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Abstract— We report on a simple approach to use satisfi-
ability modulo theories (SMT) solvers to synthesize stabiliz-
ing controllers subject to logical and structural constraints.
Examples of logical/structural specifications allowed by our
methodology include the transitive property of the connectivity
of a networked system, and the mutually exclusive use of
inputs or sensors, to name a few. The aforementioned structural
constraints can also impose the sparsity pattern and linear
dependency restrictions prevailing in the decentralized control
literature. The main goal of this article is to discuss preliminary
results and examples in which both the plant and the controller
are linear time-invariant (LTI). Our approach consists of
encoding the stability conditions as well as the logical and
structural constraints as an SMT instance. We illustrate our
methodology on two classes of problems: (i) full state feedback
design for positive systems, with applications to combination
drug therapy and transportation network design, and (ii) static
output feedback (SOF) design. The article includes numerical
examples for each of these applications computed using a freely
available SMT solver. It is noteworthy that the examples of
positive systems mentioned above, in particular, can be solved
in less than four minutes even when the dimension of the state
is one thousand.

I. INTRODUCTION

For more than five decades, technological advances and
applications have been fostering the use of distributed and
networked controllers in engineered systems. It is not sur-
prising, then, that intense research on methods to design
and certify the performance of decentralized and distributed
controllers is expected to continue for the foreseeable future.
Unlike centralized controllers, decentralized or distributed
ones consist of an assemblage of sub-controllers. The so-
called information pattern [1] determines for each sub-
controller which other sub-controllers it can communicate
with, from which sensors it receives measurements, and
which actuators it can command. Hence, the information
pattern imposes structural constraints on the overall con-
troller. Examples of structural constraints widely studied in
the literature include restrictions on the sparsity pattern of
linear time-invariant (LTI) controllers, imposing symmetric
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properties, and limiting the memory of the controller, such
as in static output feedback (SOF).

A. Design of Structurally-Constrained Controllers: A
Brief Overview of Methods and Techniques

There is no single design methodology that is capable
of accounting for all of the above-mentioned structural
constraints. Instead, there is an ever-increasing portfolio
of methods — each tied to a specific class of structural
constraints. Furthermore, available methods rely on a va-
riety of numerical tools and theories to achieve particular
goals, such as obtaining a stabilizing controller or design-
ing a norm-optimal optimal one. For instance, the exis-
tence of a stabilizing decentralized controller for a given
plant was characterized by using algebraic methods [2],
[3] that determine when certain fixed modes are absent.
Subsequent algebraic approaches also led to methods [4]
to obtain a stabilizing decentralized controller when one
exists. Notably, by incorporating graph-theoretic concepts
and techniques, a comprehensive collection of methods [5]
for the analysis and design of structured controllers has
been successfully developed that introduced key concepts,
such as structured controllability and observability. More
recently, these techniques have been further leveraged to
obtain tractable algorithms [6] for characterizing structurally
controllable and observable structures with the least inputs
and outputs. The analysis in [7] further characterizes the re-
alizability of structured systems. In light of powerful convex
optimization concepts and solvers, approaches proposed in
the last fifteen years focused on convex parameterizations
of stabilizing controllers. Notably, modifications of Youla’s
parameterization [8] that are compatible with structural con-
straints satisfying funnel-causality [9] or, more generally,
quadratic invariance1 (QI) [11] led to systematic methods
to obtain norm-optimal controllers. The recent approach
in [12] generalizes the aforementioned parametrizations to
multidimensional systems. The methods to design sparse
controllers in [13] and [14], [15] use alternating direction
method of multipliers (ADMM), non-fragility, and quasi-
norms, respectively.

B. Main Goal and Outline of Technical Approach

In this article, we propose a straightforward methodology
to design LTI controllers that stabilize a given LTI plant,
subject not only to structural constraints, as the methods
described in our brief overview have been considering, but

1The algorithm proposed in [10] yields the closest QI structure relative
to a pre-defined one.
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also logical constraints. Examples of logical specifications
allowed by our methodology include the transitive property
of the connectivity of a networked system2 and the mutually
exclusive use of inputs or sensors, to name a few. The sig-
nificance of logical constraints extends beyond engineering
applications, such as in the case study discussed in §IV-A
for combination drug therapy.

