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Distributed Grid State Estimation Under Cyber
Attacks Using Optimal Filter and Bayesian Approach
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Abstract—Smart grid is built by combination of electric and
information technologies and achieves the two-way interaction
between power utilization and power generation. Unfortunately,
new security threats appears together with cyber-physical commu-
nication systems. In order to properly monitor power network, an
effective cyber attack detection and state estimation method are
required to know attack and system states. This article considers
the problem of robust grid state estimation and suggests a tech-
nique for distributed state estimation in power networks. First,
the distribution power system incorporating multiple synchronous
generators is modeled as a state-space framework, where attack
occurs in measurements. Basically, the false data injection attacks
can interfere with state estimation process by tampering with
sensor measurements. Using mean squared error principle, the
distributed dynamic state estimation algorithm is designed where
local and neighboring gains are obtained using optimal filter and
graph theory. For local gain computation, the attack parameter
is obtained using the Bayesian learning process. The convergence
condition of the proposed approach is derived. Extensive simulation
results show that the proposed approach is able to estimate the
system state within a short period of time. Hopefully, the proposed
methodology can be used to tolerate the cyber attacks for improving
the confidence of the grid state estimation process.

Index Terms—Bayesian approach, cyber attacks, distributed
dynamic state estimation, false data injection attack (FDIA), graph
theory, optimal filter.

I. INTRODUCTION

THE conventional electric grid is undergoing a significant
transformation in its power generation, transmission, and

distribution units [1]. Interestingly, the use of advanced infor-
mation and communication technology, sensors, and actuators
is able to achieve these imperative milestones [2], [3]. Basically,
the smart grid enables two-way communications between the
utility operator and consumer, so it is more vulnerable to cyber
attacks. Therefore, significant technical challenges arise for wide
area monitoring, planning, and controlling the smart grid net-
work [4]. To fulfill these challenges and meet customer satisfac-
tion, the utility operator is monitored operational characteristics
of power networks through a process called state estimation,
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Fig. 1. Cyber-physical attacks for SCADA smart control center.

which performs the task by filtering and fusing various sensory
measurements. The attacker is manipulated sensory measure-
ments that can mislead to the energy management system as
shown Fig. 1. Generally speaking, the transmission of massive
measurement to the centralized control center is expensive and
infeasible, so the distributed estimation is gaining more popular.
In distributed estimation, each agent in the power network is
locally processed and exchanged information to recover system
states [5]. Therefore, the distributed state estimation considering
cyber attack is an important area of research, and this article deals
with this emerging security issue.

A. Related Work

In order to protect intrusion, the joint-transformation based
false data injection attack (FDIA) scheme for smart grid is
proposed in [6]. The idea is extended in [7], where H-infinity
based attack-resilient algorithm is designed and verified. It can
jointly estimate the system state and control input under the
condition of cyber attacks [8]. Using same automatic generation
control model, a dynamic watermarking framework is proposed
to detect cyber attacks [9]. Furthermore, the semidefinite pro-
gramming based AC state estimation scheme under cyber attack
is presented in [10] and [11]. The computational complexity of
this approach is very high. Moreover, the forecast-aided optimal
state estimation algorithm is proposed in [12], where weighting
sequence is obtained through the convex optimization process.
When the system is highly dynamic, the algorithm cannot
properly track the system behaviors. Moreover, the adaptive
then combine distributed grid state estimation method under
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packet loss condition is proposed in [13]. In fusion center, the
local estimation results are combined by designed weighting
parameters, which are obtained through optimization process.
For real-time implementation point of view, it is an unrealistic
process as it involves two-stages (adaptive and combine) and
requires more time to properly estimate grid states. Finally, com-
puting the optimal weight parameters and convergence analysis
are challenging tasks.

