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Abstract—Minimizing the Euclidean distance (�2-norm) from
a given point to the solution set of a given system of polynomial
equations can be accomplished via critical point techniques.
This article extends critical point techniques to minimization
with respect to Hamming distance (�0-“norm”) and taxicab
distance (�1-norm). Numerical algebraic geometric techniques
are derived for computing a finite set of real points satisfying
the polynomial equations which contains a global minimizer.
Several examples are used to demonstrate the new techniques.
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I. INTRODUCTION

Two common non-smooth objective functions arising in

applications are the Hamming distance (�0-“norm”) [1] and

the taxicab distance (�1-norm). For example, one problem in

compressed sensing [2], [3] is to obtain the sparsest vector

which satisfies a linear system. That is, given A ∈ R
n×N

and y ∈ R
n, solve

min{‖x‖0 : Ax = y} (1)

where x ∈ R
N and ‖x‖0 = #{j : xj �= 0}. A common

technique for trying to solve (1) is to replace the Hamming

distance ‖x‖0 with the taxicab distance ‖x‖1 =
∑

i |xi|,
namely by solving the convex optimization problem

min{‖x‖1 : Ax = y}. (2)

Some additional applications include error correction [4],

facial recognition [5], and magnetic resonance imaging [6].

Rather than consider solutions to linear equations as in (1)

and (2), we consider constraint sets which are the solution set

to a system of polynomial equations having real coefficients.

That is, for a real polynomial system g : RN → R
n, let

VC(g) = {x ∈ C
N : g(x) = 0} and VR(g) = VC(g) ∩ R

N ,

commonly called the complex and real variety of g, respec-

tively. We aim to solve

min{‖x‖0 : x ∈ VR(g)} (3)

and

min{‖x‖1 : x ∈ VR(g)}. (4)

Since VR(g) need not be convex, (4) need not be a convex

program in contrast to the convex program (2).

An early method for solving the sparse-solution problem

was the greedy algorithm in compressive sensing [7]. A

subsequent method is basis pursuit stemming from [8],

where one represents a function, or signal, in terms of an

existing dictionary of basis functions. More recent methods

have included nonlinear basis pursuit (NBP), where the

problem has arisen as nonlinear compressive sensing [9],

which is an iterative method using monomial representation

to solve a convex version of (4).

A problem related to (3) and (4) is the Euclidean distance

(�2-norm) minimization problem

min{‖x‖22 : x ∈ VR(g)} (5)

where ‖x‖22 =
∑

i x
2
i . This problem has been studied

extensively in computational algebraic geometry via critical

point conditions. For example, in addition to containing a

global minimizer of (5), Seidenberg showed in [10] that

the set of critical points of (5) also contains a point on

each connected component of VR(g). Modifications of this

method which compute a finite subset of critical points

containing a global minimizer as well as a point on each

connected component were developed in [11], [12] with the

term Euclidean distance degree coined in [13], [14]. Model

selection [15] is one of many applications of solving (5). For

more details on basic algebraic geometry, see [16], [17].

Following a similar strategy, this paper develops critical

point systems consisting of polynomial equations for (3)
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and (4). Then, under genericity assumptions, we construct a

homotopy-based method to compute a finite set of critical

points which contains a global minimizer. Hence, a global

minimizer can be obtained via a post-processing search of

the finite set of critical points.

The rest of the paper is organized as follows. Section II

derives polynomial necessary conditions for (3) and (4). Sec-

tion III describes a homotopy-based approach for computing

a finite set of solutions satisfying these necessary conditions.

Section IV provides local homotopy methods for obtaining a

critical point starting from a given point. We conclude with

additional examples in Section V.

II. NECESSARY CONDITIONS

For a real polynomial system g : RN → R
n, the following

reviews necessary conditions for (5) and then extends to

necessary conditions for (3) and (4).

A. Minimizing ‖x‖2
For a ∈ R

N , the following proposition provides Fritz John

[18] necessary conditions for solving

min{‖x− a‖22 : x ∈ VR(g)}. (6)

Note that it must be the case that either VR(g) = ∅ or (6) has

a global minimum. Let Pn denote n-dimensional projective

space.