As is the case with the approaches described in the
overview, our solution approach hinges on a class of solvers.
In our case, we focus on solvers for satisfiability modulo
theories (SMT) that were originally intended for theorem
proving, and verification of the correctness of digital hard-
ware and software. Currently, SMT solvers have been suc-
cessfully used towards control-engineering-related tasks, in-
cluding analysis of hybrid systems [16], controller synthesis
for piece-wise linear systems [17], state estimation [18], and
robot motion planning [19].

To simplify the description of our approach, we assume
that the controller is memoryless and, hence, is represented
by a controller matrix. Our methodology is built upon the
observation that conditions for the closed-loop stability, as
well as the logical and structural constraints, can be cast as
an SMT instance of the type accepted by freely available
solvers. In particular, we recast the stability condition as a
finite number of multivariate polynomial inequalities (MPIs).

Most closely to our work are the results reported in [20]–
[22], where an algorithm known as Quantifier Elimination
(QE) [23], [24] is used to solve robust control problems
(in the frequency domain) that are encoded using quanti-
fied formulas consisting of MPIs. Interestingly, the same
algorithm used to solve these QE problems, known as the
Cylindrical Algebraic Decomposition (CAD), forms the base
of current SMT solvers when applied to formulas that contain
MPIs. Nevertheless, our approach differs from those reported
in [20]–[22] in a sense it can encode logical constraints,
structural constraints, and performance measures specified in
the time domain, e.g., H2 performance measure (like LQR).

We illustrate our methodology on two classes of problems:
(i) full state feedback design for positive systems, with
applications to combination drug therapy and transportation
network design in §IV-A, and (ii) static output feedback
(SOF) design in §IV-B. The article includes numerical exam-
ples for each of these applications computed using a freely
available SMT solver.

C. Notation

We denote the set of real numbers, non-negative real num-
bers, and positive real numbers by R, R+, R++, respectively.
Similarly, Rq×r denotes the set of real-valued matrices with
q rows and r columns. We denote the Boolean set {0, 1}
by B. The upper case and lower case letters represent the
matrices and vectors, respectively. To compactly express a

2For a networked system whose sub-components correspond to the
vertices of a directed graph, transitivity would imply that if there is an
edge from a to b and an edge from b to c then there is an edge from a to
c. Interestingly, this property is satisfied by sparsity pattern constraints that
are funnel causal or quadratically invariant.

diagonal matrix M, we use diag(dM) wherein dM denotes the
vector containing all diagonal elements of M. We show the
transpose of a matrix M with MT and denote its ith row and
jth column by M(i, :) and M(:, j), respectively. As usual, I
and 0 denote the identity and zero matrices, respectively. We
show the determinant and number of non-zero elements of a
matrix M with det(M) and ‖M‖0, respectively. Symbols >̇,
<̇, ≥̇, and ≤̇ denote the element-wise inequality and symbol
� represents the Hadamard product of matrices (element-
wise product). We denote the time derivative of x by ẋ.

II. PROBLEM FORMULATION

Consider the following linear time-invariant (LTI)
continuous-time system:

ẋ(t) = L(A,K)x(t), (1)

wherein x(t) ∈ Rn, L : Rn×n×Rm×p → Rn×n, A ∈ Rn×n,
and K ∈ Rm×p denote the system state, closed-loop linear
mapping, open-loop system matrix, and controller matrix,
respectively. Before formulating our problem, we state the
following preliminary definitions:

Definition 1: We call a matrix M to be Hurwitz, if all of
its eigenvalues have negative real parts. Then, denoting the
set of Hurwitz matrices by H, we have M ∈ H.

Definition 2: We denote the set of imposed constraints by
SIC and if a matrix M satisfies such constraints, we denote
it by M ∈ SIC .
We formally state our problem as follows:

Problem 1: Given a closed-loop linear mapping L and an
open-loop system matrix A in (1) and a set of imposed
constraints SIC , synthesize a controller matrix K in (1)
subject to the following conditions:

L(A,K) ∈ H, (Stability), (2a)
K ∈ SIC , (Imposed Constraints). (2b)

We consider two significant types of imposed constraints
in Problem 1: (i) logical constraints, and (ii) structural
constraints.

III. AN SMT-BASED SOLUTION METHODOLOGY

First, presenting preliminaries on satisfiability modulo
theories (SMT), we express a definition on a quantifier-free
SMT fragment over the theories of nonlinear arithmetic and
Boolean logic. Then, encoding the stability criteria, structural
constraints, and logical constraints based on such a definition,
we propose an SMT-based algorithmic solution to Problem
1 via Algorithm 1.

