
AReN: Assured ReLU NN Architecture for Model Predictive
Control of LTI Systems

James Ferlez
University of California, Irvine

Dept. of Electrical Engineering and Computer Science
jferlez@uci.edu

Yasser Shoukry
University of California, Irvine

Dept. of Electrical Engineering and Computer Science
yshoukry@uci.edu

ABSTRACT
In this paper, we consider the problem of automatically designing
a Recti�ed Linear Unit (ReLU) Neural Network (NN) architecture
that is su�cient to implement the optimal Model Predictive Control
(MPC) strategy for an LTI system with quadratic cost. Speci�cally,
we propose AReN, an algorithm to generate Assured ReLU Archi-
tectures. AReN takes as input an LTI system with quadratic cost
speci�cation, and outputs a ReLU NN architecture with the assur-
ance that there exist network weights that exactly implement the
associated MPC controller. AReN thus o�ers new insight into the
design of ReLU NN architectures for the control of LTI systems:
instead of training a heuristically chosen NN architecture on data –
or iterating over many architectures until a suitable one is found
– AReN can suggest an adequate NN architecture before training
begins. While several previous works were inspired by the fact
that ReLU NN controllers and optimal MPC controllers are both
Continuous, Piecewise-Linear (CPWL) functions, exploiting this
similarity to design NN architectures with correctness guarantees
has remained elusive. AReN achieves this using two novel features.
First, we reinterpret a recent result about the implementation of
CPWL functions via ReLU NNs to show that a CPWL function
may be implemented by a ReLU architecture that is determined by
the number of distinct a�ne regions in the function. Second, we
show that we can e�ciently over-approximate the number of a�ne
regions in the optimal MPC controller without solving the MPC
problem exactly. Together, these results connect the MPC problem
to a ReLU NN implementation without explicitly solving the MPC:
the result is a NN architecture that has the assurance that it can
implement the MPC controller. We show through numerical results
the e�ectiveness of AReN in designing an NN architecture.

CCS CONCEPTS
• Computing methodologies → Neural networks; Control
methods; Reinforcement learning.

KEYWORDS
Neural Networks, Neural Network Architectures, Recti�ed Linear
Units, Model Predictive Control

ACM�Reference�Format:
James�Ferlez�and�Yasser�Shoukry.�2020.�AReN:�Assured�ReLU�NN�Architec-
ture�for�Model�Predictive�Control�of�LTI�Systems.�In�Proceedings�of�Hybrid�
Systems�Computation�and�Control�2020�(HSCC’20).�ACM,�New�York,�NY,�USA,�
11�pages.�https://doi.org/10.1145/���������������

This work was supported by the National Science Foundation under grant numbers
#2002405 and #2013824.

1 INTRODUCTION
End-to-end learning is attractive for the realization of autonomous
cyber-physical systems, thanks to the appeal of control systems
based on a pure data-driven architecture. By exploiting advances
in the �eld of reinforcement learning, several works in the litera-
ture showed that a well trained deep NN is capable of controlling
cyber-physical systems to achieve certain tasks [7]. Nevertheless,
the current state-of-the-art practices for designing these deep NN-
based controllers are based on heuristics and hand-picked hyper-
parameters (e.g., number of layers, number of neurons per layer,
training parameters, training algorithm) without an underlying
theory that guides their design. In this paper, we focus on the
fundamental question of how to systematically choose the NN ar-
chitecture (number of layers and number of neurons per layer) such
that we guarantee the correctness of the chosen NN architecture.

In this paper, we will con�ne our attention to the state-feedback
Model Predictive Control (MPC) of a Linear Time-Invariant (LTI)
system with quadratic cost and under input and output constraints
(see Section 2 for the speci�c MPC formulation). Importantly, this
MPC control problem is known to have a solution that is Continuous
and Piecewise-Linear (CPWL) 1 in the current system state [5]. This
property renders optimal MPC controllers compatible with a ReLU
NN implementation, as any ReLU NN de�nes a CPWL function of
its inputs. For this reason, several recent papers focus on how to
approximate an optimal MPC controller using a ReLU NN [9, 12].

However, unlike other work on the subject, AReN seeks to use
knowledge of the underlying control problem to guide the design of
architectures for data-trained NN controllers. That is AReN does not
design the �nal NN controller, but instead replaces the heuristic and
iterative approaches for architecture design noted above. Likewise,
AReN provides an assurance on an architecture not any particular
NN controller (nor any means of training the architecture to obtain
such a controller). This is nevertheless a crucial step in creating
assured NN controllers: the absence of an adequacy guarantee on
the architecture precludes such a guarantee on the trained network.

In the context of controlling an LTI system, then, AReN takes this
�rst step toward assured NN controllers by providing the follow-
ing architectural assurance: AReN is a computationally pragmatic
algorithm that returns a ReLU NN architecture that is at least suf-
�cient to implement the optimal MPC controller described above.
In other words, given an LTI system with quadratic cost and in-
put/output constraints, AReN determines a ReLU NN architecture –
both its structure and its size – with the guarantee that there exists
an assignment of the weights such that the resultant NN exactly im-
plements the optimal MPC controller. Such an architecture can then
1These functions are in fact continuous, piecewise-a�ne, but the literature often refers
to them as piecewise “linear” functions, and hence we will conform to that standard.

1FSNJTTJPO�UP�NBLF�EJHJUBM�PS�IBSE�DPQJFT�PG�BMM�PS�QBSU�PG�UIJT�XPSL�GPS�QFSTPOBM�PS�DMBTTSPPN�VTF�JT�HSBOUFE�XJUIPVU�GFF�
QSPWJEFE�UIBU�DPQJFT�BSF�OPU�NBEF�PS�EJTUSJCVUFE�GPS�QSPGJU�PS�DPNNFSDJBM�BEWBOUBHF�BOE�UIBU�DPQJFT�CFBS�UIJT�OPUJDF�BOE�UIF�GVMM�
DJUBUJPO�PO�UIF�GJSTU�QBHF��$PQZSJHIUT�GPS�DPNQPOFOUT�PG�UIJT�XPSL�PXOFE�CZ�PUIFST�UIBO�UIF�BVUIPS	T
�NVTU�CF�IPOPSFE��
"CTUSBDUJOH�XJUI�DSFEJU�JT�QFSNJUUFE��5P�DPQZ�PUIFSXJTF
�PS�SFQVCMJTI
�UP�QPTU�PO�TFSWFST�PS�UP�SFEJTUSJCVUF�UP�MJTUT
�SFRVJSFT�QSJPS�
TQFDJGJD�QFSNJTTJPO�BOE�PS�B�GFF��3FRVFTU�QFSNJTTJPOT�GSPN�1FSNJTTJPOT!BDN�PSH�
)4$$�h��
�"QSJM���o��
�����
�4ZEOFZ
�/48
�"VTUSBMJB
ª������$PQZSJHIU�JT�IFME�CZ�UIF�PXOFS�BVUIPS	T
��1VCMJDBUJPO�SJHIUT�MJDFOTFE�UP�"$.�
"$.������������������������y������
IUUQT���EPJ�PSH������������������������

HSCC’20, Sydney, Australia,
James Ferlez and Yasser Shoukry

be trained on data to obtain the �nal controller, only now with the
assurance that the training algorithm can choose the optimal MPC
controller among all of the possible NN weight assignments avail-
able to it. Thus, AReN is a crucial �rst step to training algorithms
that provide a similar assurance on the �nal trained network.

