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a b s t r a c t

Design of materials with desired properties is currently laborious and heavily relies on intuition of re-
searchers through a trial-and-error process. To tackle this challenge, we propose a novel regressional and
conditional generative adversarial network (RCGAN) for inverse design of representative two-
dimensional materials, the graphene and boron-nitride (BN) hybrids. RCGAN incorporates a supervised
regressor network, thus overcoming the common technical barrier in the traditional unsupervised GANs,
which cannot generate data when fed with continuous and quantitative labels. RCGAN can autonomously
generate graphene/BN hybrids given any target bandgap values. These structures are distinguished from
the ones used for training and exhibit high diversity for a given bandgap. Moreover, they exhibit high
fidelity, yielding bandgaps within ~10% MAEF of the desired bandgaps as validated by density functional
theory (DFT) calculations. Analysis by the principle component analysis (PCA) and modified locally linear
embedding (MLLE) reveals that the generator has successfully generated structures following the sta-
tistical distribution of the real structures. It implies the possibility of the RCGAN in recognizing physical
rules hidden in the high-dimensional data. The novel strategy for designing regressional GAN archi-
tecture together with the successful application to inverse design of materials would inspire further
exploration in research fields beyond materials.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

One of core objectives in material research is to correlate ma-
terial structures and properties with a goal of designing novel
materials. However, the searching spaces due to combination of the
constituent elements and their structural configurations in the
materials are massive, leading to an overwhelming number of po-
tential candidates [1]. Although high-throughput computations [2],
especially those based on the density functional theory (DFT), have
enabled calculation of the structures and properties for various
types of materials [3e6], the design principle is still limited by the
search strategy, which heavily relies intuitions of the material sci-
entists to explore the chemical space in a fixed library. In addition,
d Astronomy, University of
the computational cost exponentially increases with the size of the
systems. As a majority of functional materials possess the proper-
ties that cannot be simply determined by a few atoms, to accurately
predict their properties by the physics-informed models a vast
number of atoms and their possible spatial configurations should
be considered in the calculations, which would make the calcula-
tions either impossible or not cost effective. In silicomaterial design
methods show a mechanism that may potentially solve this chal-
lenge. Some of them evolved from a Monte Carlo method [7] to the
genetic search and cluster expansion approaches [8]. Although
these approaches have made much progress in designing novel
materials, the accuracy may decrease as the complexity of the
systems increases. The efficacy is usually low due to themodality of
generating one candidate after many evolution steps, thus they are
not optimal for fast on-demand structural generation.

Therefore, development of surrogate models, such as machine
learning models, has emerged in the era of big material data for
mining established databases [9], previous literature [10], and
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experiments [11,12]. They can be also combined with the high-
throughput computations for empowering the in silico design of
materials with a much faster speed [1]. These synergetic strategies
are expected to suitably tackle complex material challenges arising
from the massive combinational chemical spaces or involving
nonlinear processes, thereby being widely applied to develop
functional materials such as inorganics [13,14], organic molecules
[15], synthetic polymers [16], natural products [17], and metal-
organic nanocapsules [18]. Feeding the deep neural networks
with the computational data is particularly promising for handling
and accelerating material discovery [19e21]. For instance, we
recently developed convolutional neural network (CNNs) to accu-
rately predict bandgaps of configurationally hybridized graphene
and boron nitride (BN) with arbitrary BN dopant topographies [22].
Significance of the work was that it solved a challenge of predicting
the bandgaps of the hybridized structures with a vast number of
structural possibilities. Because the bandgaps can continuously
evolve as change of the topographical configurations of C, B, N
atoms in the structures, while the number of possibilities far ex-
ceeds what can be thoroughly computed due to the high compu-
tational cost from the DFT.