A. Satisfiability Modulo Theories (SMT)

A propositional logic (also known as zero-order logic)
formula is a set of logical constraints S(b1, . . . ,bN) defined
over the Boolean variables (b1, . . . ,bN) ∈ BN using opera-
tors AND, OR, and NOT. The Boolean satisfiability problem
(SAT) is the problem of determining if there exists an
assignment for the variables b1, . . . ,bN such that the logical
constraint S(b1, . . . ,bN) evaluates to TRUE. While the SAT
problem is known to be an NP-complete problem, recent
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breakthroughs in the field of computer science allowed SAT
solvers to scale well to problems with hundreds of Boolean
variables and million of logical constraints thanks to the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm [25],
[26].

An essential extension of the SAT problem is the satisfia-
bility modulo theories (SMT) which is the problem of deter-
mining whether a first-order formula—where the predicate
symbols have additional interpretations—is satisfiable. The
following definition can capture an important sub-class of
formulas that current SMT solvers can handle:

Definition 3: We can write a quantifier-free SMT frag-
ment over the theories of multivariate polynomials (a subset
of the nonlinear arithmetic theory) and Boolean logic as:

∃(b1, . . . ,bN, k1, . . . , kM) ∈ BN × RM,

subject to: Pi(k1, . . . , kM) ?i 0, i = 1, . . . , q,

Sj(b1, . . . ,bN) ←→ TRUE, j = 1, . . . , r,

bl ←→
(
Pl+q(k1, . . . , kM) ?l+q 0

)
, l = 1, . . . ,N,

wherein Ps(k1, . . . , kM)’s for s ∈ {1, . . . , q + N} are multi-
variate polynomials and Sj(b1, . . . ,bN)’s are propositional
logic formulas, and M, q, r, and N are the number of arith-
metic variables, polynomial constraints, logical constraints,
and hybrid constraints, respectively. Notice that the number
of hybrid constraints, i.e., N is identical to the number
of Boolean variables. The comparison symbols ?s’s for
s ∈ {1, . . . , q + N} could be any comparison operator among
>, ≥, =, and 6=.

Based on Definition 3, we propose an SMT-based encod-
ing of the solutions to Problem 1. In particular, we encode
the stability criterion (2a) as a finite number of multivariate
polynomial inequality constraints obtained from different
stability criteria, (e.g., Routh-Hurwitz). Similarly, we encode
the imposed constraints (2b) as a combination of a finite
number of multivariate polynomial structural constraints and
logical constraints.

B. Stability Criteria

Motivated by Definition 3, we are interested in casting the
stability criterion in (2a) as a set of finitely many multivariate
polynomial inequality constraints

PH(K;L,A) >̇ 0, (Stability Criterion), (3)

wherein PH(K;L,A) denotes a vector containing multivari-
ate polynomials in the elements of controller matrix K. In
particular, we consider two classes of systems: 1) positive
systems, and 2) general LTI systems.

1) Stability Criterion for Positive Systems: Metzler ma-
trices play an important role in the description of positive
systems. Therefore, let us recall the definition of a Metzler
matrix.

Definition 4: We call a matrix M to be Metzler if all of
its off-diagonal elements are non-negative.
For the special class, when the system is positive and
hence the matrix L(A,K) is Metzler, we have the following
stability equivalence [27]:

Proposition 1: Given a Metzler matrix M ∈ Rn×n, the
following statements are equivalent:

• The matrix M is Hurwitz, i.e., M ∈ H.
• There exists a z ∈ Rn such that z >̇ 0 and Mz <̇ 0.

Consequently, for special case of positive systems, i.e., when
the matrix L(A,K) is Metzler, we can rewrite the stability
criterion in (2a) as a set of polynomial inequalities

z >̇ 0, L(A,K)z <̇ 0. (4)

By noticing that each element of L(A,K)z is a multivariate
polynomial in both the elements of controller matrix K
and elements of auxiliary variable z, we conclude that (4)
is expressible as (3) which can be encoded into an SMT
instance (Definition 3).