From filtering point of view, the Kalman filter (KF), extended
KF (EKF), H-infinity EKF, unscented KF and cubature KF al-
gorithms are used for power system state estimations [14], [15].
Moreover, the forecasted-aided KF algorithm considering cyber
attack is explored in [16], where Euclidean distance metric
is used to detect cyber attack. The observer-based anomaly
detection scheme is presented in [17]. In addition, the wavelet
transform-based mixed Kalman particle filter algorithm under
FDIA is presented in [18]. The scenario based unsupervised
learning algorithm for cyber physical power system is developed
in [19]. All the aforementioned algorithms are designed for cen-
tralized state estimation, which requires all measurements and
prone to vulnerable and single point failure. Due to deregulation
of power systems, the distributed state estimation is gaining more
attention in industrial and research communities.

In order to estimate the discrete time-varying cyber-physical
system states, an iterative finite impulse response filter is de-
signed [20]. It can effectively estimate the hidden system states
without using any specific initialization scheme. For improve-
ment of estimation accuracy, the robust type chandrasekhar-
based maximum correntropy KF algorithm for cyber-physical
system is proposed in [21]. The idea is extended in [22], where
attack-resilient remote state estimation scheme is proposed and
verified. The attackers are manipulated sensory measurements
and the fusion center combines them for state estimations. Using
residual prewhitening method, the cyber attack detection method
is proposed in [23]. Technically, when the covariance matrix of
the residual error is not full-rank, this method is used to solve
the cyber attack detection and estimation problem.

Moreover, the distributed H-∞ algorithm for a virtual system
is presented in [24]. The designed gains of the distributed filter
are obtained by offline, and they are computed after solving
several linear matrix inequalities (LMIs). The computational
complexity of this approach is very high and cannot apply in
real-time power systems. Moreover, the power system state
estimation is jointly developed with an innovation-based cy-
ber attack detection method to limit communication overhead
in [25]. The alternating direction method of multipliers-based
distributed state estimation algorithm for power system is pre-
sented in [26]. Moreover, the distributed optimal estimation
algorithm for sensor networks are developed in [27]. The joint
cyber attack detection and state estimation are presented in [28].
Furthermore, the distributed cyber attack detection and state
estimation for a cyber-physical system under physical and cyber
attacks are presented in [29]. After solving several LMIs and
convex optimization, the joint estimation is performed, which
incurs significant computational complexity.

Furthermore, the resource constraint based optimal state esti-
mation algorithm for cyber-physical system is presented in [30].
Besides, the mixed integer linear programming based cyber

attack protection scheme for power system is developed in [31].
The computational complexity is very high, and it requires
significant amount of time as it is a bilevel optimization problem.
In order to guarantee the cyber and operational security, a
command authentication approach is proposed to detect intru-
sion [32], [33]. In addition, the mean squared error (MSE) based
smart grid state estimation algorithm is presented in [34]. Due to
the suboptimal nature of the computed gain, it cannot accurately
estimate the grid states under cyber attacks [34].

Distributed state estimations face real environments, where
cyber attacks and noisy measurements are present. Differenti-
ated from prior literature, this article is the first of its kind to solve
distributed state estimation problem for smart grid under cyber
attacks using the optimal filter theory and Bayesian learning
process.

B. Main Contributions

The main contributions of this article are as follows.
1) The power distribution system incorporating multiple syn-

chronous generators is modeled as a state-space frame-
work. The sensors are used to obtain measurement, which
is corrupted by noise and cyber attacks.

2) Based on the optimal filter and graph theory, the distributed
smart grid state estimation algorithm is proposed. Specif-
ically, the local gain of the distributed scheme is obtained
using the optimal filter theory, whereas the neighboring
gain is determined through convex optimization process
and graph theory. For local gain computation, the attack
parameter is obtained using the Bayesian learning process.

3) The convergence condition of the proposed approach is
derived.

4) Numerical simulations show that the proposed method
can properly tolerate the cyber attack and noises leads
to an accurate estimation result. The research issue and
potential solution identified in this article can open up
several avenues for future research in this area.

Organizations: The organization of this article is as follows:
In Section II, power system model is described, which follows
measurement and cyber attack frameworks in Section III. The
proposed algorithm is derived in Section IV. Analysis of the
computer simulations is given in Section V and Section VI
concludes this article.

