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1. Introduction

For a polynomial system defined over a complex parameter space, the monodromy group encodes permutations of the
solutions over loops in the parameter space and can be viewed as a geometric counterpart to Galois groups [10,14] utilized
in number theory and arithmetic geometry. Monodromy groups are used in algebraic geometry to view structure of the
solutions such as symmetry, restrictions on the number of real solutions, and decomposition of varieties into irreducible
components. The complex numbers bestow many properties on the monodromy group such as it is base point independent
and does not change when restricting to a general curve section of the parameter space [22]. These simplify the computation
of the monodromy group [12] summarized in Section 2.

Since real solutions over real points in a parameter space are typically of most interest in many applications, we aim
to understand the behavior of the real solutions over real loops in the parameter space. In kinematics, this is related to
nonsingular assembly mode change for parallel manipulators [5,7,13,15,16,19,23] which is important in calibration due to the
possible change of pose at the “home” position. To illustrate, consider the 3RPR mechanism shown in Fig. 1 which consists
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Fig. 1. An example of a 3RPR mechanism.

of three prismatic legs with revolute joints that are anchored on one side and attached to a moving triangular platform
on the other. Thus, one aims to identify all the ways that real motion of the mechanism can lead to different poses in the
“home” position defined by a fixed set of leg lengths. In this context, the main motivation is to develop a mathematical
description of all possible nonsingular assembly mode changes described by real monodromy action.

A naive approach is to utilize a real monodromy group defined similarly as the monodromy group. This definition leads
to heavy restrictions on the construction of real loops and can often cause no pertinent information to be gained in the
computations as discussed in Section 3.1. The main contribution of this paper is to introduce a real monodromy structure
to obtain piecewise information about the permutations of the real solutions outlined in Section 3.2. In particular, this real
monodromy structure contains all information regarding nonsingular assembly mode changes. When the parameter space
is R2, an algorithm is described in detail in Section 3.3 and illustrated on an example arising from the Kuramoto model of
synchronization [17].

The remainder of the paper is as follows. Section 2 describes some background on the monodromy group.
Section 3 presents the main results of the paper: the restrictive nature of the real monodromy group, an introduction of
the real monodromy structure, and an algorithm for computing the real monodromy structure. Examples are included to
illustrate the ideas. Section 4 describes computing the real monodromy structure of a 3RPR mechanism when two of the
legs can change length via prismatic joints. Finally, a short conclusion is provided in Section 5.

2. Monodromy group

The monodromy group encodes the behavior of solutions as one perform loops in the complex parameter space. In
particular, let F(x; p) be a polynomial system with variables x € CN and parameters p € CP. Assume that F(x; p*) =0 has
D e N isolated nonsingular solutions in CN for generic p* e CP. That is, there is a Zariski open dense subset U c CP such that
F(x; p*) = 0 has D nonsingular isolated solutions in CN for every p* € U. Fix a point b € U and let x(, ... x® <N be
the D nonsingular isolated solutions to F(x; b) = 0.

Denote the symmetric group on D elements by Sp. Then, each loop y c U starting and ending at b generates a per-
mutation o, € Sp where oy (i) = j provided that the solution path of F(x; p) = 0 over y starting at x ends at x0). The
monodromy group is simply the collection of all such permutations, namely

{0, € Sp | y c U is loop starting and ending at b}. (1)

The group structure arises naturally from concatenation of loops.

The monodromy group is independent of the choice of base point b € U. Moreover, the monodromy group of F(x; p)
for p e CP is equal to the monodromy group of G(x; t) = F(x; ¢(t)) where ¢ : C — CP is a general affine linear function [22].
Since G(x; t) depends on t € C, its monodromy group is generated by the permutations arising from the finitely many loops
that generate the fundamental group of the intersection of U to the line parameterized by ¢(t). This is described in detail
with numerical algebraic geometric computations in [12] and illustrated in the following.