2) Stability Criterion for General LTI Systems: In case
of general LTI systems,

(
e.g., SOF design, i.e., L(A,K) =

A+ BKC
)
, we can still write the stability criterion as a

set of polynomial inequalities thanks to the Routh-Hurwitz
stability criterion [28], [29]:

Proposition 2: The following statements are equivalent:

• The matrix L(A,K) is Hurwitz, i.e., L(A,K) ∈ H.
• There exists a K ∈ Rm×p such that vRH(K) >̇ 0.

wherein vRH(K) is the first column of the Routh-Hurwitz ta-
ble constructed from the corresponding characteristic polyno-
mial det

(
λI− L(A,K)

)
. Details of constructing the Routh-

Hurwitz table can be found in [28], [29].
Knowing that ith element of vRH(K), i.e., vRH

i (K)
is of form Ni(K)/Di(K), Di(K)2 > 0 implies that
vRHP
i (K) := Ni(K)Di(K) = vRH

i (K)Di(K)2 has the same
sign as vRH

i (K). Instead of using vRH(K) which is of
the rational fraction form, we use vRHP(K) which has the
polynomial form:

vRHP(K) >̇ 0. (5)

Since any element of vRHP(K) is a multivariate polynomial
in the elements of K, (5) is also expressible as (3) which can
be encoded into an SMT instance (Definition 3).

C. Structural Constraints

Based on Definition 3, we symbolically cast the imposed
structural constraints via (2b) as a set of finitely many
multivariate polynomial constraints as follows:

PSC(K) ? 0, (Structural Constraint), (6)

wherein PSC(K) denotes a matrix/vector corresponding to
the structural constraints containing multivariate polynomials
in the elements of controller matrix K. The comparison sym-
bol ? denotes a matrix/vector of possibly distinct comparison
symbols ?i’s. Notice that any of those comparison symbols
?i’s could be any comparison operator among >, ≥, =, and
6=.

An important sub-class of structural constraints in struc-
tured control is the class of sparsity constraints. Given a
binary structure K ∈ Bm×p that captures the imposed
sparsity structure, we can simply rewrite such a sparsity
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structural constraint in a compact form as follows:

K�K = K. (7)

Obviously, the sparsity constraint (7) inherits the form of
structural constraint (6).

D. Logical Constraints

We symbolically cast the logical constraints imposed via
(2b) as a set of logical statements as follows:

S(b1, . . . , bN)←→ TRUE,

bl ←→
(
Pl+q(K) ?l+q 0

)
,

l = 1, . . . ,N,

 (Logical Constraint) (8)

wherein S(b1, . . . , bN) denotes a vector containing a set of
logical statements over the Boolean variables, Pl+q(K) is a
polynomial in the elements of controller matrix K and ?l+q’s
for l ∈ {1, . . . ,N} could be any comparison operator among
>, ≥, =, and 6=.

One of the main sub-classes of logical constraints is the
class of transitive relations which can be defined using the
following constraints:

(blji −→ bli)←→ TRUE, (9a)
blji ←→ (kljkji 6= 0), bli ←→ (kli 6= 0), (9b)
i ∈ {1, . . . , p}, j ∈ {1, . . . ,min{p,m}}, l ∈ {1, . . . ,m}.

This class of logical constraints has applications in robotics
and communication networks.

E. An SMT-Based Controller Synthesis Algorithm

We summarize the previous discussion in Algorithm 1.
The next Proposition captures the correctness of the proposed
Algorithm 1, which is a direct consequence of the soundness
and correctness of SMT solvers.

Proposition 3: Consider the linear time-invariant (LTI)
dynamical system defined in (1) and the set of imposed
constraints SIC . A controller synthesized by Algorithm 1
is a solution to Problem 1.

Algorithm 1 SMT-BASED-CONTROLLER-SYNTHESIS

Inputs: L, A, and SIC

Step 1: Encode the stability criterion:
if L(A,K) is Metzler then

Encode PH(K;L,A) using (4),
else

Encode PH(K;L,A) using (5).
end if
Step 2: Encode the imposed constraints:
Encode the structural constraints PSC(K) using (6),
Encode the logical constraints S(K) using (8).
Step 3: Synthesize controller
status,
K = SMT-Solver

(
PH(K;L,A),PSC(K),S(K)

)
,

if status == UNSAT then
Return No stabilizing controller exists.

else
Return K.

end if

IV. NUMERICAL EXAMPLES

To assess the effectiveness of Algorithm 1, we consider
several numerical examples of two classes of problems:
(i) decentralized control of positive systems, and (ii) static
output feedback (SOF) design. For all the examples in this
section, we used an off-the-shelf SMT solver named Z3 [30].

A. Decentralized Control of Positive Systems

We consider two cases of decentralized control of positive
systems: 1) combination drug therapy, and 2) transportation
network design.

