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Abstract: The global science and technology landscape is rapidly changing. In an
environment where collaboration is necessary for scientific and technological innovation, it is
nonetheless challenging to identify and establish relationships between international partners,
especially in emerging technological fields where no country has yet demonstrated a clear
advantage. This paper describes a model to facilitate a quantitative assessment and ranking of
national innovation potential based on the integration of established (e.g., patents and peer-
reviewed publication counts) as well as non-obvious or subjective (e.g., national attitudes towards
particular veins of research) measures to predict future performance. Such an assessment can
provide a helpful step towards improving projections of scientific performance, particularly for
those countries with a relatively limited footprint in the scientific landscape, and help identify and
engage newcomers early in the innovation process to maximize benefits from a potential bilateral

or multilateral relationship.
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1. Introduction

Innovation in science and technology is a fundamental determinant of national
competitiveness, industrial productivity, and social well-being. Advancements in emerging fields
such as artificial intelligence, quantum technologies, biomedical science, and sustainable energy
have the power to radically improve the quality of life of individuals, enhance national defense
and security, strengthen the economy, and solve critical global challenges [1]. However, the
financial, labor, and innovative cost of such scientific development can be prohibitive for any
single country to pursue on its own.

As science becomes more collaborative, and the convergence of interdisciplinary teams is
needed to address global issues, it is more important than ever to forge new partnerships in the
international science arena. Seeking opportunities to partner with other countries that have
complementary innovation capabilities can facilitate the transfer of knowledge and technology.
However, a critical question remains regarding which countries with whom to prioritize co-
development of scientific research, particularly at the earliest stages of scientific inquiry.

While one course of action is to only collaborate with known and well-established partners,
there is a risk of missing out on the next “up and coming” player and losing the beneficial products
that might have been realized if collaboration had been established earlier. Newcomers are nations
that are developing competencies and breakthroughs in specific disciplines but have not yet
attained global recognition for such expertise and capacity. These field-specific capabilities
commonly remain unnoticed by the global community for several years or even decades. The
ability to identify these lesser-known countries would provide an advantage to both newcomer

nations and more established partners through the co-production of shared scientific knowledge.



However, it is not clear how to identify which countries will emerge as leaders in various
technology sectors, especially countries that may not typically be thought of as leaders in
innovation. This paper proposes a proof-of-concept model for identifying potential newcomers,

and highlights challenges in the areas of metrics, modeling, and policy.

2. Identifying Scientific Newcomers: A Proof-of-Concept

Scientific newcomers are difficult to preemptively identify. Signals denoting their arrival
can be opaque, indirect, leading/lagging, or misleading. Further, many potential newcomers may
include nations with a more hostile political attitude to one’s own, making any effort at cost-
sharing, institutional collaboration, and co-development of scientific knowledge difficult. As such,
navigating a mixture of quantitative and qualitative variables would offer a more realistic portrayal
not only of scientific development within a given discipline or technology, but also how open that
country is to collaborate with others through formal or informal mechanisms.

To structure and evaluate disparate sources of signals and metrics for scientific newcomers,
we utilized a multi-objective decision model [2], which allows for a comparative analysis of
disparate criteria and datasets for a given objective (i.e., comparatively ranking potential for future
scientific growth) against a set list of alternatives (for this case, different countries). Such
approaches are inspired by similar models that generated statistically relevant predictions for the
allocation of Olympic medals considering only 3-4 metrics of national size, wealth, and other
pertinent resources [3]. Though this exercise is intended to be demonstrative using well-established
methods and practices rather than a causal or exhaustive approach, it does serve as a helpful

reference point to show how various qualitative and quantitative inputs can assess future scientific



capabilities of multiple actors, with special consideration given to those who do not have an

extensive record of leading international scientific research within a given field.

2.1. Identifying Metrics
Drawing from several data sources described below, we explored differing institutional,
political, sociological, and scientific drivers of scientific research and development [4]. Pertinent

variables include:

(a) Human Capital (metrics that measure the human assets of a country)

(b) Physical Capital (resource and infrastructural investments and capabilities)

(c) Social Capital (cultural willingness and desire to pursue a specific vein of science)

(d) Openness (participation within bilateral or multilateral agreements for scientific

collaboration)

Human capital includes the buildup of a workforce capable not only of executing scientific
discovery and technological commodification, but also the ability to think creatively and non-
intuitively to solve new problems with various scientific fields. Perhaps the most notable
consideration includes investment in education (or national education investment). A well-funded
and structured education system will produce a more educated workforce that will have the ability
to innovate [5, 6]. An investment in education will also help to create long term economic growth

[7], which is described as accompanying innovation [5].