Example 2.1. Consider the parameterized polynomial system

X2_x2_p
F(x;p) = ! 2 1=0
2X1X2 — P2

and U = {p e C? | p? + p3 # 0} c C2. Thus, for every p* € U, F(x; p*) = 0 has D = 4 nonsingular isolated solutions in C2. We
take b = (1,0) € U with corresponding solutions:

xV=1,0, x@=(-1,0, x®=(0,/-1), x%=(0,-/-1).

Consider restricting the parameter space to the line £ c C? parameterized by £(t) = (1 —t, 2t) so that £(0) = b. In par-
ticular, UNn £ = C\ {t,,t_} where t; = % Let y+ c C be a simple loop starting and ending at 0 which encircles t; but
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Fig. 2. Illustration of (a) loop y, and permutation o, and (b) loop y_ and permutation o, .

not t, respectively. The corresponding permutations, written in cycle notation, are
o, =(13)24) and oy, =(14)2 3)

which are illustratively shown in Fig. 2. Therefore, the monodromy group is generated by the two permutations o,, yielding
the Klein group on four elements K4 = Z, x Z; C S4, namely

Ke={(1), (12)34), (13)24), (142 3)} (2)
The reason that the monodromy group is not S4 can be observed from eliminating x, yielding
axt—axipr—p5 =0

which shows that the solutions arise in two pairs with

[ p1£/P? + P}
X1 ==+ f

When all of the D nonsingular solutions to F(x; p*) = 0 are known, one can compute corresponding permutations for a
few random loops. When the monodromy group is the full symmetric group, a few random loops are generally sufficient to
verify it is the full symmetric group [18]. We note that another application of random loops is decomposition of varieties
into irreducible components first proposed in [20] (see also [2, Chap. 10] and [21, Chap. 15]).

Conversely, if only a subset of the D nonsingular solutions to F(x; p*) = 0 are known, one can try to utilize random loops
starting at the known solutions of F(x; p*) =0 with the aim of ending at previously unknown solutions of F(x; p*) = 0.
When the monodromy group is transitive, all D solutions could be obtained in this way by starting from one solution of
F(x; p*) = 0. This idea has been employed in various settings, e.g., [3,4,9,11].

3. Monodromy over the real numbers

Since many applications, particularly ones arising in science and engineering, are only interested in the real solutions, we
consider monodromy action of real solutions over a real parameter space for a real polynomial system F(x; p) where x € RN
and p e RP. Section 3.1 describes a naive extension of the monodromy group to the real numbers. Since this is shown
to be very restrictive, Section 3.2 introduces an alternative definition, called the real monodromy structure, for describing
monodromy action of real solutions over real parameter space. When the parameter space is RZ, Section 3.3 describes a
complete algorithm for computing the real monodromy structure and demonstrates the algorithm on the Kuramoto model
with 3 oscillators.

3.1. Real monodromy group

Over complex parameter spaces, as summarized in Section 2, loops are taken in the nonempty Zariski open dense subset
U c CP consisting of parameter values where the number of nonsingular isolated complex solutions is constant. One can
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naively take a similar approach over the real numbers as follows. Fix a base point b € UNRP and let R be the number of
nonsingular isolated real solutions to F(x; b) = 0. Hence, there is a connected open subset U, c U NRP containing b such that
the number of nonsingular isolated real solutions of F(x; p*) =0 is equal to R for all p* € Up. Similar to the complex case,
each loop y c U, starting and ending at b yields a permutation o}, € Sg. Following (1), the collection of all such permutations

{0y, € Sg | Yy C Uk is loop starting and ending at b} 3)

is the real monodromy group of F(x; p) with base point b. This group is naturally independent of the choice of base point b
inside of U,

Example 3.1. Reconsider F(x; p) from Example 2.1 with b= (1,0). There are R =2 real solutions to F(x; b) = 0, namely
xM = (1,0) and x? = (-1, 0). Since, for all p* € U, = R?\ {(0,0)}, F(x; p*) = 0 has 2 real solutions, the corresponding real
monodromy group is generated by the loop y : [0, 1] — Ui where y (t) = (cos(2mt), sin(2xt)) with y(0) = y (1) = b. This
loops yields the permutation o, = (1 2) so that the corresponding real monodromy group is S, = {(1), (1 2)}.

