
Identifying Taxonomic Units in Metagenomic DNA Streams

Vicky Zheng
Computer Science and Engineering

University at Buffalo

Buffalo, NY

vickyzhe@buffalo.edu

Ahmet Erdem Sariyuce
Computer Science and Engineering

University at Buffalo

Buffalo, NY

erdem@buffalo.edu

Jaroslaw Zola
Computer Science and Engineering

Biomedical Informatics

University at Buffalo

Buffalo, NY

jzola@buffalo.edu

Abstract

With the emergence of portable DNA sequencers, such as Oxford

Nanopore Technology MinION, metagenomic DNA sequencing can

be performed in real-time and directly in the field. However, because

metagenomic DNA analysis is computationally and memory inten-

sive, and the current methods are designed for batch processing, the

current metagenomic tools are not well suited for mobile devices.

In this paper, we propose a new memory-efficient method to

identify Operational Taxonomic Units (OTUs) inmetagenomic DNA

streams. Our method is based on finding connected components in

overlap graphs constructed over a real-time stream of long DNA

reads as produced by MinION platform. We propose an efficient al-

gorithm to maintain connected components when an overlap graph

is streamed, and show how redundant information can be removed

from the stream by transitive closures. Through experiments on

simulated and real-world metagenomic data, we demonstrate that

the resulting solution is able to recover OTUs with high precision

while remaining suitable for mobile computing devices.

Keywords

Metagenomics, Nanopore sequencing, Connected components, Stream-

ing algorithms

ACM Reference Format:

Vicky Zheng, Ahmet Erdem Sariyuce, and Jaroslaw Zola. 2020. Identifying

Taxonomic Units in Metagenomic DNA Streams. In International Workshop

on Data Mining in Bioinformatics (BIOKDD’20), August 22ś27, 2020, San

Diego, CA, USA. ACM, New York, NY, USA, 10 pages.

1 Introduction

Recently introduced nanopore-based DNA sequencers, specifically

Oxford Nanopore Technology (ONT) MinION [30] , are revolution-

izing how DNA-based studies are performed. Their key advantages

are a small form factor and low energy consumption that make

them fully portable and allow for easy deployment in the field,

outside of a typical laboratory [16, 31]. Moreover, these devices

can sequence DNA molecules directly (i.e., without extra steps like

DNA amplification), and can stream the resulting reads, which are

strings of A,C,G,Ts, in near real-time. This makes them extremely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BIOKDD, August 22ś27, 2020, San Diego, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

attractive for metagenomic studies that involve processing DNA

recovered directly from environmental samples. In recent years,

MinION sequencers have been increasingly used for in situ stud-

ies, including, for example, tracking of COVID19, Ebola and Zika

outbreaks [8, 22, 27], deployments in the Arctic and Antarctic [7],

and even on the International Space Station [5] (we invite reader

to [13] for a broader discussion on mobile DNA sequencing).

One of the most common tasks in metagenomics is identification

of Operational Taxonomic Units (OTUs) represented by clusters of

highly similar DNA reads. OTUs often serve as a proxy representing

microbial composition of the sequenced sample in cases where

reads classification (e.g., by searching a DNA database of known

organisms) is difficult or impossible. However, in the current mobile

DNA sequencing workflows, identification of OTUs, along with

any other DNA analytics, remains challenging. In Figure 1, we

outline the usual mobile DNA sequencing workflow using MinION.

The device streams, in real-time, electric signals characterizing

detected DNA fragments. These signals are basecalled to yield DNA

reads, which are next processed using full-fledged bioinformatics

tools. In a mobile setup, the sequencer is typically coupled with

a portable host device with limited compute power, memory, and

energy supply (e.g., tablet or a dedicated system-on-a-chip like

for example MinIT [18]). Since the basecalling process is already

memory and compute intensive, the bioinformatics analysis step

has to be either offloaded to a cloud service (which is not always

possible or desired), or postponed until sufficient compute resources

become available. In both cases, the resulting delay between DNA

read acquisition and the analytics is highly undesired from the

end-user’s perspective, as it decreases the overall responsiveness.

In this paper, we focus on the problem of identifying OTUs in mo-

bile DNA read streams generated by MinION portable sequencers.

Our goal is to provide memory and compute efficient solution that

could be deployed as a co-processing routine in portable DNA

sequencing workflows operating on light-weight computational

devices. Our approach is based on finding connected components in

the similarity (or overlap) graphs constructed and streamed directly

over the DNA reads streams. Connected components have been

demonstrated as a robust representation of OTUs [9, 10, 25], and

are very attractive abstraction, as they are starting point to multi-

ple other tasks, including DNA assembly [26], reference-free taxo-

nomic classification (or clustering) [12, 34], or species abundance

estimation [6]. In the paper, we first propose efficient algorithms to

identify transitive closures and maintain connected components in

streaming graphs. We then show how our method can be coupled

with DNA overlapper routine to handle real-world DNA processing

BIOKDD, August 22–27, 2020, San Diego, CA, USA

Real-time
Sequencing Basecalling ACTGAATTAGA

ATTATTCGGCA
CGTATTCGCCA

Analysis

BaaS/SaaS

Raw signals stream DNA reads stream

MinKNOW Limited memory mobile deviceGuppy

Reads

overlapping

Transitive

closure detection

Connected

component OTUs

Figure 1: Schematic representation ofmobile DNA sequencing pipelinewithMinION. Sequenced reads can be processed locally,

or can be offload to a Back-end as a Service (or Software as a Service) in a cloud. In this work, we aim at OTUs identification

method suitable to run directly on mobile devices.

workloads without sacrificing performance. Through experimen-

tal results we demonstrate that the proposed method is memory

efficient, and can identify OTUs in ONT MinION sequencing data.

The remainder of this paper is organized in the usual way: in

Section 2, we formalize the problem and introduce our notation. In

Section 3, we give detailed description of our approach. We follow

with experimental validation and discussion in Section 4. We close

the paper with a brief review of related work in Section 5, and

conclusions in Section 7.

2 Problem Formulation

We consider mobile DNA sequencing pipeline as presented in

Figure 1. Portable DNA sequencer (specifically ONT MinION) is

attached and controlled by a battery powered mobile host (e.g.,

laptop) that is also responsible for DNA data processing. The se-

quencer delivers, in real-time, raw signals representing detected

DNA molecules. These raw signals are immediately basecalled on

the host machine yielding the actual DNA reads. To illustrate the

rate at which the process happens: in our experiments, we usually

observe that the sequencer delivers around 31 raw signals per sec-

ond. The basecalling rate varies depending on the host machine

capabilities. For example, using NVIDIA Nano Supercomputer-on-a-

Chip with 128 GPGPU cores and 4GB of main memory, the basecall-

ing can be sustained at the rate of approximately 130 reads per sec-

ond. The resulting DNA reads stream is passed for the downstream

analysis. In this work, we are specifically interested in performing

OTUs identification directly on the host that receives streamed

DNA reads.