1) Case Study 1 - Combination Drug Therapy: As a
significant case of decentralized control of positive systems,
consider the evolution dynamics of HIV mutants in presence
of a combination of drugs as follows [31]:

ẋ(t) =

(
A−

m∑
i=1

kiDi

)
x(t), (10)

wherein the ith element of the state vector x(t), i.e.,
xi(t) ∈ R+, specifies the population of the ith HIV mutant
at time t and A ∈ Rn×n is a Metzler matrix in which each
diagonal element denotes the net replication rate of each
mutant and each off-diagonal element denotes the the rate
of mutation from one mutant to another. The ith control
input ki ∈ R+ denotes the ith drug dose. The diagonal
matrix Di ∈ Rn×n

+ determines at what rate ith drug kills
each HIV mutant. The matrix A−

∑m
i=1 kiDi is a Metzler

matrix which motivates the use of (4).
In addition to the stability, it is necessary to impose

interference-avoidance constraints. Such constraints prevent
the simultaneous injection of some drugs. Given a set of drug
indices that one cannot inject simultaneously, we can encode
the interference-avoidance constraint as

∏
i∈I ki = 0.

Example 1 (Correctness of Algorithm 1): To validate Al-
gorithm 1, we randomly generate a Metzler matrix A ∈
R100×100, and diagonal matrices {Di ∈ R100×100

+ }mi=1 with
n = 100 HIV mutants and m = 10 drugs. We consider the
interference-avoidance constraint among the 7th, 8th, and 9th

drugs. This leads to the following SMT problem:

∃(k1, . . . , k10, z1, . . . , z100) ∈ R110,

subject to:
(
A−

m∑
i=1

kiDi

)
z<̇0, z>̇0, k≥̇0, k7k8k9 = 0.

Feeding this SMT problem into Algorithm 1, we obtain the
following drug doses:

k =
[
1 1 1 1 1 5, 247 0 1 1 1

]T
.

Example 2 (Scalability): To assess the scalability of the
proposed SMT-based controller synthesis, we randomly gen-
erate a Metzler matrix A ∈ R1,000×1,000, and diagonal ma-
trices {Di ∈ R1,000×1,000

+ }mi=1 with n = 1, 000 HIV mutants
and m = 10 drugs. Running Algorithm 1 for such a matrix
takes less than 4 minutes to obtain drug doses. It is notewor-
thy mentioning that all the numerical tests were performed
on a MacBook Pro with processor 3.1 GHz Intel Core i5 and
memory 8 GB 2, 133 MHz.
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2) Case Study 2 - Transportation Network Design:
As another significant example of decentralized control of
positive systems, consider the dynamics of buffers containing
goods as follows [31]:

ẋ(t) = (A + EKF)x(t), (11)

wherein the ith diagonal element of diagonal matrix A ∈
Rn×n denotes either produce rate or destroy rate of the
ith good, the jth diagonal element of diagonal matrix K ∈
Rm×m

+ denotes the jth flow of good, and we define matrices
E ∈ Rn×m and F ∈ Rm×n

+ as in [31]. It is direct to verify
that A+ EKF is a Metzler matrix for any controller matrix
K ∈ Rm×m

+ .
In addition to the stability, the controller needs to be

fully decentralized, which can be imposed using the sparsity
structural constraint K� I = K. Moreover, some flows are
mutually exclusive. For a set of mutually exclusive flows
J , we can impose such a constraint using the structural
constraint

∏
j∈J kjj = 0.

Example 3 (Mutually Exclusive Flows): Let us consider
a transportation network with the dynamics specifications
(A ∈ R5×5, E ∈ R5×3, and F ∈ R3×5) in [31] when the
inflow k11 and outflow k22 are mutually exclusive and the
outflow k22 and outflow k33 are also mutually exclusive.
To synthesize a stabilizing controller under the imposed
structure, we consider the following SMT problem:

∃(k11, k12, . . . , k32, k33, z1, . . . , z5) ∈ R14,

subject to: (A + EKF)z <̇ 0, z >̇ 0,

K� I = K, K ≥̇ 0, k11k22 = 0, k22k33 = 0.

Solving this SMT problem via Algorithm 1, we obtain the
following flows of goods: K = diag(

[
0 1 0

]T
).

B. Static Output Feedback (SOF) Design

Static output feedback (SOF) design has been a challeng-
ing problem in control theory and its applications. In [32], the
authors prove that SOF stabilization by a bounded controller
(holds even in case of state feedback), simultaneous SOF
stabilization, decentralized SOF stabilization by a norm
bounded controller, and decentralized SOF stabilization with
identical controllers are all NP-complete problems. Therein,
the authors have conjectured the general SOF stabilization is
also an NP-complete problem.

