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Abstract

With the emergence of portable DNA sequencers, such as Oxford
Nanopore Technology MinION, metagenomic DNA sequencing can
be performed in real-time and directly in the field. However, because
metagenomic DNA analysis is computationally and memory inten-
sive, and the current methods are designed for batch processing, the
current metagenomic tools are not well suited for mobile devices.

In this paper, we propose a new memory-efficient method to
identify Operational Taxonomic Units (OTUs) in metagenomic DNA
streams. Our method is based on finding connected components in
overlap graphs constructed over a real-time stream of long DNA
reads as produced by MinION platform. We propose an efficient al-
gorithm to maintain connected components when an overlap graph
is streamed, and show how redundant information can be removed
from the stream by transitive closures. Through experiments on
simulated and real-world metagenomic data, we demonstrate that
the resulting solution is able to recover OTUs with high precision
while remaining suitable for mobile computing devices.
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1 Introduction

Recently introduced nanopore-based DNA sequencers, specifically
Oxford Nanopore Technology (ONT) MinION [30] , are revolution-
izing how DNA-based studies are performed. Their key advantages
are a small form factor and low energy consumption that make
them fully portable and allow for easy deployment in the field,
outside of a typical laboratory [16, 31]. Moreover, these devices
can sequence DNA molecules directly (i.e., without extra steps like
DNA amplification), and can stream the resulting reads, which are
strings of A,C,G,Ts, in near real-time. This makes them extremely
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attractive for metagenomic studies that involve processing DNA
recovered directly from environmental samples. In recent years,
MinION sequencers have been increasingly used for in situ stud-
ies, including, for example, tracking of COVID19, Ebola and Zika
outbreaks [8, 22, 27], deployments in the Arctic and Antarctic [7],
and even on the International Space Station [5] (we invite reader
to [13] for a broader discussion on mobile DNA sequencing).

One of the most common tasks in metagenomics is identification
of Operational Taxonomic Units (OTUs) represented by clusters of
highly similar DNA reads. OTUs often serve as a proxy representing
microbial composition of the sequenced sample in cases where
reads classification (e.g., by searching a DNA database of known
organisms) is difficult or impossible. However, in the current mobile
DNA sequencing workflows, identification of OTUs, along with
any other DNA analytics, remains challenging. In Figure 1, we
outline the usual mobile DNA sequencing workflow using MinION.
The device streams, in real-time, electric signals characterizing
detected DNA fragments. These signals are basecalled to yield DNA
reads, which are next processed using full-fledged bioinformatics
tools. In a mobile setup, the sequencer is typically coupled with
a portable host device with limited compute power, memory, and
energy supply (e.g., tablet or a dedicated system-on-a-chip like
for example MinlIT [18]). Since the basecalling process is already
memory and compute intensive, the bioinformatics analysis step
has to be either offloaded to a cloud service (which is not always
possible or desired), or postponed until sufficient compute resources
become available. In both cases, the resulting delay between DNA
read acquisition and the analytics is highly undesired from the
end-user’s perspective, as it decreases the overall responsiveness.

In this paper, we focus on the problem of identifying OTUs in mo-
bile DNA read streams generated by MinION portable sequencers.
Our goal is to provide memory and compute efficient solution that
could be deployed as a co-processing routine in portable DNA
sequencing workflows operating on light-weight computational
devices. Our approach is based on finding connected components in
the similarity (or overlap) graphs constructed and streamed directly
over the DNA reads streams. Connected components have been
demonstrated as a robust representation of OTUs [9, 10, 25], and
are very attractive abstraction, as they are starting point to multi-
ple other tasks, including DNA assembly [26], reference-free taxo-
nomic classification (or clustering) [12, 34], or species abundance
estimation [6]. In the paper, we first propose efficient algorithms to
identify transitive closures and maintain connected components in
streaming graphs. We then show how our method can be coupled
with DNA overlapper routine to handle real-world DNA processing
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Figure 1: Schematic representation of mobile DNA sequencing pipeline with MinION. Sequenced reads can be processed locally,
or can be offload to a Back-end as a Service (or Software as a Service) in a cloud. In this work, we aim at OTUs identification

method suitable to run directly on mobile devices.

workloads without sacrificing performance. Through experimen-
tal results we demonstrate that the proposed method is memory
efficient, and can identify OTUs in ONT MinION sequencing data.

The remainder of this paper is organized in the usual way: in
Section 2, we formalize the problem and introduce our notation. In
Section 3, we give detailed description of our approach. We follow
with experimental validation and discussion in Section 4. We close
the paper with a brief review of related work in Section 5, and
conclusions in Section 7.