To formalize our problem, let R = [r1, . . . , rn] represent an input

stream of DNA reads generated in real-time by a DNA sequencer.

We have that for each i < j read ri precedes read r j in the stream,

which we will denote by ri ≺ r j . The size of the stream, n, is

not known a priori. For example, a user may decide to terminate

sequencing experiment at any point of time (e.g., after sufficient

data has been collected), or may run experiment for a specified time

interval (e.g., 2h, which could be a small metagenomic experiment).

Given a set of DNA reads, we can construct an overlap graph

G = (V , E) in which verticesV represent the reads, and two vertices,

u and v , are connected by the directed edge, u → v , denoted by

e = (u,v), if there is a significant overlap between suffix of the

read represented by u and prefix of the read represented by v . Here

significant overlap means that the length of the suffix-prefix match

is beyond some predefined threshold, and indicates that the two

reads corresponding tou andv have been derived from neighboring

portions of the unknown underlying genome. For now, we assume

that an overlapper software is available and capable to construct

overlap graph over the stream R (see below).

Let Ri be the set of first i reads from the stream R, and Gi
=

(V i
, Ei) be the overlap graph constructed over Ri . Moreover, letGi

denote an undirected graph constructed by treating all edges in

Ei as undirected. Our goal is to dynamically identify and main-

tain, in a computationally and memory efficient way, a set Ci =

{ci
1
, ci

2
, . . . , ci

|C i |
} of all connected components found in graph Gi ,

where ci
j
is a set of vertices in component j of graph Gi . The final

set of connected components, Cn , will represent the Operational

Taxonomic Units over the set of DNA reads in R, i.e., we will expect

that all reads within a given connected component will be coming

from the same taxonomic unit (e.g., an organism). At this point we

should note that ,in our formulation, we use connected components

as proxy for OTUs ś as mentioned earlier, this approach has been

demonstrated as a robust strategy in the past [9, 10, 25] and hence

we adopt it here.

We note that when processing stream R we are concerned only

with graph Gi and set Ci (since these structures carry our infor-

mation of interest), and do not have to explicitly store or maintain

graphGi . Moreover, currently we are not concerned with the details

of how the overlap graph is computed (e.g., what is the similar-

ity threshold for suffix-prefix comparison, or how DNA reverse-

complements are handled, we discuss this issue in Section 3.4). In

other words, we are assuming that in our mobile DNA sequencing

pipeline, there is a read overlapper tool that operates under the

hardware constraints mentioned earlier. The overlapper handles

incoming stream of reads generated by a sequencer, and creates,

with some precision and sensitivity, a new stream of edges induced

by the incoming read. Specifically, given incoming read ri , let vi be

its corresponding vertex in graph Gi . The overlapper provides sets

N+(vi) ⊆ V
i−1 and N−(vi) ⊆ V

i−1, such that for each u ∈ N+(vi)

there is an edge (vi ,u) ∈ E
i and for each u ∈ N−(vi) there exists

an edge (u,vi) ∈ E
i (note that in both cases u corresponds to a read

that precedes ri in R).

3 Proposed Approach

Given the above problem formulation, to create and maintain our

desired set Ci , we could leverage one of the several existing algo-

rithms for finding connected components in graph streams (we

review them in Section 5). However, this approach has drawbacks

since the current algorithms are tailored for general graph streams

and are oblivious to the domain specific properties of the data.

Identifying Taxonomic Units in Metagenomic DNA Streams BIOKDD, August 22–27, 2020, San Diego, CA, USA

Therefore in our approach we take a slightly different route and

exploit the (well known) fact that, in a typical DNA sequencing

experiment, many DNA reads are sharing an overlap, and thus

provide redundant information.

To better illustrate this property, consider a set of reads in Fig-

ure 2a that come from the same region of a genome. Because read

r j overlaps with both ri and rk , and at the same time ri and rk are

overlapping as well, we can eliminate read r j without disconnect-

ing the underlying overlap graph and hence without losing any

critical information. This simplifies the graph on which we have

to perform connected components identification, and reduces the

number of reads (and hence graph nodes) we have to maintain in

the memory. The redundant reads may be marked as such, and can

be offloaded to a persistent storage and processed later, e.g., when

more computational resources are available.

The second observation is that in our problem, we never remove

(arbitrary) nodes from the overlap graph. This simplifies data man-

agement as we can adopt tested data structures such as disjoint-set

to identify connected components [14].

In our approach, outlined in the right-most panel of Figure 1, we

exploit both properties at the same time: we first provide efficient

strategy to identify redundant reads in a stream, and then use a

variant of union-find to track connected components. In the pro-

cess, we provide feedback information to the overlapper to further

improve end-to-end performance on the entire workflow.

3.1 Finding transitive nodes

The first step in our approach is to decide whether an incoming

read is redundant, and hence can be removed from further pro-

cessing. Let us consider again example reads in Figure 2a, and for

the purpose of presentation, let us assume that rx ≺ ry ≺ ri , r j , rk .

Depending on which of the reads ri , r j , rk arrives last, we have

one of three possible overlap graphs as shown in Figure 2b. Here,

read ri is represented by vertex vi , and shaded nodes correspond

to the last arriving read. Any redundant read, in our case read r j ,

shares suffix-prefix overlap with at least two other reads, in our

case ri and rk . Now let us consider an induced sub-graph over the

redundant vertex (i.e., vertex corresponding to the redundant read,

in our case vj) and any two of its adjacent vertices that are also

adjacent to each other. In this sub-graph, one of the nodes must

have two outgoing edges, one must have two incoming edges, and

one must have one incoming and one outgoing edge (this node

must correspond to a redundant read). Back to Figure 2b, we can

see that node vj is redundant irrespective of the order in which

reads are processed due to the transitive edge (vk ,vi). We will call

nodes that introduce transitive edges between two other nodes

transitive, and since they correspond to redundant reads, we will

eliminate them from processing.

For each incoming read, we now want to identify if it introduces

any transitive nodes. This can be done by considering all possible

triples it forms with its adjacent nodes. For instance, to find the

transitive nodes introduced by the arriving node vi (i.e., read ri)

in the first example in Figure 2b, we need to check if it has a pair

of incoming neighbors u,w ∈ N−(vi) that share an edge (u,w) or

(w,u). In the second example, to find the transitive nodes introduced

by the arriving node, we check if it has an incoming neighbor

u ∈ N−(vj) and outgoing neighborw ∈ N+(vj) that share an edge

(u,w). Finally, to find the transitive nodes introduced by the arriving

node vk , we need to check if it has a pair of outgoing neighbors

u,w ∈ N−(vk) that share an edge (u,w) or (w,u).