Nevertheless, this work as well as most of other related works
were based on a forward design principle, in which target struc-
tures are hypothesized, evaluated against the target properties, and
then iteratively refined based upon the results of repeated evalu-
ations. As this iterative process tries to search for the optimum
structures among the high multivariate and multidimensional pa-
rameters, it is hard to reason that the resulting ones meet such a
goal. In contrast, an inverse design process starts from explicit
calculation of the target performance metrics, thus realization of
the target structures is much more efficient with higher fidelity
[23]. Recently developed generative models, such as variational
autoencoders (VAEs) and generative adversarial networks (GANs),
have shown great potentials in automating this inverse design
process [24]. For instance, a VAE was developed to generate mol-
ecules [25]. A critical novelty of this work is that the multilayer
perceptron was connected with the latent vectors that represent
the molecules for chemical property prediction. Although this re-
ported VAE allows for search of new molecules with certain
properties, the network still lacks a mechanism that can autono-
mously generate structures with given properties, which can be
continuously and numerically labeled.

GANs possess some characteristics that may have superior ad-
vantages over the VAEs. They allow for interpolation using the
input matrices provided to the generator. For instance, a GAN was
introduced for the inverse design of metasurfaces with desired
optical properties [26]. The discriminator and generator were
simultaneously trained to output similar structures as the ones
shown in specific training classes with the given optical spectra.
The inverse design upon the desired spectra was attempted, but a
large deviation between the desired spectra and obtained ones was
observed. In a very recent study Gupta and Zou used Wasserstein
GAN (WGAN) to generate DNA sequences with certain helix
structures to realize target antimicrobial properties [27]. A function
analyzer (deep recurrent neural network) was adopted to score the
antimicrobial properties of the genes streamed from the generator.
To score the properties of the helix structures, a black-box PSIPRED
analyzer was used. Those genes with higher scores rated by the
analyzer were fed to train the discriminator. Then the WGAN was
updated for the next training epoch. This architecture was named a
feedback GAN. Having the same limitation as shown in inverse
design of metasurfaces [26], the feedback GAN cannot generate
structures with given quantitative and continuous labels. Because
these genes are classified into antimicrobial (yes or no) or helix (yes
or no) groups. The generator can only obtain new structures that
are similar to those in the specific classes.
Despite these seminal works, a GAN that enables inverse design

of materials with explicitly given properties (represented by
continuous labels) in an autonomous manner has been largely
underexplored. The biggest challenge is that the GAN should meet
both requirements: 1) it generates distinguished structures from
the real structures used for training; 2) it should be able to accu-
rately perform a generation task based on input quantitative labels.
To achieve this, a regressional and conditional network would be
needed. Ordinary GAN architectures including conditional GANs
[28e30] have limitations in generating data conditioned on
continuous and quantitative labels. Although some regressional
GANs achieved initial success [31], the discriminator is not applied
to tell the authenticity of data. To achieve that, extra ad-hoc
parameter tuning is required. Thus, full autonomy of generating
data in a regressional and conditional manner with high fidelity has
yet been achieved.

To overcome the limitations shown in the previously developed
GANs, we propose a novel GAN architecture that can perform both
regressional and conditional tasks so that it can generate materials
with target properties. We name it as regressional and conditional
GAN (RCGAN). The key novelty of this RCGAN architecture is that it
includes an extra regressional convolutional neural network
(named as the regressor). The regressor outputs predicted bandg-
aps as well as vectors of the latent features from real and generated
material structures (Fig. 1). These vectors are output from the
second last layer of the regressor. Instead of directly using the
generated structures and their bandgaps as the input to train the
discriminator, the two sets of the latent features from the real and
generated structures are concatenated with their corresponding
bandgaps. They form two groups of vectors as the input to train the
discriminator. This novel strategy enables better utilization of the
automatic authentication from the discriminator. Thus, not only the
generation function of the GAN is preserved, but also the generated
structures can be associated with the target properties represented
by the continuous and quantitative labels, leading to its successful
application for the inverse materials design.