Notations: This article employs some standard notations.
Bold face upper and lower case letters are used to represent
matrices and vectors, respectively. Superscripts x′ denotes the
transpose of x, E(·) denotes the expectation operator, diag(x)
denotes the diagonal matrix, λ(X) is the spectral radius of X,
and I denotes the identity matrix with appreciate dimension.

II. STATE-SPACE REPRESENTATION OF POWER NETWORK

INCORPORATING SYNCHRONOUS GENERATORS

The smart grid is the backbone of a nation economy and
is crucial to the homeland security. Generally, there are many
synchronous generators and loads are connected to the distri-
bution power networks. To illustrate, Fig. 2 shows the typical
synchronous generators and loads that are connected to the 8-
bus distribution lines [35]–[37]. Basically, the nth-synchronous
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Fig. 2. Distributed power network incorporating synchronous generators.

generators can be represented by the following third-order dif-
ferential equations as follows [36]– [38]:

Δδ̇n = Δωn (1)

˙Δωn = − Dn

Hn
Δωn − ΔPen

Hn
(2)

Δ ˙E ′
qn = − ΔE ′

qn

T ′
don

+
ΔEfn

T ′
don

+
Xdn

T ′
don

ΔIdn − X ′
dn

T ′
don

ΔIdn (3)

here, δn is the rotor angle, ωn is the rotor speed, Hn is the inertia
constant, Dn is the damping constant, Pe is the active power
delivered at the terminal, E′

qn is the quadrature-axis transient
voltage, Efn is the exciter output voltage, T ′

don is the direct-axis
open-circuit transient time constant, Xdn is the direct-axis syn-
chronous reactance, X ′

dn is the direct-axis transient reactance,
and Idn is the direct-axis current [35].

Generally, an automatic voltage regulator (AVR) is used to
control the excitation current that leads to control the terminal
voltage [36], [39]. A second-order transfer function is used to
represent the AVR as follows [36]:

ΔEfn = b0nz1n + b1nz2n (4)

˙z1n = z2n (5)

˙z2n = − c1nz2n − c0nz1n +Δvn (6)

here, z1n and z2n are the AVR internal states, b0n and b1n are
transfer function coefficients of the AVR, c0n and c1n are the
transfer function coefficients of the excitation system and Δvn
is the control input signal.

Considering N generators in the power network, the d-axis
current Idi and electrical power Pei are represented as [39]

Idn =

N∑
m=1

ΔE ′
qn[Bnm cos(δn − δm)−Gnm sin(δn − δm)].

(7)

Pen = ΔE ′
qn

N∑
m=1

[Bnm sin(δn − δm)

+Gnm cos(δn − δm)]ΔE ′
qm (8)

here, n,m ∈ {1, . . . , N}, Gnm and Bnm are the real and imag-
inary part of the admittance Y ∈ RN×N , which is described in
the Appendix A.

After linearizing (7) and (8), ΔPen and ΔIdn are written as
follows [36], [40], [13]:

ΔPen =
[
∂Pen

∂δ
∂Pen

∂E′
q

]
[ΔδΔE′

q]
′ (9)

ΔIdn =
[
∂Idn
∂δ

∂Idn
∂E′

q

]
[ΔδΔE′

q]
′ (10)

here, ΔE′
q and Δδ are the transient voltage deviations and rotor

angle deviations. By combining (1)–(6) and (9)–(10), it can be
written as follows:

ṡn = Ansn + Bnun +
∑

m∈Nn

Anmsm (11)

here, the generator state sn = [ΔδnΔωnΔE ′
qnz2nz1n]

′, the con-
trol input signal un = Δvn, Nn indicates a set of connected
generators, the system matrices An ∈ R5×5, Bn ∈ R5×1 and
Anm ∈ R5×5 are

An =⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

− 1
Hn

∂Pen

∂δn −Dn
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⎡
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− 1
Hn

∂Pen

∂δm 0 − 1
Hn

∂Pen

∂E′
qm

0 0

Xn
∂Idn
∂δm

0 − 1
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+Xn
∂Idn
∂E′

qm

b1n
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0 0 0 0 0
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⎥⎥⎥⎥⎥⎥⎦

Bn = [0 0 0 1 0]′[36] and Xn =
Xdn −X ′

dn

T ′
don

.