In general, we notice that there are three ways an incoming read

can introduce transitive nodes. However, because we do not know

which case we are dealing with, we need to consider all three. This

intuition is captured in Algorithm 1.

For each incoming read v , the input to the algorithm are all

overlaps with the previously processed nodes (represented by sets

N+(v) and N−(v)), and the current irreducible overlap graph G

(we explain irreducibility below). In lines 3-9, we check if v has

a pair of outgoing neighbors u,w ∈ N+(v) that share an edge

(u,w) ∈ E or (w,u) ∈ E. This scenario corresponds to the last case

in Figure 2b. In lines 10-16, we check if v has a pair of incoming

neighbors u,w ∈ N−(v) that share an edge (u,w) ∈ E or (w,u) ∈ E.

This scenario corresponds to the first case in the Figure 2b. Finally,

in lines 17-21, we check if v has a pair of neighbors u,w where

u ∈ N+(v) andw ∈ N−(v) share an edge (w,u) ∈ E. This scenario

corresponds to the middle case in the Figure 2b.

Algorithm 1 FindTransitive(G,v,N+(v),N−(v))

1: G = (V , E) ◁ G is irreducible

2: L← ∅ ◁ set of transitive nodes

3: for u ∈ N+(v) do

4: forw ∈ N+(v),u , w do

5: if u < L ∧w < L then

6: if (u,w) ∈ E then

7: L← L ∪ {u}

8: else if (w,u) ∈ E then

9: L← L ∪ {w}

10: for u ∈ N−(v) do

11: forw ∈ N−(v),u , w do

12: if u < L ∧w < L then

13: if (u,w) ∈ E then

14: L← L ∪ {w}

15: else if (w,u) ∈ E then

16: L← L ∪ {u}

17: for u ∈ N+(v) do

18: forw ∈ N−(v) do

19: if u < L ∧w < L then

20: if (w,u) ∈ E then

21: L← L ∪ {v}

22: return L

Although the processing steps in Algorithm 1 are simple, the

entire procedure can be computationally expensive for a mobile

system and streaming regime (keeping inmind that it is executed for

each incoming read). Because we are searching for edges between

incoming neighbors, edges between outgoing neighbors, and edges

between incoming and outgoing neighbors, the process requires

Θ
(

|N−(vi)| + |N
+(vi)|

)2
edge queries. This is problematic, as vi

may have a high degree, and each edge query can be expensive

depending on how G is stored in memory. However, we can make

certain guarantees about our incoming node degree as long asGi−1

BIOKDD, August 22–27, 2020, San Diego, CA, USA

rk
<latexit sha1_base64="iESRxdDm3r/4oxYmZIOjuI/cD24=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mqoMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB90f98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa1a1bus1u6vKvWzPI4inMApXIAH11CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBSvI26</latexit>

rj
<latexit sha1_base64="U979TeVSK6own4ZM8ZyrQjv5ffY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lU0GPBi8eK9gPaUDbbSbt2swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WDGSfoR3QgecgZNVa6V73HXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs3zqndRPb+7rNRO8jiKcATHcAYeXEENbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QNROI25</latexit>

ri
<latexit sha1_base64="lRqfybPjGQeijkphW300UVFvcJs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6tMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSatW9S6rtfurSv0sj6MIJ3AKF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP0+0jbg=</latexit>

ry
<latexit sha1_base64="wZBck8BeBcZirJKrRn/01pTwiPw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mqoMeCF48V7Qe0pWy2k3bpZhN2N0II/QlePCji1V/kzX/jts1BWx8MPN6bYWaeHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLV8alGwSU2DTcCO7FCGvoC2/7kdua3n1BpHslHk8bYD+lI8oAzaqz0oAbpoFxxq+4cZJV4OalAjsag/NUbRiwJURomqNZdz41NP6PKcCZwWuolGmPKJnSEXUslDVH3s/mpU3JulSEJImVLGjJXf09kNNQ6DX3bGVIz1sveTPzP6yYmuOlnXMaJQckWi4JEEBOR2d9kyBUyI1JLKFPc3krYmCrKjE2nZEPwll9eJa1a1bus1u6vKvWzPI4inMApXIAH11CHO2hAExiM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBn9I3I</latexit>

rx
<latexit sha1_base64="YZ3vLT2v1YOzpF/ql55zL9y8EmI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdq95Tr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxZpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1UqneX5dppHkcBjuEEzsGDK6jBLdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBmcI3H</latexit>

(a)

rj ≺ rk ≺ ri
<latexit sha1_base64="arc2lUtVF/gQYEN1cd0pOVHZcBU=">AAACAHicbVDLSsNAFL2pr1pfURcu3AxWwVVJWkGXBTcuK9gHtCFMppN27GQSZiZCCd34K25cKOLWz3Dn3zhtg2jrgYHDOfdw554g4Uxpx/myCiura+sbxc3S1vbO7p69f9BScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtByoVi8WdHifUi/BAsJARrI3k20fSv0c9EyFI+qMfxny77FScGdAycXNShhwN3/7s9WOSRlRowrFSXddJtJdhqRnhdFLqpYommIzwgHYNFTiiystmB0zQmVH6KIyleUKjmfo7keFIqXEUmMkI66Fa9Kbif1431eGVlzGRpJoKMl8UphzpGE3bQH1m7tV8bAgmkpm/IjLEEhNtOiuZEtzFk5dJq1pxa5Xq7UW5fprXUYRjOIFzcOES6nADDWgCgQk8wQu8Wo/Ws/Vmvc9HC1aeOYQ/sD6+AabTlbQ=</latexit>

rk ≺ rj ≺ ri
<latexit sha1_base64="jyKmdcp9UY92XG6f46Epp2Udcjo=">AAACAHicbVDLSsNAFL2pr1pfURcu3AxWwVVJWkGXBTcuK9gHtCFMppN27GQSZiZCCd34K25cKOLWz3Dn3zhtg2jrgYHDOfdw554g4Uxpx/myCiura+sbxc3S1vbO7p69f9BScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtByoVi8WdHifUi/BAsJARrI3k20fSH6GeiRAk/fsfxny77FScGdAycXNShhwN3/7s9WOSRlRowrFSXddJtJdhqRnhdFLqpYommIzwgHYNFTiiystmB0zQmVH6KIyleUKjmfo7keFIqXEUmMkI66Fa9Kbif1431eGVlzGRpJoKMl8UphzpGE3bQH1m7tV8bAgmkpm/IjLEEhNtOiuZEtzFk5dJq1pxa5Xq7UW5fprXUYRjOIFzcOES6nADDWgCgQk8wQu8Wo/Ws/Vmvc9HC1aeOYQ/sD6+AabdlbQ=</latexit>

