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Fig. 1. To simplify the topology of a 3D shape (a), performing cutting alone (b) or filling alone (c) results in excessive changes, such as removing large
components (box C in (b)), creating long bridges to distant islands (box A in (c)) and large patches to fill in a handle (box B in (c)). Given a set of pre-computed
cuts and fills, our method optimally selects a subset of them to maximally simplify topology while minimizing the impact on the geometry (d). (f: number of

connected components, handles, and cavities; g: geometric cost)

We present a novel algorithm for simplifying the topology of a 3D shape,
which is characterized by the number of connected components, handles,
and cavities. Existing methods either limit their modifications to be only
cutting or only filling, or take a heuristic approach to decide where to cut or
fill. We consider the problem of finding a globally optimal set of cuts and

fills that achieve the simplest topology while minimizing geometric changes.

We show that the problem can be formulated as graph labelling, and we
solve it by a transformation to the Node-Weighted Steiner Tree problem.
When tested on examples with varying levels of topological complexity, the
algorithm shows notable improvement over existing simplification methods
in both topological simplicity and geometric distortions.
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1 INTRODUCTION

Shapes reconstructed from raw data often include many topological
features, such as connected components, topological handles, and
cavities (i.e., voids inside the shape). While some of these features are
intended, many could be artifacts of the reconstruction (e.g., Figure
1 (a)). Excessive amount of topological features can be detrimental
to many geometry processing tasks, including parameterization,
shape analysis, and physical simulations.

A topological feature can be removed either by cutting contents
from the shape or filling the shape with new contents (see Figure 2).
For example, a handle can be removed by cutting open the handle
body or filling in the handle hole. A connected component can be
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Fig. 2. Atopological feature (e.g., a connected component, handle, or cavity)
can be removed by either cutting or filling.

removed by either deleting that component (i.e., cutting) or connect-
ing it with another component (i.e., filling). Similarly, a cavity can be
removed by either filling the cavity or cutting a tunnel that connects
the cavity with the exterior. While different operations may lead to
the same topological outcome, they can have very different impact
on the geometry of the shape. Ideally, a topological simplification
algorithm should remove as many topological features as possible
while changing the geometry as little as possible.

Many existing methods for topological simplification are mono-
tonic, in that they perform only cutting or only filling to the entire
shape. These methods can make excessive changes to the shape
when there are features that are better to be cut (e.g., the small
islands in Figure 1 (a) box A and the thin handle in box B) as well as
features that are better to be filled (e.g., the big component in box
C). Few methods are non-monotonic, in that they cut some features
and fill others. In these methods, however, the decision of where
to cut or fill is made heuristically to locally minimize the change
to the geometry. Such heuristics are prone to make globally sub-
optimal choices, particularly when the decision of cutting or filling
one topological feature affects how other features can be removed
(see more discussion in the next section).

In this paper, we attempt to find the globally optimal set of cuts
and fills that maximally simplifies the topology while minimizing
geometric changes. Leveraging existing monotonic simplification
methods, we take as input a pre-computed set of cuts and fills, each
associated with some geometric cost (e.g., total volume of the cut
or fill). The problem then becomes selecting a subset of these cuts
and fills with the minimal total geometric cost, such that applying
them to the shape maximally reduces the number of connected
components, handles, and cavities.

To solve the optimal selection problem, we make two techni-
cal contributions. First, we re-formulated the problem as graph
labelling, where the given cuts and fills are nodes in the graph and
a binary label indicates whether a cut or fill is selected (Section 5).
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While the graph formulation makes the problem more computation-
friendly, finding the optimal labelling is still challenging, since the
labelling energy involves the number of connected components in
the labelled sub-graphs. Our second contribution is an algorithm
for solving this labelling problem by transforming it to the well-
known Node-Weighted Steiner Tree (NWST) problem (Section 6).
The transformation allows us to leverage state-of-the-art solvers of
NWST (e.g., [Leitner et al. 2018]) to find a near-optimal labelling.

We demonstrated our algorithm on cuts and fills produced by two
popular monotonic simplification methods, morphological opening
and closing [Nooruddin and Turk 2003], and topology-controlled
inflation and deflation [Bischoff and Kobbelt 2002; Kriegeskorte and
Goebel 2001; Szymczak and Vanderhyde 2003]. When tested on a
suite of shapes with a wide range of topological complexity, our
method consistently achieves lower geometric cost than existing
simplification methods while being equally, if not more, effective
in reducing topological complexity (e.g., Figure 1 (d), and more in
Section 7).

2 RELATED WORK

We briefly review existing methods for simplifying the topology of
3D shapes, with an emphasis on how the decisions of where to cut
or fill are made. In-depth discussions of many of these methods can
be found in the survey [Attene et al. 2013]. We conclude with a brief
discussion on topology-aware surface reconstruction methods.

Monotonic methods. These methods perform only cutting or only
filling to the entire shape. A common monotonic approach to re-
moving topological handles is to first represent the shape (resp.
its complement) by a weighted connectivity graph, where the edge
weight encodes the geometric cost of cutting (resp. filling), then iden-
tify edges to be removed from the graph using a minimum-weighted
spanning tree (MST), and finally perform the corresponding cuts
(resp. fills) to the shape. The graph can be created in various ways,
such as an axis-aligned Reeb graph [Chen and Wagenknecht 2006;
Shattuck and Leahy 2001], an adjacency graph of segmented parts
[Han et al. 2002], and a curve skeleton [Zhou et al. 2007]. While this
approach solves the handle-cutting or handle-filling problem opti-
mally (due to optimality of MST), extending it to also make globally
optimal choice between cutting and filling for each handle seems
challenging. A remedy is to alternate between running the method
on the shape and on the complement, each time cutting all handle
bodies or filling all handle holes smaller than some user-specified
parameter. However, the result can be sensitive to the choice of
parameters (see Figure 10), and there is no guarantee of optimality.
Furthermore, these methods cannot reduce the number of connected
components or cavities.

To simplify all types of topological features (components, handles,
cavities), one may apply morphological opening or closing to a shape
represented by voxels [Nooruddin and Turk 2003]. Parameterized
by a structure element, opening (resp. closing) cuts away (resp. fills
in) small topological features where the structure element cannot
fit inside (resp. outside) the shape. However, both operators may in-
troduce new topological features, and the user has no direct control
over the final topology. Several authors [Bischoff and Kobbelt 2002;
Kriegeskorte and Goebel 2001; Szymczak and Vanderhyde 2003]
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Fig. 3. A scenario where a greedy heuristic for choosing cutting or filling
produces suboptimal results. See text for details.
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achieved controlled simplification by deflating (resp. inflating) an
initial seed towards the shape while forbidding, or conditionally
allowing, topological changes. A different approach was presented
recently [Chambers et al. 2018], which uses a heuristic to explore
candidate fills with the goal of maximally simplifying topology. All
of these methods work on voxelized shapes. However, since these
methods cannot selectively apply cuts and fills to different parts
of the shape, they may lead to excessive shape modifications (e.g.,
Figure 1 (b,c)).

Non-monotonic methods. These methods perform both cutting
and filling on the shape. The majority of non-monotonic methods
can only remove topological handles. They attempt to minimize
different metrics of geometric changes, such as the total lengths of
loops on the surface (non-separating paths) [Wood et al. 2004], the
total volume of voxels to be cut or filled [Kriegeskorte and Goebel
2001], or the volume weighted by image intensity [Ségonne et al.
2007]. To the best of our knowledge, the MendIT method of [Ju et al.
2007] is the only non-monotonic method that can remove all three
types of topological features. This method represents the topology
of a voxelized shape and its complement by two graphs, which are
updated as the shape is being modified, and uses information from
both graphs to decide where to cut or fill next in order to minimize
the total volume of change.

All these non-monotonic methods apply a greedy heuristic to
decide which feature to remove next and whether it should be cut or
filled. The heuristic favors the topological modification that results
in the least geometric changes at the current stage of the algorithm.
This greedy strategy often fails to make globally optimal decisions.
A simple example is illustrated in Figure 3. To reduce the number of
connected components of the shape in (a), a greedy heuristic would
first remove the small island in the middle, as shown in (b), which
results in a smaller change to the shape than connecting the island
with the other two larger components. However, this move creates
a large gap between the bottom and top components, which forces
the heuristic to remove the bottom component in the next step, as
shown in (c). A solution with a lower overall change to the shape
would instead keep the middle island as a “link” to bridge the other
two components, as shown in (d). We demonstrate many examples
in Section 7 where the greedy heuristic becomes sub-optimal.

Topology-controlled surface reconstruction. A number of surface
reconstruction methods allow the user to control the topology of the
reconstructed surface and hence avoid the need for post-processing
simplification. Some methods are guided by user interaction [Sharf
et al. 2007; Yin et al. 2014], some allow the user to prescribe the
number of handles [Huang et al. 2017; Lazar et al. 2018; Zou et al.
2015], and others take a deformable modeling approach and evolve
a template while restricting topological changes [Han et al. 2003;
Ségonne 2008; Sharf et al. 2006; Zeng et al. 2008]. However, since
the majority of reconstruction methods do not offer direct topology
control, topological simplification remains necessary.

3 BACKGROUND

Our algorithm is designed on shapes represented as cell complexes.
We first briefly review their definitions and properties. In-depth dis-
cussions can be found on standard textbooks on algebraic topology
such as [Hatcher 2002].

Intuitively, a cell complex represents a decomposition of space
into topologically simple units, called cells. A k-dimensional cell, or
k-cell, is an open set homeomorphic to an open k-dimensional ball.
We call a cell x a face of cell y if x
is contained in the boundary of y.
The insert shows a quadrilateral 2-
cell and its faces (four 1-cells and
four 0-cells). A finite set of disjoint
cells (like the one in the insert) is 1-cell
called a cell complex if, for each
cell in the complex, all its faces
are also in the complex. Two sets
of cells (which may not form cell
complexes) are connected if some cell in one set is the face of a cell
in the other set.