Proposition II.1. If x∗ ∈ VR(g) solves (6), then there exists
λ∗ ∈ P

n such that G(x∗, λ∗) = 0 where

G(x, λ) =

[
g(x)

λ0(x− a) +
∑n

i=1 λi∇gi(x)

]
(7)

and ∇gi(x) is the gradient of gi evaluated at x.

The system G in (7) is the critical point system for (6)

and the set of critical points of (6) is the set of points x
such that there exists λ ∈ P

n with G(x, λ) = 0.

Example II.2. For g(x) = x2
1+x2

2−1 and a = (−0.6, 0.45),
the critical point system

G(x, λ) =

⎡
⎢⎣

x2
1 + x2

2 − 1

λ0

[
x1 + 0.6

x2 − 0.45

]
+ λ1

[
2x1

2x2

] ⎤
⎥⎦

yields two critical points, namely p1 = (−0.8, 0.6) and

p2 = (0.8,−0.6) which are shown in Figure 1. It is easy

to verify that p1 and p2 are the global minimizer and

maximizer, respectively, for (6).

B. Minimizing ‖x‖0
For a ∈ R

N , we aim to derive necessary conditions for

min{‖x− a‖0 : x ∈ VR(g)} (8)

via a polynomial system. Two difficulties are that the map

x 	→ ‖x− a‖0 is not continuous and thus not differentiable,

and there need not be isolated global minima, both of which

will impact our use of homotopy methods in Section III.

Both difficulties can be ameliorated by introducing another

layer of optimization: namely, for b ∈ R
N consider

min

{
‖x− b‖22 :

x ∈ VR(g)

‖x− a‖0 = min{‖y − a‖0 : y ∈ V(g)}

}
.

(9)

In particular, this problem describes computing points

x ∈ VR(g) nearest to b in the Euclidean norm which agree

with a in the maximum number of coordinates.

Proposition II.3. If x∗ ∈ VR(g) solves (9), then there exists
λ∗ ∈ P

n such that G(x∗, λ∗) = 0 where

G(x, λ) =

[
g(x)

(x− a) ◦ (λ0(x− b) +
∑n

i=1 λi∇gi(x))

]
(10)

and ◦ denotes the Hadamard (entrywise) product.

Proof: Let J = {j : x∗
j = aj} and m = #J .

By reordering the coordinates, we can assume without

loss of generality that J = {N − m + 1, . . . , N}. Let

π : RN−m → R
N be defined by π(z) = (z, a). Thus, for

α = (a1, . . . , aN−m), z∗ = (x∗
1, . . . , x

∗
N−m) solves

min{‖z − α‖22 : π(z) ∈ VR(g)}.
Hence, Prop. II.1 yields λ∗ ∈ P

n such that (z∗, λ∗) solves[
g(π(z))

λ0(z − α) +
∑n

i=1 λi∇gi(π(z))

]
= 0.

Since x∗
j = aj for j ∈ J , the result immediately follows.

The system G in (10) is the critical point system for (8)

and the set of critical points of (8) is the set of points x
such that there exists λ ∈ P

n with G(x, λ) = 0. In fact,

the previous proof can be extended to show that the set of

critical points consists of critical points on every possible

choice of slices xj = aj for j ∈ J ⊂ {1, . . . , N}.

Example II.4. For g and a from Ex. II.2 with b = a,

G(x, λ) =

⎡
⎢⎣

x2
1 + x2

2 − 1

(x1 + 0.6)(λ0(x1 + 0.6) + λ1(2x1))

(x2 − 0.45)(λ0(x2 − 0.45) + λ1(2x2))

⎤
⎥⎦

yields 6 critical points: p1 and p2 from Ex. II.2 and

p3 = (−0.6, 0.8), p4 = (−0.6,−0.8),

p5 = (−√
0.7975, 0.45), p6 = (

√
0.7975, 0.45).

The points p1 and p2 are the global minimizer and max-

imizer for J = ∅, p3 and p4 are the global minimizer

and maximizer for J = {1}, and p5 and p6 are the global

minimizer and maximizer for J = {2}, respectively, which

are shown in Figure 1. Thus, p3, . . . , p6, are all global

minimizers for (8).
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p1

p2

p3

p4

p5 p6a

Figure 1. Hamming critical points for the unit circle from Ex. II.4. The
stars are the global minimizers while the blue dots are the Euclidian distance
(�2) global minimizer and maximizer from Ex. II.2.