In the complex case, there is a unique monodromy group based on the nonempty Zariski open dense subset U c CF. In
the real case, there is a real monodromy group associated to each connected component of U N RP.

Example 3.2. The polynomial equation F(x; p) =xZ +1 — p2 =0 has 0 real solutions when -1 < p < 1 and 2 real solu-
tions when either p < —1 or p > 1. Thus, for b € (-1, 1), the real monodromy group for U, = (—1, 1) is empty since there
are no real solutions. For b < 1 and ¢ > 1, we have U, = (—o0, —1) and U; = (1, co) with real monodromy group {(1)} c S,
for both.

The previous examples suggest the following.

Theorem 3.3. Suppose that F(x; p) is a real polynomial system with x € RN and p € RP. Let b € R” such that F(x; b) =0 has
R > 0 nonsingular isolated real solutions and U, c R which is a connected open set containing b such that the number of
nonsingular isolated real solutions of F(x; p*) =0 is equal to R for all p* € U,. If the fundamental group of U, is trivial, then
the corresponding real monodromy group is {(1)} C Sg. In particular, if P =1, then the corresponding real monodromy group is
{(D} c Sk

Proof. If the fundamental group of U, is trivial, then all loops in U, are contractible yielding only the identity permutation
in the real monodromy group. In particular, when P = 1, then U, is an interval where all loops are contractible. O

The system from Example 3.1 was specifically designed to have a nontrivial real monodromy group. Since one often
expects each corresponding set U, to be a cell thereby having a trivial fundamental group, one typically expects trivial real
monodromy groups. Nonetheless, the following has a connected component with a nontrivial fundamental group but has a
trivial real monodromy group.

Example 3.4. The Kuramoto model [17] provides a mathematical model of synchronous behavior of coupled oscillators.
We consider n = 3 oscillators and avoid the trivial rotation by fixing 63 = 0. For parameters w = (w1, @, ), the steady-state
solutions of the Kuramoto model satisfy

|:sin(91 —6,) 4 sin(f; — 03) — 3a)1}
SiIl(@z - 01) + Sin(92 - 93) — 3w,

We convert to a polynomial system by taking s; = sin(6;) and c; = cos(6;), namely
(812 — €182) + (51€3 — €183) — 3wy

(5261 — C281) + (5263 — €253) — 3wy
F(s1,¢1,8, 0 w1, wp) = ) 5 . (4)
si+cp—1
s34+c3—1

Fig. 3 adapted from [6, Fig. 2] colors the parameters based on the number of real solutions. In particular, the connected set
having 6 real solutions and each of the six connected sets having 4 real solutions have trivial fundamental group and thus
trivial real monodromy group by Theorem 3.3. The connected set having 2 real solutions has a nontrivial fundamental group,
but one can easily check that this set also has a trivial real monodromy group. The reason for this will become apparent
in Example 3.15. Note that the monodromy group computed using [12] is Sg, which is not a solvable group.

The condition that the number of nonsingular real solutions along loops in the real parameter space remain constant is
a restriction that both ensures a group structure (due to concatenation of loops) and is responsible for often having a trivial
real monodromy group. The following provides an illustration of this restriction.
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Fig. 3. Parameter space R? colored by number of nonsingular real solutions to (4).
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Fig. 4. Parameter space R?, colored by number of nonsingular real solutions for F(x; p) in (5): 2 on {p; > 0} (green) and 4 on {p; < 0} (blue), base point
b= (-1,0), and loop y(t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Example 3.5. Consider the parameterized polynomial system

(x2 —x3 — p1) (X3 + p1)
F(X; p)= ! > ! ! ! =0 (5)
2X1X3 — P2

which is a modification of the system considered in Example 2.1 and 3.1. For b = (-1, 0), there are R = 4 nonsingular real
solutions, namely:

xV=(1,0, xP=(-1,0, x®=(0,1), x%=(0,-1).