For physical capital, emphasis is placed upon the resources, infrastructure, and non-human
systems that can be garnered to further scientific research. Possible considerations include the
percentage of public and private funding on an annualized basis for scientific purposes [5, 8-10].

Other likely drivers include the quality and capability of existing institutions, which serve as a



nexus for subject-matter experts to collaborate as well as to facilitate cutting-edge research with

expensive machinery and other equipment.

Social capital is a more indirect driver for scientific innovation, but is one that likely has
considerable influence on the nature of scientific research as well as what is permissible within
various industries and government laboratories. Sociopolitical drivers can foster a fertile
environment that enables considerable support and resources to further complex or risky science
(i.e., early research on space travel in the 1960s). These drivers, however, can dampen political or
economic support for products deemed unnecessary or antithetical to the public good (i.e.,

genetically modified foods and agricultural products in the European Union).

The final category of metrics used is Openness. To measure a country’s economic
openness, the willingness of a country to trade goods relates with their willingness to also exchange
ideas [5, 6, 11]. Also, a country that is open will benefit from a “technology spillover” from other
nations [12]. Another criterion for determining a quality research partner is a country’s level of
intellectual property protection. A relationship has been shown between strong intellectual

protections and innovation [5, 6, 11].

2.2. Building a Model

The data were assembled, and then cleaned and prepared by performing linear interpolation
for missing years within each country. Data were smoothed to three year averages. Additionally,
data were normalized to 0-1 scales by identifying the best and worst values for that raw metric
across countries and years and calculating |score — worst| / |best — worst|. The normalized score for

the i” metric is denoted in general as x;, and for country j as x;;.



Next, Research Partnership Potential (RPP) Scoring Model indicators for each country
were calculated as weighted sums of the metrics, where the weights (obtained as described below)
sum to 1. To obtain weights for each metric, we used a bootstrapping technique that benchmarked
relative performance against various databases such as the World Economic Forum [13], the World
Bank [14], and the Nature Index [15], creating a strawman representation of purposeful
comparative analysis of each country’s possible performance. This provided a relative
performance ranking of a subset of the countries in two ways. First, a numerical rank from best to
worst was identified for around 60 countries at several different time points. A country’s estimated
rank j is denoted <r;>. Second, a larger set of around 200 countries was classified more coarsely
(and thus easily) as 4 (known innovators), 3 (recognized as having the potential to innovate), 2
(having an active research community), 1 (having a functional higher education community), or 0
(having no functional research capacity). The strawman classification for country j is denoted
<c>.

For a given set of weights, wy,...,ws, for each country j for which the expert gave a
classification above 0, an RPP score is calculated as y; = wix; + ... + wesxg. Where data are
missing, the score is normalized to account only for scores which are present, e.g., if x;; is missing,
Vi = (Waxz + ... + wexe)/(wat... +we).

The calculated rank of country j in terms of the calculated score is 7;* Calculated
classifications are simply the quartiles of the ranks classified by quartile, with ¢;* = 1 (lowest
quartile), 2, 3 or 4 (top quartile). An evolutionary algorithm [16] identified coefficient weights
Wi, ..., we for the metrics that minimized the sum over all countries of (<¢;> - ¢;*)?, i.e., the least
squares best fit. The results did not vary substantially when different fitness functions were

substituted for least squares.



2.3. Comparative Analysis

Exploratory results indicate that while prior research potential is unsurprisingly the most
significant indicator of future scientific performance across all scientific domains, other variables
(i.e., within physical capital, social capital, and human capital) can play a small role in shaping
research trajectories (Table 1). Such variables can be particularly helpful in breaking ties within
countries of limited data (i.e., peer-reviewed publication data or patents). More importantly, such
weights would likely be shifted for specific technologies — sociopolitical variables become more

important as a given technological sector is more uncertain or controversial.