2 Problem Formulation

We consider mobile DNA sequencing pipeline as presented in
Figure 1. Portable DNA sequencer (specifically ONT MinION) is
attached and controlled by a battery powered mobile host (e.g.,
laptop) that is also responsible for DNA data processing. The se-
quencer delivers, in real-time, raw signals representing detected
DNA molecules. These raw signals are immediately basecalled on
the host machine yielding the actual DNA reads. To illustrate the
rate at which the process happens: in our experiments, we usually
observe that the sequencer delivers around 31 raw signals per sec-
ond. The basecalling rate varies depending on the host machine
capabilities. For example, using NVIDIA Nano Supercomputer-on-a-
Chip with 128 GPGPU cores and 4GB of main memory, the basecall-
ing can be sustained at the rate of approximately 130 reads per sec-
ond. The resulting DNA reads stream is passed for the downstream
analysis. In this work, we are specifically interested in performing
OTUs identification directly on the host that receives streamed
DNA reads.

To formalize our problem, let R = [ry, ..., rp] represent an input
stream of DNA reads generated in real-time by a DNA sequencer.
We have that for each i < jread r; precedes read r; in the stream,
which we will denote by r; < rj. The size of the stream, n, is
not known a priori. For example, a user may decide to terminate
sequencing experiment at any point of time (e.g., after sufficient
data has been collected), or may run experiment for a specified time
interval (e.g., 2h, which could be a small metagenomic experiment).

Given a set of DNA reads, we can construct an overlap graph
G = (V, E) in which vertices V represent the reads, and two vertices,
u and v, are connected by the directed edge, u — v, denoted by
e = (u,v), if there is a significant overlap between suffix of the
read represented by u and prefix of the read represented by v. Here
significant overlap means that the length of the suffix-prefix match
is beyond some predefined threshold, and indicates that the two
reads corresponding to u and v have been derived from neighboring

portions of the unknown underlying genome. For now, we assume
that an overlapper software is available and capable to construct
overlap graph over the stream R (see below).

Let R! be the set of first i reads from the stream R, and Gi_=
(Vi, E') be the overlap graph constructed over RY. Moreover, let G
denote an undirected graph constructed by treating all edges in
E' as undirected. Our goal is to dynamically identify and main-
tain, in a computationally and memory efficient way, a set C! =

{ci, cé, o, clicil} of all connected components found in graph Gi,

where c]". is a set of vertices in component j of graph G. The final
set of connected components, C", will represent the Operational
Taxonomic Units over the set of DNA reads in R, i.e., we will expect
that all reads within a given connected component will be coming
from the same taxonomic unit (e.g., an organism). At this point we
should note that ,in our formulation, we use connected components
as proxy for OTUs - as mentioned earlier, this approach has been
demonstrated as a robust strategy in the past [9, 10, 25] and hence
we adopt it here.

We note that when processing stream R we are concerned only
with graph G’ and set C? (since these structures carry our infor-
mation of interest), and do not have to explicitly store or maintain

graph G. Moreover, currently we are not concerned with the details
of how the overlap graph is computed (e.g., what is the similar-
ity threshold for suffix-prefix comparison, or how DNA reverse-
complements are handled, we discuss this issue in Section 3.4). In
other words, we are assuming that in our mobile DNA sequencing
pipeline, there is a read overlapper tool that operates under the
hardware constraints mentioned earlier. The overlapper handles
incoming stream of reads generated by a sequencer, and creates,
with some precision and sensitivity, a new stream of edges induced
by the incoming read. Specifically, given incoming read r;, let v; be
its corresponding vertex in graph G'. The overlapper provides sets
N*t(v;) € Vil and N™(v;) € V71, such that for each u € N*(v;)
there is an edge (v;, u) € E! and for each u € N™(v;) there exists
an edge (u, v;) € E' (note that in both cases u corresponds to a read
that precedes r; in R).

3 Proposed Approach

Given the above problem formulation, to create and maintain our
desired set C?, we could leverage one of the several existing algo-
rithms for finding connected components in graph streams (we
review them in Section 5). However, this approach has drawbacks
since the current algorithms are tailored for general graph streams
and are oblivious to the domain specific properties of the data.
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Therefore in our approach we take a slightly different route and
exploit the (well known) fact that, in a typical DNA sequencing
experiment, many DNA reads are sharing an overlap, and thus
provide redundant information.

To better illustrate this property, consider a set of reads in Fig-
ure 2a that come from the same region of a genome. Because read
rj overlaps with both r; and rg, and at the same time r; and ry are
overlapping as well, we can eliminate read r; without disconnect-
ing the underlying overlap graph and hence without losing any
critical information. This simplifies the graph on which we have
to perform connected components identification, and reduces the
number of reads (and hence graph nodes) we have to maintain in
the memory. The redundant reads may be marked as such, and can
be offloaded to a persistent storage and processed later, e.g., when
more computational resources are available.

The second observation is that in our problem, we never remove
(arbitrary) nodes from the overlap graph. This simplifies data man-
agement as we can adopt tested data structures such as disjoint-set
to identify connected components [14].

In our approach, outlined in the right-most panel of Figure 1, we
exploit both properties at the same time: we first provide efficient
strategy to identify redundant reads in a stream, and then use a
variant of union-find to track connected components. In the pro-
cess, we provide feedback information to the overlapper to further
improve end-to-end performance on the entire workflow.