To demonstrate this capability, we present a case study by using
two-dimensional graphene alloyed with the h-BN in arbitrary to-
pographies. It was pointed out that in alloys the atomic configu-
rations could strongly affect their properties, while enormous
possible configurations make it impractical to exhaust even part of
the configurations [32]. Our past study shows that these 2D hybrid
structures have continuous and quantitative bandgaps which are
not only determined by the concentration of BN pairs but also by
the BN topographies [22]. The trained RCGAN can well reflect this
structure-property relationship by showing generation of multiple
yet distinguished graphene/BN structures upon given bandgap
values. The bandgaps validated by the DFT are within ~10% MAEF of
the desired ones for various sizes of supercell systems. Further
analysis by the PCA and MLLE methods reveals the working
mechanism of the RCGAN. We envision that the inverse design of
the materials with target properties in an autonomous manner,
which is enabled by the demonstrated RCGAN, would push a step
forward the self-driven material discovery [33]. Moreover, it would
help scientists to discover new physical and chemical rules hidden
in the high-dimensional data. Finally, with the function of gener-
ating data conditioned on continuous and quantitative labels, the
RCGAN can be applied to data augmentation, imputation and etc.

2. Design and training of regressional and conditional GAN

2.1. Background

The original architecture of GAN proposed by Goodfellow et al.



Fig. 1. Architecture of a proposed regressional and conditional GAN (RCGAN) for inverse structural design of 2D graphene/BN hybrids. (A colour version of this figure can be viewed
online.)
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consists of two competing networks, generator and discriminator
[34]. The generator is able to generate data from a given random
noise (Z). The data is then examined by the discriminator to see if it
is synthesized (fake) or sampled from the training dataset (real).
After the network is trained, a balance between the generator and
discriminator is reached, and the generated data is so real that the
discriminator cannot distinguish whether the data is generated
from the generator or sampled from the training dataset. The
original GAN is unsupervised. To enable on-demand data genera-
tion, the labeled information was added as the input condition to
the networks to develop the conditional GAN (CGAN) [28].
Although CGAN generates data upon the input labels, the function
is limited to image generation. Moreover, it only suits the labels that
are discrete and represented by qualitative matrices. The later
developed auxiliary classifier GAN (ACGAN) does not append the
labels directly to the data that is fed to the discriminator [30].
Instead, the discrete and qualitative labels are adopted as a part of
the objective function for training the ACGAN. In this case, the
discriminator is still designed as a classifier. Thus, the ACGAN is
only suited for problems that can be only represented by the
discrete and qualitative labels.

A method of discretizing continuous labels according to its
magnitude and then grouping them into multiple classes was
previously adopted in our practice when we tested the ACGAN for
generating graphene/BN structures with given bandgaps. But the
generated structures have bandgaps that are far from the desired
ones. It may be because binning labels in the same classes without
knowing if the material structures share similar characteristics
would violate the physical laws. A very recent semi-supervised reg-
GAN was developed for generating images from the quantitative
labels [31]. However, the reg-GAN discriminates the fake images
from the real images by predicting the label first, then compares
difference between the predicted label and the desired label.
However, to do that, a preset ad-hoc range of the number is needed,
which requires human intervention. Moreover, it deprives the
function of automatic authentication from the discriminator. In
summary, the past demonstrated GANs are notorious in network
training, and face many problems like model divergence, mode
collapse and overfitting of the generator. Mode collapse is a failure
phenomenon that the generator finds such a way to generate a
specific pattern (e.g. a graphene/BN structure in our case) that it can
pass the examination of the discriminator, which makes the gen-
eration have no diversity or even meaningless [35]. Thus, they
cannot meet the requirements for generating data in a regressional
and conditional manner.
2.2. Architectures of regressor, generator, and discriminator