The algorithm we propose depends on two observations:

• First, that any CPWL function may be translated into a ReLU
NN with an architecture determined wholly by the number
of linear regions in the function; this comes from a careful
interpretation of recent results on ReLU representations [3,
22] in the context of the Two-Level Lattice representation of
CPWL functions [24].

• Second, that there is a computationally e�cient way to over-
approximate the number of linear regions in the optimal
MPC controller without solving for the optimal controller
explicitly. This involves converting the state-region spec-
i�cation equation for the optimal controller into a single,
state-independent collection of linear-inequality feasibility
problems – at the expense of over-counting the number of
a�ne regions that might be present in the optimal MPC con-
troller. This requires an algorithmic solution rather than a
closed-form one, but our algorithm executes quickly even on
problems for which �nding the MPC controller is prohibitive.

Together these observations almost completely specify an algorithm
that provides the architectural guidance we claim.
Related work: Training NNs to mimic the behavior of model pre-
dictive controllers can be traced to the late 1990s when NNs trained
to imitate MPC controllers were used to navigate autonomous
robots in the presence of obstacles (see for example [14], and the
references within) and to stabilize highly nonlinear systems [8].
With the recent advances in both the �elds of NN and MPC, sev-
eral recent works have explored the idea of imitating the behavior
of MPC controllers [1, 2, 10, 11, 17]. The focus of this work was
to mimic a base MPC controller without exploiting the internal
structure of the MPC controller to design the NN structure system-
atically. The closest to our work are the results reported in [9, 12].
There, the authors were motivated by the fact that both explicit
state MPC and ReLU NNs are CPWL functions, and they studied
how to compare the performance of trained NN and explicit state
MPC controllers. Unlike the results reported in [9, 12], we focus on
how to bridge the insights of explicit MPC to provide a systematic
way to design a ReLU NN architecture with correctness guarantees.

Another related line of work is the problem of Automatic Ma-
chine Learning (AutoML) and in particular the problem of hyper-
parameter (number of layers, number of neurons per layer, and
learning algorithm parameters) optimization and tuning in deep
NN (see for example [4, 6, 15, 16, 18] and the references within). In
this line of work, an iterative and exhaustive search through a man-
ually speci�ed subset of the hyperparameter space is performed.
The best hyperparameters are then selected according to some per-
formance metric. Unlike the results reported in this line of work,
AReN does not iterate over several designs to choose one. Instead,
AReN directly generates an NN architecture that is guaranteed to
control the underlying physical system adequately.

2 PROBLEM FORMULATION
2.1 Dynamical Model and Neural Network

Controller
We consider a discrete-time Linear, Time-Invariant (LTI) dynamical
system of the form:

x(t + 1) = Ax(t) + Bu(t), �(t) = Cx(t) (1)

where x(t) 2 Rn is the state vector at time t 2 N, u(t) 2 Rm is the
control vector, and�(t) 2 Rl is the output vector. The matricesA, B,
andC represent the system dynamics and the output map and have
appropriate dimensions. Furthermore, we consider controlling (1)
with a state feedback neural network controller NN :

NN : Rn ! Rm (2)

while ful�lling the constraints:

�min  �(t)  �max, umin  u(t)  umax (3)

at all time instances t � 0 where �min,�max,umin and umax are
constant vectors of appropriate dimension with �min < �max and
umin < umax (where < is taken element-wise).

In particular, we consider a (K-layer) Recti�ed Linear Unit Neu-
ral Network (ReLU NN) that is speci�ed by composing K layer
functions (or just layers). A layer with i inputs and o outputs is
speci�ed by a (o ⇥ i) real-valued matrix of weights,W , and a (o ⇥ 1)
real-valued matrix of biases, b, as follows:

L� : Ri ! Ro

z 7! max{Wz + b, 0} (4)

where the max function is taken element-wise, and � , (W ,b) for
brevity. Thus, a K-layer ReLU NN function as above is speci�ed
by K layer functions {L� (i) : i = 1, . . . ,K} whose input and output
dimensions are composable: that is they satisfy ii = oi�1 : i =

2, . . . ,K . Speci�cally:

NN (x) = (L� (K) � L� (K�1) � · · · � L� (1))(x). (5)

When we wish to make the dependence on parameters explicit,
we will index a ReLU function NN by a list of matrices � ,
(� (1), . . . , � (K)) 2. It is common to omit the max function from the
�nal layer, and we will be explicit about this when it is the case.

Note that specifying the number of layers and the dimensions of
the associated matrices � (i) = (W (i),b(i)) speci�es the architecture
of the ReLU NN. Therefore, we will use:

Arch(�) , ((n, o1), (i2, o2), . . . , (iK�1, oK�1), (iK ,m)) (6)

to denote the architecture of the ReLU NN NN �. Note that our
de�nition is quite general since it allows the layers to be of di�erent
sizes, as long as oi�1 = ii for i = 2, . . . ,K .

2.2 Neural Network Architecture Speci�cation
We are interested in �nding an architecture Arch(�) for the NN �
such that it is guaranteed to have enough parameters to exactly
mimic the input-output behavior of some base controller µ : Rn !
Rm . Due to the popularity of usingmodel predictive control schemes
as a base controller [1, 2, 8, 10, 11, 14, 17], we consider �nite-horizon
2That is� is not the concatenation of the � (i) into a single large matrix, so it preserves
information about the sizes of the constituent � (i) .

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems
HSCC’20, Sydney, Australia,

roll-out Model Predictive Control (MPC) scheme as the base con-
troller that the ReLU NN is trying to mimic.

Finite-horizon roll-out MPC maps the current state, x(t), to the
�rst control input obtained from the solution to an optimal control
problem over a �nite time horizon N� with the �rst Nu control ac-
tions chosen open-loop and the remaining N� �Nu control actions
determined by an a-priori-speci�ed constant-gain state feedback.
Since this control scheme involves solving an optimal control prob-
lem at each time t (with initial state x(t)), we will use the notation
xt 0 |t to denote the “predicted state” at time t 0 > t from the initial
state x(t) supplied to the MPC controller (the same notation as in
[5]). In particular, for �xed matrices P,Q � 0, R > 0 and K , we
de�ne the cost function:

� (U , x(t)) , xTt+N� |t P xt+N� |t

+

N��1’
k=0

h
xTt+k |t Q xt+k |t + uTt+k R ut+k |t

i
(7)

as a function of an (m ⇥ Nc + 1) control variables matrix:

U ,
h
ut

T;ut+1T; . . . ; ut+Nc
T
iT

. (8)

Then the MPC control law is speci�ed as:

µMPC : x(t) 7! u⇤t (9)

where h
u⇤t

T;u⇤t+1
T; . . . ; u⇤t+Nc

T
iT

= argmin
U

� (U , x(t)) (10)

subject to the constraints:

�min  �t+k |t  �max k = 1, . . . ,Nc (11)
umin  ut+k  umax k = 0, 1, . . . ,Nc (12)
xt |t = x(t) (13)
xt+k+1 |t = Axt+k |t + But+k k � 0 (14)
�t+k |t = Cxt+k |t (15)
ut+k = Kxt+k |t Nu  k < N� . (16)

The matrix P is typically chosen to re�ect the quadratic cost-to-
go (using matrices Q and R) resulting from the feedback control K
applied from time-step t + N� onwards (i.e. P is the solution to the
appropriate algebraic Ricatti equation). We will henceforth consider
only this scenario, since this is the most common one; furthermore,
since it doesn’t bene�t from N� >> Nc , we will henceforth assume
that N� � 1 = Nc . For future reference, this problem then has:

� ,m · (Nc + 1) decision variables; and (17)

� , 2 · l · Nc + 2 ·m · (Nc + 1) inequality constraints. (18)

2.3 Main Problem
We can now state the problem that we will consider in this paper.

P������ 1. Given system matrices A, B and C (as in (1)); perfor-
mance matrices (cost function matrices) P,Q � 0, R > 0 (as in (7));
constant-gain feedback matrix K (as in (16)); and integer horizon
Nc > 1, choose a ReLU NN architecture Arch(�), such that there
exists a real-value assignment for the elements in � that renders:

NN �(x) = µMPC(x) (19)

for all x in some compact subset of Rn .