3.1 Finding transitive nodes

The first step in our approach is to decide whether an incoming
read is redundant, and hence can be removed from further pro-
cessing. Let us consider again example reads in Figure 2a, and for
the purpose of presentation, let us assume that ry < ry <r;,7j, 7.
Depending on which of the reads r;, 7}, ri arrives last, we have
one of three possible overlap graphs as shown in Figure 2b. Here,
read r; is represented by vertex v;, and shaded nodes correspond
to the last arriving read. Any redundant read, in our case read rj,
shares suffix-prefix overlap with at least two other reads, in our
case r; and ri. Now let us consider an induced sub-graph over the
redundant vertex (i.e., vertex corresponding to the redundant read,
in our case v;) and any two of its adjacent vertices that are also
adjacent to each other. In this sub-graph, one of the nodes must
have two outgoing edges, one must have two incoming edges, and
one must have one incoming and one outgoing edge (this node
must correspond to a redundant read). Back to Figure 2b, we can
see that node v; is redundant irrespective of the order in which
reads are processed due to the transitive edge (vg, v;). We will call
nodes that introduce transitive edges between two other nodes
transitive, and since they correspond to redundant reads, we will
eliminate them from processing.

For each incoming read, we now want to identify if it introduces
any transitive nodes. This can be done by considering all possible
triples it forms with its adjacent nodes. For instance, to find the
transitive nodes introduced by the arriving node v; (i.e., read r;)
in the first example in Figure 2b, we need to check if it has a pair
of incoming neighbors u, w € N~ (v;) that share an edge (u, w) or
(w, u). In the second example, to find the transitive nodes introduced
by the arriving node, we check if it has an incoming neighbor
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u € N™(vj) and outgoing neighbor w € N*(v;) that share an edge
(u, w). Finally, to find the transitive nodes introduced by the arriving
node vy, we need to check if it has a pair of outgoing neighbors
u, w € N~ (vp) that share an edge (u, w) or (w, u).

In general, we notice that there are three ways an incoming read
can introduce transitive nodes. However, because we do not know
which case we are dealing with, we need to consider all three. This
intuition is captured in Algorithm 1.

For each incoming read v, the input to the algorithm are all
overlaps with the previously processed nodes (represented by sets
N*(v) and N™(v)), and the current irreducible overlap graph G
(we explain irreducibility below). In lines 3-9, we check if v has
a pair of outgoing neighbors u,w € N*(v) that share an edge
(u,w) € E or (w,u) € E. This scenario corresponds to the last case
in Figure 2b. In lines 10-16, we check if v has a pair of incoming
neighbors u, w € N~ (v) that share an edge (v, w) € E or (w,u) € E.
This scenario corresponds to the first case in the Figure 2b. Finally,
in lines 17-21, we check if v has a pair of neighbors u, w where
u € N*(v) and w € N~ (v) share an edge (w, u) € E. This scenario
corresponds to the middle case in the Figure 2b.

Algorithm 1 FINDTRANSITIVE(G, v, N* (v), N~ (v))

: G=(V,E) < Gisirreducible
: L « () < set of transitive nodes
: foru € N*(v) do
for w € N*(v),u # wdo
ifuée LAw¢Lthen
if (u, w) € E then
L« LU{u}
else if (w,u) € E then
L« LU{w}
10: foru € N™(v) do
11:  forwe N (v),u #wdo

b A A S o L

12: ifu¢ LAw¢Lthen
13: if (u, w) € E then

14: L« LU{w}

15: else if (w,u) € E then
16: L« LU{u}

17: for u € N*(v) do
18:  forw e N~ (v) do

19: ifuée LAw¢Lthen
20: if (w,u) € E then
21: L« LU{v}

22: return L

Although the processing steps in Algorithm 1 are simple, the
entire procedure can be computationally expensive for a mobile
system and streaming regime (keeping in mind that it is executed for
each incoming read). Because we are searching for edges between
incoming neighbors, edges between outgoing neighbors, and edges
between incoming and outgoing neighbors, the process requires
O (IN(v3)| + |N+(U,~)|)2 edge queries. This is problematic, as v;
may have a high degree, and each edge query can be expensive
depending on how G is stored in memory. However, we can make
certain guarantees about our incoming node degree as long as G'~!
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Figure 2: (a) Example DNA reads with their overlaps marked. (b) Three different cases that may occur in the overlap graph
constructed over reads in (a) if rx < ry < r,7j, 1, and overlapper does not report overlap between ry — rj and r; — ry.
(c) Irreducible graph created by removing r; as a transitive read. Connected components in the resulting graph do not change.

is irreducible. Here, an irreducible graph is an overlap graph that
does not contain transitive nodes.