Herein, a RCGAN which generates the materials (e.g. graphene/
BN hybrids) upon continuous and quantitative labels (e.g. bandg-
aps) was proposed (Fig. 1). In the RCGAN, the generator is a 9-layer
CNN (Fig. S1). Batch normalization and leaky rectified linear unit
(RELU) activation were applied after each deconvolution step to
increase the network stability and accelerate the training process
[36,37]. Deconvolution is a process that reverses the steps per-
formed by a normal convolution. It was used to up-sample the
matrices to satisfy the desired shape of the output matrices. The
generator synthesizes the graphene/BN structures from Gaussian
noise (Z, a 128 � 1 vector) and appended desired bandgaps (Y). As
shown in Fig. S2, the regressor was modified from Google Inception
V2 [38]. It was trained by using the dataset from the real graphene/
BN structures. After trained, the regressor achieved a high predic-
tion accuracy of >98% when validated by the test dataset by
following the procedure shown in our past work [22]. A simple ANN
networkwas recently proposed to predict energy gaps of graphene/
h-BN [39]. This ANN network can be potentially used as the re-
gressor of RCGAN to generate new configurations. The generated
structures and sampled structures used for training were then fed
into the regressor to achieve two goals. The first one is to accurately
predict the bandgaps of given structures. The second one is to
output the latent features for both generated and sampled struc-
tures. The latent features were then concatenated with their cor-
responding bandgaps to form two groups of vectors, which served
as the input data for training the discriminator. The discriminator is
a simple network that contains two fully connected layer inter-
mediated by a dropout layer to prevent overfitting (Fig. S3). It has
two main functions. The first one is to maintain the function of
automatic authentication, while the second one is to determine if a
generated structure corresponds to a desired bandgap. Detailed
description on these three networks as well as creation of training
data is illustrated in Supplementary Note 1.
2.3. Loss functions of regressor, generator, and discriminator

The loss function of the regressor is defined as the L2 loss which
indicates the difference between the predicted bandgaps from the
regressor and desired bandgaps.

LossR ¼ L2½Y ;RðXÞ� (1)

The L2 loss function is defined as
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The loss function for the generator includes two terms. The first
one is the same as the least square GAN(LSGAN) [40], while the
second one is regularized from the regressor. The combined loss
function is shown in the following equation.

LossG ¼
1
2
Ez�PzðzÞ½DðpðGðz; YÞÞ;YÞ � 1�2 þ lL2ðY;RðGðz; YÞÞÞ (3)

In Eq. (3), E is the expectation function. The subscript of z ~ Pz(z)
indicates that a graphene/BN structure is synthesized by the
generator. pð $Þ is the latent vector extracted from the second last
layer of the regressor when fed with graphene/BN structures. X and
Y are the real structures and their bandgaps used for training,
respectively. z is the random noise vector. D is the discrimination
function. When feeding the regressor with the generated struc-
tures, the L2 loss is calculated, and then used as the regularization
term in the loss function of the generator. The regularization term is
reweighted using a weighting parameter l and added to the loss
function of the generator as shown in Eq. (3). lwas chosen as 25 in
this work to optimize the decrease of losses and improve genera-
tion performance. The first component of Eq. (3) is critical to bind
the generator with the discriminator, which ensures simultaneous
training of both networks. If only the second component of the loss
functionwas used for the generator, the training was not successful
because the loss of G and D did not descend but fluctuate at a
relatively high level.

The loss function of discriminator is the same to the one used for
LSGAN as shown in the following equation [40].

LossD ¼1
2
EX�PdataðXÞ½DðpðXÞ; YÞ � 1�2

þ1
2
Ez�PzðzÞ½DðpðGðz; YÞÞ;YÞ�2 (4)

The subscript of X � pdataðXÞ indicates that the structure was
sampled from the real graphene/BN structures used for training.

