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Abstract: The global science and technology landscape is rapidly changing. In an 

environment where collaboration is necessary for scientific and technological innovation, it is 

nonetheless challenging to identify and establish relationships between international partners, 

especially in emerging technological fields where no country has yet demonstrated a clear 

advantage. This paper describes a model to facilitate a quantitative assessment and ranking of 

national innovation potential based on the integration of established (e.g., patents and peer-

reviewed publication counts) as well as non-obvious or subjective (e.g., national attitudes towards 

particular veins of research) measures to predict future performance. Such an assessment can 

provide a helpful step towards improving projections of scientific performance, particularly for 

those countries with a relatively limited footprint in the scientific landscape, and help identify and 

engage newcomers early in the innovation process to maximize benefits from a potential bilateral 

or multilateral relationship.  
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1.  Introduction 

Innovation in science and technology is a fundamental determinant of national 

competitiveness, industrial productivity, and social well-being. Advancements in emerging fields 

such as artificial intelligence, quantum technologies, biomedical science, and sustainable energy 

have the power to radically improve the quality of life of individuals, enhance national defense 

and security, strengthen the economy, and solve critical global challenges [1]. However, the 

financial, labor, and innovative cost of such scientific development can be prohibitive for any 

single country to pursue on its own.  

As science becomes more collaborative, and the convergence of interdisciplinary teams is 

needed to address global issues, it is more important than ever to forge new partnerships in the 

international science arena. Seeking opportunities to partner with other countries that have 

complementary innovation capabilities can facilitate the transfer of knowledge and technology. 

However, a critical question remains regarding which countries with whom to prioritize co-

development of scientific research, particularly at the earliest stages of scientific inquiry. 

While one course of action is to only collaborate with known and well-established partners, 

there is a risk of missing out on the next “up and coming” player and losing the beneficial products 

that might have been realized if collaboration had been established earlier. Newcomers are nations 

that are developing competencies and breakthroughs in specific disciplines but have not yet 

attained global recognition for such expertise and capacity. These field-specific capabilities 

commonly remain unnoticed by the global community for several years or even decades. The 

ability to identify these lesser-known countries would provide an advantage to both newcomer 

nations and more established partners through the co-production of shared scientific knowledge.  



However, it is not clear how to identify which countries will emerge as leaders in various 

technology sectors, especially countries that may not typically be thought of as leaders in 

innovation. This paper proposes a proof-of-concept model for identifying potential newcomers, 

and highlights challenges in the areas of metrics, modeling, and policy.  

 

2.  Identifying Scientific Newcomers: A Proof-of-Concept 

Scientific newcomers are difficult to preemptively identify. Signals denoting their arrival 

can be opaque, indirect, leading/lagging, or misleading. Further, many potential newcomers may 

include nations with a more hostile political attitude to one’s own, making any effort at cost-

sharing, institutional collaboration, and co-development of scientific knowledge difficult. As such, 

navigating a mixture of quantitative and qualitative variables would offer a more realistic portrayal 

not only of scientific development within a given discipline or technology, but also how open that 

country is to collaborate with others through formal or informal mechanisms.  

 To structure and evaluate disparate sources of signals and metrics for scientific newcomers, 

we utilized a multi-objective decision model [2], which allows for a comparative analysis of 

disparate criteria and datasets for a given objective (i.e., comparatively ranking potential for future 

scientific growth) against a set list of alternatives (for this case, different countries). Such 

approaches are inspired by similar models that generated statistically relevant predictions for the 

allocation of Olympic medals considering only 3-4 metrics of national size, wealth, and other 

pertinent resources [3]. Though this exercise is intended to be demonstrative using well-established 

methods and practices rather than a causal or exhaustive approach, it does serve as a helpful 

reference point to show how various qualitative and quantitative inputs can assess future scientific 



capabilities of multiple actors, with special consideration given to those who do not have an 

extensive record of leading international scientific research within a given field. 

 

2.1. Identifying Metrics 

 Drawing from several data sources described below, we explored differing institutional, 

political, sociological, and scientific drivers of scientific research and development [4]. Pertinent 

variables include: 

(a) Human Capital (metrics that measure the human assets of a country) 

(b) Physical Capital (resource and infrastructural investments and capabilities) 

(c) Social Capital (cultural willingness and desire to pursue a specific vein of science) 

(d) Openness (participation within bilateral or multilateral agreements for scientific 

collaboration) 

Human capital includes the buildup of a workforce capable not only of executing scientific 

discovery and technological commodification, but also the ability to think creatively and non-

intuitively to solve new problems with various scientific fields. Perhaps the most notable 

consideration includes investment in education (or national education investment). A well-funded 

and structured education system will produce a more educated workforce that will have the ability 

to innovate [5, 6]. An investment in education will also help to create long term economic growth 

[7], which is described as accompanying innovation [5]. 