Cost of handling transitive nodes In a streaming regime, we can
maintain irreducibility by eliminating transitive nodes the moment
they are introduced by an incoming node. Maintaining irreducibility
will not require any additional computational effort. However, it
will necessitate a dedicated approach to maintain a coherent list of
connected components.

Recall that by definition, an overlapper detects an edge (u, v) if
there is a significant overlap between the reads corresponding to u
and v. Here, a significant overlap indicates the reads corresponding
to u and v have been derived from neighboring portions of the
underlying genome. If we have an irreducible overlap graph, we are
guaranteed that for an incoming read v;, [N~ (v;)| + |[N*(v;)| < 4
with [N~ (v;)| < 2 and [N*(v;)| < 2. This can be shown through
contradiction: Suppose we have an incoming read r; and an irre-
ducible graph G'~1. Now, suppose |[N*(v;)| = 3 (or [N~ (v;)| = 3,
both work). By definition, the three reads in N*(v;) that overlap
with r; belong to the same portion of the genome as r;. This is
because their prefixes overlap with r;. Since all three of the reads
belong to the same portion of the genome, then they must also
overlap with one another. Since they all overlap with one another,
at least one of the reads is either contained within another read or
contained within the overlap of the other two reads. This means
that at least one of the reads is transitive which contradicts that
G is irreducible. This contradiction shows that both |[N*(v;)]
and [N~ (v;)| < 2 and therefore [N~ (v;)| + [Nt (v;)| < 4 so long as
G'71 is irreducible. Notice that this is demonstrated in Figure 2b.

We recognize that the above reasoning holds for the case where
overlap between reads indicates that they are derived from the
neighboring portion of a genome. This assumption is not always
true in the real world (e.g., due to repeats in a genome). However,
as we show later in Section 3.4, our method still performs well even
when the assumption of irreducibility is violated.

As we already discussed, we can guarantee G' ! is irreducible
by removing transitive nodes with each incoming read. We will call
removing transitive nodes transitive closures.

3.2 Maintaining graph and components

Given an efficient routine to identify transitive nodes in the stream,
we need a way to maintain both graph structure and the corre-
sponding connected components. Our solution must also be able to
handle deletions of transitive nodes.

To maintain graph G’, we use a simple adjacency list built on top
of a hash table. For each vertex we maintain a list of its incoming and
outgoing neighbors, and the neighbor lists are kept in a hash table
with key derived from vertex identifier. In this way, we compensate
for the fact that the size of the input stream is not known in advance.
This solution is practical and efficient, and takes into account small
expected size of the neighbor lists.

To store and track connected components, we use a variant of
union-find data structure (UF). Specifically, we represent UF as a
set of key-value pairs (vy, v¢), where v, is some node mapped to a
component represented by v, (i.e., v is the root of the component).
Here, set is again implemented over a hash table, to account for the
fact that the size of UF will be changing dynamically.

Algorithm 2 STREAMCC(G'~1, UF, v;, N* (v;), N~ (v;))

. Gi—l — (Vi_l,Ei_l)
. L < FINDTRANSITIVE(G' ™1, v;, N*(v;), N~ (v;))
c ET«— 0
: foru e Ldo
UF[u] « nil
E-—E Ufele=(uw)AecE™1}
E-—E Ufe|le=(wu)AecE™1}
: if v; ¢ L then
UF[v;] « v;
for u € (NT(v;) UN~(v;)) do
if UF[u] < UF[v;] then

UF[v;] « UF[u]

for u € (NT(v;) UN~(v;)) do
if UF[u] # UF[v;] then
P «— {r | UF[r] = u}
for we Pdo
UF[w] « UF[v;]

. C! « UF < connected components represented via UF
Vi (VIFLU {o; )\ L
. El « EF-1\ E™
: OVERLAPPER(drop L)

R A U A

L N T S
= S 0 ® N U Wy o= O

3.3 Maintaining connected components over stream

Having all ingredients in place, we summarize our method for
maintaining connected components in Algorithm 2. In the first
step, we identify all transitive nodes that are safe to remove using
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our FINDTRANSITIVE routine (line 2). For each transitive node, we
first remove its corresponding entry from UF structure (line 5), and
we identify all associated edges to remove from G (lines 6 and 7).
Because we are using hash tables for both UF and E, both of these
operations can be done in amortized O(|V|). Since G is reduced
by transitive closures, we expect |V| to be a small fraction of all
processed nodes (which we confirmed via experimental results).
If the incoming node v; is not in the list of nodes to remove, we
proceed with insertion in lines 8-17 (explained below). Finally, in
lines 18-21, we remove all edges associated with transitive nodes
along with the transitive nodes and reads themselves.

One significant advantage of our approach is that it can pro-
vide feedback to the overlapper (line 21). Since transitive nodes
correspond to redundant reads, they may be offloaded (or dropped)
to a persistent storage, and processed later as needed, thus sav-
ing memory. Moreover, by maintaining only non-redundant reads,
an overlapper may improve its performance as well (although this
could potentially come at the price of missing some of the overlaps).