3. Results and discussion

We trained the RCGANwith datasets created by DFTcalculations
which were previously used to study the properties of two-
dimensional materials [22,41,42]. The details of DFT calculation is
presented in the Supporting Information. Representative 4 � 4,
5 � 5, and 6 � 6 supercells of the graphene/BN structures and their
corresponding material descriptors are shown in Fig. S4. These
training datasets include 15,870 structures for the 4 � 4 systems,
80,647 structures for the 5 � 5 systems, and 85,808 structures for
the 6 � 6 systems. They represent 24.2%, 0.24% and 0.0001% of all
possible structures based on these three systems, respectively. Note
that there could be many material structures in the training dataset
having the translational or rotational equivalence. However, these
equivalent materials are unique input to the deep learning models.
It is also a data augmentation method to enlarge the training
dataset. We traced the losses of the generator, regressor, and
discriminator for the 4 � 4, 5 � 5 and 6 � 6 systems during the
training processes and found that they gradually converged as the
loss of the regressor was decreased. After 200 epochs of training,
the loss of the regressor reached a steady-state plateau (Fig. S5).
The magnitude of the loss reaches as low as 10�3, indicating that
the predicted bandgaps are quite close to the real bandgaps. The
losses of the generator and discriminator also converged to stabi-
lized values, indicating that balance of the two networks has been
reached.
Performance of the RCGAN was evaluated by studying diversity

and accuracy of the generated structures. Some examples of the
generated structures with desired bandgaps are shown in Fig. 2.
The generator outputs some structures which are equivalent to the
real structures shown in the training datasets. But this situation
only occupies ~12% of all generated structures for 4 � 4 systems,
~0.5% for 5 � 5 systems and zero for 6 � 6 systems. This result
indicates that the RCGAN has been successfully trained without
showing common problems such as the mode collapse happening
during the GAN training. Take the generated 4 � 4 graphene/BN
structures as an example (Fig. 2aec). They are distinguished from
the real structures in the training datasets. These generated struc-
tures have bandgaps that are very close to the desired ones as
validated by DFT calculations. Moreover, they are quite diverse.
Fig. 2d shows that the BN concentrations in the generated gra-
phene/BN structures corresponding to a desired bandgap are
widely distributed. For instance, the BN concentration varies from
25% to 62.5% for a desired bandgap of 1.1 eV, and it varies from 50%
to 75% for a desired bandgap of 1.8 eV. It also confirms that the
graphene/BN structures with the same BN concentration but
different dopant topographies can have varied bandgaps. For
example, the graphene/BN structures with 50% BN have the
bandgaps ranging from 0.9 eV to 1.8 eV. This reflects the challenge
in inverse design of the graphene/BN structures by the traditional
methods due to a large variation in the chemical spaces and
properties. It is possible that these generated materials may not be
stable or realistic. Evaluation of stability could be done by calcu-
lating the energy above the convex hull, phonon spectrum, for-
mation energy, and elastic modulus [41]. We expect that additional
validation calculation from these perspectives could further
confirm the stability of configurations exported from RCGAN.
Furthermore, if the formation energy was also calculated for all
configurations in the training dataset, we can use the Regressor in
RCGAN to learn and predict the formation energy of newly
designed configurations conveniently. This network can be
appended to the current RCGAN to filter out the unstable configu-
rations. We will explore this possibility in a future work.

Performance of the RCGAN in generating graphene/BN struc-
tures with larger supercell systems, e.g. 5 � 5 and 6 � 6 supercells,
was also examined. Fig. 2eeg and Fig. S6 show examples of the
generated 5 � 5 systems whose bandgaps were proved quite close
to the desired ones. Fig. 2h shows a large range of BN concentra-
tions in the generated graphene/BN structures, indicating the
structural diversity. This performance is well maintained as the size
of the supercell systems further increases to 6 � 6 (Fig. 2i-l). These
results suggest that the RCGAN successfully captured the hidden
information, such as the concentration and topographic distribu-
tion of the BN pairs in the real structures. We also successfully
circumvented the common issues such as the mode collapse that
often occurs during the GAN training process. It could be attributed
to the tactic of using the latent features of the graphene/BN
structures derived from the regressor, rather than simply using the
structures as the input to train the discriminator.

