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Letters

IoT-Based Improved Human Motion Estimations Method Under Cyber Attacks

Md Masud Rana and Rui Bo

Abstract—Human beings and control centers are usually far away
from each other, so cyber attacks on the sensor measurements can lead
to loss of user privacy, information, and trust. Driven by this motivation,
this letter proposes an Internet of Things (IoT)-based human motion
estimations algorithm under cyber attacks. The sensing measurements
are transmitted to the control center over an unreliable communication
channel where cyber attack occurs. Based on the mean squared error, the
optimal state estimation algorithm is derived to estimate human motions.
Simulation results show that the proposed method provides significant
performance improvement compared with the existing approach.

Index Terms—Communication channel, control center, cyber attacks,
human motion estimations, Internet of Things (IoT), sensors.

NOMENCLATURE

A, Ad, C, I Continuous-time state, discrete-time state, observation
and identity matrices.

k, K, z Time instant, gain and residual error.
n, Q Process noise and it covariance matrix.
v, R Measurement noise and it covariance matrix.
x, x̂−, x̂ Actual, prior and estimated system states.
y, μ Measurements and sampling time.
P̃

−
, P̃ Predicted and updated error covariance.

I. INTRODUCTION

CLIENTS and control centers are not co-located, so cyber attacks
on the Internet of Things (IoT)-based sensor measurements

can cause significant challenges for effectively recognizing human
motions such as falling and lying down. The Kalman filter (KF)
and extended KF-based human motion estimation method under
ideal channel condition is proposed in [1] and [2]. The physiolog-
ical raw signals from body sensors are processed by the onboard
microcontroller, and information is transmitted to the control cen-
ter [3]. A physician can analyze information and take necessary
actions. The idea is then extended in [4], where monitoring center is
designed under the IoT network. All the aforementioned algorithms
are designed without cyber attacks. Interestingly, there are some rel-
evant attack-resilient algorithms for various cyber-physical system
state estimation [5], [6]. Motivated by this, this letter proposes an
optimal algorithm for human motion estimations under cyber attacks.

II. HUMAN MOTION SYSTEMS AND MEASUREMENTS

In order to design the monitoring center, a kinematic model of
the human leg with measurements by a set of IoT sensors is shown
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Fig. 1. Proposed IoT-based human motion estimation process.

Fig. 2. Proposed human motion estimations process.

in Fig. 1. This model involves angles and positions of individual
limbs and actual forward displacement of the human body [1], [2].
The human motion system and IoT-based sensor measurement are
obtained as follows:

xk+1 = Adxk + nk (1)

yk = Cxk + vk (2)

where x = [x y θ1 ω1 θ2 ω2] is the system state, Ad = I + μ ∗ A,
x and y are the horizontal and vertical positions of the foot rela-
tive to the hip, θ1 and ω1 are the joint angle and angular velocities
between the hip and thigh, and θ2 and ω2 are the joint angle and
angular velocities between the skin and thigh. The continuous-time
state A is a 6 by 6 sparse matrix where the nonzero elements of
A are A14 = −a1 sin(θ1) − a2 sin(θ1 + θ2), A16 = a2 sin(θ1 + θ2),
A24 = −a1 sin(θ1) + a2 sin(θ1 + θ2), and A26 = a2 cos(θ1 + θ2)

A34 = A56 = 1. Here, a1 is the length between the hip and knee,
while a2 is the length between the knee and heel of the foot.

The sensor locally processes raw measurements, and the measure-
ment innovation sequence zk = yk − Cx̂−

k is transmitted through an
additive white Gaussian channel, where cyber attacks are occurred
as shown in Fig. 2. The manipulated innovation sequence is z̃k =
Tkzk + ak, where Tk is the random attacker matrix, and ak is the
Gaussian channel noise.

III. PROPOSED ALGORITHM

Theorem 1: Based on the mean squared error principle, the optimal
state estimation algorithm is derived. For system state estimation, the
optimal gain is derived as follows:

Kk = P̃kC′(CP̃
′
C + R

)−1
. (3)

The state prediction and estimation are computed by

x̃−
k = Ad x̃k−1, x̃k = x̃−

k + Kz̃k. (4)
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Fig. 3. Performance of the proposed and existing approaches.

The predicted and updated error covariance matrices are [6]

P̃
−
k = AdP̃k−1A′

d + Q, P̃k = P̃
−
k + P̄C′(P̆ − T′

kP̆ − P̆Tk

)
CP̄.