ri ≺ rk ≺ rj
<latexit sha1_base64="5rnOZbhyU9t4qWUwpaeTdfTuzAE=">AAACAHicbVDLSsNAFL2pr1pfURcu3AxWwVVJWkGXBTcuK9gHtCFMppN27GQSZiZCCd34K25cKOLWz3Dn3zhtg2jrgYHDOfdw554g4Uxpx/myCiura+sbxc3S1vbO7p69f9BScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtByoVi8WdHifUi/BAsJARrI3k20fSZ6hnIgRJf/TD7n277FScGdAycXNShhwN3/7s9WOSRlRowrFSXddJtJdhqRnhdFLqpYommIzwgHYNFTiiystmB0zQmVH6KIyleUKjmfo7keFIqXEUmMkI66Fa9Kbif1431eGVlzGRpJoKMl8UphzpGE3bQH1m7tV8bAgmkpm/IjLEEhNtOiuZEtzFk5dJq1pxa5Xq7UW5fprXUYRjOIFzcOES6nADDWgCgQk8wQu8Wo/Ws/Vmvc9HC1aeOYQ/sD6+Aaa/lbQ=</latexit>

rk ≺ ri ≺ rj
<latexit sha1_base64="7Lavw03rK9teO+RzHXzSSbH/Mmk=">AAACAHicbVDLSsNAFL2pr1pfURcu3AxWwVVJWkGXBTcuK9gHtCFMppN27GQSZiZCCd34K25cKOLWz3Dn3zhtg2jrgYHDOfdw554g4Uxpx/myCiura+sbxc3S1vbO7p69f9BScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtByoVi8WdHifUi/BAsJARrI3k20fSH6GeiRAkffbD7n277FScGdAycXNShhwN3/7s9WOSRlRowrFSXddJtJdhqRnhdFLqpYommIzwgHYNFTiiystmB0zQmVH6KIyleUKjmfo7keFIqXEUmMkI66Fa9Kbif1431eGVlzGRpJoKMl8UphzpGE3bQH1m7tV8bAgmkpm/IjLEEhNtOiuZEtzFk5dJq1pxa5Xq7UW5fprXUYRjOIFzcOES6nADDWgCgQk8wQu8Wo/Ws/Vmvc9HC1aeOYQ/sD6+AabTlbQ=</latexit>

ri ≺ rj ≺ rk
<latexit sha1_base64="0eDTUMMcU10zJvUoGDR1N2OZzRQ=">AAACAHicbVDLSsNAFL2pr1pfURcu3AxWwVVJWkGXBTcuK9gHtCFMppN27GQSZiZCCd34K25cKOLWz3Dn3zhtg2jrgYHDOfdw554g4Uxpx/myCiura+sbxc3S1vbO7p69f9BScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtByoVi8WdHifUi/BAsJARrI3k20fSZ6hnIgRJ//6HjXy77FScGdAycXNShhwN3/7s9WOSRlRowrFSXddJtJdhqRnhdFLqpYommIzwgHYNFTiiystmB0zQmVH6KIyleUKjmfo7keFIqXEUmMkI66Fa9Kbif1431eGVlzGRpJoKMl8UphzpGE3bQH1m7tV8bAgmkpm/IjLEEhNtOiuZEtzFk5dJq1pxa5Xq7UW5fprXUYRjOIFzcOES6nADDWgCgQk8wQu8Wo/Ws/Vmvc9HC1aeOYQ/sD6+Aaa1lbQ=</latexit>

rj ≺ ri ≺ rk
<latexit sha1_base64="o/FKp1dJ388Re48dZV8Qm8zK4WE=">AAACAHicbVDLSsNAFL2pr1pfURcu3AxWwVVJWkGXBTcuK9gHtCFMppN27GQSZiZCCd34K25cKOLWz3Dn3zhtg2jrgYHDOfdw554g4Uxpx/myCiura+sbxc3S1vbO7p69f9BScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtByoVi8WdHifUi/BAsJARrI3k20fSv0c9EyFI+uyHjXy77FScGdAycXNShhwN3/7s9WOSRlRowrFSXddJtJdhqRnhdFLqpYommIzwgHYNFTiiystmB0zQmVH6KIyleUKjmfo7keFIqXEUmMkI66Fa9Kbif1431eGVlzGRpJoKMl8UphzpGE3bQH1m7tV8bAgmkpm/IjLEEhNtOiuZEtzFk5dJq1pxa5Xq7UW5fprXUYRjOIFzcOES6nADDWgCgQk8wQu8Wo/Ws/Vmvc9HC1aeOYQ/sD6+Aaa/lbQ=</latexit>

vk
<latexit sha1_base64="F5A0fsm1xuQDgYa9U/NxEANIApA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdwb9Uplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiUXVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AFY1I2+</latexit>

vj
<latexit sha1_base64="ag5qAvqOlUrzcv4p6aLzr6gV67g=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmFkdnYz00tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AV1CNvQ==</latexit>

vi
<latexit sha1_base64="AT7AdNhFUgljpeRhKTGLlxps4q0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Si6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4q1Yfrcu08j6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVzI28</latexit>

vx
<latexit sha1_base64="hDFE90vUe9VJ4vjTFLfqXM6Vp3A=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmHC7OxmppdICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AbIiNyw==</latexit>

vy
<latexit sha1_base64="3J0a+g7w5PP1qGqF0PE2A/PQ36U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuphBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJZAn6ER1IHnJGjZUex72sVyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGn1BlOBM4LXZTjQllIzrAjqWSRqj9yfzUKbmwSp+EsbIlDZmrvycmNNI6iwLbGVEz1MveTPzP66QmvPUnXCapQckWi8JUEBOT2d+kzxUyIzJLKFPc3krYkCrKjE2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c0Rzovz7nwsWtecfOYE/sD5/AFuDI3M</latexit>

vk
<latexit sha1_base64="F5A0fsm1xuQDgYa9U/NxEANIApA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdwb9Uplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiUXVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AFY1I2+</latexit>

vj
<latexit sha1_base64="ag5qAvqOlUrzcv4p6aLzr6gV67g=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmFkdnYz00tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AV1CNvQ==</latexit>

vi
<latexit sha1_base64="AT7AdNhFUgljpeRhKTGLlxps4q0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Si6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4q1Yfrcu08j6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVzI28</latexit>