The n-th Betti number S5, of a cell complex is the rank of the n-th
homology group. Intuitively, for a 3-dimensional cell complex X,
Po(X) is the number of connected components of X, $1(X) is the
number of topological handles of X, and f2(X) is the number of cav-
ities in X (i.e., number of connected components of the complement

2-cell  o_cell

space X minus 1). The alternating sum of Betti numbers defines the
Euler characteristic y:

X(X) = fo(X) = p1(X) + f2(X) 1)

Alternatively, the Euler characteristic can be found by the alternat-
ing sum of the number of cells in X at different dimensions:

X(X) = ko(X) = k1(X) + k2(X) = k3(X) @)

where k;(X) is the number of d-dimensional cells in X.

4 PROBLEM STATEMENT

Topological simplification aims at minimally modifying a shape
to remove as many topological features (connected components,
handles, cavities) as possible. However, since the number of possible
modifications to the shape is virtually infinite, the problem can be
untractable. Leveraging existing topological simplification methods,
we consider a limited space of shape modifications in the form of
a pre-defined set of cuts (contents to be removed from the shape)
and fills (contents to be added to the shape). These cuts or fills can
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be obtained by running a monotonic simplification method in a
“cut-only” mode or “fill-only” mode (as reviewed in Section 2). In
addition, we assume that each cut or fill is associated with some
geometric cost. Given these inputs, the topological simplification
problem reduces to selecting a subset of the cuts and fills with the
least total geometric cost such that the resulting shape has the
simplest topology.

Formally, we represent the space by a 3D cell complex Q (e.g., a
hexahedral or tetrahedral mesh). Let O be the set of all 3-cells (e.g.,
hexahedra or tetrahedra). As input, we are given a set of shape cells
T C O, cutcellsC c T and fill cells F ¢ O \ T, and a geometric cost
g(v) for each cut or fill cell v. For topological analysis, we define
the shape as the closure Q(T), which is a cell complex made up of
3-cells in T and their (lower-dimensional) faces.

We seek a binary labelling of the cut cells and fill cells, indicating
whether they belong to the shape (label 1) or not (label 0), such
that the modified shape has the least total number of topology
features and, secondarily, the sum of geometric costs over all cut
cells removed from the shape and all fill cells added to the shape is
minimal. Given a labelling L, we denote the set of cut cells C (resp.
fill cells F) that are labelled 6 = 1,0 under L as Cy,_s5 (resp. Fy s).
The cut cells selected to be removed from the shape, and the fill
cells selected to be added to the shape, are therefore Cy o and Fy 1,
respectively. The modified shape is the closure of all 3-cells that
remain in the shape, X = Q((T\Cr o)UFL 1). Our two objectives can
be expressed by minimizing the following vector lexicographically,

BoX) + Bi(X) + foX), DL g(©) 3)

'UGCLYOUFL,]

where f3, is the n-th Betti number. Since the first term of Equation
3 is an integer, we can equivalently minimize the following scalar
value,

A (Po(X) + p1(X) + f2(X)) + Z 9(v), ©

Z)ECquUFLyl

where A is any constant greater than '}, ccyur g(v). To further sim-
plify the computation of this energy, we replace f1(X) (the number
of handles in X) by the Euler characteristic y(X), which can be com-
puted by counting cells in X (see Equation 2). Substituting Equation
1 into the equation above, we arrive at the following scalar energy
of the labelling L,

E(L) = 22+ (Bo(X) + Bo(X) = A+ x(X)+ D g), ()

‘UECL’()UFLJ

We will discuss in Section 7 how we obtain the cut cells C, fill
cells F, and geometric cost g from existing monotonic topological
simplification algorithms [Bischoff and Kobbelt 2002; Chambers
et al. 2018; Kriegeskorte and Goebel 2001; Nooruddin and Turk
2003; Szymczak and Vanderhyde 2003]. Since these algorithms all
operate on voxelized shapes, our implementation is specialized to
cell complexes Q@ made up of hexahedral cells O. However, our
algorithm, as described in the next two sections, applies to any type
of 3D cell complex.
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5 GRAPH FORMULATION

To solve the labelling problem formulated above, we will first re-
formulate it as a graph labelling problem. The graph formulation
allows us to utilize existing graph optimization techniques, as we
shall see in the next section. Our graph formulation transforms the
energy in Equation 5, which is expressed in terms of the topology
and geometry of the shape, into a labelling energy on the graph.
In particular, the number of connected components and cavities of
the modified shape (So(X), f2(X)) are captured by the number of
connected components in the 1-labelled and 0-labelled subgraphs,
respectively. The Euler characteristic (y(X)) and the geometric cost
(g9(v)) are transformed into the sum of per-node labelling costs.

5.1 Graph construction

To faithfully capture the topology of the shape, our graph represents
not only the cut and fill cells, but also the remaining 3-cells in the
space. The latter consists of two types of 3-cells, kernel cells T \ C
and neighborhood cells O \ (T U F). Regardless of the labelling of
the cut or fill cells, kernel cells are always in the shape whereas
neighborhood cells are always outside the shape.

The graph is denoted by G = {V, E}, where V, E are the sets of
nodes and edges. Each node s € V represents a group of 3-cells of
the same type (i.e., kernel, cut, fill, or neighborhood), denoted by
Os. We call s a kernel, cut, fill, or neighborhood node if Os consists
of the respective type of 3-cells. There are a number of reasons
for defining O; as a group of cells instead of a single cell. First, it
usually takes a collection of cut or fill cells to achieve the desired
topological change (e.g., cutting open a handle body or filling in the
handle hole). Second, defining the graph at the level of cell groups
makes the problem more efficient to solve than labelling individual
cells. More precisely, Os is a connected component of 3-cells of the
same type, by some notion of connectivity that will be defined below.
Similarly, two nodes s, t € V are connected by an edge in E if their
cells Os, O; are connected. A 2D illustration of graph construction
is shown in Figure 4 (a,b).

The key to the definition of nodes and edges is the notion of
connectivity between two 3-cells. Our connectivity rule is chosen so
that the topology of the shape can be captured by graph labelling.
More precisely, consider a binary labelling L of the nodes V, so that
setting L(s) = d for § = 0,1 and node s € V assigns label § to all
3-cells in O;. Note that L(s) = 1 (resp. L(s) = 0) for any kernel (resp.
neighborhood) node s. We define the §-labelled subgraph of G for
6 = 1,0, denoted as Gy _s, as the set of all i-labelled nodes and all
edges connecting two i-labelled nodes. In the 2D example of Figure
4 (c), the 1-labelled and 0-labelled subgraphs are colored magenta
and cyan, respectively. Ideally, for any labelling L, each connected
component of Gy, 1 should correspond to a connected component of the
shape, and each connected component of G, o should correspond to
either a cavity of the shape or the infinite background.

Straight-forward connectivity rules often fail to achieve this goal.
We illustrate with a 2D quadrilateral cell complex in Figure 5. Con-
sider the input in (a), and specifically the three fill cells u, v, w.
Suppose we adopt the connectivity rule that two 2-cells are con-
nected if they share any common face (e.g., a 1-cell or a 0-cell). Then
u, v, w belong to a single connected component. This component is
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Fig. 4. Graph construction and labelling on a quadrilateral cell complex
in 2D. (a): Input cell complex with kernel cells (gray), cut cells (red), fill
cells (blue), and neighborhood cells (white). (b): The graph with kernel node
k1, cut nodes cq, cy, fill nodes fi, f2, and neighborhood node n; (the cells
represented by each node are marked in (a)). The kernel and neighborhood
nodes are colored magenta and cyan, respectively, to indicate that they are
always labelled 1 and 0. (c): A binary labelling of the cut nodes and fill nodes
as 1 (magenta) and 0 (cyan). Edges in each labelled subgraph are colored
accordingly. (d): The modified shape defined by the labelling in (c).

represented by one fill node, noted as f;, which is connected to both
the kernel node k; and neighborhood node n1, as shown in (b). If f
is labelled 0, the shape (consisting of only kernel cells) would have
one cavity (left behind by w) and one background. However, the
0-labelled subgraph (colored cyan in the graph of (b)) has only one
connected component. On the other hand, suppose we adopt the
connectivity rule that two 2-cells are connected only if they share a
common 1-cell. Then u, v, w are disconnected from each other. They
are each represented by a fill node, as shown in the graph in (c). If
these fill nodes are all labelled 1, the shape (consisting of all kernel
and fill cells) would have one connected component. However, the
1-labelled subgraph (colored magenta in the graph of (c)) consists
of two connected components, since the fill node fi (representing
cell u) is not connected to other fill nodes or the kernel node kj.
We propose a connectivity rule that allows our graph to correctly
capture the topology of the shape, at the cost of slightly restricting
the space of labellings. The new connectivity rule considers not
only the spatial configuration of two 3-cells, but also their types and
types of their surrounding cells. We rank the four types of 3-cells in
the order of kernel, cut, fill, and neighborhood, so that the kernel
type has the highest rank and neighborhood type has the lowest
rank. We define a rank-based connectivity (or R-connectivity) as:

®
\\,91@ NP
@ ®

ny Ny n ny

HE
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nq

(b) (c) (d)

Fig. 5. Comparing graphs constructed from the same input (a) by assuming
that two 2-cells are connected if they share any common face (b), if they
share a common 1-dimensional face (c), and if they are R-connected (d). See
text for details.

Definition 5.1. Two 3-cells u, v are R-connected if they share a
common face that is not the face of another 3-cell whose rank is
higher than both u, v.

We again use the 2D example of Figure 5 (a) to illustrate R-
connectivity. Note that the two fill cells u, v are R-connected, be-
cause they share a common face (x) that is a face of only neighbor-
hood cells (colored white), which are at a lower rank than fill cells.
On the other hand, fill cells v, w are not R-connected, because their
only common face (y) is also the face of some kernel cells (colored
gray), which are at a higher rank than fill cells. As a result, the graph,
shown in Figure 5 (d), consists of two fill nodes, one representing
u,v (noted as f) and the other representing w (noted as f3). One
can verify that, for any labelling of fi, f2, the 1-labelled subgraph
has the same number of connected components as the shape, while
the number of connected components in the 0-labelled subgraph is
the number of cavities of the shape plus 1.