Inserting nodes To insert a node v; (lines 8-17), we process how
v; affects UF (lines 9-17). Node v; can form its own component (if it
has no neighbors), join a component (if its neighbors all belong to
the same component), or merge components (if its neighbors belong
to different components). First, we assume that v; is forming its
own component in line 11. Then, we handle the situation where it
joins a component or merges components. If v; has neighbors, then
we identify the root of the component to which v; belongs to (lines
10-12). We note that because we are incrementally maintaining
UF with each incoming read, the resulting structure always has a
depth of one (all nodes are connected to the root). Therefore, the
cost of this step is O ([N~ (v;) U N*(v;)|), which is constant when
G is irreducible.

In lines 13-17, we handle the situation where components are
merged. We do this by checking if any of v;’s neighboring nodes
have a different root (line 14). When this is the case, we reassign all
of the nodes w € cbﬁu], to UF[w] « UF[v;]. As a result, neighbors
of v; end up having the same component mapping as v;. Note
that gathering component members in line 15 requires searching
through UF, and hence takes O(|V|) time. However, this cost gets
amortized over the course of execution as shown in experimental
results.

3.4 Tuning to real world data

So far we have been working under the assumption that an overlap-
per correctly identifies suffix-prefix overlaps between reads coming
from the neighboring parts of a genome. Although this assump-
tion is helpful in our understanding of transitive nodes, it is not
entirely realistic. This is because DNA reads, especially in MinION
sequencing, are error prone and typical genomes are repetitive. Con-
sequently, an overlapper may either miss overlap between reads
(e.g., due to sequencing error) or may detect spurious overlaps (e.g.,
due to repetition where similar reads come from different regions
of a genome).

If an overlapper detects an overlap between reads that do not be-
long to neighboring portions of the genome, then this is a false pos-
itive. The connected components of the overlap graph that contains
many false positives may not be a robust representations of OTUs.
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This is because false positive edges may link reads from distinct
OTUs, and merge their respective components. If an overlapper
misses an overlap between two reads that belong to neighboring
portions of a genome, then this is a false negative. This can cause
two components that are supposed to be connected to be disjoint.
Disconnected components may also misrepresent the true OTUs,
leading to incorrect assessment of the number of OTUs.

In Figure 3, we show a hypothetical scenario that demonstrates
the impact of false positive/negative edges. In this scenario, node u
is transitive, and therefore it will be removed by transitive closure.
However, in the presence of false positive/negative edges, removing
a transitive node may disconnect our graph. To see why, observe
that nodes w and v; are connected to u, and x and y are connected
to u, and yet these two pairs are not connected to each other. This
could have happened because overlapper missed edges (u, x) and
(vi, y) or the overlapper incorrectly identified edges (x, u) and (u, y).
In either case, removing u will disconnect the graph. We will call
nodes that disconnect components upon removal articulation points.

Protecting articulation points When transitive nodes are artic-
ulation points, we know this is due to an overlapper error. However,
we can not conclude whether this is due to false positive or false
negative edges. Because of this uncertainty, we cannot assume that
articulation points correctly provide redundant information, and
therefore should not remove them. Moreover, disconnecting com-
ponents would require recomputing all components from scratch
thus degrading computational performance. Furthermore, to even
determine whether a component has become disconnected is a
challenging problem in its own right [17]. Hence, in our approach
we decided to protect articulation points from being removed.

Let nodes corresponding to the reads that contain the redundant
read be anchor nodes. For example, in Figure 3, u is transitive while
v; and w are anchor nodes. Instead of checking whether a node is an
articulation point, we will impose a more strict and inexpensive to
compute criteria: A transitive node must have anchored neighbors
for it to be removed. A node is anchored if it shares an edge with
an anchor node. If all of a transitive node’s neighbors are anchored,
then we can safely remove the transitive node. This is because a
transitive node cannot be an articulation point if its neighbors are
anchored. Anchor nodes must belong to the same component as the
transitive node. If all of the transitive node’s neighbors are anchored,
then they all have at least two points of connection to the rest of the
component: one point is with the transitive node and another point
is with at least one of the anchored nodes. This allows us to safely
remove the transitive node because the neighbors still maintain at
least one point of connection to the rest of the component.

We can modify Algorithm 2 to enforce that we do not remove
transitive nodes that may be articulation points. To do this, it is
sufficient that we remove from set L any node whose neighbors are
not all anchored. For each node u € L, this necessary condition can
be checked in O (][N~ (u)| + [N (u)|) time because each neighbor of
u requires a constant number of edge queries to see if it is anchored.
Hence, this modification imposes only slight overhead compared
to the original algorithm.