In (8), the objective function was dependent upon all

variables. A natural extension of Prop. II.3 applies if one

considers only a subset of the variables. For example, if

h : R
N × R

M → R
n is a real polynomial system and

a ∈ R
N , consider

min{‖x− a‖0 : (x, y) ∈ VR(h)}.
For b ∈ R

N and c ∈ R
M , the corresponding critical point

system is⎡
⎢⎣

h(x, y)

(x− a) ◦ (λ0(x− b) +
∑n

i=1 λi∇xhi(x, y))

λ0(y − c) +
∑n

i=1 λi∇yhi(x, y)

⎤
⎥⎦ (11)

where ∇zhi(x, y) is the gradient of hi with respect to z
evaluated at (x, y).

C. Minimizing ‖x‖1
For a ∈ R

N , we aim to derive necessary conditions for

min{‖x− a‖1 : x ∈ VR(g)} (12)

via a polynomial system. Although x 	→ ‖x − a‖1 is

continuous, it is not differentiable. However, for x ∈ R
N

with xi �= ai,

∂

∂xi
‖x− a‖1 = sign(xi − ai) =

{
1 if xi > ai

−1 if xi < ai.

To avoid the piecewise nature, we square, yielding(
∂

∂xi
‖x− a‖1

)2

= 1.

This leads to the following necessary conditions.

Proposition II.5. If x∗ ∈ VR(g) solves (12), then there exists
λ∗ ∈ P

n such that G(x∗, λ∗) = 0 where

G(x, λ) =

[
g(x)

(x− a) ◦
(
λ2
0�− (

∑n
i=1 λi∇gi(x))

◦2)
]

(13)

and ◦ denotes the Hadamard (entrywise) product, � denotes
the vector of all ones, and v◦2 = v ◦ v.

Proof: Let J = {j : x∗
j = aj} and m = #J .

By reordering the coordinates, we can assume without

loss of generality that J = {N − m + 1, . . . , N}. Let

π : R
N−m → R

N be defined by π(z) = (z, a). Hence,

for α = (a1, . . . , aN−m), z∗ = (x∗
1, . . . , x

∗
N−m) solves

min{‖z − α‖1 : π(z) ∈ VR(g)}.
Since z 	→ ‖z − α‖1 is differentiable at z∗, Fritz John

conditions yield λ∗ ∈ P
n where (z∗, λ∗) satisfies

λ0
∂

∂zj
‖z − α‖1 +

n∑
i=1

λi
∂

∂zj
g(π(z)) = 0

for j = 1, . . . , N −m. Hence, (z∗, λ∗) satisfies

λ2
0 =

(
λ0

∂

∂zj
‖z − α‖1

)2

=

(
n∑

i=1

λi
∂

∂zj
g(π(z))

)2

for j = 1, . . . , N −m. This shows that (x∗, λ∗) solves the

first N −m equations of

(x− a) ◦
⎛
⎝λ2

0�−
(

n∑
i=1

λi∇gi(x)

)◦2⎞⎠ = 0.

The last m equations are satisfied since x∗
j = aj for j ∈ J .

The system G in (13) is the critical point system for (12)

and the set of critical points of (12) is the set of points x
such that there exists λ ∈ P

n with G(x, λ) = 0. Due to

the squaring, if λ = [λ0, . . . , λn] with G(x, λ) = 0, then

G(x, λ′) = 0 where λ′ = [−λ0, λ1, . . . , λn]. Therefore, a

necessary condition for a real critical point x to solve (12)

is to have λ ∈ P
n satisfy

sign(λ0(aj − xj)) = sign

(
n∑

i=1

λi∇gi(xj)

)
(14)

for all j with xj �= aj . This is trivially satisfied if λ0 = 0.

Example II.6. For g and a from Ex. II.2,

G(x, λ) =

⎡
⎢⎣

x2
1 + x2

2 − 1

(x1 + 0.6)(λ2
0 − (2x1λ1)

2)

(x2 − 0.45)(λ2
0 − (2x2λ1)

2)

⎤
⎥⎦

yields 16 solutions which map 2-to-1 to the following set of

8 critical points: p3, . . . , p6 from Ex. II.4, together with

p7 = (
√

1/2,
√
1/2), p8 = (−√

1/2,
√

1/2),

p9 = (
√

1/2,−√
1/2), p10 = (−√

1/2,−√
1/2).