In this case, U, ={p; < 0} C R? which has a trivial fundamental group and thus the real monodromy group is trivial by
Theorem 3.3. Fig. 4 illustrates the decomposition of the parameter space based on the number of real solutions. Consider
the loop y (t) = (—cos(2rt),sin(2mt)) for t € [0, 1] starting and ending at b. If we only focus on the two solution paths
starting at (1) and x(), these paths remain nonsingular over the loop and the endpoints interchange as one would expect
from the real monodromy group in Example 3.1. The two solution paths starting at x(3) and x(4) are nonsingular and real for
t € [0, 1/4)U(3/4, 1], nonsingular and nonreal for t € (1/4, 3/4), and at infinity for t € {1/4, 3/4}.

Example 3.4 shows that important information about the connections between some of the real solutions can be obtained
by relaxing the requirement that all real solutions remain nonsingular along the path. With this relaxation, one may lose
the group structure, but obtains a complete picture of the interconnections between the real solutions over a base point b,
which is described next.
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3.2. Real monodromy structure

The monodromy group and real monodromy group are encoded as a group of permutations where concatenation of loops
corresponds with composition of permutations. By relaxing the condition that all real solutions remain nonsingular along
a real loop, the resulting action no longer needs to be a group. Thus, the following proposes a structure, called the real
monodromy structure, to encode the resulting action on the real solutions.

The following summarizes some sets of interest.

Definition 3.6. For a nonnegative integer R, let Pow(R) be the power set of {1,---, R}, which is the set of all subsets of
{1,---, R}. Let OPow(R) be the ordered power set of {1,---, R}, which is the set of all ordered subsets of {1,---, R}. For
0 < k < R, let OPowy(R) be the k-ordered power set of {1,---, R}, which is the set of all ordered subsets of {1,---, R} of

size k. Let IPow(R) be the subset of OPow(R) consisting of the elements in which the entries are listed in increasing order.

The cardinality for each set defined in Definition 3.6 in terms of R > 0 and 0 < k < R is:

R! R!
#POW(R) = 2R, #OPOW’{(R) = W, #IPOWk(R) = m,

R!

R
k=0 )

Example 3.7. To illustrate, for R = 2, we have:
« Pow(2) ={0,{1},{2}.{1,2}} and OPow(2) = {9, {1},{2}.{1,2},{2,1}};
« OPowg(2) = {#} = IPowy (2);
+ OPow (2) = {{1}, {2}} = IPow; (2);
« OPow, (2) = {{1,2},{2,1}} and [IPow,(2) = {{1,2}}.

In particular, order does not matter in the elements of the power set. However, order does matter for elements in the
ordered power set.

The real monodromy structure is defined these sets.

Definition 3.8. For a real parameterized polynomial system F(x; p), fix a base point b e RP and let x(, ... x® RN be
the R nonsingular isolated solutions of F(x; b) = 0. The real monodromy structure of F at b is a collection G, = {G;,--- ., Gg}
where, for k=1, ..., R, the function

G : IPow (R) — Pow(OPowy (R)) (6)
is constructed as follows. For each Q = {q1,---, q;} € IPow (R), G, (Q) is the collection of subsets {sq,---, s;} € OPow(R)

such that there exists a loop y c R” starting and ending at b where the solution path of F(x; p) = 0 over y starting at x(4)
is nonsingular and ends at X fori=1,---, k.

The real monodromy group (see Section 3.1) describes how the set of all real nonsingular solutions to F(x; b) = 0 can be
permuted whereas the real monodromy structure describes how each subset of solutions can be permuted. Hence, the real
monodromy group is encoded in Gg.

Example 3.9. To illustrate, consider representing the real monodromy group S, from Example 3.1 as a real monodromy
structure.