3 FRAMEWORK
As we have noted before, it is known that µMPC is a CPWL function
[5]. However, CPWL functions are usually speci�ed using both
linear functions and regions as in this example:

f (x) =
(
2x + 3 x > 0
�2x + 3 x  0

. (20)

This speci�cation is di�cult to implement using ReLU NNs, though,
because the structure of a ReLU neural networks intertwines the
implementation of the linear functions and their active regions.

Fortunately, there are several representations of CPWL functions
that avoid the explicit speci�cation of regions by “encoding” them
into the composition of nonlinear functions with linear ones. Recent
work [3, Theorem 2.1] considered one such representation based on
hinging hyperplanes [22], and showed that this representation can
be translated easily into a ReLU neural network implementation,
whenever the CPWL function is known explicitly.

Given the computational cost of computing µMPC explicitly, the
chief di�culty in Problem 1 thus lies in inferring the neural net-
work architecture Arch(�) without access to the explicit MPC con-
troller µMPC. Unfortunately, the hinging hyperplane representation
employed in [3, Theorem 2.1] cannot be easily used in this cir-
cumstance (for more about why this particular implementation is
unsuitable when µMPC is not explicitly known, see also Section 6.)

However, every CPWL function also has a (two-level) lattice
representation [24] 3: unlike the particular hinging hyperplane rep-
resentation mentioned above, we will show that the lattice represen-
tation can be used to solve Problem 1 without explicitly solving for
µMPC. In particular, the lattice representation of a CPWL function
has two properties that facilitate this:

(1) It has a structure that is amenable to implementation with a
ReLU NN (by mechanisms similar to those used in [3]); and

(2) It is described purely in terms of the local linear functions
and the number of unique-order regions (de�nitions of these
terms are given in the next subsection) in the CPWL function,
both of which we can e�ciently over-approximate for µMPC.

Thus, a description of the lattice representation largely explains
how to solve Problem 1; we follow this discussion by connecting it
to a top-level description of our algorithm.

3.1 The Two-Level Lattice Representation of a
CPWL Function

To understand the lattice representation of a CPWL, we �rst need
the following de�nition. Throughout this subsectionwewill assume
that f : Rn ! R is a CPWL function. All the subsequent discussion
can be generalized directly to the case when f : Rn ! Rm .

D��������� 1 (L���� L����� F�������). Let f : D ✓ Rn ! R
be a CPWL function de�ned on open domain D. Then ` is a local
linear function of f if there exists an open set U ⇢ D such that for
all x 2 U :

f (x) = `(x). (21)
3The lattice representation is in fact an intermediary representation used to construct
the hinging hyperplane representation; see [22].

HSCC’20, Sydney, Australia,
James Ferlez and Yasser Shoukry

`1

`2

`3

f

x0 x000x00

Figure 1: Ordering of local linear functions changes at the
boundary between linear regions: f is aCPWL functionwith
local linear functions `1, `2 and `3. `2(x 0) � `1(x 0) � `3(x 0)
and `2(x 0) � `2(x 0) � `3(x 0) are two di�erent orderings at the
boundary point x 0. Also note that the ordering can change
within a linear region: c.f. x 000. See also [24, Figure 1].

The set of all local linear functions will be denotedR = {`1, `2, . . . , `N }.

The CPWL function in (20) consists of the two local linear functions
`1(x) = 2x + 3 and `2(x) = �2x + 3, for example.

The lattice representation is based on the following idea: con-
sider the set of distinct local linear functions of f namely {(1, `1(x)),
. . . , (N , `N (x))} along with the natural projections of this set �1 :
(i, `i (x)) 2 N ⇥ R 7! i and �2 : (i, `i (x)) 2 N ⇥ R 7! `i (x).
It follows from the fact that the f is continuous PWL function
that at least two local linear functions intersect for each x on the
boundary between linear regions. Therefore, the ordering of the
set {(1, `1(x)), . . . , (N , `N (x))} by � on the projection �2 induces
at least two di�erent orderings of the projection �1 (see Figure 1
for an example). It is a profound observation nevertheless, because
it means that the relative ordering of the values {`1(x), . . . , `N (x)}
can be used to decide which of the local linear function is “active” at
a particular x . This is illustrated in Figure 1; see also a similar �gure
in [24, Figure 1]. This also suggests that we make the following
de�nition, which allows us to talk about regions in the domain of
f over which the order of the local linear functions is the same.

D��������� 2 (U�����O���� R����� (���������� �� [24, D���
������� 2.3])). Let f : D ⇢ Rn ! R be a CPWL function with
N distinct local linear functions R = {`1, . . . `N }; that is for all
x 2 D, f (x) = `i (x) for some `i 2 R. Then a unique-order re-
gion of f is a region O ✓ D from the hyperplane arrangement
in Rn de�ned by those hyperplanes Hi j = {x : `i (x) = `j (x)}
that are non-empty. In particular, for all x in a unique-order region
O , `i1 (x) � `i2 (x) � · · · � `iN (x) for some permutation of ik of
{1, . . . ,N }.

We are now in a position to describe the two-level lattice repre-
sentation of a CPWL function.

T������ 1 (T���L���� L������ F���� F��� U�����O����
R������ [24, T������ 4.1]). Let f be as in De�nition 2 withM the
number of unique-order regions of f in D. Then there exists at most
M subsets si ✓ {1, . . . ,N }, i = 1, . . . ,M such that:

f (x) = max
1iM

min
j 2si
`j (x) 8x 2 D. (22)

1/2

�1/2

1/2

1/2

a

b

max{a, b}

1

1

�1

�1

�1

1

1

�1

⌃

⌃

⌃

⌃

max{·, 0}

max{·, 0}

max{·, 0}

max{·, 0}

⌃

Figure 2: Illustration of aReLUnetwork to compute themax-
imum of two real numbers a and b. See also [3].

In (22), one subset si is chosen for each unique-order region in
order to activate the correct local linear function on that unique-
order region. In particular, if `�i is active on unique-order region
Oi , then si = {j 2 {1, . . . ,N } : `j (x) � `�i (x)8x 2 Oi }; hence,
minj 2si `j (x) = `�i (x) for all x 2 Oi . This construction also ensures
that min’s over di�erent si don’t interfere with each other under
the outer max operation.

3.2 Structure of the Main Algorithm
Having described in detail the lattice representation of a CPWL,
we return to the speci�c claims we made about how it structures
our solution to Problem 1.