The aforementioned system can be written in continuous-time
form

ṡ = Acs + Bcu + w (12)

here, s ∈ R5N×1, u ∈ RN×1, w ∈ R5N×1 is the process noise
that can follow the Gaussian distribution incorporating zero
mean and Q covariance, i.e., N(0, Q), Ac ∈ R5N×5N and Bc ∈
R5N×N are given by:

Ac =

⎡
⎢⎢⎢⎢⎣

A1 A12 · · ·A1N

A21 A2 · · ·A2N

...
...

...

AN1 AN2 · · ·AN

⎤
⎥⎥⎥⎥⎦

Bc = diag(B1 · · ·BN ).

Now, it can be written as a discrete-time form as follows:

s(t+ 1) = As(t) + Bu(t) + w(t) (13)

where A = I + AcΔt, Δt is the sampling time, and B = BcΔt.
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Fig. 3. Interconnected distribution power subsystems incorporating syn-
chronous generators.

III. MEASUREMENT AND CYBER ATTACK FRAMEWORKS

The distributed control centers are interconnected through
communication links as shown in Fig. 3. In this figure, there are
ith distribution subsystems, which are connected to the neigh-
bors units. These control centers can share information with
their neighbors in a distributed way. The sensors are installed
into subsystem units to obtain distributed measurements. The
sensing information is telemetered to the control centres to
estimate system states such as rotor angle. The measurements
are obtained as follows:

zi(t) = Cis(t) + vi(t) (14)

here, zi(t) ∈ Rp
i is the measurement, and vi � N(0,Ri) is the

measurement noise, and Ci is the sensing matrix.
When sensing information is transmitted to the control center,

the attacker can hack communication network and manipulate
measurements. There are different kinds of attacks such as FDIA
and replay attack [41]. For FDIA, an attacker is added intended
information to the actual measurement over time, then report it
to the control center for misleading. In latter case, the adversary
records the normal measurements over time [9]. During attack,
the actual measurements are replaced to be recoded one and
thereby moving the system into an incorrect state [42]. The
detailed attack templates are described in [43]. Mathematically,
when there is attack then the system measurement can be written
as follows:

zai (t) = Cis(t) + vi(t) + ai(t) (15)

where, ai(t) is the cyber attack. We consider that the attack
vector ai is a Gaussian distribution with mean μi and covari-
ance R̄a

i , i.e., ai � N(μi, R̄a
i ) [25], [28]. It assumes that the

attack sequence is uncorrelated to each measurement [44], [43].
Let define the system model parameters ϕi = (μi, R̂i), where
R̂i = Ri + Ra

i is the combined covariance of noise and cy-
ber attack. Based on this noisy and corrupted version of
measurements, the proposed state estimation algorithm is de-
veloped in the following section.

IV. PROPOSED DISTRIBUTED SMART GRID STATE ESTIMATION

ALGORITHM AND CONVERGENCE CONDITION

Using MSE principle, the distributed dynamic state estimation
algorithm is designed where local and neighboring gains are

obtained using optimal filter and graph theory. Afterward, the
convergence condition of the developed approach is derived.

A. Proposed Algorithm

The proposed distributed state estimation algorithm is ob-
tained using the optimal filter and Bayesian learning ap-
proaches [43]. Based on the interconnected structure in Fig. 3,
the designed scheme is mathematically written as follows:

ŝi(t+ 1) = Aŝi(t) + Bu(t) + Gi(t)[zai (t)− Ciŝ(t)]

+ Li(t)
∑
j∈Ni

[̂sj(t)− ŝi(t)] (16)

here, ŝi(t+ 1) is the posterior estimated system state, ŝi(t) is
the previous estimated state, Gi(t) and Li(t) are the local and
consensus gains that can minimize the residual error dynamic,
zai (t)− Ciŝ(t), and neighboring estimation mismatch, ŝj(t)−
ŝi(t), over time. Basically, the last term of the distributed scheme
(16) is used for neighboring connections in Fig. 3, while the third
term is included for self-estimation unit. The following theorem
is used to compute these gains for distributed smart grid state
estimation.