Performance of the RCGAN was also analyzed by evaluating the
bandgaps of the generated structures with desired ones (Fig. 3).
Fig. 3a shows that the bandgaps (EGB) of the generated 4 � 4
structures have good linear relationship with the desired bandgaps
(EDB). The correlation factor, R2, is 0.87. We also studied the relative
error between EGB and EDB, calculated as |EDB-EGB|/EDB. Fig. 3b
shows that 64% of the generated 4 � 4 structures have bandgaps
within a 10% relative error. This number increases to >85% if the
bandgaps are within a 20% relative error. The fractional mean ab-
solute error (MAEF) (Supplementary Note 2) between EGB and EDB is
as low as 9.45% for the 4 � 4 systems. Fig. 3c shows that R2 reaches



Fig. 2. Typical generated structures with desired bandgaps of (a) 1.0 eV, (b) 1.5 eV, and (c) 2.0 eV for 4 � 4 supercell systems. (d) BN concentration of generated structures vs. desired
bandgaps for 4 � 4 supercell systems. Typical generated structures with desired bandgaps of (e) 1.0 eV, (f) 1.5 eV, (g) 2.0 eV for 5 � 5 supercell systems. (h) BN concentration of
generated structures vs. desired bandgaps for 5 � 5 supercell systems. Typical generated structures with desired bandgaps of (i) 1.0 eV, (j) 1.5 eV, (k) 2.0 eV for 6 � 6 supercell
systems. (l) BN concentration of generated structures vs. desired bandgaps for 6 � 6 supercell systems. The C, B, N atoms are colored with blue, red and yellow, respectively. (A
colour version of this figure can be viewed online.)
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0.90 for the 5� 5 systems. This value is as good as the one predicted
by the CNNs in a forward design task [22]. Fig. 3d shows that ~50%
of the generated 5 � 5 structures whose bandgaps fall within a
relative error of 10%, while <20% of the structures have a relative
error of 20% or more. The MAEF of the 5 � 5 systems is 10.78%.
Accuracy of the RCGAN is well maintained as the size of the
supercell increases to 6 � 6. Fig. 3e shows that R2 of all generated
6 � 6 structures reaches 0.97. About 58.7% of them have bandgaps
within a relative error of 10%. < 15% of them have a relative error of
20% or more. MAEF of 6 � 6 systems is 10.36%, smaller than the one
from 5 � 5 systems. Even though the sampling ratio of 6 � 6 sys-
tems (1e-4%) is much smaller than that of 5� 5 systems (0.24%), the
well maintained performance indicates the robustness of the
RCGAN. If characterized by MAEF, the developed RCGAN shows the
generation accuracy exceeding recent works of using GAN for in-
versematerial design [26,27]. We anticipate that the accuracy could
be further improved by adding more training data and further
optimizing the networks.

Successful generation of the graphene/BN structures with the
desired bandgaps by the proposed RCGAN motivates us to hy-
pothesize that the latent features encoded by the regressor help to
associate the generated structures with their bandgaps. To test this
hypothesis, a key idea is to validate whether the latent features of
the structures synthesized from the generator has successfully
followed the statistical distribution of the real structures used for
training. Thus, we performed dimension reduction analysis on both
of them by the principal component analysis (PCA) [43] and
modified locally linear embedding (MLLE) [44] (Supplementary
Note 3). Fig. 4a shows mapping of the first and second components
of PCA (PCAX and PCAY) of the latent features from 1000 4 � 4 real
structures and 1000 4 � 4 generated structures. They are highly
overlapped, suggesting that the RCGAN has successfully learned the
distribution of the latent vectors from the real structures for
generating new structures. Fig. 4b shows that the PCAX has a good
linear relationship to the bandgaps (labels). This linear correlation
between PCAX and bandgaps is impressive. In a previous work, it is
found that the PCAX, i.e. the first or the major component in the
latent feature, could capture a significant part of the variance for
predicting the flexoelectricity of materials [45]. Compared to this
work, we hypothesize that PCAX shown in Fig. 4b is strongly
correlated with the BN concentration. It indicates that the gener-
atormay catch the physical law that the bandgap increases with the
increase of the BN concentration, which agrees well with the re-
sults suggested from the real structures used for training (Fig. 4c).
The curve of the bandgap vs. PCAY shows that the generated
structures can be grouped into two regions (Fig. 4d). The structures
with high bandgaps (>~1.0 eV) are in one region, while the ones
with lower bandgaps (<~1.0 eV) are in the other.