We �rst note that the form (22) is well suited to implementation
with a ReLU neural network: it is comprised of linear functions and
max/min functions, so many observations from [3] apply to (22)
as well. In particular, the two-argument maximum function can be
implemented directly with a ReLU using the well-known identity

max{a,b} = a + b

2
+

|a � b |
2

(23)

and the ReLU implementations of its constituent expressions [3]:

|x | = max{x, 0} +max{�x, 0} (24)
x = max{x, 0} �max{�x, 0}. (25)

Thus max can be implemented by a NN NN �max where:

�max = (
 1 1
�1 �1
�1 1
1 �1

�
, [1

2 � 1
2

1
2

1
2]) (26)

This implementation is illustrated in Figure 2. Using themin variant
of the identity (23), namely:

min{a,b} = a + b

2
� |a � b |

2
(27)

leads to a similar ReLU implementation of the two-argument mini-
mum function. In the previous notation, the architectures of these
max andmin networks are the same, i.e. Arch(�max) = Arch(�min)
= ((2, 4), (4, 1)) with no activation function on the last layer.

This implementation further suggests a natural way to imple-
ment the multi-element max (resp. min) operation with a ReLU
network [3]. Such an operation can be implemented by deploying
the two-elementmax (resp.min) networks in a “divide-and-conquer”
fashion: the elements of the set to be maximized (resp. minimized)
are fed pairwise into a layer of two-element max (resp. min) net-
works; the output of that �rst max (resp. min) layer is fed pairwise
into a subsequent layer of two-element max (resp. min) networks,

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems
HSCC’20, Sydney, Australia,

and so on and so forth until there is only one output. Note that this
approach can also be used on sets whose cardinality is not a power
of two while maintaining a ReLU structure of the neural network
NN : the same value can be directed to multiple inputs as necessary.
This structure is illustrated in Figure 3 for a network that computes
the maximum of �ve real-valued inputs. Following this example, an
N -input max (or min) network maxN (resp. minN) is represented
by a parameter list �maxN (resp. �minN) which has architecture:

Arch(�maxN) = Arch(�minN) =⇣ �
N , 2· dN /2e

�
, dN /2e ·Arch(�max) ,

(dN /2e � 1)·Arch(�max) , . . . , Arch(�max)
⌘

(28)

where c ·Arch(�max)means multiply every element in Arch(�max)
by c; nested lists are “�attened” as appropriate; and there is no
activation function on the �nal layer.

Now, given these multi-element max/min networks, the remain-
ing structure for a ReLU network implementation of the lattice
form (22) is clear: we need a neural network architecture capable
of (i) implementing f ’s local linear functions R = {`1, . . . , `N } and
(ii) handling the selection of the subsets si . The implementation
of the local linear functions is straightforward using a fully con-
nected hidden layer. The selection can be handled by routing – and
replicating, as needed – the output of those linear functions to a
min network. Since we do not know the exact size of the subsets si
in (22), and hence the number of input ports for each min network,
we must usemin networks with as many pair-wisemin input ports
as there are local linear functions. Then, for subsets si of size less
than N , the architecture replicates some local functions multiple
times to di�erent input ports of the same min network to achieve
the correct output. As discussed before, such replication does not
a�ect the correctness of the architecture. Moreover, there will be
one such min network for each unique-order region for a total of
M . This replicating and routing of signals can be accomplished by
an auxiliary fully connected linear layer with N inputs andM · N
outputs. Since the purpose of this layer is to allow the weights to
only select subsets of the local linear functions, this layer should
have the property that all of the weights are either zero or one, and
each output of the layer should select exactly one input. That is
the weight matrix for this layer should have exactly one 1 in each
row with all of the other weights set to 0. For a real-valued CPWL
function f : Rn ! R, this overall architecture is depicted in Figure
4. The selection and routing layer is depicted in red. The notation
Rŝi (x) re�ects the routing and (one possible) replication of values
of the local linear functions, and it is de�ned as follows:

Rŝi (x) ,
n�
{j}, `j (x)

�
: j 2 si

o

[
n�
{N + k}, `max si (x)

�
: k = 1, . . . ,N � |si |

o
. (29)

(That is Rŝi (x) contains one copy of each of `j (x) : j 2 si , and as
many additional copies of `max si (x) as necessary to have N total
elements. In particular, maxp2Rŝi (x) �2(p) = maxj 2si `j (x).)

Finally, we note that it is straightforward to extend this archi-
tecture to vector-valued functions like µMPC. The structure of NN
(Section 2.1) means that a scalar pairwisemin (ormax) network can
trivially compute the element-wise minimum between two input

vectors by simply allowing more inputs and applying the weights
from Figure 2 in an element-wise (diagonal) fashion. The result is
an architecture that looks exactly like the one in Figure 4, only with
the number of outputsm multiplying the size of most signals.

The structure of the above described ReLU implementation is
general enough to implement any CPWL function f with N local
linear functions and M unique order regions. We state this as a
theorem below.

T������ 2. Let f : Rn ! R by CPWL with distinct local linear
functions R = {`1, . . . , `N } andM unique order regions. Then there
is a parameter list �N ,M with:

Arch(�N ,M) =⇣
(n,N ·M)| {z }
linear layer

, M · Arch(�minN)| {z }
min layer

, Arch(�maxM)| {z }
max layer

⌘
(30)

such that there exist an assignments for �N ,M that renders:

NN �N ,M (x) = f (x) 8x 2 Rn,

whereM ·Arch(�minN)meansmultiply every element inArch(�minN)
byM , and where nested lists are “�attened” as needed. The �nal layers
of the min layer and the max layer lack activation functions.

P����. The proof is constructive: the discussion above explains
the construction, which is based on [24, Theorem 4.1]. ⇤

C�������� 1. Any CPWL controller µ (such as µMPC) can be
implemented by a ReLU network � with architecture Arch(�N ,M) as
described in Theorem 2, where N is the number local linear functions
of µ andM is the number of unique-order regions of µ.

Note that in many cases it is hard to exactly know the parameters
N andM exactly. The next result shows that our correctness claims
in Theorem 2 can be extended when an upper bound N � N and
M � M is used to design the neural network architecture.

T������ 3. Let�N ,M be a parameter list such thatArch(�N ,M)
is as speci�ed in Theorem 2, (30), and let N � N and M � M . Then
there exists a parameter list �N ,M with Arch(�N ,M) as in (30) such
that:

NN �N ,M (x) = NN �N ,M
(x) 8x . (31)

P����. In order to implement the same function with a larger
network, the extra linear-layer neurons can simply duplicate calcu-
lations carried out by neurons in the smaller network. For example,
the extra neurons in the the �rst linear layer can duplicate the cal-
culation of `N , and the extra neurons in the second linear layer can
duplicate the calculation of the M th subset of {`1, . . . , `N }. This
will not change the output of the min and max layers. ⇤

Note: when “embedding” a smaller network, �N ,M , into a larger
one, �N ,M , it is incorrect to set the extra parameters in �N ,M to
zero, as this could a�ect the output of the min and max networks!