Each of the four points p3, . . . , p6 are local minimizers

with p5 being the global minimizer for (12). Each of the

four points p7, . . . , p10 are local maximizers with p9 being
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p3
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a
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p9
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Figure 2. Taxicab critical points and the objective function over the unit
circle. The star is the global minimizer and the blue dots are other critical
points for Ex. II.6.

the global maximizer. Figure 2 shows the critical points and

the value of the objective function on the unit circle.

Example II.7. Repeating Ex. II.2, II.4, and II.6 with

a = (−0.6, 0.95) yields the following global minimizers

(with numerical approximations listed to 4 decimal places):

�2 : (−0.5340, 0.8455)
�0 : (−0.6,±0.8), (±0.3122, 0.95)
�1 : (−0.6, 0.8).

We note that p7, . . . , p10 from Ex. II.6 were �1 critical points,

with only p9 and p10 satisfying the sign condition (14).

One advantage of defining the critical point set without

enforcing reality or (14) is that the critical point set is an

algebraic set, i.e., closed in the Zariski topology on C
N .

This is exemplified in the following.

Example II.8. For g(x) = x2
1+x2

2−1 and a = (0, 0), every

point satisfying g = 0 is a critical point of (6) where the

set of global minimizers is VR(g). For g(x) = x1 + x2 − 1
and any a ∈ R

2, every point satisfying g = 0 is a critical

point of (12) where the set of global minimizers is the line

segment t(a1, 1− a1) + (1− t)(1− a2, a2) for t ∈ [0, 1].

III. CRITICAL POINT HOMOTOPIES

Since the set of critical points need not be finite, this

section extends the construction of a critical point homotopy

for (6) developed in [12] to compute a finite subset of the

critical points containing a global minimizer under certain

assumptions. For the real polynomial system g : RN → R
n,

we assume:

(A) each irreducible component of VC(g) has

dimension N − n, i.e., codimension n.

One way to always satisfy (A) is by replacing the polyno-

mial system g with the polynomial g′ =
∑n

i=1 g
2
i so that

VR(g) = VR(g
′) and every irreducible component of VC(g

′)
has dimension N − 1, i.e., codimension 1.

Throughout the remainder of the paper, a point is generic

if it is outside of a Zariski closed proper subset. A non-

generic point may also be called special. We refer the reader

to [16], [17] for further information.

A. Homotopy for ‖x‖2
Given a ∈ R

N and g satisfying (A), there are two consid-

erations for computing a finite subset of critical points to (6):

singular points of VC(g) and nongenericity of a. Since each

singular point of VC(g) is trivially a critical point, systems

with infinitely many singular points pose a challenge for

computing a finite subset of critical points. This is addressed

in [11], [12] by considering a family of perturbations of g
via infinitesimals and parameter homotopies, respectively.

In particular, we will assume that ε ∈ R
N and γ ∈ C are

chosen so that VC(g− tγε) is smooth of codimension n for

all t ∈ (0, 1].

For special choices of a, one could have infinitely many

global minimizers for (6), e.g., in Ex. II.8, the origin is

the center of the unit circle. Following [11], [12], we will

assume genericity of a in that one obtains the maximum

number of isolated solutions for (7) applied to g − tγε
for all t ∈ (0, 1]. The previous two assumptions hold with

probability one for random choices of ε ∈ R
N , γ ∈ C, and

a ∈ R
N yielding the following derived from [12, Thm. 5].

Proposition III.1. Suppose that g satisfies (A) and ε ∈ R
N ,

γ ∈ C, and a ∈ R
N satisfy the aforementioned genericity

assumptions. Then, the homotopy

H(x, λ, t) =

[
g(x)− tγε

λ0(x− a) +
∑n

i=1 λi∇gi(x)

]
= 0

defines finitely many smooth solution paths for t ∈ (0, 1] and
the set of x-coordinates for the finite endpoints at t = 0 is
a finite set of critical points containing a global minimizer
of (6).

Remark III.2. This immediately provides a three-step pro-

cess for solving (6): solve H(x, λ, 1) = 0 to compute the

start points, compute the x-coordinates of the endpoints

at t = 0 defined by H(x, λ, t) = 0, and sort through

the endpoints to find a global minimizer. One approach to

computing the start points is to utilize regeneration [19],

and exploit the 2-homogeneous structure [20]. More de-

tails regarding using numerical algebraic geometry to solve

H(x, λ, 1) = 0 and track the paths defined by H(x, λ, t) = 0
can be found in the books [17], [21].