In addition to the PCA, we also performed the MLLE analysis.
Two sets of data points from the real and generated structures form
a well overlapped parabolic curve (Fig. 4e). It suggests that the
MLLE can well capture the relationship between structural



Fig. 3. (a) Bandgaps of generated structures validated by DFT vs. desired input bandgaps for 4 � 4 supercell systems, R2 ¼ 0.87. (b) Error distribution of bandgaps for generated 4 � 4
supercell systems, MAEF ¼ 9.45%. (c) Bandgaps of generated structures validated by DFT vs. desired input bandgaps for 5 � 5 supercell systems, R2 ¼ 0.90. (d) Error distribution of
bandgaps for generated 5 � 5 supercell systems, MAEF ¼ 10.75%. (e) Bandgaps of generated structures validated by DFT vs. desired input bandgaps for 6 � 6 supercell systems,
R2 ¼ 0.97. (f) Error distribution of bandgaps for generated for 6 � 6 supercell systems, MAEF ¼ 10.36%. (A colour version of this figure can be viewed online.)
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configurations and bandgaps. The mapped bandgaps of the
generated structures vs. the first and second components of the
MLLE results are shown in (Figs. S7aeb). They illustrate that these
data points have similar trend as the ones shown in the PCA. It also
indicates that the bandgaps monotonically increase as the MLLEx
increases. Further analysis on the structural evolution along the
path shown in the MLLE curve suggests that the location and
concentration of BN pairs gradually change as the bandgap values
increases (Fig. 4f). Their neighboring structures share similar BN
topographies with limited discrepancy.
4. Conclusion

In this work, we proposed a novel RCGAN for inverse structural
design of a representative 2D material given quantitative proper-
ties. Extraction and usage of the latent features encoded from the
regressor as the input for training the discriminator was critical to
successfully train the RCGAN. Not only can this architecture
generate data autonomously, accurately and robustly, but also avoid
problems during typical GAN training processes like overfitting and
mode collapse. To the best of our knowledge, this is the first time of
using this strategy for designing regressional and conditional GAN.
The generated structures follow the statistic distribution of the real
structures used for training as validated by the dimensional
reduction analysis. Statistically, the bandgaps of the generated
structures are very close to the desired bandgaps, exhibiting MAEF
of ~9.45%, 10.78%, and 10.36% for 4 � 4, 5 � 5, and 6 � 6 systems,
respectively. This illustrative example shows the power of the
proposed RCGAN in accurately designing materials with target
properties in an autonomous manner. In particular, the graphene/
BN structures generated by RCGAN correspond to bandgaps
ranging from 0.5 eV to 2.0 eV, indicating that functional materials



Fig. 4. PCA and MLLE analysis on the latent features of 4 � 4 supercell systems encoded by the regressor. (a)Mapping of PCAX and PCAY components. Blue dots are the training data.
Red dots are the generated data. (b) Relationship of bandgap of generated structures vs. PCAx. (c) Bandgaps of real structures vs. BN concentrations. (d) Relationship of bandgap of
generated structures vs. PCAY. (e) Mapping of MLLEX and MLLEY from real and generated structures. The dots represent points in the datasets. Colors of the dots represent the BN
concentration in graphene/BN structures. (f) Structural evolution along the points (P1eP8) marked in (e). C indicates the BN concentration. (A colour version of this figure can be
viewed online.)
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with tunable properties can be obtained. This success would open
new possibilities for the RCGAN to be applied to fields such as
electronics, photovoltaic, and photocatalysis. It will offer a brand-
new platform for highly automated on-demand material design
that is enabled by big material data and artificial intelligence.
Moreover, the proposed RCGAN can be used for data augmentation
and imputation, thus broadening its impacts on other fields beyond
materials.
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