vx
<latexit sha1_base64="hDFE90vUe9VJ4vjTFLfqXM6Vp3A=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmHC7OxmppdICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AbIiNyw==</latexit>

vy
<latexit sha1_base64="3J0a+g7w5PP1qGqF0PE2A/PQ36U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuphBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJZAn6ER1IHnJGjZUex72sVyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGn1BlOBM4LXZTjQllIzrAjqWSRqj9yfzUKbmwSp+EsbIlDZmrvycmNNI6iwLbGVEz1MveTPzP66QmvPUnXCapQckWi8JUEBOT2d+kzxUyIzJLKFPc3krYkCrKjE2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c0Rzovz7nwsWtecfOYE/sD5/AFuDI3M</latexit>

vk
<latexit sha1_base64="F5A0fsm1xuQDgYa9U/NxEANIApA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdwb9Uplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiUXVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AFY1I2+</latexit>

vj
<latexit sha1_base64="ag5qAvqOlUrzcv4p6aLzr6gV67g=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmFkdnYz00tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AV1CNvQ==</latexit>

vi
<latexit sha1_base64="AT7AdNhFUgljpeRhKTGLlxps4q0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Si6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4q1Yfrcu08j6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVzI28</latexit>

vx
<latexit sha1_base64="hDFE90vUe9VJ4vjTFLfqXM6Vp3A=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmHC7OxmppdICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AbIiNyw==</latexit>

vy
<latexit sha1_base64="3J0a+g7w5PP1qGqF0PE2A/PQ36U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuphBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJZAn6ER1IHnJGjZUex72sVyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGn1BlOBM4LXZTjQllIzrAjqWSRqj9yfzUKbmwSp+EsbIlDZmrvycmNNI6iwLbGVEz1MveTPzP66QmvPUnXCapQckWi8JUEBOT2d+kzxUyIzJLKFPc3krYkCrKjE2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c0Rzovz7nwsWtecfOYE/sD5/AFuDI3M</latexit>

(b)

vk
<latexit sha1_base64="F5A0fsm1xuQDgYa9U/NxEANIApA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdwb9Uplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiUXVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AFY1I2+</latexit>

vi
<latexit sha1_base64="AT7AdNhFUgljpeRhKTGLlxps4q0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Si6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4q1Yfrcu08j6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVzI28</latexit>

vx
<latexit sha1_base64="hDFE90vUe9VJ4vjTFLfqXM6Vp3A=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4xyiOBDZkdZmHC7OxmppdICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMb2d+c8S1EbF6xHHC/Yj2lQgFo2ilh1H3qVssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fk3Co9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbzxJ0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdliv3V6XqWRZHHk7gFC7Ag2uowh3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AbIiNyw==</latexit>

vy
<latexit sha1_base64="3J0a+g7w5PP1qGqF0PE2A/PQ36U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuphBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJZAn6ER1IHnJGjZUex72sVyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGn1BlOBM4LXZTjQllIzrAjqWSRqj9yfzUKbmwSp+EsbIlDZmrvycmNNI6iwLbGVEz1MveTPzP66QmvPUnXCapQckWi8JUEBOT2d+kzxUyIzJLKFPc3krYkCrKjE2naEPwll9eJc1qxbuqVB+uy7XzPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c0Rzovz7nwsWtecfOYE/sD5/AFuDI3M</latexit>

(c)

Figure 2: (a) Example DNA reads with their overlaps marked. (b) Three different cases that may occur in the overlap graph

constructed over reads in (a) if rx ≺ ry ≺ ri , r j , rk , and overlapper does not report overlap between rx → r j and r j → ry .

(c) Irreducible graph created by removing r j as a transitive read. Connected components in the resulting graph do not change.

is irreducible. Here, an irreducible graph is an overlap graph that

does not contain transitive nodes.

Cost of handling transitive nodes In a streaming regime, we can

maintain irreducibility by eliminating transitive nodes the moment

they are introduced by an incoming node. Maintaining irreducibility

will not require any additional computational effort. However, it

will necessitate a dedicated approach to maintain a coherent list of

connected components.

Recall that by definition, an overlapper detects an edge (u,v) if

there is a significant overlap between the reads corresponding to u

and v . Here, a significant overlap indicates the reads corresponding

to u and v have been derived from neighboring portions of the

underlying genome. If we have an irreducible overlap graph, we are

guaranteed that for an incoming read vi , |N
−(vi)| + |N

+(vi)| ≤ 4

with |N−(vi)| ≤ 2 and |N+(vi)| ≤ 2. This can be shown through

contradiction: Suppose we have an incoming read ri and an irre-

ducible graph Gi−1. Now, suppose |N+(vi)| = 3 (or |N−(vi)| = 3,

both work). By definition, the three reads in N+(vi) that overlap

with ri belong to the same portion of the genome as ri . This is

because their prefixes overlap with ri . Since all three of the reads

belong to the same portion of the genome, then they must also

overlap with one another. Since they all overlap with one another,

at least one of the reads is either contained within another read or

contained within the overlap of the other two reads. This means

that at least one of the reads is transitive which contradicts that

Gi−1 is irreducible. This contradiction shows that both |N+(vi)|

and |N−(vi)| ≤ 2 and therefore |N−(vi)| + |N
+(vi)| ≤ 4 so long as

Gi−1 is irreducible. Notice that this is demonstrated in Figure 2b.

We recognize that the above reasoning holds for the case where

overlap between reads indicates that they are derived from the

neighboring portion of a genome. This assumption is not always

true in the real world (e.g., due to repeats in a genome). However,

as we show later in Section 3.4, our method still performs well even

when the assumption of irreducibility is violated.

As we already discussed, we can guarantee Gi−1 is irreducible

by removing transitive nodes with each incoming read. We will call

removing transitive nodes transitive closures.

3.2 Maintaining graph and components

Given an efficient routine to identify transitive nodes in the stream,

we need a way to maintain both graph structure and the corre-

sponding connected components. Our solution must also be able to

handle deletions of transitive nodes.

To maintain graphGi , we use a simple adjacency list built on top

of a hash table. For each vertexwemaintain a list of its incoming and

outgoing neighbors, and the neighbor lists are kept in a hash table

with key derived from vertex identifier. In this way, we compensate

for the fact that the size of the input stream is not known in advance.

This solution is practical and efficient, and takes into account small

expected size of the neighbor lists.

To store and track connected components, we use a variant of

union-find data structure (UF). Specifically, we represent UF as a

set of key-value pairs ⟨vr ,vc ⟩, where vr is some node mapped to a

component represented by vc (i.e.,vc is the root of the component).

Here, set is again implemented over a hash table, to account for the

fact that the size of UF will be changing dynamically.