Thus, to use this framework to obtain an architecture that is
capable of implementing µMPC, one needs to simply upper-bound
the number of local linear functions N in µMPC (ultimately without
solving the actual MPC problem) and upper-bound the number
of unique order regions M in µMPC. This is precisely the AReN
algorithm, as speci�ed in Algorithm 1. The constituent functions

HSCC’20, Sydney, Australia,
James Ferlez and Yasser Shoukry

max{x1, x2, x3, x4, x5}

max

max

max

max

max

max

2

66664

x1

x2

x3

x4

x5

3

77775

x1

x2

x3

x4

x5

1/2

�1/2

1/2

1/2

1

1

�1

�1
�1

1

1

�1

max{·, 0}

max{·, 0}

max{·, 0}

max{·, 0}⌃

⌃

⌃

⌃

⌃

(network from Figure 2)

max5

Figure 3: Illustration of a ReLU network to compute the maximum of �ve real numbers {x1, x2, x3, x4, x5}. Callout depicts the
network from Figure 2. See also [3].

EstimateRegionCount and EstimateUniqueOrder are described
in detail in the subsequent sections Section 4 and Section 5, respec-
tively. The implementation of the function InferArchitecture
follows directly from the (constructive) discussion in this section.

input : system matrices A,B,C; cost matrices P,Q � 0,
R > 0; feedback matrix K ; horizon Nc

output : (K, dim(� (1)1), . . . , dim(� (K)
1))

1 function GetArchitecture(A,B,C,P,Q,R,K,Nc)
2 N_est EstimateRegionCount(A,B,C,P,Q,R,K,Nc)
3 M_est EstimateUniqueOrderCount(N_est)
4 ArchList InferArchitecture(N_est,M_est)
5 return ArchList
6 end

Algorithm 1: AReN.

4 APPROXIMATING THE NUMBER OF
LINEAR REGIONS IN THE MPC
CONTROLLER

In this section, we will discuss our implementation of the func-
tion EstimateRegionCount from Algorithm 1. A natural means to
approximate to the number of local linear functions of µMPC is to
approximate the number of maximal linear regions in µMPC.

D��������� 3 (L����� R����� �� µMPC). A linear region of
µMPC is a subsetR ✓ Rn over which µMPC(x) = L(x) for some linear
(a�ne) L : Rn ! Rm . A maximal linear region is a linear region
that is strictly contained in no other linear regions. Two linear regions
are distinct if they correspond to di�erent linear functions.

Thus, the maximal linear regions of µMPC are in one-to-one cor-
respondence with the local linear functions in µMPC , so an upper
bound on the number of maximal linear regions in µMPC is an upper
bound on its number of local linear functions, which in turn is an
over-approximation of N suitable to specify a NN architecture.

To upper bound the number of maximal linear regions e�ectively,
we need to consider in detail some speci�cs about how the piecewise

linear property arises in the solution for µMPC. Ultimately, µMPC
is piecewise linear because we have posed a problem for which (i)
the gradient of the Lagrangian (34) is linear in both the Lagrange
multipliers and the decision variable; and (ii) the dependence on
the initial state x(t) is linear. Linearity is important in both (i) and
(ii) because we are really not solving one optimization problem but
a family of them: one for each initial state x(t). Thus, the linearity
of the Lagrangian together with the linearity of the inequality
constraints in x(t) leads to an equation (a necessary optimality
condition) that is linear in both the Lagrange multipliers and the
initial state x(t): hence the piecewise-linear controller µMPC.

Moreover, the distinct linear regions of µMPC – i.e. those with
distinct linear functions – arise out of a particular aspect of the afore-
mentioned linear equations. In particular, the Lagrange multipliers,
�, and the initial state, x(t), appear together in a linear equation
that has di�erent solutions – and hence creates di�erent linear
regions for µMPC – based on which of the inequality constraints are
active (at a particular optimizer) [5, Theorem 2]. Since the linear
regions obtained in this way partition the domain of µMPC (see also
Proposition 1 below), this suggests that we can over-approximate
the number of linear regions in µMPC by counting all of the possible
constraints that can be active at the same time. Indeed, this is more
or less how EstimateRegionCount estimates N , although we do
not simply over-approximate with 2# of constraints.

4.1 The Optimal MPC Controller
As preparation for the rest of the section, we begin by summarizing
some further details regarding the solution of µMPC from [5]. In
particular, the optimization problem speci�ed by (7)-(16) can be
simpli�ed by substituting the dynamics constraint (14) to get:

min
U

⇢
1
2
x(t)T Y x(t) + 1

2
U T H U + x(t)T F U

�
(32)

subject to: GU W + Ex(t)

with appropriately de�ned matricesH , F ,G ,W and E of dimensions
(� ⇥ �), (n ⇥�), (� ⇥�), (� ⇥ 1) and (� ⇥ n), respectively (where �
and � are de�ned in (17) and (18), respectively). Then, completing
the square by means of the change of variables z , U +H�1FTx(t)

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems
HSCC’20, Sydney, Australia,

x=

2

6664

x1

x2
...
xn

3

7775

`1(x)

...

`2(x)

`N (x)

(M min nets)

maxM 1

(linear layer)

...

minN

...

⌃

⌃

⌃

...

⌃

⌃

⌃

...

⌃

⌃

⌃

...

⌃

⌃

⌃

...
minN

minN

N

N

N

Mn
f(x)

1

1

1

minj2s1 `i(x)

minj2s2 `i(x)

minj2sM `i(x)

⌃

⌃

⌃

x1

x2

xn

Rŝ1(x)

Rŝ2(x)

RŝM (x)

Real-valued weights (trainable)

Binary weights (trainable)

...

Figure 4: Illustration of the overall architecture to implement a scalar CPWL function. The symbols for signals are indicated
above the line, and their dimensions are indicated below. The red lines represent a fully-connected linear layer in which the
weights entering a single summer are such that exactly one of them is 1, and the others are all 0. Rŝi (x) is de�ned in (29).
provides the following, simpli�ed quadratic program [5]:

min
z

⇢
1
2
zT H z

�
subject to: Gz W + Sx(t). (33)

Note that this change of variables is only valid whenH is invertible,
but this is assumed in [5], and it will be assumed throughout.

A solution to the optimization problem in (33) can be easily
formulated using the KKT (necessary) optimality conditions [13].
This results in the following system of equations:

Hz +GT� = 0 � 2 R� (34)
�i (Giz �Wi � Six) = 0 i 2 1 . . . � (35)

� � 0 (36)
Gz W + Sx . (37)

That is for a (local) minimizer to the optimization problem (33), there
exists non-negative Lagrange multipliers � that solve the above
system. Moreover, solving (34) for the minimizer, z, demonstrates
that such a minimizer has a particular structure. Indeed, under
the assumption that H is invertible, we may solve (34) for z and
substituted it into (37) to obtain:

�GH�1GT� W + Sx . (38)

Now given the relevance of active constraints in (34) - (37) to[5,
Theorem 2], we introduce the following notation.

D��������� 4 (S�������M�����). Let� ✓ {1, . . . , �}, and de�ne
the auxiliary set (and associated vector):

�̃ , {(1,min
j 2�

j), . . . , (|� |,max
j 2�

j)}.

Then the selector matrix, Ĩ� is de�ned as:

Ĩ� , [e�̃ (1), . . . , e�̃ (|� |)]T (39)

where ej is the jth column of the (� ⇥ �) identity matrix.