Table 1. Calibrated weights derived from an evolutionary algorithm

Edu 1P Trade Econkree | Res UncertAvoid

Normalized Weights 0.006 0.025 0.076 0.000 0.889 0.003

The countries identified as having the most rapid percent increases in RPP may be the most
ideal partners to pursue — they are less likely to have been receiving attention in the past when their
scores were lower, and their increased scores suggest that they are more likely to produce benefits
in the future (Figure 1). An important caveat is that due to the relative ranking of such scores,
certain countries may have periodic increases or decreases in their RPP due to exogenous shocks

that may be temporary and/or easily rectified.
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Figure 1. Greatest swings in percentage change in overall score for years 2011 and 2015 for
the 174 countries with available data for non-zero weighted criteria

A critical caveat of Figure 1 is that is assesses relative performance of a country, not
necessarily absolute performance. Nations like Estonia with longstanding track records of
scientific growth can appear to relatively decline despite continued prominence in many sectors
such as cybersecurity and digital information systems, while other nations may appear to rise or
grow due to their emergence from civil conflict or a sudden and substantial investment into their
science sector that had previously been limited or nonexistent. Figure 1 is a helpful first step
towards understanding relative performance and shifts in national scientific development as it does

not place insurmountable weight upon the accomplishments and capabilities of top scientific



performers, although more inter-year comparative analysis would be needed to arrive at a more
deterministic outcome indicating a strong trajectory of the continued growth of a newcomer.

This effort serves as a proof of concept. The approach proved practical — data are not in
short supply, and modeling requirements are modest. We believe, more sophisticated extensions
of such an approach would still require efforts that are miniscule compared to the nation’s
expenditures on research partnerships — let alone the potential benefits from pursuing fruitful ones.
The approach also demonstrates a potential contribution in that the results appear both reasonable
and to some extent non-obvious. Most importantly, the type of results produced have practical
relevance: a scoring model developed from historical data and expert judgment may consider
recent changes in the performance of specific countries to allow identification of the relative

newcomers in science, technology and education, as well as emerging disciplines.

3. Assessing International Scientific Potential — A Path Forward

Newcomer identification has significant potential benefits in an era where scientific
research and technology development is increasingly globalized. However, the mathematical
process of rank-ordering newcomers for potential partnership remains a challenging task. We view
such challenges as threefold, including (i) the difficulty of selecting and maintaining robust data
sources, (i1) the construction and maintenance of proper models to utilize such data, and (iii)
accounting for the multitude of governance and sociopolitical concerns that add further layers of
complexity into any bilateral or multilateral arrangement of science collaboration between

countries.

3.1 Metrics



Despite the many metrics proposed, it remains unclear which metrics have the best
predictive value, especially in the long-term. The need to narrow the set of metrics to a manageable
quantity is a major challenge, as it is inefficient to collect hundreds of metrics for each country
when perhaps a dozen would have roughly the same predictive power. The value of information
gained by each additional indicator will likely diminish, especially when balanced against the costs
of data collection.

Other challenges identified included the issue of scale. On the geographic scale, country-
level variation matters. Regarding time scales, quantitative metrics tend to be lagging. Metrics
might be 1 to 3 years old by the time the trends show up in statistics. Another consideration is the
data sources themselves. Scholarly databases such as SCOPUS and Web of Science may only
cover certain disciplines, excluding other disciplines where interesting advances may be taking

place (e.g., computer science or cybersecurity).

3.2 Modeling

A major challenge is that the problem can be conceptualized at various scales. Depending
on where one draws the boundaries, different methods may be appropriate for the task.
Specifically, questions of scale present themselves with respect to partner (nation, institution,
individual researcher), specificity of the scientific problem (from general, e.g., chemistry, to
specific, e.g., carbon nanotubes), and time horizon (20 years, 6 months). Another related
consideration is that of collaboration objectives. There might be many strategic objectives, some
perhaps competing with others, to pursue collaboration with a particular partner. Before choosing
an appropriate methodology, one must fully understand the assumptions around collaborations

with whom, on what topic, over what time frame, and why.



There exists a vast array of modeling approaches that can be utilized, individually and in
combination, to identify collaboration opportunities. These methods range from qualitative,
expert-driven exercises to computationally sophisticated and complex analytics. Among others,
such approaches include qualitative expert elicitation-based methods, cross-impact analysis,
bibliometric tracking techniques, decision analysis (including game theory and portfolio decision
modeling), data science and machine learning techniques, and complex systems-based models.