Example III.3. Consider the polynomial system

g(x) =

⎡
⎢⎣

x2
1 − x2

x1x2 − x3

x1x3 − x2
2

⎤
⎥⎦ = 0
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which defines the twisted cubic curve. Hence, g consists of 3
polynomials while VC(g) has codimension 2. We consider

two ways to satisfy (A) :

• selecting a well-constrained subset, namely

G1(x) =

[
x2
1 − x2

x1x2 − x3

]
;

• taking a sum of squares, namely

G2(x) = (x2
1 − x2)

2 + (x1x2 − x3)
2 + (x1x3 − x2

2)
2.

For a = (2, 4, 2), applying Prop. III.1 with either

G1 or G2 yields a unique real critical point, namely

t1 = (1.4395, 2.0722, 2.9830) which is listed to 4 decimal

places and shown as the blue dot in Figure 3. For G1, 5 paths

are tracked with one converging to t1. For G2, 32 paths are

tracked with two converging to t1.

B. Homotopy for ‖x‖0
The free choice of b ∈ R

N in (9) and (10) removes

any genericity assumption on a in this case. However, the

genericity assumption on ε and γ are slightly increased in

that one now requires the smoothness of⋃
J⊂{1,...,n}

VC(g(x)− tγε) ∩ VC(xj − aj , j ∈ J) (15)

for all t ∈ (0, 1], which is still satisfied with probability one.

Proposition III.4. Suppose that g satisfies (A) and each
of ε ∈ R

N , γ ∈ C, and b ∈ R
N satisfy the genericity

assumptions as in Prop. III.1. Then the homotopy

H(x, λ, t) =

[
g(x)− tγε

(x− a) ◦ (λ0(x− b) +
∑n

i=1 λi∇gi(x)
) ]

= 0

defines finitely many smooth solutions paths for t ∈ (0, 1]
and the set of x-coordinates for the finite endpoints at t = 0
is a finite set of critical points containing a global minimizer
of (8).

Proof: It immediately follows from Prop. III.1 that this

computes a global minimizer of

min{‖x− b‖22 : x ∈ VR(g), xj = aj for j ∈ J}
for each choice of J ⊂ {1, . . . , n}. Hence, one obtains a

global minimizer of (8).
One has a similar three-step solving procedure for solv-

ing (8) as in Remark III.2.

Example III.5. With the setup from Ex. III.3, applying

Prop. III.4 to either G1 or G2 yields 4 real critical points,

namely t1 from Ex. III.3 and, to 4 decimal places:

t2 = (1.2599, 1.5874, 2), t3 = (−2, 4,−8), t4 = (2, 4, 8).

The point t4 is the global minimizer of (8) which is shown

in Figure 3. For G1, 11 paths are tracked with 5 converging

to real points: one each to t1, t2, t3 and two to t4. For G2, 80
paths are tracked with 12 converging to real points: two each

to t1, t2, t3 and six to t4.

a

t1

t2

t3

t4

Figure 3. Hamming critical points for the twisted cubic. The red star is the
global �0 minimizer with two coordinates equal. The green dots are critical
points with one coordinate equal. The blue dot, which has no coordinates
equal, is the global �2 minimizer from Ex. III.3.

C. Homotopy for ‖x‖1
In contrast to (6), for which only special values of a

yield infinitely many global minimizers, Ex. II.8 shows

that this need not be the case for (12). Thus, we will

additionally assume that there is an isolated point in the

set of global minimizers to (12). A genericity assumption

on ε and γ yielding smoothness in (15) for t ∈ (0, 1]
yields the following.

Proposition III.6. Suppose that g satisfies (A) and ε ∈ R
N ,

γ ∈ C, and a ∈ R
N satisfy the aforementioned genericity

assumptions and those in Prop. III.1. Then, the homotopy

H(x, λ, t) =

[
g(x)− tγε

(x− a) ◦
(
λ2
0�− (∑n

i=1 λi∇gi(x)
)◦2)

]
= 0

defines finitely many smooth solution paths for t ∈ (0, 1] and
the set of x-coordinates for the finite endpoints at t = 0 is
a finite set of critical points containing a global minimizer
of (12).