Algorithm 2 StreamCC(Gi−1
,UF,vi ,N

+(vi),N
−(vi))

1: Gi−1
= (V i−1

, Ei−1)

2: L← FindTransitive(Gi−1
,vi ,N

+(vi),N
−(vi))

3: E− ← ∅

4: for u ∈ L do

5: UF[u] ← nil

6: E− ← E− ∪ {e | e = (u,w) ∧ e ∈ Ei−1}

7: E− ← E− ∪ {e | e = (w,u) ∧ e ∈ Ei−1}

8: if vi < L then

9: UF[vi] ← vi

10: for u ∈ (N+(vi) ∪ N−(vi)) do

11: if UF[u] < UF[vi] then

12: UF[vi] ← UF[u]

13: for u ∈ (N+(vi) ∪ N−(vi)) do

14: if UF[u] , UF[vi] then

15: P ← {r | UF[r] = u}

16: for w ∈ P do

17: UF[w] ← UF[vi]

18: Ci ← UF ◁ connected components represented via UF

19: V i ← (V i−1 ∪ {vi }) \ L

20: Ei ← Ei−1 \ E−

21: Overlapper(drop L)

3.3 Maintaining connected components over stream

Having all ingredients in place, we summarize our method for

maintaining connected components in Algorithm 2. In the first

step, we identify all transitive nodes that are safe to remove using

Identifying Taxonomic Units in Metagenomic DNA Streams BIOKDD, August 22–27, 2020, San Diego, CA, USA

our FindTransitive routine (line 2). For each transitive node, we

first remove its corresponding entry from UF structure (line 5), and

we identify all associated edges to remove from G (lines 6 and 7).

Because we are using hash tables for both UF and E, both of these

operations can be done in amortized O(|V |). Since G is reduced

by transitive closures, we expect |V | to be a small fraction of all

processed nodes (which we confirmed via experimental results).

If the incoming node vi is not in the list of nodes to remove, we

proceed with insertion in lines 8-17 (explained below). Finally, in

lines 18-21, we remove all edges associated with transitive nodes

along with the transitive nodes and reads themselves.

One significant advantage of our approach is that it can pro-

vide feedback to the overlapper (line 21). Since transitive nodes

correspond to redundant reads, they may be offloaded (or dropped)

to a persistent storage, and processed later as needed, thus sav-

ing memory. Moreover, by maintaining only non-redundant reads,

an overlapper may improve its performance as well (although this

could potentially come at the price of missing some of the overlaps).

Inserting nodes To insert a node vi (lines 8-17), we process how

vi affects UF (lines 9-17). Nodevi can form its own component (if it

has no neighbors), join a component (if its neighbors all belong to

the same component), or merge components (if its neighbors belong

to different components). First, we assume that vi is forming its

own component in line 11. Then, we handle the situation where it

joins a component or merges components. Ifvi has neighbors, then

we identify the root of the component to which vi belongs to (lines

10-12). We note that because we are incrementally maintaining

UF with each incoming read, the resulting structure always has a

depth of one (all nodes are connected to the root). Therefore, the

cost of this step is O
(

|N−(vi) ∪ N+(vi)|
)

, which is constant when

G is irreducible.

In lines 13-17, we handle the situation where components are

merged. We do this by checking if any of vi ’s neighboring nodes

have a different root (line 14). When this is the case, we reassign all

of the nodesw ∈ ci−1
UF[u]

, to UF[w] ← UF[vi]. As a result, neighbors

of vi end up having the same component mapping as vi . Note

that gathering component members in line 15 requires searching

through UF, and hence takes O(|V |) time. However, this cost gets

amortized over the course of execution as shown in experimental

results.

3.4 Tuning to real world data

So far we have been working under the assumption that an overlap-

per correctly identifies suffix-prefix overlaps between reads coming

from the neighboring parts of a genome. Although this assump-

tion is helpful in our understanding of transitive nodes, it is not

entirely realistic. This is because DNA reads, especially in MinION

sequencing, are error prone and typical genomes are repetitive. Con-

sequently, an overlapper may either miss overlap between reads

(e.g., due to sequencing error) or may detect spurious overlaps (e.g.,

due to repetition where similar reads come from different regions

of a genome).

If an overlapper detects an overlap between reads that do not be-

long to neighboring portions of the genome, then this is a false pos-

itive. The connected components of the overlap graph that contains

many false positives may not be a robust representations of OTUs.

This is because false positive edges may link reads from distinct

OTUs, and merge their respective components. If an overlapper

misses an overlap between two reads that belong to neighboring

portions of a genome, then this is a false negative. This can cause

two components that are supposed to be connected to be disjoint.

Disconnected components may also misrepresent the true OTUs,

leading to incorrect assessment of the number of OTUs.

In Figure 3, we show a hypothetical scenario that demonstrates

the impact of false positive/negative edges. In this scenario, node u

is transitive, and therefore it will be removed by transitive closure.

However, in the presence of false positive/negative edges, removing

a transitive node may disconnect our graph. To see why, observe

that nodesw and vi are connected to u, and x and y are connected

to u, and yet these two pairs are not connected to each other. This

could have happened because overlapper missed edges (u, x) and

(vi ,y) or the overlapper incorrectly identified edges (x,u) and (u,y).

In either case, removing u will disconnect the graph. We will call

nodes that disconnect components upon removal articulation points.

Protecting articulation points When transitive nodes are artic-

ulation points, we know this is due to an overlapper error. However,

we can not conclude whether this is due to false positive or false

negative edges. Because of this uncertainty, we cannot assume that

articulation points correctly provide redundant information, and

therefore should not remove them. Moreover, disconnecting com-

ponents would require recomputing all components from scratch

thus degrading computational performance. Furthermore, to even

determine whether a component has become disconnected is a

challenging problem in its own right [17]. Hence, in our approach

we decided to protect articulation points from being removed.

Let nodes corresponding to the reads that contain the redundant

read be anchor nodes. For example, in Figure 3, u is transitive while

vi andw are anchor nodes. Instead of checking whether a node is an

articulation point, we will impose a more strict and inexpensive to

compute criteria: A transitive node must have anchored neighbors

for it to be removed. A node is anchored if it shares an edge with

an anchor node. If all of a transitive node’s neighbors are anchored,

then we can safely remove the transitive node. This is because a

transitive node cannot be an articulation point if its neighbors are

anchored. Anchor nodes must belong to the same component as the

transitive node. If all of the transitive node’s neighbors are anchored,

then they all have at least two points of connection to the rest of the

component: one point is with the transitive node and another point

is with at least one of the anchored nodes. This allows us to safely

remove the transitive node because the neighbors still maintain at

least one point of connection to the rest of the component.