Theorem 1: After defining the error, ηi(t) = s(t)− ŝi(t),
between the true and estimated system states and using the
optimal filter as well as graph theory, the designed gains are
obtained as follows [43]:

Gi(t) = [APi(t)C′
i + Li(t)

∑
r∈Ni

{Pri(t)− Pi(t)}C′
i]

× [CiPi(k)C
′i + R̂i]

−1. (17)

Using MSE principle, the estimation error covariance Pi(t+
1) = E[ηi(t+ 1)η′

i(t+ 1)] is determined by

Pi(t+ 1) = APi(t)A′ − APi(t)C′
i[CiPi(t)C′

i

+ R̂i]
−1CiPi(t)A′ + Q (18)

here, Pi(t) is the prior estimation error covariance. Using the
Bayesian learning formula, the covariance R̂i is computed as
follows [45]:

R̂i = (αiR̄i + ρi[diag(μ̂i)]
2 − (ρi + 1)[diag(μ̂i)]

2

+ [diag(zai − Ciŝi)]2)/(αi + 1) (19)

μ̂i = (ρiμ̄i + zai − Ciŝi)/(ρi + 1) (20)

where, R̄i and μ̄a
i are the initial values, αi and ρi are the

hyperparameters.
For mathematical simplicity, we assume that neighboring gain

Li(t) = υI, where υ is the designed gain coefficient. Under a
steady-state condition, it can be computed through the following
convex optimization process [43]:

υ = argmax
υ

[
−I Γ

Γ′ −I

]
< 0 (21)

here, Γ = I ⊗ A − bdiag{GiCi} − bdiag{Li}(Lp ⊗ I) is the
augmented state dynamic, Lp is the Laplacian operator which
is obtained through the graph theory after combining all error
dynamics in a compact form as shown in (32), ⊗ indicates the
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Kronecker product. From (32), it can be seen that the overall
system dynamic is written into two items: augmented state dy-
namic, Γ, and augmented error, W = (1⊗ I)w − bdiag{Gi}v.

The Proof is derived in Appendix B.

B. Convergence Condition

When the estimated grid state converges to the actual state
over time then the convergence of the developed approach is
guaranteed asymptotically [46]. In doing this, the designed local
and neighbouring gains (G and L) can play key rule to analyze
the convergence of the algorithm. With these gains, the system is
stable when the spectral radius of augmented state matrix is less
than one, i. e., λ(Γ) < 1. In this case, the term E[W(t)W′(t)] =
Q̃R(t) converges to

Q̃R(t) = {I ⊗ Gi(t)}diag(R1, . . . ,Ri){I ⊗ Gi(t)}′ + 11′Q.
(22)

The entry of vector 1 is one with appropriate dimension.
Lemma 1: If the eigenvalues of a matrix H ∈ Rr×r are

increasing order, then the following inequality holds [47, p.
235], [46]:

minimum
b�=0

∣∣∣b′Hb
b′b

∣∣∣ ≤ |λl(H)| ≤ maximum
b�=0

∣∣∣b′Hb
b′b

∣∣∣. (23)

Here, λ(H) denotes the eigenvalues of H, λl(H) is the spectral
radius of H with l = 1, 2, . . . , r and b �= 0 is the nonzero vector.
The smallest and largest eigenvalues of H can be characterized
as solution of the min–max problems involving the Rayleigh
quotient b′Hb/b′b. The Rayleigh quotient is used in the min–
max theorem to get the actual values of all eigenvalues.