First, we construct the map G; which has domain IPow; (2) = {{1}, {2}}. Since both corresponding solutions can trivially
return to themselves or connect to the other, G; maps both {1} and {2} to the element {{1}, {2}} € Pow(OPow(2)).

The domain of G, is IPow;(2) = {{1, 2}}. Since the pair of solutions can trivially remain unchanged or can be permuted,
G, maps {1, 2} to {{1,2}, {2, 1}} € Pow(OPow, (2)).

For simplicity, we will write G, = {G;,G»} as

* G
- {1}, {23={{1}, {213
* G
- {1, 2}={{1, 2}, {2, 1}}.

Example 3.10. For Example 3.5 with b = (-1, 0), the real monodromy structure is G, = {Gy,---, G4}:

e
- {1}, {23={{1}, {213
- {q1}~{{q1}} for all others
. G
- {1 2}={{1, 2}, {2, 1}}
- {q1, a2}~{{g1, g2}} for all others
< G3
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- {q1, 2, ¢3}3~{{q1, 02, 431}
* Ga
- {01, 92, 43, a}~{{q1, 92, 93, q4}}.

This structure shows that there is an interconnection between x(1) and x(2) as described by the loop y(t) in Example 3.5,
whereas anything involving x©) or x¥) must be trivial. The function G, encodes the triviality of the real monodromy group.
Moreover, G, does not have a group structure since G, is trivial while G; and G, are not.

Remark 3.11. A nonsingular assembly mode change means that there is a real nonsingular path between solution x® and xU)
where i # j. Hence, nonsingular assembly mode changes are described by Gi, namely i # j such that {j} € G ({i}).

A group G C Sy is said to be k-transitive if, for every @ = {q1,---, qx} € [IPowy(R) and 7 = {t;,---, t;} € OPowy(R), there
exists 0 € G such that o(q;) =t; fori=1,..., k. Clearly, if G is k-transitive for k > 1, then G is also (k — 1)-transitive. If G
is 1-transitive, then G is called transitive.

Example 3.12. The group K; c S4 in (2) is transitive. It is not 2-transitive since there does not exist ¢ € K4 which maps the
ordered set {1, 2} to the ordered set {1, 3}.

The following extends the notion of transitivity to the real monodromy structure.
Definition 3.13. A real monodromy structure G, = {Gy,---, Gg} is k-transitive if
Gr(Q) = OPow,(R) € Pow(OPowy (R))
for every Q e IPow; (R).

Clearly, if G, is k-transitive for k > 1, then G, is also (k — 1)-transitive. Moreover, G, is called transitive if it is 1-transitive.
Hence, a real monodromy structure is transitive if and only if G, ({i}) = {{1},..., {R}} = OPow;(R) for all i=1,---, R mean-
ing that, for every i, j € {1,---, R}, there is a nonsingular solution path starting at x(!) and ending at x{).

Example 3.14. The real monodromy structure g, in Example 3.9 is 2-transitive and hence 1-transitive. The real monodromy
stucture G, in Example 3.10 is not transitive.

3.3. Algorithm

This section concludes with Algorithm 1 for computing the real monodromy structure at a base point b when the pa-
rameter space is R% and using it to compute the real monodromy structure for the polynomial system F in (4) at b = (0, 0).

Algorithm 1 Computing the real monodromy structure.

Input: A realpolynomial system F(x; p) with x € R" and p € R?, and base point b € R2.
Output: The real monodromy structure G, = {Gq,...,Gg} for F at b where R is the number of real nonsingular isolated
solutions of F(x; b) = 0.

1: Compute the real nonsingular isolated solutions (1), ..., x® of F(x; b) = 0.

2: Decompose the parameter space R? into connected components based on the number of real solutions of F(x; p) =0
and identify the finitely many smooth segments of the boundaries.

3: Collect all data generated from all loops starting and ending at b traversing through smooth segments of the boundaries
into the real monodromy structure g,.