The following statement formalizes how our graph, based on
R-connectivity, captures the topology of the shape:

ProPoOsITION 5.2. A labelling L is called proper if it satisfies the
following constraint: if a cut node s and a fill node t are connected by
an edge, than either L(s) = 1 or L(t) = 0. Denote the modified shape
as X = Q(Up(5)=10s). For any proper labelling L,

(1) po(X) = Po(GrL,1)-

(2) pa(X) = Po(GL,0) — 1.

where By(S) counts the number of connected components in a graph S.

ACM Trans. Graph., Vol. 39, No. 6, Article 201. Publication date: December 2020.



201:6 « Zeng, D.etal

The proof is given in the Appendix A. The properness constraint
essentially forbids a connected pair of cut and fill to be applied to
the shape at the same time. We argue that this constraint does not
impose a significant restriction on the space of labelling that we
are interested in. Note that such a pair usually acts on the same
topological feature (e.g., c1, fi1 or ¢z, f2 in Figure 4). Since using both
the cut and the fill would likely lead to increased geometric cost
without any further reduction in topology, it is reasonable to exclude
such labelling in our solution space.

5.2 A graph labelling problem

We shall re-formulate the problem posed in Section 4 to a labelling
problem on the graph constructed above. The key is to express the
energy E of Equation 5 as an energy on the labelled graph. The
previous section showed that the first part of E is captured by the
connected components in the 0- and 1-labelled subgraphs for any
proper labelling (Proposition 5.2). In this section, we show that the
remaining part of E can be written as the sum of labelling costs
defined at each graph node.

We first re-write the Euler characteristic so that it can be ex-
pressed as the sum of node-wise quantities. We do so by decom-
posing the modified shape X = Q(Uy5)=10s) into groups of cells,
each associated with a graph node. Specifically, we define Qg as
the subset of cells in the closure Q(Os) that are not faces of any
3-cell ranking higher than Os. The set Q; consists of all 3-cells in
O, as well as some of their lower-dimensional faces. As we show
in Appendix A (Lemma A.1 (1) and equality 11), for any proper
labelling, Qg of all 1-labelled nodes s € V form a decomposition of
the shape X. As a result, y(X) is simply the sum of y(Qs) over all
1-labelled nodes s. This equality can be further transformed into

x00= D xQ)- > xQ)+ Y x(Q)
seVeUVk seVe seVp
L(s)=0 L(s)=1

where Vk, Ve, Vi denote the sets of kernel nodes, cut nodes and fill
nodes. Note that the first term is constant regardless of the labelling.
We can now express the minimization of the last two terms of E
in Equation 5 on the graph as minimizing the sum of a node-wise
labelling cost h(s, L(s)) over all nodes s € V, as defined below:

A*X(Qs)+ZveOS g(v), ifseVeand 5 =0
h(s,8) =4 =A% x(Qs) + Xpeo, 9), ifs€Vpandd =1
0, otherwise

(6)

Intuitively, h captures the change in the Euler characteristic and the

geometric cost with respect to the input shape. As a result, labelling

a cut node as 1 or a fill node as 0 does not incur any cost. Also,
observe that h can be either positive or negative.

Finally, we reformulate the problem posed in Section 4 as a graph

labelling problem, which we call topological labelling (or TL):

Definition 5.3 (Topological Labelling). Find a proper labelling L of
graph G that minimizes:

EG(L) = 22 (Bo(GL,o) + Fo(GL) + ). h(s,L(s). (7)

seVeUVE
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We note that the solution space of TL is smaller than that of
the problem posed in the previous section, since a labelling of the
graph only adds or subtracts a group of (R-connected) cells at a time.
However, the grouping of cells in TL yields a smaller problem to
solve. Moreover, as we shall see in the next section, TL lends itself
well to existing graph optimization tools.

6 OPTIMIZATION

Topology labelling (TL) is a challenging graph optimization problem,
as the energy Eg involves the number of connected components in
the labelled subgraphs. To the best of our knowledge, no existing
graph optimization tool can directly minimize such an energy. For
example, the popular graph-cut framework [Boykov et al. 2001] min-
imizes the sum of node-wise and edge-wise labelling costs, which
are inadequate to capture graph connectivity.

We start with a greedy strategy to minimize the energy (Section
6.1). While simple to implement, the strategy can easily produce
sub-optimal results. Next, we introduce a variant of TL, which we
call As-Connected-As-Possible (ACAP) TL, and show that it can be
transformed to the Node-Weighted Steiner Tree (NWST) problem
(Section 6.2). We then present our complete solution that combines
the NWST solver with the greedy strategy (Section 6.3). The section
concludes with ways to improve scalability of the algorithm on large
graphs (Section 6.4).

6.1 Greedy strategy

We first consider a greedy, iterative heuristic to solve TL. Note that
a similar strategy is used in all existing non-monotonic topology
simplification methods [Ju et al. 2007; Kriegeskorte and Goebel 2001;
Ségonne et al. 2007; Wood et al. 2004]. We initialize the labels by
labelling all cut nodes 1 and all fill nodes 0 (i.e., the input shape).
At each iteration, we evaluate the “benefit” of each node as the
decrease in the energy Eg if the label of the node is flipped, and flip
the label of the node with greatest benefit that does not violate the
properness constraint in Proposition 5.2. The process is repeated
until no node has a positive benefit.

As illustrated in Figure 6, this straight-forward strategy can easily
produce sub-optimal results. In the initial labelling (a), flipping the
label of the cut node c; or either of the two fill nodes fi, f> would
reduce the number of connected components in the shape by 1.
Assuming that cut cells O¢, have a smaller geometric cost than
those of the fill cells Og or O, c; would have a higher benefit
than fi and f5, and therefore it will be labelled 0 in the next step,
as shown in (b). Doing so, however, prevents the algorithm from
proceeding any further, because the properness constraint forbids
either fi or f> to be labelled 1. This produces a suboptimal result
that contains two connected components. The optimal labelling for
this input would label all three nodes c1, fi, f2 as 1, which results in
a single connected component as shown in (c).

6.2 As-Connected-As-Possible Topology Labelling

To improve upon the greedy heuristic, we hope to transform TL
into some existing graph optimization problem for which mature,
global optimizers have been developed. As our energy concerns
graph connectivity, the Steiner Tree (ST) problems naturally came
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Fig. 6. (a): An input shape (top) and the graph with two fill nodes and
one cut node (bottom) shown with the initial labelling. (b): The greedy
strategy labels the cut node ¢ as 0, producing a sub-optimal result with
two connected components. (c): The optimal labelling assigns 1 to all three
nodes c1, fi, f2 so that the shape consists of a single connected component.

to our minds. While many flavors of ST exist, they generally look for
a subgraph in a given graph that connect up a given set of “terminal”
nodes while minimizing the sum of node-wise or edge-wise costs
over the subgraph.

The key difference between our problem, TL, and ST is that the
former maximizes graph connectivity as part of its energy, whereas
the latter imposes connectivity as a constraint. To leverage solvers
of ST, we will consider a variant of TL that treats graph connectivity
as a hard constraint instead of a soft energy term. As we will show,
this TL variant can be reduced to the Node-Weighted Steiner Tree
(NWST) problem.

6.2.1 A variant of TL. Our idea is to impose the constraint on a
labelling L that the two labelled subgraphs, G o and Gy 1, are as
connected as they can possibly be. Consider the labelling Ly (resp.
Ly) that labels all cut and fill nodes as 1 (resp. 0). Since all kernel
nodes are labelled as 1, the least number of connected components
in the 1-labelled subgraph Gy, i for any labelling L is the number
of those connected components in Gy, ; that contain some kernel
nodes. Symmetrically, since all neighborhood nodes are labelled
as 0, the least number of connected components in the 0-labelled
subgraph Gy, o for any L is the number of those connected com-
ponents in Gr,, o that contain some neighborhood nodes. We call
two kernel (resp. neighborhood) nodes reachable if they lie in the
same connected component of Gr, 1 (resp. Gr,,0). A maximum set
of mutually reachable neighborhood (resp. kernel) nodes is called a
reachable set. We call a labelling L As-Connected-As-Possible (ACAP)
if each connected component of Gy ; spans a reachable set of kernel
nodes, and each connected component of Gr, o spans a reachable
set of neighborhood nodes.

We formulate the following variant, called ACAP-TL, that re-
moves the connected components from the energy of TL and im-
poses the ACAP constraint instead:

Definition 6.1 (As-Connected-As-Possible Topological Labelling).
Find a proper and ACAP labelling L of graph G that minimizes:

EGL)= > hisL(s). (8)
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Fig. 7. (a): Adding the fill cell (blue) to the shape would reduce one connected
component but create one cavity. (b): The corresponding fill node f; in the
graph is a double articulation node. (c): fi is resolved by labelling it as 0 and
merging with connected neighborhood nodes.

Observe that the energy of ACAP-TL, E., is a simple sum of
node-wise labelling costs, which makes the problem closer to an
ST problem. We note that ACAP-TL is not the same as TL, in two
important ways. First, the solution to ACAP-TL may not be the
solution of TL. This is because a labelling that minimizes the TL
energy may not have to be ACAP. For example, the solution of
TL may produce more connected components than the solution
of ACAP-TL but with many fewer handles. Second, unlike TL, a
solution of ACAP-TL may not exist, if no labelling can satisfy the
ACAP constraint. A typical example is when a cut or fill node is an
articulation node in both Gp, ; and Gy ¢. That is, labelling the node
as either 1 or 0 would disconnect a reachable set of neighborhood
or kernel nodes. We call such nodes double articulation nodes. This
situation is illustrated in Figure 7 (a,b), where the fill node f; is
the articulation node. As we shall discuss in Section 6.3, we resolve
these two differences by combining greedy heuristics, like the one
introduced in the previous section, with solving ACAP-TL.

6.2.2 Reduction to NWST. We can reduce the ACAP-TL problem to
the Node-Weighted Steiner Tree (NWST) problem. Consider a graph
H ={U, A /R, w} with nodes U, edges A, terminal nodes R C U, and
weights  : U\ R — R on the non-terminal nodes. The NWST prob-
lem seeks a connected subgraph of H that spans R and minimizes
the sum of weights over non-terminal nodes in the subgraph.