In order to apply the Lemma 1, one can ascending order the
eigenvalues of Γ(t) as follows [46]:

λmin = λ1(Γ(t)) ≤ λ2(Γ(t)), . . . ,≤ λl(Γ(t)) = λmax. (24)

Therefore, the maximum absolute eigenvalue of Γ(t) is

ρ(E[Γ(t)]) ≤ maximum
l

|λl[I ⊗ A − bdiag{Gi(t)Ci}

− bdiag{Li(t)}(Lp ⊗ I)]|. (25)

When the estimated states converge to the true states, the state
error covariance Pi(t) converges to Pi [48].

V. NUMERICAL SIMULATION RESULTS AND ANALYSIS

To estimate the system state, the proposed algorithm is applied
to the distribution power network as shown in Fig. 2. For sim-
plicity, we assume that there are i = 4 interconnected distributed
controllers as shown in Fig. 3. In this network, the step by
step procedure of the developed algorithm is demonstrated in
Fig. 4. First of all, the power system and measurement are
modeled by (13) and (15), respectively. It can be seen that the
sensing measurement is corrupted by noise and cyber attacks.
For instance, the attacker is injected the malicious false data into
the measurements based on the attack templates presented in
Section III. Afterward, the distributed estimation structure (16)
is formulated considering unknown filtering parameters such as
local and consensus gains, which are obtained by (17) and (21).

Fig. 4. Step-by-step procedure of the proposed algorithm.

TABLE I
CONSIDERED GENERATOR PARAMETERS

TABLE II
CONSIDERED LINE PARAMETERS

For local gain, the covariance is computed by (18). Technically,
the local and consensus gains can minimize the residual error and
neighboring estimation mismatch over time leads to an accurate
estimation result. Finally, the estimated system state is updated
by (16), and it error covariance is determined by (18).

The simulation is conducted through MATLAB and YALMIP
environments [49]. The simulation parameters are described in
Tables I and II [36], [39]. Basically, the process noise covariance
is followed by Gaussian distribution with covariance is 10−8I.
In addition, the measurement noise covariance for four esti-
mators are followed by Gaussian distributions with respective
covariances are 1 ∗ 10−7I, 2 ∗ 10−7I, 3 ∗ 10−7I, and 4 ∗ 10−7I.
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Fig. 5. Generator 1. (a) Actual rotor angle and its estimated state with FDIA. (b) Actual rotor speed and its estimated state with FDIA. (c) Actual transient voltage
and its estimated state with FDIA.

Fig. 6. Generator 2. (a) Actual rotor angle and its estimated state with FDIA. (b) Actual rotor speed and its estimated state with FDIA. (c) Actual transient voltage
and its estimated state with FDIA.

Fig. 7. MSE between true and estimated states with FDIA.

Moreover, the sampling period is 0.01 s, and there are five syn-
chronous generators connected to the 8-bus distribution network
as shown in Fig. 2. The simulation is conducted considering
FDIA and replay attacks.

First of all, it assumes that the attacker is added FDIA into
measurement during 0.05–0.25 s. In this case, the simulation
results are illustrated in Figs. 5–8. Basically, Fig. 5(a)–(c)
shows the generator 1 true states and their estimation results.
The proposed algorithm can properly estimate the system states

within 10 s, whereas the existing method requires 20 s [34].
Similarly, high estimation accuracy is illustrated in Fig. 6(a)–(c)
for generator 2. This is due to the fact that the proposed algorithm
can find the optimal gains, so the estimated states converge to
the actual states within a short period of time. On the other
hand, the existing method cannot determine the desired gains
as they are suboptimal in nature. In this case [34], we assume
the neighboring gain L is 0.026× I. The MSE between true
and estimated system state is illustrated in Fig. 7. It can be seen
that all estimators reach consensus on estimation. In summary,
it can be observed that the proposed technique requires almost
half time to estimate the system states compared with the exiting
method.