The selector matrix can thus be used to describe equality in
(38) for the active constraints by removing inequalities associated
with the inactive constraints. In particular, given a set of active
constraints speci�ed by a subset � ✓ {1, . . . , �}, the Lagrange
multipliers for the active constraints, �� , will satisfy the following:

� Ĩ�G(H�1GTĨT�)�� = Ĩ� (W + Sx). (40)

In particular, (40) is a linear equation in �� and x that ultimately
speci�es the region in x-space over which a single a�ne function
characterizes µMPC. Indeed, back substituting solutions of (40) into
(37) and � � 0 speci�es a set of linear inequalities in x . These equiv-
alently de�ne an intersection of half-spaces in Rn that characterize
a (convex) linear region of µMPC [5, Theorem 2]. Moreover, as every
possible solution to the optimization problem admits a set of active
constraints, these convex linear regions partition the state space.

For our purposes, (40) is the relevant consequence of this dis-
cussion, since it suggests how to over-approximate the number of
linear regions of µMPC. This is the subject of the next subsection.

4.2 Over-approximating the Number of
Maximal Linear Regions

From the previous discussion, the problem of �nding all possible
sets of active constraints for (34) - (37) is a signi�cant amount of
the work in solving for the optimal controller µMPC. However, we
are content not solving for µMPC exactly: thus, we only need to
simplify (40) in such a way that we obtain a new equation with all
of the same solutions plus some spurious ones (keep in mind that
(40) is an equation in � , too).

Before we begin counting regions, we need to state the following
proposition, which is trivial given the observations in [5].

HSCC’20, Sydney, Australia,
James Ferlez and Yasser Shoukry

P���������� 1. Let R̄ be a maximal linear region for controller
µMPC. Then there exists a �nite collection of sets �R̄ = {�i ✓ {1, . . . , �} :
i = 1, . . .V } with the following property:

• for every x 2 R̄, there exists an �x 2 �R̄ and |�x | Lagrange
multipliers ��x � 0 such that:

Ĩ�xGH
�1GTĨT�x ��x = Ĩ�x (W + Sx). (41)

In particular, any maximal linear region of µMPC, R̄, can be parti-
tioned into |�R̄ | convex linear regions.

P����. Since we are considering a maximal linear region of
µMPC, the quadratic program (33) is feasible for every x 2 R̄ by
de�nition. Consequently, there is for every such x , a unique solution
z⇤x

4, and so by necessity, there is some set of constraints �x ✓
{1, . . . , �} that is active at z⇤x . Moreover, by the KKT necessary
conditions, there exists |� | Lagrange multipliers ��x that satisfy
(41). This proves the existential assertions for x 2 R̄ related to (41).

However, we have implicitly de�ned a function that associates
to each x 2 R̄ a subset in 2{1, ...,� } :

act : Rn ! 2{1, ...,� }

x 7! �x . (42)

We de�ne �R̄ = act(R̄) to be the range of act, so that equivalence
modulo act partitions R̄ into |�R̄ | disjoint regions. Finally, by [5,
Theorem 2] and the discussion about degeneracy on [5, pp. 9], each
of these regions is necessarily convex. ⇤

Proposition 1 gives us a hint about how to over-approximate the
number of maximal linear regions: in particular, we will simplify
equation (41) in such a way that we still �nd solutions for each
� 2 �R̄ at the expense of including solutions for � < �R̄ . This gives
us our �rst main counting theorem:

T������ 4. Let � ✓ 2{1, ...,� }\; such that for every � 2 � there
exists a vector �� 2 R� such that:

GH�1GTĨ��� = �� . (43)

has a solution �� � 0, �� , 0. Then |�|+1 upper bounds the number
of maximal linear regions for µMPC.

P����. If we show that for every maximal linear region R̄, the
�R̄ ✓ � [;, then the conclusion will follow.

But this follows directly from Proposition 1: for each � 2 �R̄ ,
there exists an x and � = ��x such that (41) holds. Thus if �� = ��x
and ��x , 0, then set � = �x , �� =W + Sx and conclusion holds.
The situation when no constraints are active is accounted for with
the addition of 1 in the �nal conclusion. ⇤

Theorem 4 is signi�cant because Farkas’ lemma [13] tells us how
to describe the solutions of (43) using a linear inequality feasibility
problem. In particular, (43) has a non-trivial solution if and only if
the problem (GH�1GTĨT�)T�  0 is feasible (and it can’t have only
the trivial solution for non-trivial ��). This reasoning is included
in the proof of the subsequent Theorem, which connects the bound
from Theorem 4 to the number of feasible “sub-problems” de�ned
by GH�1GT. First, we introduce the following de�nition.

4This is because H is positive de�nite [5, pp. 9].

D��������� 5 (N������������ F�������). Let V be a (� ⇥ � 0)
matrix and let � ✓ {1, . . . , �}. Then � is a non-trivially feasible
subset of V if there exists a � 2 R�0 , � , 0 such that I�V � � 0.
Such a set is maximal if adding any other row makes it infeasible.

Now we state the main theorem in this section.

T������ 5. Let I be the set of maximal non-trivially feasible
subsets of GH�1GT (see De�nition 5). Then the number of maximal
linear regions in µMPC is bounded above by:��� ÿ

� 2I
2�

���  ’
� 2I

2 |� | . (44)

P����. This follows from Farkas’ lemma and Theorem 4.
In particular, let � ✓ {1, . . . , �} and �� , 0 2 R� . Now, by

Farkas’ lemma,

9�� � 0 . GH�1GTĨ��
T
� = �� ,

9� 2 R� s.t. �T� � < 0 and Ĩ� (GH�1GT)T�  0. (45)

In particular,GH�1GTĨ��T� = �� can have a non-negative solution
if and only if � is a non-trivially feasible subset of (GH�1GT)T.

Thus, by Theorem 4, we conclude that � 2 � implies � is a non-
trivially feasible subset of (GH�1GT)T, and hence, that the number
of maximal linear regions is bounded by the number of non-trivially
feasible subsets of GH�1GT. The conclusion of the theorem thus
follows because every non-trivially feasible subset is a subset of
some maximally non-trivially feasible subset. ⇤

4.3 Implementing EstimateRegionCount

To �nd maximal non-trivially feasible subsets ofGH�1GT , we start
by introducing one Boolean variable bi for each column of the
matrix GH�1GT . The �rst non-trivially feasible subset can then be
found by solving the following problem:

arg max
(b1, ...,b� ,�)2B�⇥R�

�’
i=1

bi (46)

subject to bi) [GH�1GT]i� < 0, i = 1, . . . , � (47)

where [GH�1GT]i denotes the ith column of the matrix GH�1GT .
Such optimization problems can be solved e�ciently using Satis�a-
bility Modulo Convex programming (SMC) solvers [20, 21]. SMC
solvers �rst use a pseudo-Boolean Satis�ability (SAT) solver to �nd
a valuation of the Boolean variables that maximizes the objective
function (46); this is then followed by a linear programming (LP)
solver that �nds solutions to the constraints in (47). Indeed, the
SAT solver may return an assignment for the Boolean variables
b1, . . . ,b� for which the corresponding LP problem is infeasible. In
such a case, we use the LP solver to search for a set of Irreducibly
Infeasible Set (IIS) that explains the reason behind such infeasibility.
This IIS is then encoded into a constraint that prevents the SAT
solver from returning any assignment that can lead to the same
IIS. We iterate between the SAT solver and the LP solver until one
Boolean assignment is found for which the corresponding LP prob-
lem is feasible. It follows from maximizing the objective function
that this set of active constraints is guaranteed to be a maximal
non-trivially feasible subset of GH�1GT .