We consider three cases for SOF design: (i) SOF design
subject to logical constraints (Example 4), (ii) SOF design
subject to structural constraints (Example 5), and (iii) SOF
design subject to logical and structural constraints (Example
6). We know that any such cases could theoretically become
an NP-complete problem in general. However, current break-
throughs in SMT solvers allowed them to solve several NP-
complete problems with reasonable execution time.

In case of SOF design, the closed-loop L(A,K) has the
form of L(A,K) = A+ BKC wherein B and C denote input
output matrices, respectively.

Example 4 (Transitive Relations): Considering the fol-

lowing randomly generated matrices A, B, and C:

A =

2.4366 −0.5741 −1.7558
0.3024 −0.1952 −0.2574
0.0583 −0.0505 0.7495

 ,

B = diag(
[
0.0049 −0.7586 0.4123

]T
),

C = diag(
[
1.5724 −0.2752 0.4584

]T
),

we aim at synthesizing a stabilizing SOF subject to the
transitive relations encoded by (9). To do so, we construct
the following SMT problem:

∃(b111, . . . ,b333,b11, . . . ,b33, k11, . . . , k33) ∈ B36 × R9,

subject to: vRHP(K) >̇ 0, (blji −→ bli)←→ TRUE,

blji ←→ (kljkji 6= 0), bli ←→ (kli 6= 0),

i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, l ∈ {1, 2, 3}.

Solving this SMT problem via Algorithm 1, we obtain
the following stabilizing SOF: k11 = 0.125, k12 = −0.5,
k13 = −0.5, k21 = 1, k22 = 0.5, k23 = −1, k31 = 7,
k32 = 6, and k33 = −18.

Example 5 (Pre-Specified Binary Structure): Considering
the matrices A ∈ R5×5, B ∈ R5×3, and C ∈ R3×5 in [33],
we aim at synthesizing a stabilizing SOF subject to the
following pre-specified binary structure:

K =

0 0 1
0 0 0
1 0 1

 .

Constructing the following SMT problem:

∃(k11, . . . , k33) ∈ R9,

subject to: vRHP(K) >̇ 0, K�K = K,

and solving it via Algorithm 1, we obtain the following
stabilizing SOF: k13 = −7, k31 = 0.5, and k33 = 4. Doing
the similar process for the following binary structure:

K =

0 0 0
1 1 1
0 0 0

 ,

we get UNSAT, i.e., no stabilizing controller exists with
such a binary structure. An advantage of an SMT-based
solution methodology is that it provides a guarantee on the
non-existence of a solution in case of unsatisfiability while
non-SMT-based methods proposed by [13]–[15], [33] do not
provide such a guarantee on the non-existence of a solution.

Example 6 (Logical and Structural Constraints):
Considering the matrices A ∈ R6×6, B ∈ R6×5, and
C ∈ R4×6 in [34], we aim at synthesizing a stabilizing SOF
subject to the following pre-specified binary structure and
logical implication:

K =


0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0
1 0 0 0

 , if k21k31 6= 0 then k51 = 0.
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We construct the following SMT problem:

∃(b1,b2, k11, . . . , k54) ∈ B2 × R20,

subject to: vRHP(K) >̇ 0, K�K = K,

(b1 −→ b2)←→ TRUE,

b1 ←→ (k21k31 6= 0), b2 ←→ (k51 = 0),

Solving this SMT problem via Algorithm 1, we obtain
the following stabilizing SOF: k21 = 0, k31 = −4, and
k51 = 0.5.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We put forth a methodology that leverages SMT solvers
to obtain stabilizing controllers that satisfy structural and
logical constraints. In our approach, the stabilization con-
straint is imposed via MPIs, which, in general, lead to high-
complexity SMT formulae. The fact that for positive systems,
the stability MPIs have order two or less explains why our
approach can solve large instances for this class of problems.
This stands in contrast to other cases in which the MPIs
encode the Routh-Hurtz criterion and lead to SMT formulae
that can be solved only for small problems. We also observed
that the execution time for the SOF problem decreases as
B, C, or K become sparser. Hence, determining structural
and logical constraints, as well as sub-classes of B, C, for
which one can efficiently solve large-scale SOF problem is
a pertinent future direction.
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