At a first glance, ACAP-TL differs from NWST in several ways.
First, while NWST only asks the subgraph to be connected, an ACAP
labelling requires both the 1-labelled and 0-labelled subgraphs to be
connected. Second, NWST requires all terminals to be connected,
whereas only nodes (whether kernel or neighborhood) within each
reachable set need to be connected in ACAP-TL. Third, ACAP-TL
has an additional constraint - the labelling has to be proper.

We shall construct a new graph H from G, such that a solution
of NWST on H corresponds to a solution of ACAP-TL on G. As we
explain below, the graph H is designed to address the differences
between ACAP-TL and NWST mentioned above. The construction
is also illustrated in Figure 8.

First, we create one terminal node in H for each kernel node and
neighborhood node in G. These two sets of terminals are denoted
as Uk, Un respectively. In addition, for each group of terminals in
Uk (resp. Un) representing a reachable set of kernel (resp. neigh-
borhood) nodes, we select an arbitrary terminal in that group and
connect it with an auxiliary terminal node . This ensures that all
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terminals are connected by a subgraph of H as long as each group
of terminals representing a reachable set is connected.

Next, we create two types of non-terminal nodes in H, denoted by
Uc, Ur. Each node p in Uc or Uf represents a group of cut and fill
nodes in G, denoted by V(p), whose definition will be given shortly.
Importantly, each cut or fill node will be represented by at least one
node in Uc and one node in Up. Intuitively, selecting a node p in Up
(resp. Uc) corresponds to labelling all cut and fill nodes in V(p) as 1
(resp. 0) in G. This allows a subgraph S of H to encode a labelling of
G, as long as each cut or fill node in G is represented by exactly one
non-terminal node in S. We connect Ur, Uc and the terminal nodes
Uk, Uy following the connectivity in G. Specifically, each node p
of UF (resp. Uc) is connected with a terminal g of Ux (resp. Uy)
if any cut or fill node in V(p) is connected with the kernel (resp.
neighborhood) node represented by q.

While not every subgraph of H encodes a labelling of G, we
certainly hope that the NWST does. To do so, we first add a new set
of terminal nodes, denoted as UcF, one for each cut or fill node of G.
A terminal representing a cut or fill node s is connected to all nodes
of Ur and U that also represent s. This ensures that, in a subgraph
of H that connects all terminal nodes (e.g., the NWST), each cut or
fill node of G must be represented by at least one non-terminal node.
Next, we assign each node of Uc, U a large weight to penalize a
cut or fill node being represented by more than one non-terminal
nodes. Specifically, the weight w at each node p € U (resp. € Uc)
is the cost of labelling all nodes of V(p) as 1 (resp. 0) plus a large
constant:

o(p)= D (h(s,8p)+ D) ©
seV(p)
where h is the labelling cost defined earlier (Equation 6), d, = 1 for
p € Up and 0 for p € Uc, and D satisfies:

D> Z |h(s,0) = h(s, )] =  min

h(s,8).  (10)
seVeUVE seVcUVE,5=0,1

As we shall prove later, this lower bound of D gaurantees that the
NWST of H contains exactly one non-terminal node representing
each cut or fill node of G (unless the solution of ACAP-TL does not
exist).

To further ensure that the NWST of H encodes a proper labelling
of G, we define the nodes of Uc, Ur as follows. We call a set of cut
and fill nodes of G fillable (resp. cuttable) if the set is connected
and, for any fill (resp. cut) node in the set, all of its connected cut
(resp. fill) nodes are included in the set as well. Observe that, given
a collection of mutually disjoint cuttable and fillable sets whose
union covers all cut and fill nodes, the labelling that assigns 1 to the
fillable sets and 0 to the cuttable sets is always proper. Based on this
observation, we create one node in Uf (resp. Uc) representing each
fillable (resp. cuttable) set of G.

We now formalize the equivalence between ACAP-TL on G and
NWST on H. Given a subgraph S of H, we denote its non-terminal
node set as Ug. We say that S is CF-Disjoint if V(p) N V(q) = 0 for
any pair of nodes p € Uc N Us and q € Ur N Us. That is, Us cannot
contain a node from U¢ and a node from Uf that represent the same
cut or fill node of G. We show that:

PROPOSITION 6.2. Let S be a solution of NWST on H,
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Fig. 8. The graph H (b) constructed for the NWST problem from the original
graph G (a). Each node of H is annotated by the corresponding nodes in
G, and terminal nodes are shaded green. The highlighted subgraph of H
(green nodes and edges) encodes the labelling of G.

(1) IfS is CF-Disjoint, then the following labelling on G is a solution
to ACAP-TL: a cut or fill node s is labelled 1 (resp. 0) if s € V(p)
for some p € Up N Us (resp. p € Uc N Us).

(2) If S is not CF-Disjoint, then a solution of ACAP-TL on G does
not exist.

We prove the proposition in Appendix B. As an example, the
labelling in Figure 8 (a) (same as the optimal labelling in Figure
6 (c)) can be obtained from the subgraph in (b) (highlighted in
green), which connects all terminals and is CF-Disjoint. With this
proposition, we can solve the ACAP-TL problem on G by solving the
NWST problem on H and checking the result for CF-Disjointness.

6.3 Algorithm

The previous section presented a globally optimal strategy to solve
ACAP-TL. To solve the original TL problem, we need to address two
issues stemming from the NWST-based approach and the differences
between ACAP-TL and TL as mentioned earlier. First, the subgraph
produced by the NWST solver may not be CF-Disjoint. This may
happen either because a solution to ACAP-TL does not exist, or
because the NWST solver failed to solve to optimality. Second, since
the energy of ACAP-TL is different from that of TL, a labelling that
minimizes the former may not be minimal for the latter.

To address the first issue, we propose several greedy heuristics to
modify the graph G to improve the odds of solving ACAP-TL. As
discussed in the previous section, an ACAP labelling does not exist
if there is a double-articulation node (e.g., fi in Figure 7 (b)). Once
detected, a double-articulation node s is resolved by “sending” it to
the kernel (or neighborhood); that is, s is labelled 1 (or 0) and merged
with its connected kernel (or neighborhood) nodes (see Figure 7
(c)). The choice of kernel or neighborhood is made to result in a
greater decrease in the energy Eg. If multiple double-articulation
nodes are found, the one that would result in the greatest decrease
in energy is chosen to be resolved. After resolving one node, we
check the graph again for new double-articulation nodes, and the
process repeats until no more such nodes are found.

Even with all double articulation nodes resolved, the NWST solver
may still return a subgraph S of H that is not CF-Disjoint. In this
case, we need to further modify the graph G to make ACAP-TL
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TopologyLabelling (G)
Repeat:
Resolve all double-articulation nodes from G
Construct H from G
S « Solve NWST on H
If S is CF-Disjoint
Break
Else
Resolve a doubly-labelled node from G
L « Labelling obtained from S
Improve L by greedy strategy
Return L

Fig. 9. Pseudo-code of the labelling algorithm.

easier to solve. Since S is not CF-disjoint, there exists some cut or fill
node s of G that is represented by a node in Ur U Us and a node in
Uc UUs. We call s a doubly-labelled node. We solve a doubly-labelled
node in the same way that we resolve a double-articulation node
- by picking the doubly-labelled node that results in the greatest
decrease in Eg and sending it to the neighborhood or kernel. Once
a doubly-labelled node is resolved, we check and resolve double-
articulation nodes again (since the graph is changed), and solve for
ACAP-TL. The process is repeated until a CF-disjoint subgraph of
H is found.

To alleviate the second issue (that the energies of ACAP-TL and
TL are different), we take the solution of ACAP-TL as the initial
labelling and apply the greedy strategy mentioned in Section 6.1
to further reduce the TL energy. In our tests, however, we have
found that the greedy strategy rarely improves upon the labelling
produced by ACAP-TL, but we include this step nevertheless for the
occasional improvement.

The complete algorithm is summarized in the pseudo-code in
Figure 9. Note that the iterative graph modification is guaranteed to
terminate, because each iteration sends at least one doubly-labelled
node to the neighborhood or kernel, and hence the number of cut
and fill nodes to be labelled is monotonically decreasing.

6.4 Improving scalability

The optimality of our algorithm largely depends on the optimal-
ity of the NWST solver. Since the NWST problem is NP-hard, the
chance of a solver finding an optimal (or close-to-optimal) solution
decreases with the graph size. We describe two strategies to reduce
the graph size, which improves both the efficiency and optimality
of our algorithm on large graphs.

Cluster simplification. The first strategy is to solve the labelling
problem on smaller subgraphs whenever possible, before solving
it on the entire graph. Consider a maximal set of connected cut
and fill nodes W, which we call a cluster. There are two types of
clusters that can be simplified before solving ACAP-TL on G. If W is
connected to only neighborhood (resp. kernel) nodes, then all nodes
in W must be labelled 0 (resp. 1) for the labelling to be ACAP. In
this case, we simply send the entire set W to the neighborhood or

kernel, as we did for double-articulation and doubly-labelled nodes.
Another interesting scenario is when W is connected to exactly
one kernel node k and one neighborhood node n. It is easy to show
that, if labelling L is a solution of ACAP-TL on the whole graph
G, then the restriction of L to the subgraph S spanning nodes W U
{k, n} is a solution of ACAP-TL on S. We therefore apply the same
iterative solver (without the final greedy step) to S, and afterwards
send the 1-labelled (resp. 0-labelled) nodes of W to the kernel (resp.
neighborhood). If enabled, this cluster-simplification step takes place
at the beginning of each iteration in our solver (right after the line
“Repeat” in the pseudocode of Figure 9). Note that processing of
different clusters are independent of each other, and hence they can
be trivially parallelized.