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems
HSCC’20, Sydney, Australia,

input : system matrices A,B,C; cost matrices P,Q � 0,
R > 0; feedback matrix K ; horizon Nc

output :N_est

1 function EstimateRegionCount(A,B,C,P,Q,R,K,Nc)
2 G_Hinv_Gtr GetHyperplanes(A,B,C,P,Q,R,K,Nc)
3 NumHyperplanes Dimensions(G_Hinv_Gtr)[0]
4 (h[1], . . . , h[NumHyperplanes]) G_Hinv_Gtr
5 (b[1], . . . , b[NumHyperplanes])

createBooleanVariables(NumHyperplanes)
6 Solutions () ; SATConstraints ()
7 while True do
8 SATsolver.setConstraints(SATConstraints)
9 SATsolver.Maximize(

ÕNumHyperplanes
i=1 b[i])

10 if not SATsolver.SAT?() then
11 break
12 end
13 HyperplaneSet G_Hinv_Gtr.
14 GetHyperplanes(SATsolver.TrueVars())
15 Feasible? CheckFeas(HyperplaneSet*z  ��)
16 if not Feasible? then
17 IIS GetIIS(HyperplaneSet)
18 SATConstraints.Append(

‘
h[i]2IIS ¬b[i])

19 else
20 Solutions.Append(HyperplaneSet)
21 SATConstraints.Append (
22

Õ
h[i]2HyperplaneSetb[i]< |HyperplaneSet|)

23
Õ
h[i]<HyperplaneSet b[i] � 1

24)
25 end
26 end
27 return N_est CountAllUniqueSubsets(Solutions)
28 end

Algorithm 2: EstimateRegionCount.

Once amaximal non-trivially feasible subset ofGH�1GT is found,
we can add a blocking Boolean constraints to the SAT solver, thus
preventing the SAT solver from producing any subsets of this maxi-
mal non-trivially feasible set.We continue this process until the SAT
solver can not �nd any more feasible assignments to the Boolean
variables, at which point our algorithm terminates and returns all
of the non-trivially feasible subsets it has obtained. This discussion
is summarized in Algorithm 2 whose correctness follows from the
correctness of SMC solvers [20, 21].

5 APPROXIMATING THE NUMBER OF
UNIQUE-ORDER REGIONS IN THE MPC
CONTROLLER

We now discuss our implementation of EstimateUniqueOrder
from Algorithm 1. Our implementation of this function merely
exploits a general bound on the number of possible regions in an
arrangement of hyperplanes, and so does not speci�cally leverage
the MPC problem (unlike EstimateRegionCount).

In particular, we noted in De�nition 2 that the unique-order
regions created by a set of local linear functions R = {`1, . . . , `N }
correspond to the regions in the hyperplane arrangement speci�ed
by non-empty hyperplanes of the form Hi j = {x : `i (x) = `j (x)},
each of which is a hyperplane in dimension of n (when x 2 Rn).

There seems to be a well-known – but rarely stated – upper
bound on the number of regions that can be formed by a hyperplane
arrangement of N hyperplanes in dimension n. The few places
where it is stated (e.g [19, Lemma 4]) seem to ambiguously quote
Zaslavsky’s Theorem [23, Thoerem 2.5] in their proofs. Thus, we
state the bound, and sketch a proof.

T������ 6. Let A be an arrangement of N hyperplanes in di-
mension n. Then the number of regions created by this arrangement,
r (A) is bounded by:

r (A) 
n’
i=0

✓
N

i

◆
(48)

(with equality if and only if A is in general position [23, pp. 4]).

P����. First, we note that the bound holds with equality for
arrangements in general position (de�ned on [23, pp. 4]); this is
from [23, Proposition 2.4], a consequence of Zaslavsky’s theorem
[23, Theorem 2.5]. Thus, the claim holds if every other arrangement
has fewer regions than an arrangement in general position with
the same number of hyperplanes.

This is indeed the case, but it helps to have a little bit of termi-
nology �rst. In particular, [23, Lemma 2.1] gives a formula for the
number of regions in a hyperplane arrangement, r (A), in terms of
a triple of hyperplane arrangements (A,A 0,A 00) [23, pp. 13]:

r (A) = r (A 0) + r (A 00). (49)

Such a triple is formed by choosing a distinguished hyperplane
Hd 2 A, and de�ning A 0 as A\{Hd } and A 00 as the arrangement
of hyperplanes {H\Hd , ; : H 2 A 0}. Note thatA 00 characterizes
the regions in A 0 that are split by Hd .

From here, we will only provide a brief proof sketch. The proof
proceeds by induction: �rst on the number of hyperplanes in n = 2,
and then on by induction on the dimension, n. For n = 2, the result
can be shown for arrangements of size N using (49), and noting that
r (A 00) = N if and only if Hd intersects all the other hyperplanes
exactly once. This, together with the induction assumption, shows
r (A) can satisfy the claim with equality only if A is in general
position. For n > 2, the proof proceeds similarly, using (49) to
invoke the conclusion for n � 1 as necessary. ⇤

Thus, our implementation of EstimateUniqueOrderCount sim-
ply computes and returns the value in (48). In the worst case, this
estimate is 2# of hyperplanes: this occurs for example when N = n.
But for N >> n, this bound clearly grows more slowly than expo-
nentially in N . This is extremely helpful in keeping the size of the
second linear layer in Figure 4 of a reasonable size.

We conclude this section by noting that the result in Theorem
6 may be used to state Theorem 3 independently ofM entirely. In
particular, we have the following theorem.

T������ 7. Let f be a CPWL function, and let N be an upper-
bound on the number of local linear functions in f . Then for M 0 =

HSCC’20, Sydney, Australia,
James Ferlez and Yasser Shoukry

Õn
i=0

�N (N�1)/2
i

�
there exists a parameter list�N ,M 0 withArch(�N ,M 0)

as in (30) such that:

f (x) = NN �N ,M0 (x) 8x . (50)

6 DISCUSSION: HINGING HYPERPLANE
IMPLEMENTATIONS

For comparison, we will make some remarks about the hinging
hyperplane representation used in [3, Theorem 2.1].

T������ 8 (H������ H��������� R������������� [22]). Let
f : Rn ! R be a CPWL function. Then there exists a �nite integer
K and K non-negative integers {�k : k = 1, . . . ,K}, each less than
n + 1, such that

f (x) =
K’
k=1

�k max
n
L(k)
1 (x),L(k)

2 (x), . . . ,L(k)
�k (x)

o
8x 2 Rn

(51)
for some collection of L(k)

i , i 2 {1, . . . ,�k }, each of which is an a�ne
function of its argument x , and each constant �k 2 {�1,+1}. (Each
L(k)
i beyond the �rst one is referred to as a “hinge”. That is �k � 1 is

the number of “hinges” in the k th summand.)

The problem with creating a NN architecture from Theorem 8
is that its proof provides only an existential assertion – by means
of explicit construction – and that construction relies heavily on
particular knowledge of the actual local linear functions in the
CPWL [22, Theorem 1]. Thus, the number K in (51) – which is
essentially the only architectural parameter in the ReLU – has a
complicated dependence on the particular CPWL function (see [22,
Corollary 3] as it appears in the proof of [22, Theorem 1]). This
even makes it di�cult to “replay” the proof of Theorem 8 and upper-
bound the size of the existential assertions in each step; there are
naive upper bounds for each step, but they lead to an extravagant
number of max operations (exponentially many, in fact).