Example 3.15. For the n =3 Kuramoto system F in (4), Example 3.4 showed that every real monodromy group is trivial
and the monodromy group is the full symmetric group Sg. The following computes the real monodromy structure G, at b =
(0, 0), which is nontrivial thereby identifying interconnections between the real solutions. At b, we label the six solutions
as

xD=(0,1,0,1), x@=(0,1,0,-1), x® =(0,-1,0,1), x@ =(0,-1,0,-1),
x® =1(/3,-1,-v3,-1), x©® =1(-v3,-1,V3,-1).

A decomposition of the parameter space into connected components based on the number of real solutions was shown
in Fig. 3 which was computed using [8] with Bertini [1]. Since the connected hexagonal region containing b has a trivial
fundamental group, it immediately follows that both Gs and Gg are trivial. Moreover, since the curved “hexagram,” i.e., “six-
sided star,” region consisting of the set of parameter values with at least 4 real solutions also has a trivial fundamental
group, G3 and G, must also be trivial. Hence, we only need to consider G; and G,.

To help with the bookkeeping, we fix a marked point in each connected component with b being the one in its com-
ponent and place an ordering on the real solutions over each marked point. Then, we identify each of the finitely many
smooth segments of the boundaries of the connected components. Along such smooth segments of the boundary, there is a
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Fig. 5. A plot of the boundaries of the connected components (black lines) for (4), selected marked points (red star) in each connected component,
all intermediary points (red dot), paths crossing the boundary (green lines), and connections between intermediate points and the marked point of the
component (blue curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. An illustration of a 3RPR mechanism.

consistent identification of the real solutions which are no longer nonsingular at the boundary. Thus, there is an equivalence
along each smooth segment of the boundary. A similar statement holds for smooth regions of the boundary when there are
more than two parameters.

From Fig. 3, there are 18 smooth boundary segments to consider: 6 for the region having 6 real solutions and two
additional ones for each of the 6 regions having 4 real solutions. A homotopy is used to identify the behavior of the solutions
between each boundary segment using the consistent ordering from the marked point of the region. Intermediate points can
be used to assist in this, which are especially useful in nonconvex regions to connect the marked points as shown in Fig. 5.

Finally, an analysis of the data generated from traversing the boundaries produces all of the possible interconnections
between the real solutions x(1, ..., x® at b. In particular, this analysis shows that the hexagram region consists of two
large curved triangles: one pointing northwest and the other point southeast. On the boundary of the northwest triangle,
x® always becomes singular and merges with one of x(2), x(3), or x(4) along its three sides. Similarly, for the boundary of
the southeast triangle, x(>) always becomes singular and merges with one of x(2), x3), or x(4) along its three sides. Since
one must cross both triangular boundaries, to possibly have a nontrivial action, we know that G; and G, applied to any set
involving either 5 or 6 is trivial.

Furthermore, this analysis shows that the solution sheet corresponding to x() over the colored region of the parameter
space in Fig. 3 is nonsingular. In particular, this explains why the real monodromy group computed in Example 3.4 for the
connected component having 2 real solutions, which is colored orange in Fig. 3, is trivial even though the fundamental group
for this component is not trivial. Hence, G; ({1}) = {{1}} but it is different than x®) and x(®) in that it can be included in
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Fig. 8. Regions of the parameter space c = (¢q, ¢c;) colored by the number of real solutions where (a) is the full view and (b) is a zoomed in view of the
lower left corner. The navy blue region has 6 real solutions, the grey blue region has 4 real solutions, the baby blue region has 2 real solutions, and the

white region has 0 real solutions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

nontrivial G, action. In fact, since it is possible to move from b into this orange component using nonsingular paths starting
at (U and one of x(2), x(3), or x4), we have that G, is transitive on {2}, {3}, and {4} and G, is transitive on {1, 2}, {1, 3}, and
{1, 4}. This is summarized in the following:

* G

- {2}, (3} {4}=>{{2}, {3}, (4}
- {q1}~{{q1}} for all others
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(a) (b)

Fig. 9. Selected marked points (red star) in each connected component and all intermediary points (red dot) in (a) full view and (b) zoomed in view of
the lower left corner. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

400 [

0 400
Fig. 10. A loop starting and ending at base point (75,70) that yields a nonsingular assembly mode change. The corresponding linkage pose for the labeled
points are shown in Fig. 11.