Clearly, there is no single “best” modeling approach. Instead, there are many
methodologies, which can be used together to provide a picture of the overall scientific landscape.
Since the decision of what method to select was too contextual to advocate for or against a single
method, maintaining a computational “toolbox” is preferred to reliance upon a single

methodological approach.

3.3 Governance and Sociopolitical Drivers of International Scientific Collaboration

Governance and policy challenges relative to international scientific engagement center
upon two core tasks: (a) fostering standards and protocols to execute surveys and data
gathering/analysis of the international scientific landscape, and (b) developing processes for
engagement of potential scientific partners in a manner that accounts for their unique economic,
political, and social characteristics.

For the former, one common program with demonstrated success is the Embassy Science
Fellows Program!, where scientific experts are stationed at US embassies of potential trade and
research partners to facilitate the process of scientific investment and bilateral cooperation [17].

Senior government leadership, such as a chief technology advisor, can also help steer a nation’s

1 Two authors of this paper served as Science Fellows: M.M.K. served in Russia and Georgia; I.L. served in Germany
and France.



scientific engagement opportunities. Such institutional mechanisms enable horizon scanning of
potential collaboration opportunities abroad, and a means of enabling direct collaboration through
knowledgeable stakeholders and clear bilateral agreements. Regular data gathering and analysis of
science and technology opportunities should involve future projections of scientific growth rates
and political and economic drivers that influence the growth or decline of a given scientific
discipline. Such an exercise clarifies what metrics are used to inform such insights and what
decision support tools are acceptable to process such metrics.

For the latter, once potential newcomers have been identified, concerns remain regarding
how best to engage them in a shared and mutually beneficial platform. Social, governance, and
cultural differences and challenges can frame or determine whether newcomer engagement is
practical or sustainable over time. Science does not exist in a vacuum, but instead is framed by the
value and importance that societies place upon it. One factor is the institutional composition of the
target country’s government and science sector. Engagement with a relatively open and democratic
society may differ in strategy and goals than with a more authoritarian regime — particularly when
the decision makers in more autocratic countries are unpredictable or untrustworthy in their
adherence to bilateral and multilateral scientific agreements.

If there is a degree of trust in a potential partnership, direct investment into a given country
in the form of financial aid or technology transfer can kick-start bilateral science arrangements. If
trust is limited or political differences are strong, temporary or permanent immigration of select
scientists from a target country may be a more sustainable and politically/economically acceptable
alternative. A second factor is the social influence of its culture, including the cultural willingness
of a country to innovate in a certain field. Regardless of funding and infrastructure, innovation

cannot occur if the people in a country disapprove of the direction or motivation of a given



scientific endeavor — either from a lack of economic incentive, or a belief that such technologies
are against the best interest of broader society.

Ultimately, engagement is defined by multiple strategies: (a) political incentives/bilateral
trade agreements, (b) investment into the country and its scientific sector, or (c) incentivizing select
individuals within the foreign country to relocate for purposes of research and development.
Strategies chosen in this regard are defined on a case-by-case basis relative to the target nation’s
general stance (are they friendly or unfriendly), their relative scientific capacity, and the

institutional, social, and cultural values.

4. Conclusion

Scientific and technological innovation holds the potential to enhance a nation’s economy
and provide benefits to populations around the world. The following practical takeaways can help
inform policymakers and practitioners working at the intersection of science and policy charged
with identifying potential international partners:

e Relatively simple models can be built to identify potential partners, however simple models
may not account for dependencies within and across scientific communities, trends at
various geographic scales, and patterns in scientific engagement.

e More computationally advanced techniques can be leveraged to gain information about the
global scientific landscape, including tools from machine learning.

e When developing data-driven models to identify collaboration opportunities, utilize an

ensemble of quantitative and qualitative data sources.



e By establishing research relationships with high-innovation potential in certain fields early,
innovative technologies can be more rapidly developed and fielded, accelerating the

benefits of these technologies to be enjoyed by society.

This paper has attempted to frame the problem of identifying high-value innovation
partnerships with newcomers on the international stage. In light of this initial analysis, further
analysis is warranted across three complementary areas of inquiry, which are addressed by the
following papers in this issue:

e Metrics and indicators [18]
e Modeling approaches [19]

e Policy and governance challenges [20].
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