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ABSTRACT 6 

Science and technology innovation is a critical determinant of a nation’s competitiveness in the global 7 

economy and a key driver of wellbeing for its residents. Building research partnerships with other nations 8 

can create and sustain a lasting competitive advantage and facilitate the international transfer of knowledge 9 

and skills. While it is tempting to continue to collaborate with established partners, emerging partners may 10 

represent a source of untapped benefit. In this paper, we discuss how modeling approaches and techniques 11 

may be used to identify innovation partnerships. We describe a number of modeling methods that can be 12 

applied in isolation or in combination to inform the partnership identification and selection process. Key 13 

findings include that there is a multiplicity of available modeling tools which can be applied, depending on 14 

how the problem is scoped with respect to partners, science domains, time frames, and objectives. We 15 

develop an objectives hierarchy which can be used to direct future decision making efforts, and we contrast 16 

the assumptions and requirements underlying various methodological approaches.  17 
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 19 

1. INTRODUCTION 20 

For countries to be competitive in the global economy, scientific progress and technological innovation 21 

constitute an essential national capability [1].  Nations must negotiate the uncertainties of the global 22 

economy by developing new tactics to accomplish their development goals and improve standards of living 23 

for their residents. One such tactic is finding new partners with whom to collaborate and share knowledge 24 

and resources. The ability of the US to leverage international advances in important science and technology 25 

areas supports long-term national economic development and human wellbeing goals [2]-[3]. 26 
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 27 

While collaboration with established players in established fields has relatively predictable benefits, it is 28 

possible that too conservative an approach will result in missing out on opportunities with potential 29 

emerging partners in emerging fields [4]. There may be path dependencies at work when the US identifies 30 

priorities for international collaboration, where self-reinforcing mechanisms carry the US along the 31 

established trajectory, as opposed to seeking new and disruptive innovation models and partners [5]. 32 

Opportunities are potentially being missed for international collaboration with pioneering scientists in 33 

countries that differ from where the US has historically partnered.  34 

 35 

The National Science Foundation (NSF) supports efforts aimed at international scientific collaboration in 36 

various ways, and has numerous interests in their success. In today’s global environment of rapid scientific 37 

and technological change, the NSF must devise a proactive strategy to identify emerging research partners 38 

and leverage untapped intellectual resources. This concern was expressed by Dr. Arden L. Bement, former 39 

NSF Director: “Many nations are accelerating their investments in research and development, education, 40 

and infrastructure in order to drive sustained economic growth.  To continue being a global leader in S&T, 41 

we must ensure that we have access to discoveries being made in every corner of the world” [6].  42 

 43 

With the goal of better understanding the global science landscape, and directing attention toward building 44 

research partnerships with new targets of opportunity, a workshop was convened on 13-14 February, 2019 45 

in Washington, DC. Participants discussed models and methods that can use data and knowledge to identify 46 

non-obvious opportunities for international collaboration, so that NSF officers can be alert to the 47 

possibilities, and monitor and leverage them.  48 

 49 

2. UNDERSTANDING THE INTERNATIONAL COLLABORATION LANDSCAPE 50 

We define a target of opportunity to be an identifiable class of activities that can be mapped to funding 51 

vehicles available to NSF. Models should be structured to transform obtainable data into an understanding 52 
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about such targets in terms of relevant organizational and mission-focused objectives.  Modeling efforts 53 

should also be directed toward generating new understanding of the global research environment in general 54 

– the dynamics of how players and fields emerge and interact and what kinds of actions can affect those 55 

dynamics. Perhaps most critical, we (and NSF) are concerned with detecting emergence of new, important, 56 

and even surprising pools of scientific activity, so that NSF and the nation are well-positioned for rich 57 

involvement.  58 

 59 

To illustrate, Figure 1 spotlights some findings on nanotechnology research activity.  A well-developed 60 

search strategy [7]-[8] retrieves over 2 million records from Web of Science.  We can analyze those to 61 

tabulate traditional measures of national R&D activity (publications and citations) enriched by the addition 62 

of emergence scores.  “Emergence Scores” reflect the extent of publication on frontier topics within the 63 

domain showing recently accelerating attention. Their calculation emphasizes upward trending in 64 

publication, while meeting criteria of novelty, perseverance, and community [9]. Figure 1 selects the five 65 

nations showing the greatest concentration of nanotechnology research publication that addresses such 66 

emergent topics.  The surprising “emerging country” is Iran.  In the early decade tabulated, Iran shows 49 67 

papers, escalating rapidly to nearly 31,000 in the more recent decade. Taken together, publications, 68 

citations, and emergence scores help situate a country’s R&D activity.  A natural next step is to probe more 69 

deeply, say within Iran, about which organizations are publishing on which nanotechnology topics.  70 