Effects of preserving transitive nodes We will refer to an over-
lap graph that has transitive nodes that are not articulation points
removed as a reduced graph. In a reduced graph, we are guaranteed
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Figure 3: Impact of false positive and false negative edges on connected components discovery when using transitive closure.
Left: vertex v; is added to the graph with single component consisting of vertices {w, u, x, y}. We consider two cases where edges
(w, x) and (vj, y) are incorrectly missing, or edges (x, u) and (u, y) are incorrectly introduced. Right: After performing transitive
closure on u, in both cases the graph will consist of three connected components instead of one component.

to not disconnect an existing component. However, in the follow-
ing example, we illustrate how removing transitive nodes may still
result in a fragmented component in the future. Suppose that nodes
u, v; and w precede nodes x and y in Figure 3 (u, v;, w < x, ). Since
x and y have not been added to the graph yet, node u is not an
articulation point and hence is removed by transitive closure. When
x and y are added to the graph, they must end up in different com-
ponents from w and v; since u is missing. Although this may affect
the component count, in the experimental results, we show that
connected components are still robust representations of OTUs.

Another observation is that because we cannot remove all tran-
sitive nodes, we will not have the same degree guarantees as in
an irreducible overlap graph. For example, in Figure 3, we cannot
remove u due to it being an articulation point. Later in the process,
we may receive a read r;, that has specifically suffix-prefix overlaps
with the reads corresponding to w and x but also u. In such case,
the out degree of v; will be three, which violates our previously
established degree constraints in irreducible graphs.

Fortunately, in practice, we observe that incoming nodes in the
stream follow an exponential degree distribution, which is a side
effect of transitive closures (see experimental results). If we assume
an exponential distribution, then we can still guarantee that the
expected degree of a node will be constant. Suppose an incoming
node v; has degree of k with probability py, where pp. = (1 -
e~ 1/%)e=k/¥ and k is some constant [23]. Then the expected average
degree of an infinite stream is:

e
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Since the average degree is bounded by «k, as long as k is a
small constant, maintaining transitive closures on a reduced graph
will still perform similarly to an irreducible overlap graph. In our
experimental results, we found that k never exceeds three.

4 Experimental Results

To validate our proposed approach we implemented Algorithms 1
and 2, including the extensions from Section 3.4, in a standalone C++
application (the code is open source and available from [33]). We
performed a set of experiments using synthetic as well as the actual,
publicly available, GridION data. In our experiments, we focused on
performance (e.g., run time and memory use) as well as correctness
characteristics (e.g., connected components and OTUs recovery and
convergence) taking into account properties of the overlapper. We
also note that all experiments that involved random sampling or
shuffling of the data were repeated multiple times, and we did not
observe significant difference from the results reported below.

4.1 Test data

To prepare benchmark data, we started from the ERR3152364 dataset
publicly available from the European Nucleotide Archive [3]. This
dataset has been generated using the ONT GridION sequencer,
which is a scaled-up version of the portable MinION platform. We
selected this particular dataset since it represents metagenomic se-
quencing of a mock community with known microbial composition.
Specifically, the dataset is based on the Zymo Community Standards
that comprises five Gram-positive bacteria, three Gram-negative
bacteria, all eight organisms in the same abundance, and two types
of yeast that make 4% of the community (more details regarding
this particular dataset and how sequencing has been performed can
be found in [24]).

To annotate the reads, i.e., assign them to one of the component
organisms in the mock community, we performed read mapping
using the latest blast tool and reference genomes provided by
Zymo [2, 35] (maker of the mock community). For each mapped
read, we selected its target OTU based on the best mapping score
(i.e., to which reference genome it mapped the best). We disre-
garded reads with low mapping scores, and reads that did not map
uniquely. Furthermore, we eliminated very few reads mapping to
yeast genome since they made less than 4% of all reads. The result-
ing dataset consists of 2,998,869 classified (i.e., assigned to an OTU)
reads. We will refer to the resulting dataset as ERR3152364.

We used annotated ERR3152364 dataset to simulate artificial but
realistic reads using the NanoSim tool [32]. Starting from the actual
GridION reads and the corresponding reference genomes, NanoSim
first builds a statistical model of the GridION sequencer, and then
uses this model to derive new reads from the reference genomes.
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Since NanoSim reports from which position in the genome each
read has been derived, we can use this information to create a
perfect overlapper, i.e., an overlapper in which no false positive
or false negative edges are created. This enables us also to control
for overlapper performance (e.g., precision and sensitivity) when
assessing performance of our algorithms. We refer to the resulting
dataset as Sim. The dataset consists of 200,000 reads, where each of
the eight reference genomes is represented by 25,000 reads.

For reproducibility purposes, we provide all details regarding
data preparation in the accompanying web page [33].

4.2 Overlapper

Detection of prefix-suffix overlaps in DNA reads is extensively
studied topic, especially in the context of long reads such as those
produced by MinION platform. However, although there are several
overlappers available (e.g., daligner [21], minimap2 [15], MHAP [4],
ELaSTIC [34]), these tools do not provide any formal guarantees
with respect to the quality and correctness of the discovered over-
laps. Moreover, they currently are not meant to work in a streaming
regime, and are not designed to incorporate potential feedback pro-
vided by our algorithms (e.g., line 21 in Algorithm 1). We note that
right now we are in the process of developing a custom streaming-
based overlap tool specifically for mobile DNA analytics workflows,
which will address the above shortcomings, and will complement
the solutions presented in this paper. Taking all of that into account,
in order to test our solution while controlling for overlapper quality
and performance, we decided to simulate overlap graph streaming
based on overlaps detected via batch processing.