We can modify Algorithm 2 to enforce that we do not remove

transitive nodes that may be articulation points. To do this, it is

sufficient that we remove from set L any node whose neighbors are

not all anchored. For each node u ∈ L, this necessary condition can

be checked inO
(

|N−(u)| + |N+(u)|
)

time because each neighbor of

u requires a constant number of edge queries to see if it is anchored.

Hence, this modification imposes only slight overhead compared

to the original algorithm.

Effects of preserving transitive nodes We will refer to an over-

lap graph that has transitive nodes that are not articulation points

removed as a reduced graph. In a reduced graph, we are guaranteed

BIOKDD, August 22–27, 2020, San Diego, CA, USA

u
<latexit sha1_base64="V2YcBJUkyk71PI3CTUSnLZ6d+m4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lU0GPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUSPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqveVdVtXFdqZ3kcRTiBU7gAD26gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB2VGM3Q==</latexit>

w
<latexit sha1_base64="ECepTnZSZU2ILb5M0FIbtm3DoIA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSp4KokKeix48diC/YA2lM120q7dbMLuRimhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfkzCp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDGz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0LyreZcWtX5Wrp3kcBTiGEzgHD66hCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD3FmM3w==</latexit>

vi
<latexit sha1_base64="AT7AdNhFUgljpeRhKTGLlxps4q0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Si6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4q1Yfrcu08j6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVzI28</latexit>

x
<latexit sha1_base64="/R13JWG8ywa/vxuo2Q87+LiadNs=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6BjOI=</latexit>

y
<latexit sha1_base64="geWC3U0gx2EHNYzWQR7Dt2GG3+Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mqoMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15lWlfpbHUYQTOIUL8OAa6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f4AWM4w==</latexit>

w
<latexit sha1_base64="ECepTnZSZU2ILb5M0FIbtm3DoIA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSp4KokKeix48diC/YA2lM120q7dbMLuRimhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfkzCp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDGz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0LyreZcWtX5Wrp3kcBTiGEzgHD66hCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD3FmM3w==</latexit>

vi
<latexit sha1_base64="AT7AdNhFUgljpeRhKTGLlxps4q0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Si6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4q1Yfrcu08j6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVzI28</latexit>

x
<latexit sha1_base64="/R13JWG8ywa/vxuo2Q87+LiadNs=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IrtookcSLx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6BjOI=</latexit>

y
<latexit sha1_base64="geWC3U0gx2EHNYzWQR7Dt2GG3+Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mqoMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15lWlfpbHUYQTOIUL8OAa6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f4AWM4w==</latexit>

Figure 3: Impact of false positive and false negative edges on connected components discovery when using transitive closure.

Left: vertexvi is added to the graphwith single component consisting of vertices {w,u, x,y}. We consider two cases where edges

(w, x) and (vi ,y) are incorrectly missing, or edges (x,u) and (u,y) are incorrectly introduced. Right: After performing transitive

closure on u, in both cases the graph will consist of three connected components instead of one component.

to not disconnect an existing component. However, in the follow-

ing example, we illustrate how removing transitive nodes may still

result in a fragmented component in the future. Suppose that nodes

u,vi andw precede nodes x andy in Figure 3 (u,vi ,w ≺ x,y). Since

x and y have not been added to the graph yet, node u is not an

articulation point and hence is removed by transitive closure. When

x and y are added to the graph, they must end up in different com-

ponents fromw and vi since u is missing. Although this may affect

the component count, in the experimental results, we show that

connected components are still robust representations of OTUs.

Another observation is that because we cannot remove all tran-

sitive nodes, we will not have the same degree guarantees as in

an irreducible overlap graph. For example, in Figure 3, we cannot

remove u due to it being an articulation point. Later in the process,

we may receive a read r j , that has specifically suffix-prefix overlaps

with the reads corresponding to w and x but also u. In such case,

the out degree of vj will be three, which violates our previously

established degree constraints in irreducible graphs.

Fortunately, in practice, we observe that incoming nodes in the

stream follow an exponential degree distribution, which is a side

effect of transitive closures (see experimental results). If we assume

an exponential distribution, then we can still guarantee that the

expected degree of a node will be constant. Suppose an incoming

node vi has degree of k with probability pk , where pk = (1 −

e−1/κ)e−k/κ andκ is some constant [23]. Then the expected average

degree of an infinite stream is:

E[|N+(vi)| + |N
−(vi)|] =

∞
∑

k=1

kpk

=

∞
∑

k=1

k(1 − e−1/κ)e−k/κ

=

e−1/κ

1 − e−1/κ

= O(κ).

Since the average degree is bounded by κ, as long as κ is a

small constant, maintaining transitive closures on a reduced graph

will still perform similarly to an irreducible overlap graph. In our

experimental results, we found that κ never exceeds three.

4 Experimental Results

To validate our proposed approach we implemented Algorithms 1

and 2, including the extensions from Section 3.4, in a standalone C++

application (the code is open source and available from [33]). We

performed a set of experiments using synthetic as well as the actual,

publicly available, GridION data. In our experiments, we focused on

performance (e.g., run time and memory use) as well as correctness

characteristics (e.g., connected components and OTUs recovery and

convergence) taking into account properties of the overlapper. We

also note that all experiments that involved random sampling or

shuffling of the data were repeated multiple times, and we did not

observe significant difference from the results reported below.

4.1 Test data

To prepare benchmark data, we started from the ERR3152364 dataset

publicly available from the European Nucleotide Archive [3]. This

dataset has been generated using the ONT GridION sequencer,

which is a scaled-up version of the portable MinION platform. We

selected this particular dataset since it represents metagenomic se-

quencing of a mock community with known microbial composition.

Specifically, the dataset is based on the Zymo Community Standards

that comprises five Gram-positive bacteria, three Gram-negative

bacteria, all eight organisms in the same abundance, and two types

of yeast that make 4% of the community (more details regarding

this particular dataset and how sequencing has been performed can

be found in [24]).

To annotate the reads, i.e., assign them to one of the component

organisms in the mock community, we performed read mapping

using the latest blast tool and reference genomes provided by

Zymo [2, 35] (maker of the mock community). For each mapped

read, we selected its target OTU based on the best mapping score

(i.e., to which reference genome it mapped the best). We disre-

garded reads with low mapping scores, and reads that did not map

uniquely. Furthermore, we eliminated very few reads mapping to

yeast genome since they made less than 4% of all reads. The result-

ing dataset consists of 2,998,869 classified (i.e., assigned to an OTU)

reads. We will refer to the resulting dataset as ERR3152364.