Node pruning. While cluster simplification does not affect the
optimality of our algorithm, we propose another strategy that trades
theoretical optimality for practical optimality and efficiency. We
have observed that the bulk of the transformed graph H consists of
nodes Uc, Ur (representing all cuttable and fillable sets) and their
incident edges. In Appendix C, we show that solving NWST with
areduced set of Ug, UF still leads to a proper and ACAP labelling
of G. Even though such labelling may not minimize the ACAP-TL
energy, the reduced graph size could make the NWST solver more
successful in finding a close-to-optimal solution in practice. We
have found the following pruning scheme to be quite effective in
our experiments. We measure the hops between two fill (resp. cut)
nodes s, t as the least number of cut (resp. fill) nodes on any path
from s to ¢ in G. We keep a node p € UF (resp. p € Uc) only if the
maximum hops between two fill (resp. cut) nodes in V(p) is no more
than K, a user-specified number.

7 RESULTS

We evaluate our algorithm on cuts and fills produced by exist-
ing monotonic simplification methods. In particular, we consider
morphological opening/closing [Nooruddin and Turk 2003] and
topology-controlled inflation/deflation [Bischoff and Kobbelt 2002;
Kriegeskorte and Goebel 2001; Szymczak and Vanderhyde 2003].
These methods are simple to implement and capable of removing
all types of topological features. Note that these methods all operate
on a voxel grid, which is a cell complex with hexahedral cells (i.e.,
voxels). In the following, we shall refer to a cut or fill cell as a cut
or fill voxel. We compare our method to the TopoMender method
[Zhou et al. 2007], a monotonic simplification method that removes
topological handles using a minimum spanning tree; the MendIT
method [Ju et al. 2007], which is, to the best of our knowledge, the
only non-monotonic method capable of removing all three types of
topological features; and the greedy strategy in Section 6.1 without
the full algorithm in Section 6.3.

We solve the NWST problem using the recent branch-and-bound
algorithm of [Leitner et al. 2018], which performed well on public
benchmarks (e.g., the 11th DIMACS Challenge [DIM 2014]) as well
as on our own data. A nice feature of the implementation is that
it allows the user to set a maximum running time, which is useful
when the problem size is large. We found that the solver typically
returns an optimal solution within seconds for small or medium-
sized graphs (e.g., containing up to thousands of nodes). For larger
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Fig. 10. (a): The Hip model with two handles (marked A and B). (b): Cut voxels (red) and fill voxels (blue) produced by topology-controlled inflation and
deflation. (c): Selected fill voxels (filling in the small handle hole of A) and cut voxels (cutting open the narrow part of the handle body of B). (d): The modified
shape. (e,f): Results of TopoMender using a small parameter (e), which leaves the handle B in the shape, or using a large parameter (f), which cuts open the
wide handle body of A. (f: number of connected components, handles, and cavities; g: geometric cost)

graphs, the optimality of the solution often does not improve after
a few seconds. As a result, we set the time limit to be 8 seconds
regardless of graph size. Unless stated otherwise, we apply the basic
algorithm described in Section 6.3 without employing the optional
heuristics described in Section 6.4.

7.1 Distance-based cuts and fills

We first consider the cuts and fills produced by inflating or deflat-
ing an initial seed towards the shape [Bischoff and Kobbelt 2002;
Kriegeskorte and Goebel 2001; Szymczak and Vanderhyde 2003].
Starting with all voxels in a bounding box as the seed, this approach
iteratively removes voxels that lie outside the shape while prevent-
ing topological changes. The removal is prioritized by the Euclidean
distance function from the shape’s boundary, so that voxels further
away from the shape are removed before those closer to the shape.
The deflation results in a minimal set of fill voxels whose addition to
the shape removes all topological features. Cut voxels can be created
by the reverse process, inflating from a seed inside the shape (we
use the voxel that is furthest away from the shape’s boundary). Each
cut or fill voxel v is assigned a constant cost, i.e., g(v) = 1.

Figure 10 shows a simple example (the Hip). The shape in (a)
has two handles, one with a small handle hole and a wide handle
body (A), and another with an expansive handle hole and a nar-
rower handle body (B). As shown in (b), removing all cuts would
make a long opening in the handle body of A, while adding all fills
would create a large patch in the handle hole of B. Our method
picks a subset of both cut and fill voxels to take the less invasive
operation for each handle, leading to a lower geometric cost as
shown in (c,d). We also show the results, in (e,f), of the monotonic
method TopoMender. TopoMender takes in a user-given feature size
parameter, and cuts (resp. fills) all handles whose handle body (resp.
handle hole) has a smaller radius than the parameter. To perform
both cutting and filling, we ran TopoMender twice, first cutting all
small handle bodies and next filling all small handle holes. However,
it can be challenging to choose the right feature size to get desir-
able results: a too-small parameter leaves the handle B in the shape,
while a too-large parameter tears open the wide handle body of A.
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Fig. 11. (a): The Tree shape with 18 handles. (b): Input cut (red) and fill (blue)
voxels. (c): Cut and fill voxels selected by our algorithm. (d): The modified
shape. (e): Cut and fill voxels selected by the greedy strategy, which include
a large group of fill voxels. (f): Resulting shape of the greedy strategy.

In contrast, our algorithm automatically picks the least costly way
to remove each feature.
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Fig. 12. Comparing result of our method (c) and MendIT (b) on a region
of the Tree with two handles (a). While MendIT fills a handle hole (A) and
makes a long cut (B) on the handle body, our method makes two short cuts
(C,D) without filling the handle hole.
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Fig. 13. Comparing the result of our algorithm (b), the greedy labelling
strategy (c), and MendIT (d) on the Vessel example from Figure 1. To reduce
the number of components, our method removes small and distant islands
(box A) while connecting to larger ones (box B and C). The other (greedy)
methods either fails to remove all components in the result (c) or misses
non-trivial components (d).

(c) Greedy

(d) MendIT

Figure 11 shows a more complex example (the Tree). The input
shape in (a) contains 18 handles. Either removing all cuts or adding
all fills would remove all handles, but at the cost of significant
geometric changes, as evident in (b). Our algorithm selects a small
subset of cut and fill voxels to achieve the same topological goal
but with a much lower geometric cost, as shown in (c,d). As a
comparison, running the greedy strategy of Section 6.1 alone also
removes all handles, but at a higher geometric cost, as shown in
(e,f). The close-up view examines a region where our full algorithm
based on global optimization differs with the greedy strategy. The
greedy strategy selected a large group of fill voxels, which fills in
two handles at once and thus was prioritized for labelling, despite
its large geometric cost. In contrast, our algorithm selected two
smaller groups of cut voxels that remove the same handles at a lower
cost. To further demonstrate the advantage of global optimization,
Figure 12 examines our method on a different region of the Tree
and compares with the greedy method of MendIT. MendIT starts by

B: 2/215/13] B:1/0/0

9:902

B:1/4/0
9:2738

i

(c) Greedy - (d) MendIT

Fig. 14. Comparing the result of our algorithm (b), the greedy labelling
strategy (c), and MendIT (d) on the Heart example. Both our method and
MendIT fully simplify the topology, while the greedy strategy leaves 4
handles in the shape. The inserts show a region where both the greedy
strategy and MendIT make excessive geometric changes.

filling the handle hole (A), which has a low geometric cost. However,
filling that hole creates a thick handle body that has to be removed
by a long cut (B), which un-does the earlier filling. Our algorithm
removes the same number of handles with two short cuts (C,D) and
no fills.

The Vessel in Figure 1 contains multiple connected components
and handles. Once again, while performing only cutting or only
filling results in excessive geometric changes (highlighted in the
boxes A,B,C), our algorithm selects a geometrically minimal set
of cut and fill voxels to achieve the same amount of topological
reduction. Figure 13 compares our method with the greedy strategy
of Section 6.1 and MendIT on the same example. Due to their greedy
nature, these two methods can make globally sub-optimal choices.
The greedy strategy left a few islands in the result (box A in (c)),
while MendIT removed a few non-trivial components from the input
(boxes B,C in (d)), similar to the scenario illustrated in Figure 3.

The Heart in Figure 14 is an even more complex example with
multiple connected components, handles, and cavities. Observe that
our method is able to fully simplify the topology, while the greedy
strategy leaves a few handles behind and incurs a larger geometric
cost. The inserts compare our method with the greedy strategy
and MendIT in a region where two large handle holes (A,B) are
separated by a narrow handle body (C). Both greedy approaches
choose to first cut the handle body C, as it has a low geometric cost.
However, the cut merges the two handles holes A and B into an even
larger handle hole. This forces the two methods to subsequently
make several large cuts (indicated by arrows) to avoid filling the

ACM Trans. Graph., Vol. 39, No. 6, Article 201. Publication date: December 2020.



201:12 « Zeng, D.etal

Inner seed () Cuttingonly [0 {c) Ours
V=l
V7 B:1/0/0 e ] B:1/0/0
ST S , 9: 14813
7 - A
ik

(b) Filling only

B:19/6/0
g: 22605

o -

(d) Ours

{w/o intensity)

Fig. 15. The shape after subtracting intensity-aware cut voxels (a) or adding
intensity-aware fill voxels (b), and after running our algorithm with the
intensity-aware cuts and fills (c) or distance-based cuts and fills (d). The
inserts in (a,b) show the inner and outer seeds used for inflation and de-
flation. The inserts in (c,d) examine a region where the same handle is
removed differently in the two results, either separating the two vessels (c)
or breaking a vessel in the middle (d).

merged handle hole. Thanks to the global optimization approach,
our algorithm avoids making these large cuts by filling the handle
holes A and B without cutting the handle body C.

7.2 Intensity-aware cuts and fills

A 3D shape is often represented as the iso-surface of an intensity
function, such as a signed distance function reconstructed from
point clouds or a 3D MRI or CT scan. When the intensity function is
available, it can be used to guide the inflation and deflation process
to create intensity-aware cuts and fills [Bischoff and Kobbelt 2002].
Basically, the Euclidean distance field is replaced by the intensity
function to prioritize voxels during inflation or deflation process.
That is, voxels whose intensity values are further from the iso-value
of the shape are removed earlier than voxels whose intensity values
are closer to the iso-value. Accordingly, we assign a non-uniform
geometric cost to a cut or fill voxel as the magnitude of the intensity
gradient. This cost penalizes using voxels on strong intensity edges.
The cost reduces to a constant when the intensity function is the
Euclidean distance field, making our choice consistent with the
earlier scenario when the intensity function is not available.