Proof: The genericity assumptions yield smooth solu-

tion paths for t ∈ (0, 1]. Thus, it only remains to show that

one obtains a critical point that is a global minimizer of (12).

This follows from the assumption regarding the existence

of an isolated global minimizer together with the theory of

parameter homotopies [22] extended in [23].

Again, one has a similar three-step solving procedure for

solving (12) as in Remark III.2.

Example III.7. With the setup from Ex. III.3, applying

Prop. III.6 to either G1 or G2 yields 7 real critical points,

namely t2, t3, t4 from Ex. III.5 along with

t5 = (1, 1, 1), t6 = (1/3, 1/9, 1/27),

t7 = (−1/3, 1/9,−1/27), t8 = (−1, 1,−1).

The global minimizer of (12) is t2, which is shown in

Figure 4. For G1, 40 paths are tracked with 24 converging
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to real points: four each to t2 and t3, eight to t4, and two

each to t5, . . . , t8. Moreover, the points t5, . . . , t8 fail the

sign condition (14). For G2, 292 paths are tracked with 52

converging to real points: eight each to t2 and t3, twenty

to t4, and four each to t5, . . . , t8. All critical points trivially

satisfy the sign condition (14) due to λ0 = 0.

a

t2

t3

t5

t6
t7

t8

t4

Figure 4. Taxicab critical points for the twisted cubic. The red star is the
global �1 minimizer. Critical points t5, . . . t8 fail the sign condition (14)
with respect to G1 and trivially pass with respect to G2.

IV. LOCAL HOMOTOPIES

The homotopies in Prop. III.1, III.4, and III.6 are global

homotopies in that all paths are smooth for t ∈ (0, 1] and

one obtains a global minimizer under proper assumptions. In

this section, we turn to local homotopies derived from [24]

that aim to locate a critical point near a given real point.

With these local homotopies, there is no guarantee that the

path will be smooth for t ∈ (0, 1]. However, if it is smooth,

the endpoint corresponds with a real critical point.

A. Local homotopy for ‖x‖2
As described in [24], given a real polynomial system

g : RN → R
n and x∗ ∈ R

N , one considers the homotopy

H(x, λ, t) =

[
g(x)− tg(x∗)

λ0(x− x∗) +
∑n

i=1 λi∇gi(x)

]
= 0

(16)

with start point, at t = 1, x = x∗ and λ = [1, 0, . . . , 0]. This

is called a gradient descent homotopy in [24].

B. Local homotopy for ‖x‖0
If one knows a priori which coordinates of x∗ should

remain fixed, i.e., knows J ⊂ {1, . . . , n} such that one

aims to locate a point on VR(g) ∩ VR(xj − x∗
j , j ∈ J), then

one can simply modify the gradient descent homotopy (16)

appropriately. This would aim to locate a point closest to

the given point x∗ in the �2-norm which has the same set

of J coordinates at x∗.

Since this information is often not known, we consider an

alternative approach. Suppose that one is given a, x∗ ∈ R
N

such that ai �= x∗
i for i = 1, . . . , N . Then, one could try the

homotopy H(x, λ, t) given by[
g(x)− tg(x∗)

(x− a) ◦ (λ0(x− a) +
∑n

i=1 λi∇gi(x)
)− tλ0(x

∗ − a)◦2

]
(17)

with start point, at t = 1, x = x∗ and λ = [1, 0, . . . , 0].

C. Local homotopy for ‖x‖1
Rather than utilize squaring as in Prop. III.6, we

consider the following local homotopy H(x, λ, t) given

a, v, x∗ ∈ R
N such that ai �= x∗

i for i = 1, . . . , N :[
g(x)− tg(x∗)

(x− a) ◦ (λ0v +
∑n

i=1 λi∇gi(x))− tλ0(x
∗ − a) ◦ v

]
(18)

with start point, at t = 1, x = x∗ and λ = [1, 0, . . . , 0]. In

the special case that v◦2 = � and the path is smooth for

t ∈ (0, 1], then the endpoint corresponds to a real critical

point for (12).

D. Local homotopy example

The local homotopy (16) was applied to 500 points

uniformly sampled in [−3, 3]2 for

g(x) = x2
2 + x2

1(x1 − 1)(x1 − 2)

in [24, Fig. 3(a)]. With a = 0, Figure 5 shows the same

setup for the local homotopy (17).