We used annotated ERR3152364 dataset to simulate artificial but

realistic reads using the NanoSim tool [32]. Starting from the actual

GridION reads and the corresponding reference genomes, NanoSim

first builds a statistical model of the GridION sequencer, and then

uses this model to derive new reads from the reference genomes.

BIOKDD, August 22–27, 2020, San Diego, CA, USA

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local
alignment search tool. Journal of Molecular Biology 215, 3 (1990), 403ś410.

[3] European Nucleotide Archive. 2019. ERR3152364.
https://www.ebi.ac.uk/ena/data/view/ERR3152364.

[4] K. Berlin, S. Koren, C.S. Chin, J.P. Drake, J.M. Landolin, and A.M. Phillippy.
2015. Assembling large genomes with single-molecule sequencing and locality-
sensitive hashing. Nature Biotechnology 33, 6 (2015), 623ś630.

[5] S.L. Castro-Wallace, C.Y. Chiu, K.K. John, et al. 2016. Nanopore DNA Sequencing
and Genome Assembly on the International Space Station. bioRxiv (2016).

[6] A.T. Dilthey, C. Jain, S. Koren, and A.M. Phillippy. 2019. Strain-level metagenomic
assignment and compositional estimation for long reads with MetaMaps. Nature
Communications 10, 1 (2019), 1ś12.

[7] A. Edwards, A.R. Debbonaire, B. Sattler, L.AJ. Mur, and A.J. Hodson. 2017. Extreme
Metagenomics Using Nanopore DNA Sequencing: A Field Report From Svalbard,
78 N. bioRxiv (2017). https://www.biorxiv.org/content/early/2016/09/07/073965

[8] N.R. Faria, E.C. Sabino, M.R.T. Nunes, et al. 2016. Mobile Real-time Surveillance
of Zika Virus in Brazil. Genome Medicine 8, 1 (2016).

[9] P. Flick, C. Jain, T. Pan, and S. Aluru. 2015. A parallel connectivity algorithm
for de Bruijn graphs in metagenomic applications. In nternational Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, 15.

[10] A.C. Howe, J.K. Jansson, S.A. Malfatti, S.G. Tringe, J.M. Tiedje, and C.T Brown.
2014. Tackling soil diversity with the assembly of large, complex metagenomes.
Proceedings of the National Academy of Sciences 111, 13 (2014), 4904ś4909.

[11] M. Isenburg and J. Shewchuk. 2009. Streaming Connected Component Computa-
tion for Trillion Voxel Images. In MASSIVE Workshop.

[12] S. Juul, F. Izquierdo, A. Hurst, et al. 2015. What’s in My Pot? Real-time Species
Identification on the MinION. bioRxiv (2015).

[13] S. Ko, L. Sassoubre, and J. Zola. 2018. Applications and Challenges of Real-time
Mobile DNA Analysis. In International Workshop on Mobile Computing Systems
and Applications (HotMobile). 1ś6.

[14] L. Laura and F. Santaroni. 2011. Computing strongly connected components
in the streaming model. In International Conference on Theory and Practice of
Algorithms in (Computer) Systems. 193ś205.

[15] H. Li. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics 1 (2018), 7.

[16] H. Lu, F. Giordano, and Z. Ning. 2016. Oxford Nanopore MinION Sequencing
and Genome Assembly. Genomics, Proteomics & Bioinformatics 14, 5 (2016).

[17] R. McColl, O. Green, and D.A. Bader. 2013. A new parallel algorithm for connected
components in dynamic graphs. In International Conference on High Performance
Computing. 246ś255.

[18] MinIT. 2018. MinIT. https://nanoporetech.com/products/minit.
[19] E.W. Myers. 2005. The fragment assembly string graph. Bioinformatics 21, Suppl

2 (2005), ii79śii85.
[20] E.W.Myers. 2016. A history of DNA sequence assembly. It-Information Technology

58, 3 (2016), 126ś132.
[21] E.W. Myers. 2020. The Dresden Azzembler for Long Reads Project (dazzler blog).

https://dazzlerblog.wordpress.com/.
[22] Oxford Nanopore. 2020. Nanopore sequencing of the SARS-CoV-2 virus.

https://nanoporetech.com/about-us/news/covid19-community.
[23] M.E.J. Newman, S.H. Strogatz, and D.J. Watts. 2001. Random graphs with arbitrary

degree distributions and their applications. Physical Review E 64, 2 (2001), 026118.
[24] S.M. Nicholls, J.C. Quick, S. Tang, and N.J. Loman. 2019. Ultra-deep, long-read

nanopore sequencing of mock microbial community standards. Gigascience 8, 5
(2019), giz043.

[25] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J.M. Tiedje, and C.T. Brown. 2012.
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs.
Proceedings of the National Academy of Sciences 109, 33 (2012), 13272ś13277.

[26] M. Pop. 2009. Genome assembly reborn: recent computational challenges. Brief-
ings in Bioinformatics 10, 4 (2009), 354ś366.

[27] J. Quick, N.J. Loman, S. Duraffour, et al. 2016. Real-time, Portable Genome
Sequencing for Ebola Surveillance. Nature 530, 7589 (2016).

[28] SCoRe. 2020. SMARTen.
https://cse.buffalo.edu/score/dokuwiki/doku.php?id=smarten.

[29] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.L. Wu. 2018. Work-efficient
parallel union-find. Concurrency and Computation: Practice and Experience 30, 4
(2018), e4333.

[30] Oxford Nanopore Technologies. 2020. Oxford Nanopore.
https://nanoporetech.com.

[31] M.C. Walter, K. Zwirglmaier, P. Vette, et al. 2017. MinION as Part of a Biomedical
Rapidly Deployable Laboratory. Journal of Biotechnology 250 (2017).

[32] C. Yang, J. Chu, R.L. Warren, and I. Birol. 2017. NanoSim: nanopore sequence read
simulator based on statistical characterization. GigaScience 6, 4 (2017), gix010.

[33] V. Zheng. 2020. Identifying Taxonomic Units in Metagenomic DNA Streams ś
Source Code. https://github.com/vickymzheng/transclosures.

[34] J. Zola. 2014. Constructing similarity graphs from large-scale biological sequence
collections. In IEEE International Parallel & Distributed Processing Symposium
Workshops. 500ś507.

[35] ZymoBIOMICS. 2020. ZymoBIOMICS Mock Community Reference Genome.
https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.
zip.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Proposed Approach
	3.1 Finding transitive nodes
	3.2 Maintaining graph and components
	3.3 Maintaining connected components over stream
	3.4 Tuning to real world data

	4 Experimental Results
	4.1 Test data
	4.2 Overlapper
	4.3 Connected components recovery
	4.4 Performance and memory characteristics
	4.5 Real world data

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References

