (RF), and support vector machine (SVM). The
hyperparameters are shown in Table S3, and their classification
accuracies are shown in Figure 3a and summarized in Table S4.
Here, we define top 1 to top 5 as the ranking positions of
identification results of the testing data among the library
consisting of a total 1012 MOFs (Table S5). For example, top
1 means that an ML model algorithm can successfully rank an
MOF sample at the first position. Different from previous
studies which map the samples into seven crystal systems or
230 space groups among thousands of materials,2,23 it is much
more challenging to reach the goal of one-by-one material
classification. One-by-one classification mission is similar to
the large-scale image-classification challenge attempted by the
ImageNet, which classifies high-resolution images into 1000
different categories. It can be seen that all five classical ML
models exhibit <50% identification accuracy for top 1-to-top 5
rankings. In comparison, the best result of CNN performed
much better with 56.7, 76.7, 90, and 93.3% accuracies for top
1, top 2, top 3, and top 4 rankings, respectively (Table S6), and
reached 96.7% accuracy for the top 5 ranking. It demonstrates
that high-level hidden and meaningful features learned by the
CNN help identify XRD patterns with a much higher accuracy
than the classical ML algorithms.35 In addition, the
classification accuracy of top 5 over the classical ML algorithms
and CNN model under different sized theoretical data is also

investigated and shown in Figure 3b. It is obvious that the
classification accuracies of the classical ML algorithms
decreases sharply when the data size increases, whereas our
CNN model is robust enough to deliver a predictive accuracy
of 96.7% even when the number of theoretical patterns in the
library increases from 189 to 1012 (Figure 3b). It is likely that,
as the library size further increases, the prediction accuracy
would be well maintained.
It is usually difficult for the deep neural networks to afford

insights toward interpreting mechanism since they introduce
the complexity of interactions and nonlinearities.36 Thus, they
were also known as “black boxes” for a long time. To reduce
the dimensionality of the data for better understanding of how
the CNN makes the decision, neighborhood component
analysis (NCA) was employed to analyze the experimental
XRD samples.37 As shown in the NCA map (Figure 4), these

XRD samples from the same MOFs are clustered into 10
separate groups, while the XRD samples from different MOFs
but with very similar pattern characteristics may result in
overlapped or very close groups in the component map. This
indicates that characteristics of main peaks such as position,
intensity, and full width at half-maximumusually the main
criteria to distinguish the XRD patternsare reduced to show
distinguished features as shown in the NCA map.
In order to understand the mechanism of how the CNN

model distinguishes individual experimental samples, their
CAMs in the 14th layers and corresponding XRD patterns
were shown in Figure 5 and Figure S3. Even though CAMs had
some limitations reported in a recent paper,38 in an image
classification task, CAMs can still be used to reflect the main
discriminative features of images, which helps to interpret and

Figure 3. (a) Comparison of various ML models for identifying XRD patterns among the library with 1012 MOFs. NB, naiv̈e Bayes; kNN, k-
nearest neighbors; LR, logistic regression; RF, random forest; SVM, support vector machine; CNN, convolutional neural network. (b) Top 5
accuracy of various ML models trained with different numbers of theoretical patterns.

Figure 4. Neighborhood component analysis (NCA) map for
clustering of XRD patterns of all 30 MOFs.
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improve classification accuracy.2,39 In our case, CAMs may
afford a clear and direct impression on the characteristics of the
XRD patterns that were the most relevant to the specific class.
It is found that the red regions in the CAMs correspond to the
main peaks of the XRD patterns. Hence, it is deduced that the
CNN model can well distinguish XRD patterns according to
the main peaks, i.e., the most important peaks. Further
observation shows that MOF-74 (Figure 5a) only exhibits six
colorful regions including two dominated red regions, and ZIF-
8 (Figure 5b) exhibited much more colorful regions. This is
similar to the way that a professional material scientist analyzes
the XRD data. A traditional way to identify the compounds of
interest and to map phase diagrams of combinatorial materials
is to match descriptors of their XRD patterns such as peak
positions, intensities, and FWHM with a known database.
Thus, it is straightforward to train machine learning models via

data augmentation by peak scaling, peak elimination, and peak
shift.2,23 The models successfully identify several crystal
systems into which target materials are grouped. However, it
is much more challenging to reach the goal of one-by-one
classification, i.e., to assign a correct label to individual XRD
pattern instead of seven crystal systems or 230 space groups
among thousands of data sets. In our case, the trained CNN
model can successfully and robustly perform one-by-one
classification even though the experimental XRD samples
exhibit peak shift, scaling in peak intensities, or FWHM
broadening compared to the theoretical patterns. As is evident
in Figure 5 and Figure S3, all XRD data of the MOFs exhibit
peak shift, the existence of noise, and peak intensity scaling
compared to their theoretical patterns. Our model can tackle
these abnormal phenomena and reach 96.7% one-by-one
classification accuracy. In addition, amazingly, the CNN can