. gz
- {12}, {1, 3}, {1, 4}~{(1, 2}, {1, 3}, {1, 4}}
- {q1, 92}3~{{q1. q2}} for all others.

Therefore, the real monodromy structure provides three distinct collections of solutions which have similar properties:
{x“)}_ {X(Z), X(3), x(4)}‘ and {x(5)‘ x(6)}.

4. Real monodromy of the 3RPR mechanism

The 3RPR mechanism, as shown in Fig. 1, is a well-known mechanism that has a nonsingular assembly mode change
[5,7,13,15,16,19,23]. Thus, with an appropriate choice of base point, the function G; in the real monodromy structure for this
base point will be nontrivial. In this section, we compute the complete real monodromy structure G, using the same base
point from [15] when one of the leg lengths is fixed and the other two legs are free to change lengths.

As shown in Fig. 6, let the leg lengths be ¢4, ¢5, and ¢3. For simplicity, we will consider the squares of the leg lengths,
namely ¢; = e,.z. In the fixed frame, set the three anchors of the three legs, respectively, at (0,0), (A, 0), and (As, B3). In the
moving frame, set the three connections of the three legs, respectively, attached to the triangle at P; = (0,0), P, = (ay, 0),
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N

Fig. 11. Solutions along a loop that yields a nonsingular assembly mode change.

and P; = (as, b3). Following the case studied in [15], we take the following constants:

02214, az =7, b3=10, A2=]6, A3=9, B3=6, C3=£§=100. (7)

For the parameters ¢ = (c1, c;), we take the base point, corresponding to the “home” position, to be b = (75, 70) as in [15].
The six mechanisms satisfying this setup are shown in Fig. 7.

The variables (p, ) = (p1, p2. $1, @) of the polynomial system represent the relative position and rotation between
fixed frame and moving frame, respectively. The polynomials constrain the rotation (¢, ¢,) to a point on the unit circle as
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well as describe the three leg constraints:

P+ -1
pi + P35 — 2(azpy + b3p2)d1 + 2(bspy — azpy) s + a3 + b3 — ¢
F(p.¢:¢) = | p? + p3 — 2A;:p1 + 2((a2 — a3) p1 — b3pz + Axa3 — Aza3) ¢y
+ 2(bsp1 + (ay — a3)p2 — Azb3)hs + (ay — a3)* + b + A3 — ¢,
p? + p3 — 2(Aspy +B3py) + A2 + B2 —c5

At the “home” position b= (75,70), the system F(p,¢;b) =0 has 6 nonsingular real solutions which are assigned la-
bels x(M, ..., x® in Fig. 7. The remaining part of this section describes computing the real monodromy structure G, =
{G1, -+, Gg} for F at b where we utilize Bertini [1] to perform the homotopy continuation computations.

First, we compute the boundaries of the subsets of R* where the number of real solutions change using [8]. Fig. 8 col-
ors the regions in ¢ = (cq,¢;) € R having 0, 2, 4, and 6 real solutions, where b = (75, 70) lies in the unique connected
component having 6 real solutions. In particular, since this component has a trivial fundamental group, Theorem 3.3 con-
cludes that the real monodromy group is trivial. It follows that Gs and Gg are also trivial. We note that the monodromy
group is Sg showing there is no complex structure in the solutions encoded by the monodromy group.