For physical capital, emphasis is placed upon the resources, infrastructure, and non-human 

systems that can be garnered to further scientific research.  Possible considerations include the 

percentage of public and private funding on an annualized basis for scientific purposes [5, 8-10]. 

Other likely drivers include the quality and capability of existing institutions, which serve as a 



nexus for subject-matter experts to collaborate as well as to facilitate cutting-edge research with 

expensive machinery and other equipment. 

Social capital is a more indirect driver for scientific innovation, but is one that likely has 

considerable influence on the nature of scientific research as well as what is permissible within 

various industries and government laboratories. Sociopolitical drivers can foster a fertile 

environment that enables considerable support and resources to further complex or risky science 

(i.e., early research on space travel in the 1960s). These drivers, however, can dampen political or 

economic support for products deemed unnecessary or antithetical to the public good (i.e., 

genetically modified foods and agricultural products in the European Union). 

The final category of metrics used is Openness. To measure a country’s economic 

openness, the willingness of a country to trade goods relates with their willingness to also exchange 

ideas [5, 6, 11]. Also, a country that is open will benefit from a “technology spillover” from other 

nations [12]. Another criterion for determining a quality research partner is a country’s level of 

intellectual property protection. A relationship has been shown between strong intellectual 

protections and innovation [5, 6, 11]. 

 

2.2. Building a Model 

The data were assembled, and then cleaned and prepared by performing linear interpolation 

for missing years within each country. Data were smoothed to three year averages. Additionally, 

data were normalized to 0-1 scales by identifying the best and worst values for that raw metric 

across countries and years and calculating |score – worst| / |best – worst|. The normalized score for 

the ith metric is denoted in general as xi, and for country j as xij. 



Next, Research Partnership Potential (RPP) Scoring Model indicators for each country 

were calculated as weighted sums of the metrics, where the weights (obtained as described below) 

sum to 1. To obtain weights for each metric, we used a bootstrapping technique that benchmarked 

relative performance against various databases such as the World Economic Forum [13], the World 

Bank [14], and the Nature Index [15], creating a strawman representation of purposeful 

comparative analysis of each country’s possible performance. This provided a relative 

performance ranking of a subset of the countries in two ways. First, a numerical rank from best to 

worst was identified for around 60 countries at several different time points. A country’s estimated 

rank j is denoted <rj>.  Second, a larger set of around 200 countries was classified more coarsely 

(and thus easily) as 4 (known innovators), 3 (recognized as having the potential to innovate), 2 

(having an active research community), 1 (having a functional higher education community), or 0 

(having no functional research capacity). The strawman classification for country j is denoted 

<cj>. 

For a given set of weights, w1,…,w6, for each country j for which the expert gave a 

classification above 0, an RPP score is calculated as yj =  w1x1j + … + w6x6j. Where data are 

missing, the score is normalized to account only for scores which are present, e.g., if x1j is missing, 

yj = (w2x2j + … + w6x6j)/(w2+…+w6). 

The calculated rank of country j in terms of the calculated score is rj*. Calculated 

classifications are simply the quartiles of the ranks classified by quartile, with cj* = 1 (lowest 

quartile), 2, 3 or 4 (top quartile). An evolutionary algorithm [16] identified coefficient weights 

w1,…, w6 for the metrics that minimized the sum over all countries of (<cj> - cj*)2, i.e., the least 

squares best fit. The results did not vary substantially when different fitness functions were 

substituted for least squares.   



 

2.3. Comparative Analysis 

 Exploratory results indicate that while prior research potential is unsurprisingly the most 

significant indicator of future scientific performance across all scientific domains, other variables 

(i.e., within physical capital, social capital, and human capital) can play a small role in shaping 

research trajectories (Table 1). Such variables can be particularly helpful in breaking ties within 

countries of limited data (i.e., peer-reviewed publication data or patents). More importantly, such 

weights would likely be shifted for specific technologies – sociopolitical variables become more 

important as a given technological sector is more uncertain or controversial. 