When there is replay attack during 0.05–0.25 s, the simulation
results are presented in Figs. 8–10. It can be seen that the
proposed algorithm require more time to estimate the system
states with this attack. Most importantly, the algorithm provides
consistent results in all cases. The proposed algorithm can
properly estimate the system states within 11 s while the existing
method requires 20 s [34]. Fig. 8(a)–(c) shows the generator 4
true states and their estimation results. The developed scheme
can accurately estimate the grid states within 11 s, whereas the
existing method requires 20 s [34]. Similarly, high estimation
accuracy is described in Fig. 9(a)–(c) for generator 5. This is
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Fig. 8. Generator 4. (a) Actual rotor angle and its estimated state with replay attack. (b) Actual rotor speed and its estimated state with replay attack. (c) Actual
transient voltage and its estimated state with replay attack.

Fig. 9. Generator 5. (a) Actual rotor angle and its estimated state with replay attack. (b) Actual rotor speed and its estimated state with replay attack. (c) Actual
transient voltage and its estimated state with replay attack.

Fig. 10. MSE between true and estimated states with replay attack.

due to the fact that the designed scheme can find the optimal
gains, so the estimated grid states converge to the true states
within 11 s. However, the comparative scheme cannot compute
the optimal gains as they are suboptimal in nature [34]. The MSE
under this attack is illustrated in Fig. 10. It can be observed that
all estimators reach consensus on estimation. Overall, it can
be seen that the proposed method requires almost half time to
estimate the grid states compared with the traditional approach.

VI. CONCLUSION

State estimation is the key task for power system operation
and maintain stability as well as observability. However, the
smart grid infrastructure is prone to cyber threats. In order to
protect power network from cyber attacks, this article proposes
a distributed state estimation algorithm. Specifically, we have
made three main contributions to enhance the cyber security
and resiliency of smart grids. First, the 8-bus distribution grid in-
corporating synchronous generators is modeled as a state-space
framework, where measurement is obtained by a set of sensors.
The measurement data are manipulated by cyber attacks such as
FDIA. Second, we proposed an attack-resilient distributed state
estimation algorithm based on the optimal filter and graph the-
ory. Finally, the convergence condition of the proposed approach
is derived. Extensive, simulation results show that the proposed
algorithm can able to estimate system state within a short time.
We will try to develop a data-driven distributed state estimation
algorithm considering cyber attacks.

APPENDIX A

The network admittance is written by [39], [37]

Y = Yrr − YreY−1
ee Y′

re (26)
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here, Yrr = diag[Y17 + jB17, Y26 + jB26, Y36 + jB36, Y46 +
jB46, Y56 + jB56], where the mutual admittance is computed
as follows as an example: Y17 = 1/(R17 + jX17), R17 is the
resistance between node 1 and 7, X17 and B17 are it’s reactance
and susceptance, respectively. The term Yre is written as

Yre =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −Y17 0

−Y26 0 0

−Y36 0 0

0 0 −Y48

−Y56 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (27)

The term Yee is written as

Yee =

⎡
⎢⎣ Y66 −Y67 0

−Y67 Y77 −Y78

0 −Y78 Y88

⎤
⎥⎦ (28)

where Yii is the self-admittance.

APPENDIX B
(PROOF OF THEOREM 1)

The estimation error ηi(t+ 1) = s(t+ 1)− ŝi(t+ 1) with-
out first considering cyber attacks can be expressed as [43]

ηi(t+ 1) = [A − Gi(t)Ci]ηi(t) + Li(t)
∑
r∈Ni

[ηr(t)

− ηi(t)] + w(t)− Gi(t)vi(t). (29)

The estimation error covariance Pi(t+ 1) = E[ηi(t+
1)η′

i(t+ 1)] is expressed as follows:

Pi(t+ 1) = [A − Gi(t)Ci]Pi(t)[A − Gi(t)Ci]
′

+ [A − Gi(t)Ci]
∑
s∈Ni

[Pis(t)− Pi(t)]L′
i(t) + Li(t)

∑
r∈Ni

× [Pri(t)− Pi(t)][A − Gi(t)Ci]
′ + Li(t)