We make two more changes to the inflation and deflation process
to make it more practical. First, since the intensity values are often
only available (or reliable) within a certain range, using a bounding
box or an interior voxel as the seed may not work if the seed contains
voxels whose values are outside that range. Instead, for a user-
specified intensity range [Ijow, Inign], and assuming the interior of
shape has higher intensity than the iso-value, we define an intensity-
based seed as the set of all voxels whose values are above Ij,,,
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(for deflation) or I, (for inflation). Second, unlike the bounding
box or a single voxel, the intensity-based seed may have a complex
topology. To create cut or fill voxels that simplify, and not complicate,
topology, we modify the inflation and deflation routine to allow
any topological changes that reduces the number of components,
handles or cavities.

We first apply the intensity-based inflation and deflation to the
Vessel shape from Figure 1. This shape was originally obtained as an
iso-surface of a 3D CT scan, which we use as the intensity function.
As shown in Figure 15 (c,d), compared with distance-based cut and
fill voxels, the use of intensity-aware cuts and fills allows our method
to make a “nicer” cut that separates two close-by vessels instead of
breaking a vessel in the middle. Note that the intensity-based outer
seed has a significant amount of topological noise. As a result, the
fill voxels alone do not fully simplify the topology. By utilizing both
cut and fill voxels, our algorithm achieves full reduction of topology
at a lower geometric cost than performing either cutting or filling.

We next perform intensity-aware cutting and filling on two large
examples (the Panicle and the Root) in Figures 16,17. Both shapes
are obtained as iso-surfaces of CT scans, and contain thousands of
topological features including handles, islands, and cavities. Due
to the topological noise present in the seeds used for inflation and
deflation, neither the set of cut voxels nor the set of fill voxels can
simplify the topology effectively by themselves, and hundreds of
topological features still remain after performing only cutting or
only filling (a few are highlighted in the inserts). By combining both
sets of voxels, our method achieves significantly more reduction
in topology than either cutting or filling. Figure 18 zooms in on a
complex region of the root that has handles, cavities and islands,
which results in a cluster of cut and fill voxels. Our method selects
both cut and fill voxels to remove these features.

In both of these examples, the initial graph G contains thousands
of nodes and edges, and the transformed graph for NWST, H, is too
large to hold in memory. As a result, we use the strategies discussed
in Section 6.4 to reduce the graph size. Table 1 examines the effect of
cluster simplification and node pruning (with different parameter K)
on the size of H, the overall running time, and the resulting energy
(both topology and geometry) using the Root example. Observe
that cluster simplification is particularly effective in reducing the
graph size, which leads to both significantly faster runtime and more

Cluster? | K [U|/|A]| Time (sec) || fo/p1/B2 g
Yes 1 745/29990 35.1 32/6/0 38637
Yes 2 1089/32841 39.8 32/6/0 38692
Yes 3 5586/49596 52.8 32/9/0 38431
Yes 4 45130/420373 126.0 32/13/0 41242
No 1 24791/258512 235733 32/11/0 51343
No 2 31261/302879 30748.4 32/13/0 47192
No 3 54604/499427 31200.6 32/11/0 47836

Table 1. Effect of using clustering simplification (first column) and choices
of K for node pruning (second column) on the number of nodes and edges
of H (taken as the maximum size among all clusters and over all iterations
of the algorithm), overall runtime of our algorithm, and the Betti numbers
and the geometric cost of the solution.
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Fig. 16. (a): An iso-surface from a CT scan of a sorghum panicle. (b,c): Results of intensity-aware cutting and filling (cut/fill voxels shown on the left). (d): Our
result. Box A highlights a few islands that are only connected by filling, and box B highlights two handles that are only removed by cutting. Our method
resolves both features.
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(b) Cutting only (c) Filling only

(a) Input éhape

Fig. 17. (a): A highly complex iso-surface from a CT scan of a corn root. (b,c): Results of intensity-aware cutting and filling. (d): Our result. Box A highlights a
handle that is only removed by cutting (which separates the two root branches), and box B highlights islands that are only connected by filling. Our method
resolves both features.

also results in larger graph sizes and hence deteriorating solutions.
The results shown in Figures 16,17 are produced with K = 1.

7.3 Cuts and fills from opening and closing

Morphological opening and closing are common ways to reduce
topological noise on a voxelized shape T. Given a structure element
B (e.g., a box or voxelized ball), opening computes the largest union
of B that can fit inside T, and closing computes the complement of
the largest union of B that can fit outside T. An example is shown for
another Heart example in Figure 19. Observe that the small handle
on the shape shown in the insert of (a) is removed by either opening
(b) or closing (c).

There are several limitations of opening and closing. First, they
may introduce new topological features that are not present on
the original shape. For example, opening may create new islands
(e.g., box A in (b)) while closing may merge different shape parts
to form new handles (e.g., box B in (c)). Second, both operators
make expansive modification of the shape, most of which do not
contribute to reduction in topology (as seen from the cut and fill

(a) Cut and fill voxels

(b) Selected voxels

Fig. 18. Cut and fill voxels (a) and those selected by our algorithm (b) on
the Root. The inserts highlight a cluster of cut and fill voxels in a region
with complex topology.

optimal solutions by the NWST solver. While larger K should lead
to improved optimality in theory (by pruning fewer nodes of H), it

voxels at the top of (b,c)). Lastly, both operations are monotonic,
since opening only cuts while closing only fills.

ACM Trans. Graph., Vol. 39, No. 6, Article 201. Publication date: December 2020.
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Fig. 19. (a): A heart segmentation. (b): Result of opening (bottom), which contains several new islands (box A), and the corresponding cut voxels (top). (c):
Result of closing (bottom), which merges nearby vessels (box B) and thereby creating new handles, and the corresponding fill voxels (top). (d): Voxels selected
by our algorithm (top) and the modified shape (bottom). The insert examines a handle that is removed in all three methods.

These limitations can be addressed by running our algorithm
on the results of both opening and closing. We take the difference
between the shape and its opening (resp. closing) as the cut (resp.
fill) voxels, and assign each voxel a unit geometric cost. Since the
majority of the changes made by opening or closing are not topology-
related, and to reduce graph size, we pre-process the graph G to
send a cut (resp. fill) node s to the kernel (resp. neighborhood) if
x(Qs) = 0 and if labelling s as 0 (resp. 1) does not change the num-
ber of connected components of either the 0-labelled or 1-labelled
subgraph. As shown in Figure 19 (d), our algorithm removes more
topological features and incurs a lower geometric cost than either
opening or closing.

7.4 Performance

We report detailed statistics of all examples in this paper in Table 2.
These include the graph sizes (G and H), running time, and the ob-
jective energy (both topology and geometry) of the results produced
by our algorithm and other variants. All experiments are performed
on a Windows PC with 3.47Hz CPU and 24G RAM.

We make several notes about the table. First, we did not report the
energy of our method before applying the greedy improvement step
(second-to-last line in Figure 9), because that step did not improve
the overall energy for any of the examples in this table. The only
experiments that we noticed some improvement was when the
graph size is so large that NWST returns a highly sub-optimal
solution (e.g., when cluster simplification is turned off on the Root or
Panicle). Second, observe that our NWST-based labelling algorithm
almost always outperforms the greedy strategy. The difference in
the topological complexity between these two strategies becomes
significant for large graphs, which shows the importance of a global
optimization approach for the labelling problem.

Lastly, although we do not know the optimal energy for the la-
belling problem, we can provide a lower bound on the Betti numbers
as the persistent Betti numbers of the inclusion map Q(T \ C) —
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Q(T U F). These numbers describe the least possible number of
topological features for any shape sandwiched between Q(T \ C)
(cutting only) and Q(T U F) (filling only). Note that, in 3D, a shape
realizing the persistent Betti numbers may not exist, and finding
the sandwiched shape with the simplest topology is an NP-hard
problem (homological simplification) [Attali et al. 2015]. Neverthe-
less, these numbers offer a theoretical lower bound of how much
topology we can simplify. We compute the persistent Betti numbers
using the DIPHA software [Bauer et al. 2014], which conveniently
handles cubical complexes. Observe from the table that our algo-
rithm realizes this lower bound on simple examples while getting
close to it on large examples. In particular, we are 20 features away
from the lower bound on the Panicle, and only 3 handles away from
the lower bound on the Root example, which initially contains over
4000 topological features.

8 DISCUSSION

We presented an algorithm for maximally reducing topological com-
plexity of a 3D shape while minimizing geometric changes by select-
ing from a given set of cuts and fills. To the best of our knowledge,
this is the first attempt at solving topological simplification in its full
generality (treating all types of topological features and allowing
both cutting and filling) as a global optimization problem.

A key limitation of our work is that the choice of the input set
of cuts and fills can have a major impact on how the solution of
our graph labelling problem, formulated in Section 5, approximates
the solution to the cell selection problem, stated in Section 4. Since
graph labelling operates at the level of R-connected components
of cells, the granularity of such components directly affects the
solution space. In particular, the labelling algorithm would return
a poor approximation if adding (resp. subtracting) an R-connected
component of fill (resp. cut) cells simultaneously removes some
topological features and introduce new ones. We have observed
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Example PolB1/ B2 PolB1/ B2 PolB1/ P29 BolB1/B2: 9 BolB1/P2: 9 BolB1/ P29 IVI/IE| [UI/IA| | Time
(shape) (persistent) (cutting) (filling) (greedy) (ours) (sec)
Figure 10 1/2/0 1/0/0 1/0/0;756 1/0/0; 6591 1/0/0;397 1/0/0;397 577 12/16 3.1
Figure 11 1/18/0 1/0/0 1/0/0;7360 1/0/0; 8648 1/0/0;5523 1/0/0; 2634 37/94 138/390 | 3.8
Figure 19 4/69/8 1/0/0 6/17/3; 6845 3/12/0;16210 | 2/10/1;12198 1/7/0; 2965 46/104 147/262 | 0.01
Figure 1 151/9/0 1/0/0 1/0/0;866 1/0/0;1534 4/0/0; 662 1/0/0;317 202/413 | 4556/53188 | 24.3
Figure 15 151/9/0 1/0/0 1/0/0;31309 19/6/0; 22605 6/0/0;30735 1/0/0; 14813 207/413 | 3202/42404 | 45.4
Figure 14* ||  2/215/13 1/0/0 1/0/0;3070 1/0/0; 3264 1/4/0; 2738 1/0/0; 902 376/1076 | 753/29680 | 3.1
Figure 16* || 1749/871/1 | 20/10/0 |554/31/0;109207 | 29/153/0;173372 | 97/25/0;118948 | 24/26/0;124880 || 3341/7391 | 169/585 | 5.5
Figure 17* || 1951/2117/158 32/3/0 111/25/0;56842 | 123/49/11;59056 | 116/169/1;47341 | 32/6/0;38637 6070/14881 | 745/29990 | 35.1

Table 2. Statistics for all examples in the paper (ordered by topological complexity): Betti numbers of the shape; persistent Betti numbers of the inclusion map

from the all-cut shape to the all-filled shape; Betti numbers and geometric cost for cutting only, filling only, greedy labelling, and our method; number of nodes

and edges of G and H; and running time. The * indicates the use of cluster simplification and node pruning (with K = 1).

many such components in the cuts and fills generated by morpho-
logical opening and closing, where our algorithm produced a less
simplified result (see Table 2). We would like to explore ways to
segment cells (voxels) at a finer level than R-connectivity, while still
being able to formulate a graph labelling problem that is amenable
for optimization.