 

Table 1. Calibrated weights derived from an evolutionary algorithm 

  Edu IP Trade EconFree Res UncertAvoid 

Normalized Weights 0.006 0.025 0.076 0.000 0.889 0.003 

 

The countries identified as having the most rapid percent increases in RPP may be the most 

ideal partners to pursue – they are less likely to have been receiving attention in the past when their 

scores were lower, and their increased scores suggest that they are more likely to produce benefits 

in the future (Figure 1). An important caveat is that due to the relative ranking of such scores, 

certain countries may have periodic increases or decreases in their RPP due to exogenous shocks 

that may be temporary and/or easily rectified.  



 

Figure 1. Greatest swings in percentage change in overall score for years 2011 and 2015 for 

the 174 countries with available data for non-zero weighted criteria 

A critical caveat of Figure 1 is that is assesses relative performance of a country, not 

necessarily absolute performance. Nations like Estonia with longstanding track records of 

scientific growth can appear to relatively decline despite continued prominence in many sectors 

such as cybersecurity and digital information systems, while other nations may appear to rise or 

grow due to their emergence from civil conflict or a sudden and substantial investment into their 

science sector that had previously been limited or nonexistent. Figure 1 is a helpful first step 

towards understanding relative performance and shifts in national scientific development as it does 

not place insurmountable weight upon the accomplishments and capabilities of top scientific 



performers, although more inter-year comparative analysis would be needed to arrive at a more 

deterministic outcome indicating a strong trajectory of the continued growth of a newcomer. 

This effort serves as a proof of concept. The approach proved practical – data are not in 

short supply, and modeling requirements are modest. We believe, more sophisticated extensions 

of such an approach would still require efforts that are miniscule compared to the nation’s 

expenditures on research partnerships – let alone the potential benefits from pursuing fruitful ones. 

The approach also demonstrates a potential contribution in that the results appear both reasonable 

and to some extent non-obvious. Most importantly, the type of results produced have practical 

relevance: a scoring model developed from historical data and expert judgment may consider 

recent changes in the performance of specific countries to allow identification of the relative 

newcomers in science, technology and education, as well as emerging disciplines. 

 

3. Assessing International Scientific Potential – A Path Forward 

 Newcomer identification has significant potential benefits in an era where scientific 

research and technology development is increasingly globalized. However, the mathematical 

process of rank-ordering newcomers for potential partnership remains a challenging task. We view 

such challenges as threefold, including (i) the difficulty of selecting and maintaining robust data 

sources, (ii) the construction and maintenance of proper models to utilize such data, and (iii) 

accounting for the multitude of governance and sociopolitical concerns that add further layers of 

complexity into any bilateral or multilateral arrangement of science collaboration between 

countries.  

 

3.1 Metrics 



Despite the many metrics proposed, it remains unclear which metrics have the best 

predictive value, especially in the long-term. The need to narrow the set of metrics to a manageable 

quantity is a major challenge, as it is inefficient to collect hundreds of metrics for each country 

when perhaps a dozen would have roughly the same predictive power. The value of information 

gained by each additional indicator will likely diminish, especially when balanced against the costs 

of data collection.  

Other challenges identified included the issue of scale. On the geographic scale, country-

level variation matters. Regarding time scales, quantitative metrics tend to be lagging. Metrics 

might be 1 to 3 years old by the time the trends show up in statistics. Another consideration is the 

data sources themselves. Scholarly databases such as SCOPUS and Web of Science may only 

cover certain disciplines, excluding other disciplines where interesting advances may be taking 

place (e.g., computer science or cybersecurity).  

 

3.2 Modeling 

A major challenge is that the problem can be conceptualized at various scales. Depending 

on where one draws the boundaries, different methods may be appropriate for the task. 

Specifically, questions of scale present themselves with respect to partner (nation, institution, 

individual researcher), specificity of the scientific problem (from general, e.g., chemistry, to 

specific, e.g., carbon nanotubes), and time horizon (20 years, 6 months). Another related 

consideration is that of collaboration objectives. There might be many strategic objectives, some 

perhaps competing with others, to pursue collaboration with a particular partner. Before choosing 

an appropriate methodology, one must fully understand the assumptions around collaborations 

with whom, on what topic, over what time frame, and why.  



There exists a vast array of modeling approaches that can be utilized, individually and in 

combination, to identify collaboration opportunities. These methods range from qualitative, 

expert-driven exercises to computationally sophisticated and complex analytics. Among others, 

such approaches include qualitative expert elicitation-based methods, cross-impact analysis, 

bibliometric tracking techniques, decision analysis (including game theory and portfolio decision 

modeling), data science and machine learning techniques, and complex systems-based models. 