Figure 5. CAMs of the 14th layer output from the CNN model and corresponding XRD patterns: (a) MOF-74; (b) ZIF-8; (c) MOF-199; (d)
MOF-5.
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still identify the patterns even when intensities of main peaks
are largely changed. Take MOF-199 (Figure 5c) and MOF-5
(Figure 5d) as examples. The ratios of (220) to (222) peaks
for experimental data of three MOF-199 samples are varied
from 0.82 to 0.45. The trained model can identify them in the
top 3 (Table S6). The CAM on MOF-199 agrees well with this
result, which shows that the dominated red region shifts to
(222) from (220). Similarly, the ratios of (200) to (220) for
MOF-5 are 0.29, 2.40, and 0.99 for M1, M2, and M3 of MOF-
5, respectively. The model also can rank MOF-5 in the top 3
(Table S6). For MOF-5 M2 sample, the peak corresponding to
the (400) plane increases to be the second highest peak. This
result agrees well with the CAM analysis result, and it shows
that the two dominated regions correspond to the (200) and
(400) peaks. In addition, we also observed that the lower
crystallinity and existence of noise greatly affect the
classification accuracy. Here, ZIF-9 was chosen as an example
(Figure S3f). The CNN model can classify the ZIF-9 M2 and
ZIF-9 M3 in the top 2 and top 4 rankings, but it cannot
distinguish ZIF-9 M1. The CAM analysis shows only one red
dominated region, corresponding to the first highest peak. Due
to the lower intensity and the existence of noise, the CNN
could not learn the main features which can effectively assign
all three samples to ZIF-9.

■ CONCLUSION

In summary, we demonstrated a CNN model trained by the
theoretical XRD patterns augmented by noise from limited
experimental data for rapid one-to-one identification of
individual MOFs. The CNN model is employed to identify
XRD patterns instead of categorizing them into groups or
crystallinity systems. The optimized CNN model showed the
highest identification accuracy of 96.7% for the top 5 rankings
among a data set of 1012 XRD patterns. The advantages of the
proposed CNN model can be summarized as follows: (1) It is
a one-by-one identification instead of predicting several crystal
groups. (2) The model was trained based on very limited
theoretical data. (3) Simple and straightforward noise-based
data augmentationnot like the past technique that employed
multistep operations (peak scaling, elimination, and shift-
ing)was deployed; thus it is easy to operate and requires less
hyperparameter tuning. (4) The procedure of noise filtering
can greatly increase the classification accuracy of the CNN
model. Finally, the proposed CNN model has potential not
only in numerous applications of XRD in materials science, but
also in the possible expansion of the solution to several other
characterization techniques such as Raman, NMR, and FTIR
spectroscopies.

■ METHODS

Chemicals. Zn(NO3)2·6H2O (Sigma-Aldrich), ZnCl2·
6H2O (Fluka), Zn(CH3COO)2·2H2O (Fisher), Co(NO3)2·
6H2O (Sigma-Aldrich), CoCl2·6H2O (Sigma-Aldrich), Co-
(CH3COO)2·4H2O (Fisher), Cu(NO3)2·3H2O (Fisher), 2-
methylimidazole (Fisher), benzimidazole (Fisher), 4,5-dichlor-
oimidazole (Fisher), 2-imidazolecarboxaldehyde (Fisher),
terephthalic acid (BDC; Fisher), 1,3,5-benzenetricarboxylic
acid (BTC; Fisher), cetyltrimethylammonium bromide
(CTAB; Sigma-Aldrich), diethylamine (DEA; Fisher), triethyl-
amine (TEA; Fisher), polyvinylpyrrolidone (PVP, Mw =
360 000 or 40 000; Sigma-Aldrich), N,N-dimethylformamide

(DMF; Fisher), methanol (Fisher), and ethanol (Fisher) were
used without any further purification.

MOFs Synthesis. Here, all MOFs were synthesized by
three different methods according to the reported literature.
The detailed synthesis methods are described in the
Supporting Information.

Characterization. Powder X-ray diffraction (XRD)
patterns were obtained on a Bruker D8 Discover diffractometer
(Cu Kα, λ = 0.15406 nm).

■ MACHINE LEARNING MODELS
Five classical machine learning algorithms, i.e., naiv̈e Bayes
(NB), k-nearest neighbors (kNN), logistic regression (LR),
random forest (RF), and support vector machine (SVM), were
well-trained and employed for identifying XRD patterns. Feed-
forward convolutional neural networks were constructed using
Keras software library with the TensorFlow back end.40 The
machine learning models were performed using Python with
Scikit-Learn on a high-performance computer with Intel i7-
9700k CPU, 16 GB DDR4 memory at 2.4 GHz, and Nvidia
EVGA GeForce RTX 2070 GPU.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
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Experimental section; summary of the architecture of
convolutional neural networks; hyperparameters of
CNN and classical ML models; comparison of classical
ML and CNN models; definition of top 1 to top 5 for
presenting identification results using ZIF-90 as an
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CNN model; training, validation, and testing data
allocations; noise histogram extracted from experimental
data; CAMs of the 14th layer output from the CNN
model and corresponding XRD spectra (PDF)
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