The gain corrects and minimizes the residual error lead to an accurate
estimated system states over time. The proof is derived in Appendix.

IV. NUMERICAL RESULTS AND DISCUSSION

The simulation flow chart is shown in Fig. 2. After getting system
and measurement by (1) and (2), the optimal gain is computed by
(3), which follows the system state estimation and error covariance
computation by (4) and (5). For simulation, we consider the false
data injection (FDI) and replay attacks. For FDI, the attackers inject
malicious information into the targeted network to mislead the con-
trol center. In the latter attack, the eavesdropper replays previously
recorded measurements thereby trying to move the system into an
incorrect state.

The considered process and measurement noises follow Gaussian
distributions with mean zero and covariance matrices are being
0.005I and 0.02I, respectively, a1 = 0.0882 m, a2 = 0.18 m,
θi = π/180 Deg, and μ = 0.001 sec [1], [2]. During time step k = 1
to 10, the eavesdropper attacks the measurement sequences. From
simulation result in Fig. 3, it can be seen that the proposed algorithm
provides a lower mean squared error between the true and estimated
states compared with the existing method in [7]. This is due to the
fact that the developed algorithm can effectively reduce estimation
errors after computing the optimal gain and error covariance.

V. CONCLUSION

The optimal estimation algorithm is proposed for human motion
estimations. Numerical studies show that the proposed method
provides significant performance improvement compared with the
existing method.

APPENDIX

PROOF OF THEOREM 1

The posteriori error covariance is

P̃k = E
[(

xk − x̃k
)(

xk − x̃k
)′] = P̃

−
k + K

(
CP̄C′ + R

)
K′

− E
[(

xk − x̃−
k

)
z̃′

kK′] −
[

Kz̃k

(
xk − x̃−

k

)′]
. (5)

Using the mean squared error principle, the above optimal gain is
easy to obtain [2], [6]. For the steady-state case, it is assumed that
x̃−

0 = x̂−
0 and P̃0 = E[(x0 − x̂−

0 )(x0 − x̂−
0 )] = P̄ [6], [7]. Under this

assumption, the error term xk − x̃−
k in (5) is [6]

xk − x̃−
k = Ak

d

(
x0 − x̂−

0

)
+

k−1∑

l=0

Al
dnk−1−l −

k−1∑

l=0

Al+1
d Kz̃−

k−1−l.

Under the same assumption, xk − x̂−
k can be written as

xk − x̂−
k = Ad(I − KC)

(
xk−1 − x̂−

k−1

)
+ nk−1 − AdKvk−1.

Using above the term z̃k = Tkzk + ak can be written as [6]

z̃k = TkC[Ad(I − KC)]k(x0 − x̂−
0

) +
k−1∑
l=0

TkC[Ad(I − KC)]lwk−1−l + V.

Here, the noisy term V = Tkvk + ak − ∑k−1
l=0 TkC[Ad(I −

KC)]lAdKvk−1−l and E(V) = 0. z̃k follows an independent iden-
tically distributed Gaussian distribution, so orthogonality E(z̃iz̃

′
j) =

0, ∀i �= j, and the third term of (5) can be [6]

E
[(

xk − x̃−
k

)
z̃′

kK′]

= E

⎡
⎣

⎧
⎨
⎩Ak

d

(
x0 − x̂−

0

)
+

k−1∑

l=0

Al
dnk−1−l

⎫
⎬
⎭

×
⎧⎨
⎩TkC

[
Ad(I − KC)

]k
(

x0 − x̂−
0

)

+
k−1∑

l=0

TkC
[
Ad(I − KC)

]lwk−1−l

⎫⎬
⎭K′

⎤
⎦

=
⎧
⎨
⎩Ak

dP̄
[
(I − KC)′A′

d
]k +

k−1∑

l=0

Al
dQ

[
(I − KC)′A′

d
]l

⎫
⎬
⎭C′T′

kK′

= P̄C′T′
kK′. (6)

Here, P̄ is the semi-definite matrix [6] which is the composition
function of the Lyapunov h(X) and Riccati operator g(X), i.e.,

P̄ = (h ◦ g)k(P̄
)

= Ak
dP̄

[
(I − KC)′A′

d
]k +

k−1∑

l=0

Al
dQ

[
(I − KC)′A′

d
]l

. (7)

Similarly, the fourth term of (5) can be expressed as [6]

E

[
Kz̃k

(
xk − x̃−

k

)′] = KTkCP̄. (8)

Substituting (6) and (8) into (5) yields P̃k.
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