Clearly, there is no single “best” modeling approach. Instead, there are many 

methodologies, which can be used together to provide a picture of the overall scientific landscape. 

Since the decision of what method to select was too contextual to advocate for or against a single 

method, maintaining a computational “toolbox” is preferred to reliance upon a single 

methodological approach. 

 

3.3 Governance and Sociopolitical Drivers of International Scientific Collaboration 

Governance and policy challenges relative to international scientific engagement center 

upon two core tasks: (a) fostering standards and protocols to execute surveys and data 

gathering/analysis of the international scientific landscape, and (b) developing processes for 

engagement of potential scientific partners in a manner that accounts for their unique economic, 

political, and social characteristics. 

For the former, one common program with demonstrated success is the Embassy Science 

Fellows Program1, where scientific experts are stationed at US embassies of potential trade and 

research partners to facilitate the process of scientific investment and bilateral cooperation [17]. 

Senior government leadership, such as a chief technology advisor, can also help steer a nation’s 

                                                           
1 Two authors of this paper served as Science Fellows: M.M.K. served in Russia and Georgia; I.L. served in Germany 
and France. 



scientific engagement opportunities. Such institutional mechanisms enable horizon scanning of 

potential collaboration opportunities abroad, and a means of enabling direct collaboration through 

knowledgeable stakeholders and clear bilateral agreements. Regular data gathering and analysis of 

science and technology opportunities should involve future projections of scientific growth rates 

and political and economic drivers that influence the growth or decline of a given scientific 

discipline. Such an exercise clarifies what metrics are used to inform such insights and what 

decision support tools are acceptable to process such metrics. 

For the latter, once potential newcomers have been identified, concerns remain regarding 

how best to engage them in a shared and mutually beneficial platform. Social, governance, and 

cultural differences and challenges can frame or determine whether newcomer engagement is 

practical or sustainable over time. Science does not exist in a vacuum, but instead is framed by the 

value and importance that societies place upon it. One factor is the institutional composition of the 

target country’s government and science sector. Engagement with a relatively open and democratic 

society may differ in strategy and goals than with a more authoritarian regime – particularly when 

the decision makers in more autocratic countries are unpredictable or untrustworthy in their 

adherence to bilateral and multilateral scientific agreements.  

If there is a degree of trust in a potential partnership, direct investment into a given country 

in the form of financial aid or technology transfer can kick-start bilateral science arrangements. If 

trust is limited or political differences are strong, temporary or permanent immigration of select 

scientists from a target country may be a more sustainable and politically/economically acceptable 

alternative. A second factor is the social influence of its culture, including the cultural willingness 

of a country to innovate in a certain field. Regardless of funding and infrastructure, innovation 

cannot occur if the people in a country disapprove of the direction or motivation of a given 



scientific endeavor – either from a lack of economic incentive, or a belief that such technologies 

are against the best interest of broader society.  

Ultimately, engagement is defined by multiple strategies: (a) political incentives/bilateral 

trade agreements, (b) investment into the country and its scientific sector, or (c) incentivizing select 

individuals within the foreign country to relocate for purposes of research and development. 

Strategies chosen in this regard are defined on a case-by-case basis relative to the target nation’s 

general stance (are they friendly or unfriendly), their relative scientific capacity, and the 

institutional, social, and cultural values. 

 

4. Conclusion 

Scientific and technological innovation holds the potential to enhance a nation’s economy 

and provide benefits to populations around the world. The following practical takeaways can help 

inform policymakers and practitioners working at the intersection of science and policy charged 

with identifying potential international partners: 

• Relatively simple models can be built to identify potential partners, however simple models 

may not account for dependencies within and across scientific communities, trends at 

various geographic scales, and patterns in scientific engagement.  

• More computationally advanced techniques can be leveraged to gain information about the 

global scientific landscape, including tools from machine learning. 

• When developing data-driven models to identify collaboration opportunities, utilize an 

ensemble of quantitative and qualitative data sources.   



• By establishing research relationships with high-innovation potential in certain fields early, 

innovative technologies can be more rapidly developed and fielded, accelerating the 

benefits of these technologies to be enjoyed by society. 

 

This paper has attempted to frame the problem of identifying high-value innovation 

partnerships with newcomers on the international stage. In light of this initial analysis, further 

analysis is warranted across three complementary areas of inquiry, which are addressed by the 

following papers in this issue:  

• Metrics and indicators [18] 

• Modeling approaches [19] 

• Policy and governance challenges [20]. 
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