While our current implementation is specialized to hexahedral
cell complexes in the form of a voxel grid, our algorithm applies to
any cell complexes. In the future, we plan to develop implementa-
tions for general cell complexes in 3D, such as tetrahedral meshes.
We would also like to explore extension of the algorithm to allow
for more user control. For example, prescribing Betti numbers (e.g.,
a single connected component with k handles) would be useful for
shapes that have a known topological structure. Finally, an orthog-
onal direction of investigation is how to obtain better geometric
costs for cuts and fills to better capture the semantics of the shape
and produce more natural-looking shape modifications.
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A PROOF OF PROPOSITION 5.2

We start by associating a set of cells (at all dimensions) to each node
and showing some properties of these sets. Define Qg as the subset
of cells in the closure Q(Ojs) that are not faces of any 3-cell ranking
higher than Os. Note that Os C Qg C Q(Os) by definition. Recall
that two sets of cells are connected if some cell in one set is the face
of a cell in the other set. We can show that,

LeEmmA A.1. The following properties hold:

(1) For any cell ¢ € Q, there exists a unique node s € V such
that ¢ € Qs. That is, Qg of all nodes s € V form a disjoint
decomposition of Q.

(2) For any node s € V, Qg is connected.

(3) For any two nodes s,t € V, they are connected by an edge if
and only if Qs and Q; are connected.

Proor. We prove each property in turn.

(1) Consider the set H of highest-ranking 3-cells that c is a face
of. If H contains more than one 3-cell, then all 3-cells in H
are R-connected, because c is not a face of any other higher-
ranking 3-cells. Hence all 3-cells in H belong to the same
R-connected component Og for some node s € V.

(2) Since O C Qg and the remaining cells Q; \ Os are faces of
(and hence connected to) some 3-cell in O, we only need to
show that any two 3-cells in O are connected via a path of
cells in Qg. Since any two 3-cells in O are connected via a
path of R-connected 3-cells, we only need to show that two
R-connected 3-cells u,v € Oy share a common face that is
in Q. By R-connectivity, u, v share a common face c that is
not the face of any 3-cell with rank higher than that of u, v.
Hence c € Qg, and the property holds.

(3) If s,t are connected, then there exists 3-cells u € Og and
v € Oy such that they share a common face c that is not a face
of another 3-cell ranking higher than u or v. Hence ¢ belongs
to either Qg or Q;, implying that Qg and Q; are connected.
Conversely, if Q¢ and Q; are connected, and without loss of
generality, there exists a cell ¢ € Qg that is a face of a 3-cell
v € Oy. Let u be the 3-cell in Oy that c is a face of. Since
¢ € Qg, there is no other 3-cell with rank higher than u that
has c as a face. Hence u, v are R-connected, and hence nodes
s, t are connected by a graph edge.

]
We now prove Proposition 5.2:

ProoF. (Proposition 5.2) We first show that the following state-
ment is true for any proper labelling L: if two nodes s,t € V are
connected such that s has a higher rank than ¢, and if L(¢) = 1, then
L(s) = 1. Note that s can be either a kernel node or cut node. If s is
a kernel node, then L(s) = 1 regardless of L. If s is a cut node, then ¢
can only be a fill node, and therefore L(s) = 1 since L is proper.

To prove the Proposition, it suffices to show that the union of Qg
over all 1-labelled nodes s is the modified shape X, or:

UL(s):l Qs = Q(UL(s)=1Os) (11)

for any proper labelling L. If this is true, then the three properties
in Lemma A.1 ensure that the connected components of X, and of
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its complement Q \ X, have one-to-one correspondence with the
connected components of the 1-labelled and 0-labelled subgraphs.

To show that equality 11 holds, we need to show that for any
node s € V such that L(s) = 1, and any 3-cell u € O, all faces of u
(at all dimensions) must have been included in the union Uy )1 Qs.
We consider two cases for each face ¢ of u. If ¢ € Qg, then obviously
¢ € Ur(5)=1Qs. Otherwise, by Lemma A.1, there exists some other
node t € V such that ¢ € Q;, t has higher rank than s, and s, t are
connected. As shown at the beginning of this proof, we conclude
that L(#) = 1, and hence ¢ € Up5)—1Qs. ]

B PROOF OF PROPOSITION 6.2

We start with a few lemmas before proving the main proposition.
In the following discussion, we consider a graph H = {U, A, R, v}
as defined in Section 6.2. For any node p € U \ {r}, we denote the
node(s) in V that p represents by V(p). For a set of nodes P C U,
V(P) = UpepV(p). Conversely, we denote by U(s) the node in U
representing a node s € V, whenever U(s) exists and is unique.
Given a subgraph S of H, we denote its non-terminal node set by
Us and the total weights of Us as w(S). We also denote the union of
all cut and fill nodes in V as V.

A subgraph S of H is called C-Disjoint (resp. F-Disjoint) if for
any two nodes p, q in Uc N Us (resp. Up N Us), V(p) N V(q) = 0.
The following Lemma shows that any solution to NWST is both
C-Disjoint and F-Disjoint:

LeMMA B.1. IfS is a connected subgraph of H that spans R such
that «(S) is minimized, then S is both C-Disjoint and F-Disjoint.

PRrROOF. By symmetry, we only need to show that S is C-Disjoint.
Suppose, to the contrary, that S is not, and there exist p,q € Uc
such that V(p) N V(q) # 0. By definition of cuttable sets, the union
of two cuttable sets is also cuttable. Therefore there exists some
node r € Uc such that V(r) = V(p) U V(g). Furthermore,

w(p) + w(g) = o(r)

= Ssev(p)(h(s,0) + D) + Sev(q)(h(s.0) + D) — sev (s, 0) + D)

= Xsev(pnv(g)(h(s, 0) + D)
(12)
On the other hand, by definition of D (Equation 10), the following
holds for any node t € V and 17 € {0, 1}:

h(t,n) + D > h(t,n) — min  h(s,6) >0 (13)

eVer,06=0,1
We conclude from Equations 12,13 that w(p) + w(q) > w(r). By
construction of graph edges A, any node in U connected to either
p or q is also connected to r. We create another subgraph, S/, by
replacing p, q in S with r (if it is not already in S). The arguments
above show that S’ is connected and spanning R, and w(S’) < w(S),
which contradicts the assumption that S is minimal. O

The next lemma shows that if a C-, F-, and CF-Disjoint subgraph
exists in H, then the solution to NWST on H has to be CF-Disjoint.

LEmMMA B.2. If there is a connected subgraph of H that spans R and
is C-Disjoint, F-Disjoint, and CF-Disjoint, then any minimum-weight,
R-spanning, connected subgraph of H must be CF-Disjoint.
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Proor. We first show that a connected, R-spanning, C-, F-, and
CF-Disjoint subgraph S of H corresponds to a labelling of V. Since S
is R-spanning and connected, every terminal node r € Ucr must be
connected to some node in p in Uc N Us or Ur N Us, implying that
V(r) € V(p). Hence the union of sets V(p) for all p € Ug covers all
nodes in V. By C-, F-, and CF-Disjointness, no two sets in this union
overlap. As a result, for any node s € Vp, its corresponding node
U(s) € Ug exists and is unique. We define a labelling L such that s
is labelled as 0 (resp. 1) if U(s) is in Uc (resp. Ur). We can therefore
express the weight of S as:

w(S) = Z (h(s, L(s)) + D) (14)
seVer

Suppose, to the contrary, that there exists some connected, R-
spanning subgraph S’ of H that has minimal weight, but S’ is not
CF-Disjoint. By the same argument above for S, the union of sets
V(p) for all p € U still covers all nodes in V, but these sets are
no longer disjoint (since S’ is not CF-Disjoint). In particular, there
exists some node so € Ve, po € Uc NUsr and qo € Ur N Us such
that sop € V(po) N V(qo). Consider a labelling L’ of V such that each
node s is labelled as 0 (resp. 1) if there is some p € Uc N Uy (resp.
p € UpNUs) such that s € V(p). For nodes like s, we will arbitrarily

pick a label. By inequality 13, we have:

o(8") = Xpeug Lsev(p)(h(s,&p) + D)
> Ysevep(h(s,L'(s)) + D) + h(so, 1 = L' (s0)) + D
where ), is 0 (resp. 1) if p € Uc (resp. p € Ur). The equality holds
if 59 is the only overlapping node among sets V(p) for all p € Ug’.
Combining Equations 14,15, and by definition of D, we have:

w(S") — w(S)

> Ysever(h(s, L'(s)) = h(s, L(s))) + h(so, 1 = L'(s0)) + D

> = Sacver lIh(5,0) — h(s, Dl + miny ey, 501 h(t,5) + D
>0

(15)

which contradicts the assumption that S” has minimal weight. O

The next two lemmas establish the relation between a solution
to the ACAP-TL problem and a connected, R-spanning subgraph of
H that is C-, F- and CF-Disjoint.