To simulate the process for the ERR3152364 dataset, we leveraged
directly information provided by the blast tool when performing
reads assignment to OTUs (as explained in the previous section).
Specifically, we assumed that two reads overlap if they are mapped
by blast to the same portions of the underlying reference genome
such that they have a suffix-prefix overlap of at least size 1,000
nucleotides/characters (based on [20] we consider such overlap
length significant). To simulate an overlapper for the Sim dataset,
we used a similar approach. However, instead of using blast, we
directly used the exact mapping information provided by NanoSim
(as explained earlier). In both cases, we obtained a complete overlap
graph a priori, and hence we were able to directly emulate a stream
of reads R and their neighborhoods N* and N~.

4.3 Connected components recovery

In the first experiment, we tested how maintaining transitive clo-
sures, hence eliminating redundant reads, affects our ability to
recover connected components and their corresponding OTUs. To
do this, we constructed a series of overlap graphs over the Sim
dataset, in each case randomly removing a fraction of edges to
introduce false negatives. For each such created overlap graph, we
simulated a streaming process and used our software to identify
connected components from the stream. To obtain the actual num-
ber of connected components in a given overlap graph, we used
standard union-find algorithm on the graph without streaming.
‘We note that in the ideal scenario, both methods should be iden-
tifying eight connected components, each corresponding to one
OTU in the dataset. The results of this experiment are summarized
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Figure 4: Number of identified connected components de-
pending on the percentage of edges retained in the Sim
overlap graph that has eight components (y-axis is in log
scale). Actual means components identified using union-
find on the entire graph, Transitive means components
identified using our method. Significant means components
with more than three nodes.

in Figure 4. Here we use Actual to denote the number of connected
components that are identifiable in the graph, and Transitive to
denote the number of connected components recovered when the
graph is processed using our method.

From the figure we can make several observations. First, in order
to correctly recover all eight OTUs the overlap graph must contain
atleast 50% of edges. When edge retention is below 50%, the missing
edges cause the graph to become highly disconnected and hence
components no longer uniquely identify OTUs. Second, irrespective
of the edge retention, transitive closures introduce exponentially
more connected components than there are in the unprocessed
graph. This is not entirely surprising considering our previous dis-
cussion on how missing edges can lead to disconnected nodes with
transitive closures. As edge retention increases, so does expected
node degree of the nodes in the underlying graph. This in turn
introduces more redundancies therefore increasing the number of
transitive closures performed. In our tests, the impact of transitive
closures become less pronounced only after exceeding 95% edge
retention resulting in sharp dip visible in Figure 4.

While these results may suggest poor performance of our method,
the picture drastically changes if we consider only connected com-
ponents with more than one node. In Figure 5, we inspect the com-
ponent size distribution of components recovered in the streamed
and actual graph. As edge retention increases, we observe that
there are eight distinct components along with primarily singleton
components. This clear gap in component sizes allows us to easily
distinguish significant components that correspond to the target
OTUs. If we assume that significant components are components
of at least size three (denoted by Significant in Figure 4), then from
Figure 4, we can see that we quickly converge to the desired number
of components representing OTUs in both our streamed and actual
graph. We note that we observe the same behavior in real world
dataset ERR3152364.
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along with primarily singleton components.

4.4 Performance and memory characteristics

In the second set of experiments, we accessed performance char-
acteristics of our algorithm in terms of runtime and memory use.
As discussed earlier, the cost of performing transitive closures and
incrementally maintaining connected components depends on the
average degree of each incoming node, irrespective of the perfor-
mance of the overlapper. In Figure 6, we plot the incoming node
degree distribution against the fitted exponential distribution when
streaming the Sim dataset. From the figure, we can see that the ex-
ponential distribution indeed closely fits our data for various levels
of edge retention. Moreover, k (parameter of the underlying expo-
nential distribution) consistently remains a small constant. This
confirms that transitive closures can be performed in amortized
constant time. We note that we observe the same behavior in real
world dataset ERR3152364.

In Figure 7, we show how eliminating redundant reads through
transitive closures affects storage rates throughout the streaming
process. Here, storage rate refers to the fraction of reads as well as
their corresponding graph nodes that we preserve in the main mem-
ory. From this figure, we can see that as edge retention improves
(i.e., we have fewer false negatives), we store a smaller percentage
of nodes. This makes sense intuitively because increased edge reten-
tion introduces more redundancies, which lead to more transitive
closures. The same reasoning can be applied to explain why storage
use improves over time. Specifically, as more nodes are introduced,
more overlaps are being detected and hence more redundancies are
discovered and eliminated via transitive closures.