Moreover, a further complication is that hinging hyperplane rep-
resentations need not even be unique. For example, consider f (x) =
|x |: for this function, K = 1 works because |x | = max{x,�x}. But
the same function could also be implemented as

|x | = max{�x, 3x + 4} �max{0x, 4x + 4} +max{0x, 2x} (52)

which has K = 3 and �ve di�erent linear functions L. However,
this clearly suggests an alternate approach to upper-bounding the
steps in Theorem 8: create an architecture derived from the CPWL
with the largest minimal hinging-hyperplane representation. We
conjecture that such a maxi-min hinging hyperplane form would
in fact lead to fewer max units than the lattice representation used
in AReN. As far as we are aware, there exists no such minimal
characterization in the literature (e.g. in terms of the number of
local linear functions), so we leave this problem to future work.

7 NUMERICAL RESULTS
The function EstimateRegionCount (Algorithm 2) is the bottle-
neck in Algorithm 1. Therefore, we chose to benchmark Algorithm
2 to gage the overall performance of our proposed framework.
We implemented EstimateRegionCount using SAT solver Z3 and
convex solver CPLEX using their respective Python interfaces. We

100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

number of states n

ex
ec
ut
io
n
tim

e
[s
ec
]

Execution time

0

0.5

1

1.5

2

2.5

·105

nu
m
be
ro

fl
oc
al
fu
nc
tio

ns
N

e
s
t

Execution Time
Number of local functions

Max number of local functions

2 4 6 8 10 12 14 16 18 20 22
10�2

10�1

100

101

102

103

104

Number of constraints ⇢

ex
ec
ut
io
n
tim

e
[s
ec
]

Execution time

100

101

102

103

104

105

106

107

nu
m
be
ro

fl
oc
al
fu
nc
tio

ns
N

e
s
t

Execution Time
Number of local functions

Max number of local functions

Figure 5: Execution time results: (top) when the number of
states n increases for a �xed number of constraints and (bot-
tom) when the number of constraints � increases for a �xed
number of states n = 100.

tested our implementation on single-input, single-outputMPC prob-
lems in two contexts: (1) with a varying number of states; and (2)
with a varying prediction horizon Nc . The computer used had an
Intel Core i7 2.9-GHz processor and 16 GB of memory.

Figure 5 (top) shows the performance of Algorithm 2 as a func-
tion of the number of plant states, n, with all other parameters held
constant. The estimated number of local linear functions N_est
output by EstimateRegionCount is plotted on one axis; the max-
imum number of linear functions needed, 2� , is also shown for
reference. The other axis shows the execution time for each prob-
lem in seconds. It follows from Theorem 5 that the number of plant
states doesn’t change the number of constraints and hence does
not contribute to the complexity of Algorithm 2. Note that Algo-
rithm 2 reported a number of local linear functions that is one order
of magnitude less than the maximum number of linear functions
needed, 2� while taking less than 1.5 minutes of execution time.

Figure 5 (bottom) shows the performance of our algorithm (in
semi-log scale) as a function of the number of constraints, �, with
all other parameters held constant (n = 100). The estimated number
of linear functions output by EstimateRegionCount is plotted on
one axis; the maximum number of linear functions needed, 2� ,
is also shown for reference. The other axis shows the execution
time for each problem in seconds. Again, we notice an order of
magnitude di�erence between the reported number of local linear
functions versus the maximum number of linear functions needed,
2� . Indeed, the execution time is a�ected by increasing the number
of constraints. Nevertheless, Algorithm 2 terminates in less than 1.5
hours for a system with more than 300,000 maximal linear regions.

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems
HSCC’20, Sydney, Australia,

REFERENCES
[1] Bernt M Akesson and Hannu T Toivonen. A neural network model predictive

controller. Journal of Process Control, 16(9):937–946, 2006.
[2] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Dif-

ferentiable mpc for end-to-end planning and control. In Advances in Neural
Information Processing Systems, pages 8289–8300, 2018.

[3] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Under-
standing Deep Neural Networks with Recti�ed Linear Units. 2016.

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural
network architectures using reinforcement learning. arXiv:1611.02167, 2016.

[5] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos.
The explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. End to end learning for self-driving cars. arXiv:1604.07316, 2016.

[8] L Cavagnari, Lalo Magni, and Riccardo Scattolini. Neural network implemen-
tation of nonlinear receding-horizon control. Neural computing & applications,
8(1):86–92, 1999.

[9] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari.
Approximating Explicit Model Predictive Control Using Constrained Neural
Networks. In 2018 Annual American Control Conference (ACC), pages 1520–1527,
2018.

[10] Arthur Claviere, Souradeep Dutta, and Sriram Sankaranarayanan. Trajectory
tracking control for robotic vehicles using counterexample guided training of
neural networks. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, pages 680–688, 2019.

[11] Michael Hertneck, Johannes Köhler, Sebastian Trimpe, and FrankAllgöwer. Learn-
ing an approximate model predictive controller with guarantees. IEEE Control
Systems Letters, 2(3):543–548, 2018.

[12] Benjamin Karg and Sergio Lucia. E�cient representation and approximation of
model predictive control laws via deep learning. arXiv:1806.10644, 2018.

[13] David G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons,
1997.

[14] J Gomez Ortega and EF Camacho. Mobile robot navigation in a partially struc-
tured static environment, using neural predictive control. Control Engineering
Practice, 4(12):1669–1679, 1996.

[15] Supratik Paul, Vitaly Kurin, and ShimonWhiteson. Fast e�cient hyperparameter
tuning for policy gradients. arXiv:1902.06583, 2019.

[16] Fabian Pedregosa. Hyperparameter optimization with approximate gradient.
arXiv:1602.02355, 2016.

[17] Marcus Pereira, David D Fan, Gabriel Nakajima An, and Evangelos Theodorou.
Mpc-inspired neural network policies for sequential decision making.
arXiv:1802.05803, 2018.

[18] Yao Quanming, Wang Mengshuo, Jair Escalante Hugo, Guyon Isabelle, Hu Yi-Qi,
Li Yu-Feng, Tu Wei-Wei, Yang Qiang, and Yu Yang. Taking human out of learning
applications: A survey on automated machine learning. arXiv:1810.13306, 2018.

[19] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding
and Counting Linear Regions of Deep Neural Networks. arXiv:1711.02114, 2018.

[20] Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A
Seshia, George J Pappas, and Paulo Tabuada. SMC: Satis�ability Modulo Convex
optimization. In Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control (HSCC), pages 19–28. ACM, 2017.

[21] Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A
Seshia, George J Pappas, and Paulo Tabuada. Smc: Satis�ability modulo convex
programming. Proceedings of the IEEE, 106(9):1655–1679, 2018.

[22] Shuning Wang and Xusheng Sun. Generalization of hinging hyperplanes. IEEE
Transactions on Information Theory, 51(12):4425–4431, 2005.

[23] Richard P Stanley. An Introduction to Hyperplane Arrangements. page 90.
[24] J. M. Tarela and M. V. Martínez. Region con�gurations for realizability of lattice

Piecewise-Linear models. Mathematical and Computer Modeling, 30(11):17–27,
1999.