LEmMA B.3. Let L be a proper and ACAP labelling on G. There is a
connected, R-spanning subgraph S of H that is C-Disjoint, F-Disjoint,
and CF-Disjoint. In addition, (S) = E;(L) + D * |VcF|.

Proor. Let V1 o (resp. Vr 1) denote the set of 0-labelled (resp.
1-labelled) nodes of Ve under labelling L. Since L is proper, each
connected component of Vy  (resp. Vp 1) is cuttable (resp. fillable).
We define S to include all terminal nodes R, all p € Uc such that
V(p) is a connected component of V; ¢, and all ¢ € U such that
V(q) is a connected component of V7, ;. By this construction, all sets
V(p) for p € Us are disjoint, and hence S is C-, F-, and CF-Disjoint.

We next show that S is connected. First, by our construction of
Us, the union of sets V(p) for all p € Us covers all nodes in V. As a
result, each terminal in UcF is connected to some node in Us. Next,
consider a group of terminals I C Uy such that V() is a reachable
set of neighborhood nodes in V. Since L is ACAP, V(I) lies in a
connected component of Gy, ¢, denoted by Gy. Let Ut be the set of
nodes in Uc N Us such that V(Uy) cover all the cut and fill nodes

of Gy. Since p € I is connected to q € Uy if and only if V(p) € V(q),
and since each node of Ut represents a connected component of
the remainder of G after removing nodes V(I), we conclude that
terminal nodes I and nodes U; are connected. Similarly, let J C Ug
be a group of terminals such that V(J) is a reachable set of kernel
nodes in V, this group is connected to nodes Uy in U N Us such
that V(Uj) cover all the cut and fill nodes of Gy, the connected
component of G ; containing V(J). Furthermore, by definition of
ACAP, each connected component of G or Gg,; must contain
some neighborhood or kernel nodes, and hence any node of Ug
must belong to Uy or Uy for some group I or J. That is, every node
of Ug lies in some connected subgraph of S containing a group of
terminals of Uy or Uk that represents a reachable set in V. Lastly,
since each such group of terminals is connected to the terminal
node 7, we conclude that S is connected.

Finally, since the sets V(p) for all p € Us form a complete and
non-overlapping cover of Vo, we derive:

w(S) = ZpeUs ZsEV(p)(h(s’ sp) +D)
= Xsever (hls, L(s)) + D)
= EE(L) + D = |VeF|

]

LeEmmA B.4. Let S be a connected, R-spanning subgraph of H that
is C-Disjoint, F-Disjoint, and CF-Disjoint. There is a proper and ACAP
labelling L on G. In addition, E,(L) = w(S) — D * |VcF|.

Proor. Using a similar argument as in the proof of Lemma B.2,
the sets V(p) for all p € Us form a complete and non-overlapping
cover of Vep. For any s € Ve, let U(s) denote the unique node
p € Us such that s € V(p). We define the labelling L so that L(s) is
0 (resp. 1) if U(s) is in either Uy (resp. Uk) or Uc (resp. Uf). Since
each node of Uc (resp. Ur) represents a cuttable (resp. fillable) set
in Ve, and by definition of cuttability and fillability, L is proper.

We next show that L is also ACAP. We first show that any two
reachable neighborhood (resp. kernel) nodes s, ¢t € V must belong
to a connected subgraph of G o (resp. Gr1). Due to symmetry, we
only discuss the case that s, t are reachable neighborhood nodes.
Since S is connected, nodes U(s) and U(t) are connected by a simple
path P in S. That is, P does not contain the same node twice. We
will show that P only contains nodes from Uy and Ug. If this is true,
V(P) would form a connected subgraph in Gy that contains s, t.
First, P cannot contain any node from Ucr. This is because sets V(p)
for all p € Ug form a complete and non-overlapping cover of Vcr,
and so each node of UcF is connected to exactly one node of Us
and hence cannot be used in a path. Second, and because P avoids
Ucr, it cannot contain any node of Uk or Ur without using the 7
node at least twice. Due to simplicity of P, it avoids Ug, Ur as well.
Finally, we need to show that P does not contain 7. Suppose to the
contrary that it does, and  divides P into two segments Pj, P2 such
that P; connects U(s) to some node p € Uy, P2 connects U(¢) to
some other node g € Uy, and 7 is connected to both p and q. Since
both P; and P, contain only nodes from Uy and Ug, s and V(p)
are both contained in some connected subgraph in Gy o, implying
that they are reachable. Similarly, t and V(q) are reachable as well.
However, since 7 connects to only one node from each group of
nodes of Uy representing a reachable set, V(p) and V(q) cannot be
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reachable. This leads to the contradicting conclusion that s, t are
not reachable.

To complete the argument that L is ACAP, we need to show that
any 0-labelled (resp. 1-labelled) node s € VcF is contained in a
connected subgraph of Gy o (resp. Gr 1) that also contains some
neighborhood (resp. kernel) node. We shall only discuss the case of
a 0-labelled node s. Consider the node U(s) in Uc. Note that U(s) is
only connected to some nodes from Uy or Ucr. Since S is connected,
and since each node in UcF is connected to only one node from Ug,
U(s) must be connected with some node p € Uyn. As a result, the
connected subgraph of Gy, ¢ spanning V(U(s)) contains both s and
neighborhood node V(p).

Finally, by construction of L, we have:

EG(L) = Zsevep his, L(s))
= Y peUs LseV(p) (s, 5p)
= w(S) — D= |Vcrl

We are now ready to prove Proposition 6.2:

ProoF. (Proposition 6.2) Let S be a connected, R-spanning sub-
graph of H with minimal weight. We prove the two statements of
the proposition.

(1) Suppose S is CF-Disjoint. By Lemma B.1, S is also C-Disjoint
and F-Disjoint. Therefore, by Lemma B.4 and the arguments
within its proof, the labelling L obtained by the rule in Proposi-
tion 6.2 (1) is a proper and ACAP labelling on G, and Ej;(L) =
@(S) — D * |Vcp|. It remains to show that L is minimal. Sup-
pose, to the contrary, that there is some other labelling L’
that is also proper and ACAP, such that E;;(L") < E;(L). By
Lemma B.3, there is some connected, R-spanning subgraph
S’ of H such that &(S’) = E5,(L’) + D * |Vcp|. Therefore,

wo(S) =E5L)+D=|Vcrl
> EG(L") + D * |Vl
= w(S’)
which contradicts the assumption that S is minimal.

(2) Suppose S is not CF-Disjoint. Suppose, to the contrary, there is
some proper and ACAP labelling L on G. By Lemma B.3, there
exists some subgraph S’ of H that is connected, R-spanning,
C-Disjoint, F-Disjoint, and CF-Disjoint. Since S is minimal, S
must be CF-Disjoint by Lemma B.2, which reaches a contra-
diction.

]

C ACAP-TL AND NWST ON PRUNED GRAPH

To support the node-pruning strategy in Section 6.4, we show that
the NWST solved on the pruned graph H still results in a proper
and ACAP labelling (although it may not be optimal). Consider a
subset of nodes U/, € Uc and Uy, € Ur, and the subgraph H' of H
spanning nodes U" = {Uk, Un, Ucr, Uy, U, {7} }. We show:

ProrositioN C.1. Let S be a connected subgraph of H' that spans
R and is CF-Disjoint, and define labelling L on G such that L(s) is 1
(resp. 0) for any cut or fill nodes € V if s € V(p) for somep € U, NUs
(resp.p € UL N Us). Then L is proper and ACAP.
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ProoF. Since S is connected, R-spanning, and CF-Disjoint, the
same argument in the proof of Lemma B.2 shows that L as defined
in Proposition C.1 gives each node s € VcF a unique label. Note
that, since S may not be C-Disjoint or F-Disjoint, there could be
multiple nodes of U/, (resp. Uy,) representing the same node in Vcr.
Nonetheless, CF-Disjointness ensures that the same node will not
be given different labels. Since each node in U/, (resp. Uy) represents
a cuttable (resp. fillable) set of Vcr, L is proper.

To show that L is ACAP, we closely follow the arguments in the
proof of Lemma B.4. The key difference is that, since S may not be
C-Disjoint or F-Disjoint, a node in Ucr may connect to multiple
nodes of Us, although these nodes are either all in U/, or all in Uy,
(due to CF-Disjointness of S). We make the following changes to
the proof of Lemma B.4 to reflect this difference:

o In the argument for why two reachable neighborhood nodes
s,t € V belong to a connected subgraph of Gy, 9, we make
the following change. We will show that the simple path P
connecting U(s), U(t) contains only nodes from Uy, Uc, UcF
(instead of just Uy and Ug). If this is true, V(P) forms the
desired subgraph of Gy, . To show that P avoids Uy and Uf,
note that any node of Ucr cannot serve as a “bridge” from
Un U Uc to Uk U Uf, and hence 7 will still be present in P
(at least twice) if P contains a node from Uk or Uf.

o We use a different argument to show that a 0-labelled node
s € Vcr is contained in a connected subgraph of Gy, ¢ that
also contains a neighborhood node. Consider any node p €
Ué N Us such that s € V(p). Since S is connected, there is
some terminal node g € Uk that is connected to p via a simple
path P in S, such that P does not contain any other terminal
node in Uk than g. Since nodes in U/, are only connected to
terminals in Ug and Ucp, and the latter are only connected to
Ul P consists solely of p, g, and nodes of U/, and Ucr. Thus
V(P) forms the desired subgraph of G, ¢.

]



	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Problem statement
	5 Graph formulation
	5.1 Graph construction
	5.2 A graph labelling problem

	6 Optimization
	6.1 Greedy strategy
	6.2 As-Connected-As-Possible Topology Labelling
	6.3 Algorithm
	6.4 Improving scalability

	7 Results
	7.1 Distance-based cuts and fills
	7.2 Intensity-aware cuts and fills
	7.3 Cuts and fills from opening and closing
	7.4 Performance

	8 Discussion
	Acknowledgments
	References
	A Proof of Proposition 5.2
	B Proof of Proposition 6.2
	C ACAP-TL and NWST on pruned graph