To assess the cost of incrementally maintaining connected com-
ponents, as discussed in Section 3.3, we show the effect of incoming
reads on component formation in Figure 8. Initially, when nodes
enter the graph, they form singletons. Then, the components grow
larger and begin to merge thus reducing the number of components.
Finally, the number levels off and remains constant. This indicates
that as components get larger, merging becomes less frequent, sup-
porting our claim that the costly task of merging components gets
amortized over the course of execution.

4.5 Real world data

In the final set of experiments, we assessed how effective our pro-
posed solution is in recovering OTUs in real world data. We clas-
sified all reads in the ERR3152364 dataset as discussed earlier, and
used the resulting classification to assign them to OTUs. To obtain

the actual number of connected components in the ERR3152364
overlap graph, we used again standard union-find algorithm. The
algorithm returned ten connected components and nine of them
were significant instead of the expected eight. This discrepancy
between the number of connected components and the number
of OTUs is explained by the complexity of one of the reference
genomes. Specifically, the genome of Salmonella is highly repeti-
tive, which causes repetitive reads to cluster in one region of the
genome thus not providing sufficient information to connect other
regions.

We simulated the streaming process of the ERR3152364 overlap
graph, and recorded the same statistics as for the simulated data.
Our method was able to recover all nine significant components
(and thus their corresponding OTUs) after processing 1,504,145
reads (about half of all reads). In our experiments, we found that
the exponential degree distribution was a good fit with R? = 0.81
and k = 2.4. This confirms that the assumption of amortized con-
stant time for performing transitive closures holds for the real world
dataset. Finally, throughout processing, the maximum number of
nodes stored was 28,524 (less than 1% of total reads processed)
clearly demonstrating effectiveness of maintaining transitive clo-
sures.

5 Related Work

The idea of using transitive closure to reduce computational com-
plexity has been used previously in the context of DNA assembly,
where DNA reads are pieced together to reconstruct longer DNA
strings [26]. For example, in [19], Myers discusses DNA string
graphs in which vertices represent prefixes and suffixes of reads,
and edges represent non-matching substrings between two over-
lapping reads. He then shows that transitive edges can be removed
without affecting the ability to reconstruct the assembly. While
in our approach we essentially exploit the same principle, i.e., re-
dundancy of overlapping reads, our focus is on streaming and not
memory prohibitive batch processing.

Disjoint-set forests, also known as union-find, is the most ef-
ficient data structure to find connected components in a graph.
Because of its popularity and versatility, there are several adapta-
tions of union-find for various computational setups. For example,
Isenburg and Shewcuk [11] adapted the union-find algorithm for a
streaming 3D grid network to use in image processing, Agarwal et al.
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Figure 8: Number of connected components identified as a
function of the number of reads processed for cases where
different percentage of edges are retained in the Sim dataset.

considered I/O efficient solutions for terrain analysis [1], and Sim-
siri et al. studied work-efficient parallel adaptations of union-find
for incremental graph connectivity [29]. Laura and Santaroni intro-
duced the first semi-streaming algorithm that makes a few passes to
find strongly connected components in a directed graph [14]. These
methods, however, are primarily focused on general streams where
graph nodes and edges can be inserted or removed at any point of
time. Moreover, they assume that the executing environment has
significant main memory available. In our case, the problem has a
slightly different flavor. On the one hand, the stream is easier to
handle because we consider only node insertions and specific node

removals. Due to the nature of metagenomic reads, we can also
expect bounded number of edges introduced with every node inser-
tion. On the other hand, in any mobile setup we have very limited
access to the main memory and computational power (typically,
available memory is around 4GB). Consequently, our primary focus
is on maintaining minimal memory footprint, while delivering the
desired statistics.

6 Conclusion

The growing popularity and rapid adoption of portable DNA se-
quencing platforms necessitates the development of new compu-
tational strategies to enable in situ DNA analytics. In this work,
we introduce OTUs identification method tailored for low-memory
mobile devices. The method can be used to accelerate end-to-end
mobile execution of multiple types of DNA analysis, including
assembly, metagenomic classification, etc.

The key element of our solution is memory efficient handling
of connected components emerging in streams of DNA reads and
their overlap graphs. Through formal and experimental analysis,
we show that if the degree of nodes in the streamed overlap graph
follows exponential distribution (which is the case in real-world
instances) our method has minimal computational cost of handling
incoming reads. Consequently, the method is ideal for mobile com-
puting.

While our proposed solution addresses the question of how to
identify components (or OTUs) in a stream, it is based on the as-
sumption that the processing pipeline includes an overlapper that
is able to work efficiently over the streamed DNA reads. While
such overlappers are not yet readily available, we are currently
investigating an adaptive overlapper operating directly on the raw
signals produced by MinION sequencer (i.e., bypassing basecalling
stage). Both components are part of SMARTEn [28], our broader
effort in mobile DNA processing.
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