To help with the bookkeeping, we fix a marked point in each connected component and select additional intermediate
points to simplify the computation of loops as shown in Fig. 9. To compute all possible loops, we need to transverse between
the connected components. Since there is an equivalence by passing through smooth regions of the boundary, there are
only finitely many possible loops of interest. For example, leaving the navy blue region having 6 real solutions and entering
into the largest grey blue connected component that touches it has at most three different outcomes obtained by crossing
through the three different smooth segments of the boundary. The intermediate points facilitate moving the solutions to the
marked point to have consistent ordering.

By tracking solutions along all possible loops and carefully keeping track of those that remain nonsingular, we obtain the
following real monodromy structure where G5 and Gg are trivial:

. gl
- {1}, {2}, 3={{1}, 2}, (31}
- {4}, {5}, {6}—~{{4}, {5}, {6}}
* Gy

~ {1.4).{1.5).{1.6}.{2.5). {2.6). (3.4}, (3.5} > {{1’4}*{1’5}’“’6}’{2’5}’}

{2,6},{3.4}, (3,5}
- {1, 3} {2, 3}={{1, 3}, {2, 3}}
- {4, 6}, {5, 6}—~{{4, 6}, {5, 6}}
- {q1, ¢23~{{q1, q2}} for all others
-G
’ {1, 5, 6}, {2, 5, 6}—~{{1, 4, 6}, {1, 5, 6}, {2, 5, 6}}
{2, 3, 6}—~{{1, 3, 6}, {2, 3, 6}}
{3, 5, 6}—~{{3, 4, 6}, {3, 5, 6}}
- {1, 92, 3}~{{q1, 92, q3}} for all others
-G
il {1, 3, 4,6}, {1, 3,5, 6}, {2, 3, 5, 6}—~{{1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3,5, 6}}
- {q1, 92, g3, 9a}~{{q1. 92, g3, q4}} for all others

In particular, G; shows that there are nonsingular assembly mode changes between x(1), x(2), and x(3) as well as between
x4, x5 and x(©). Figs. 10 and 11 illustrate a nonsingular assembly mode change between x4} and x().

The real monodromy structure G, identifies that the real solutions arise in two groups of three solutions coinciding
with the results in [15] which showed that there are two disjoint path-connected components. In fact, in light of this
constraint, G; shows that all possible nonsingular assembly mode changes can occur. The real monodromy structure g,
provides additional information beyond nonsingular assembly mode changes by considering how other subsets of solutions
can be interchanged. For example, G, shows that it is possible to interchange two solutions x(!) and x(?) while having three
solutions x(3), x(3), and x(®) return to themselves with all four paths remaining real and nonsingular. Additionally, it is also
possible to interchange two pairs of solutions x(1) and x(2), and x) and x(®) while having two solutions x3) and x() return
to themselves with all four paths remaining real and nonsingular.

- {1, 4, 6},
- {1, 3, 6},
- {3, 4,6},

5. Conclusion

The monodromy group is a classically used invariant in algebraic geometry to study the structure of solutions to a pa-
rameterized system of polynomial equations. Since many applications involve working with real solution sets over real pa-
rameter spaces, an extension of the monodromy action computations to the real numbers is needed. A naive extension is
to consider loops where all real solutions stay real and nonsingular along the solution path yielding the real monodromy
group. However, this is very restrictive and is often trivial. Thus, we propose a real monodromy structure that gives tiered
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information on the monodromy actions for the real solutions. This enables useful structural information to be obtained and
circumvents the restrictiveness of the naive extension by relaxing the condition that all real paths remain nonsingular.

The real monodromy structure for the 3RPR mechanism allowing two legs to change length describes how the solutions
can interchange thereby providing a complete mathematical generalization of nonsingular assembly mode changes. This
information can be useful, for example, in calibration. If no real solutions can interchange, i.e., the real monodromy structure
is trivial, then returning to the “home” position avoiding singularities will always yield the same pose. However, if the real
monodromy structure is not trivial, then it describes all possible interconnections between poses over the “home” position.
Future work includes computing real monodromy structures for Stewart-Gough platforms.
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