Figure 5. Results of local homotopy (17) with VR(g) shown in blue.

We also applied the local homotopy (18) with a = 0 and

v =
∇g(x∗)

‖∇g(x∗)‖2 .

The results are shown in Figure 6.

56

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 01,2020 at 16:30:38 UTC from IEEE Xplore.  Restrictions apply. 



Figure 6. Results of local homotopy (18) with VR(g) shown in blue.

V. ADDITIONAL EXAMPLES

A. Torus

Consider the torus with R = 2 and r = 0.5 defined by

g = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2) = 0.

For a = (0.45, 1, 0.2), applying Prop. III.4 yields 24 distinct

real critical points for the Hamming distance which are plot-

ted in Figure 7. In particular, there are 8 global minimizers

which are (to 4 decimal places):

q1 = (0.45, 1.4746, 0.2), q2 = (0.45, 2.4167, 0.2),

q3 = (2.2457, 1, 0.2), q4 = (1.1734, 1, 0.2),

q5 = (−1.1734, 1, 0.2), q6 = (−2.2457, 1, 0.2),

q7 = (0.45,−1.4746, 0.2), q8 = (0.45,−2.4167, 0.2).

a

q1

q2

q3
q4

q5

q6

q7

q8

Figure 7. Hamming critical points on the torus. The stars are the global
minimizers with two coordinates being equal. The other colored dots are
critical points having either one (green) or no (blue) coordinates equal.

Next, applying Prop. III.6 yields 48 distinct real critical

points for the taxicab distance which are plotted in Figure 8.

Of these, 32 satisfy the sign condition (14) with the global

minimizer being q1.

B. Matrix Rigidity

We close by recovering a low rank matrix from a given

matrix which has possibly undergone transcription errors. In

a

q1

Figure 8. Taxicab critical points on the torus. The star is the global
minimizer. The blue dots are other critical points which satisfy the sign
condition (14) while the black circles fail this condition.

particular, we aim to compute the r-rigidity [25], [26], [27]

of an n× n matrix M , which equals

min{‖E‖0 : M = A+ E, rank A ≤ r}.
Specifically, we demonstrate our homotopy-based approach

for computing the 1-rigidity of selected matrices in R
3×3.

Since rank A ≤ 1, we write A = uvT , u and v ∈ R
3,

and assume v1 = 1. Thus, we can utilize the polynomial

system (11) to enforce the sparsity condition on E as well

as taking the vector of coordinates (E, u, v) to be as close

to the origin (with respect to the 2-norm) as possible. For

generic M , this system yields 1593 critical points.

Deforming from a generic M to the rank 2 matrix

M ′ =

⎡
⎢⎣
1 1 1

2 0 0

3 0 0

⎤
⎥⎦

yields 405 paths that converge to real points with 225 distinct

values for (E, u, v). The two Hamming minimizers

u =

⎡
⎢⎣
1

0

0

⎤
⎥⎦ , v =

⎡
⎢⎣
1

1

1

⎤
⎥⎦ , E =

⎡
⎢⎣
0 0 0

2 0 0

3 0 0

⎤
⎥⎦

and

u =

⎡
⎢⎣
1

2

3

⎤
⎥⎦ , v =

⎡
⎢⎣
1

0

0

⎤
⎥⎦ , E =

⎡
⎢⎣
0 1 1

0 0 0

0 0 0

⎤
⎥⎦

have 4 paths converging to each of them. Hence, the

1-rigidity of M ′ is 2.

Finally, we consider the full rank matrix

M ′′ =

⎡
⎢⎣

2 2 3

−3 2 −6

−2 1 −3

⎤
⎥⎦ .

For this matrix, 423 paths converged to real points with

346 distinct values for (E, u, v). The unique Hamming
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minimizer, which was the endpoint of 15 paths, is

u =

⎡
⎢⎣

2

−4

−2

⎤
⎥⎦ , v =

⎡
⎢⎣

1

−1/2

3/2

⎤
⎥⎦ , E =

⎡
⎢⎣
0 3 0

1 0 0

0 0 0

⎤
⎥⎦ .

Hence, the 1-rigidity of M ′′ is also 2.
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