∑
r,s∈Ni

× [Prs(t)− Pri(t)− Pis(t) + Pi(t)]L′
i(t)

+ Gi(t)RiG′
i + Q. (30)

After partial derivative of Pi(t+ 1) with respect to local gain
Gi(t), and setting it derivative equal to zero, i.e., ∂{tr[Pi(t+1)]}

∂Gi(t)
=

0, the optimal local gain is expressed as follows [43]:

Gi(t) = [APi(t)C′
i + Li(t)

∑
r∈Ni

{Pri(t)− Pi(t)}C′
i]

× [CiPi(k)C′
i + Ri]

−1. (31)

Using the heuristic approach, Ri in (31) is replaced by Ri +
Ra

i = R̂i, which leads to the local gain expression in (17).
Using (29), the overall error dynamic η(t) =

[η1(t) . . .ηn(t)]
′ can be written as follows:

η(t+ 1) = [I ⊗ A − bdiag{Gi(t)Ci} − bdiag{Li(t)}
× (Lp ⊗ I)]η(t) + (1⊗ I)w − bdiag{Gi(t)}v(t)

= Γ(t)η(t) + W(t) (32)

where, Lp is the Laplican operator [13], Γ(t) = I ⊗
A − bdiag{Gi(t)Ci} − bdiag{Li(t)}(Lp ⊗ I) and W(t) =
(1⊗ I)w − bdiag{Gi(t)}v(t). The overall error covariance
P(t+ 1) = E[η(t+ 1)η(t+ 1)′(t+ 1)] can be expressed as
follows:

P(t+ 1) = E[Γ(t)P(t)Γ′(k)] + E[V(k)V′(k)]. (33)

According to the matrix property of the Kronecker product
vec(XYX) = (X′ ⊗ X)vec(Y), (33) can be written as a vector
form

vec[P(t+ 1)] = E[Γ(t)⊗ Γ′(t)]vec[E{P(k)}]
+ vec[E{V(k)V′(k)}]. (34)

It can be seen that Gi(t) and Li(t) are unknown but function
of each other that makes difficult to get any one of their estimated
values. To overcome this, setting Li(t) = 0, the local gain Gi(t)
and error covariance (18) is derived. For mathematical simplic-
ity, we assume that neighboring gain Li = υI, where υ is the
designed gain coefficient. This is because, the consensus gain
is generally small. With the given steady-state local gain and
corresponding error covariance, the system is stable when the
spectral radius of λ[Γ] is less than one [43], i.e.,

υ = argmax
υ

λ(Γ) < 1 ⇒ ΓΓ′ < 1 ⇒
[
−I Γ

Γ′ −I

]
< 0. (35)

The aforementioned LMI is obtained using the Schur
complement.

Inspired by the Bayesian learning approach, the covariance R̂i

is computed for local gain computation. Let define the unknown
model parameter ϕi = (μi, R̂i). For simplicity, we are omitted
time index. Using the variational Bayesian learning method [45],
the likelihood function is written as follows:

f(zai ) =
∫

f(zai |s,ϕi)f(s)f(ϕi)dsdϕi. (36)

Based on the state-space model (13), and measurement (15),
f(s) = N(As + Bu,Q) and f(zai |x,ϕi) = N(Cis + μi, R̂i). It
assumes that the model parameters (μi, R̂i) have conjugate
priors, so the posterior model parameter ϕ̂i is almost same as the
prior probability distribution. Mathematically, it can be written
as follows:

μi|(μi, ρi, R̂i) � N(μi, R̂i/ρi) (37)

R−1
i |(αi, ζi) � W (αi, ζ

−1
i /αi) (38)

here, W (•) is the Wishart distribution, μi, ρi, αi, and ζi are the
hyperparameters. It can be seen that all distribution functions are
belong to the exponential family, and using [45], [50], we can
obtain the unknown estimation parameter μ̂i = E(μi) and R̂i =
E(Ri) as shown in (19) and (20). This completes the derivation.
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