 71 
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 72 

Figure 1: Nanotechnology publication data from five nations 73 

 74 

A conceptual difficulty in understanding the international science landscape is that this innovation process 75 

can be characterized at numerous different scales. Depending on where we draw the boundaries around the 76 

innovation process model, different strategies for approaching the question of how to identify emerging 77 

partners present themselves. Namely, NSF can define several distinctions related to the area of scientific 78 

collaboration – partner, scientific domain, time horizon, and goals. In other words, with whom should NSF 79 

collaborate, on what topic, over what time frame, and why?  80 

 81 

The first distinction relates to perhaps the most obvious question – with whom should NSF pursue 82 

partnerships? International collaborations take many flexible forms and at different scales including 1) the 83 

governmental scale of federal, state and local levels (could be agency-agency level); 2) institution scale; 3) 84 

department scale; 4) group scale; and 5) individual scale. At the largest scale, NSF might want to identify 85 

broad geographic regions or nations with which to collaborate on scientific ventures. While establishing 86 
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agreements with various countries can help facilitate the innovation process, a smaller-scale perspective is 87 

likely needed to develop any tangible benefits. Identifying particular institutions, and ultimately individual 88 

scientists, provides actionable information to NSF and US-based researchers for partnering. However, 89 

national-level diplomatic relationships and agreements may be needed to facilitate small-scale partnerships. 90 

As a practical matter, individual PIs need to identify other emerging PIs, program managers need to identify 91 

emerging institutional partners for their programs at a specific scientific domain level, directorate leaders 92 

need to identify emerging institutional or national partners in their broad scientific domain, and NSF can 93 

identify emerging national partners. Larger-scale collaborations are built on or supported by smaller-scale 94 

collaborations, or are implemented by smaller-scale collaborations, and ultimately are attributed to 95 

individual collaborations. Most large-scale collaborations have signed MOUs among two or more parties.  96 

Essentially these collaborations can be classified into two major formats: the bottom-up spontaneous 97 

collaborations, and top-down diplomatic collaborations. Typically, the former serve as the basis of the 98 

latter. Deep and sustaining collaborations often involve multiple sectors including academic, governmental, 99 

and industrial sectors.  100 

 101 

Similarly, scale becomes a question when deciding which research topics to pursue. When thinking at broad 102 

geographic scales, it might be reasonable to consider also broad topics of scientific inquiry – for example, 103 

the field of chemistry. As we narrow our scope, we may identify specific sub-fields within a broad scientific 104 

field, for example, the field of nanotechnology. Drilling down even deeper, we may then explore open 105 

questions and active research niches, such as research on carbon fiber nanotubes. Understanding exactly at 106 

what breadth and depth research is to be pursued will impact the strategy for finding research partners.  107 

 108 

Another critical consideration is that of timeframe. There are multiple approaches for making sense of 109 

possible futures. When it comes to near-term predictions (<4 years), the odds are good that these may be a 110 

continuation of near-past trends. This means that near-term predictions could simply project empirical 111 

metrics and indicators. In contrast, long-term trends ( >4 years) may be subject to discontinuities [10]. 112 
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These can range from a change in the US administration to major technological breakthroughs. Long-term 113 

predictions therefore may make use of more sophisticated modeling approaches and/or scenario analysis. 114 

At any given time, most decisions taken up by the NSF are near-term. However, to be well positioned to 115 

take best advantage of emergent opportunities for partnerships, NSF should engage in periodic strategic 116 

outlook activities, scanning the long-term horizon for trends, disruptions, and emerging opportunities.  117 

 118 

Finally, the objectives themselves for pursuing various international collaborations have significant bearing 119 

on partners, topics, and time frames. The National Science Foundation Act of 1950 defines the mission of 120 

the NSF as “to promote the progress of science; to advance the national health, prosperity, and welfare; 121 

and to secure the national defense…”.  In terms of international collaboration, the NSF Office of 122 

International Science & Engineering states as its vision that “NSF collaborates internationally to advance 123 

the U.S. economy, enhance our nation’s security, give the U.S. the competitive edge to remain a global 124 

leader, and advance knowledge and global understanding.”1  We note that the latter quoted language 125 

parallels the former. Further, “NSF's international role in science and engineering is guided by its key 126 

strategic goals of Discovery, Learning, and Research Infrastructure -- that is, investing in a diverse, 127 

internationally competitive and globally engaged workforce of scientists, engineers and well-prepared 128 

citizens; investments in discovery across the frontier of science and engineering, connected to learning, 129 

innovation, and service to society; and broadly accessible, state-of-the-art and shared research and 130 

education tools.”2 131 

 132 

To identify collaborations that can meet NSF’s objectives, it is helpful to articulate a relevant set of goals 133 

(noting that there are many equivalent ways of structuring them). We propose here an objectives hierarchy 134 

[11]. On the top tier of the hierarchy are elements derived from NSF’s mission. That is, we assume NSF’s 135 

collaboration strategy is driven by a desire to maximize the positive economic, political, 136 

                                                           
1 https://www.nsf.gov/od/oise/about.jsp 
2 https://www.nsf.gov/od/oise/IntlCollaborations/index.jsp  

https://www.nsf.gov/od/oise/about.jsp
https://www.nsf.gov/od/oise/IntlCollaborations/index.jsp
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scientific/technological, and societal impacts of those collaborations. At the lower level of the hierarchy are 137 

the means by which collaborations can contribute to those higher-level objectives.  Through a facilitated 138 

brainstorming discussion, we generated the following structured list of lower-level objectives for each main 139 

NSF objective (Figure 2). Descriptions can be found in Supplemental Information.  140 

 141 

 142 

Figure 2: Innovation objectives hierarchy 143 

 144 

3. MODELING METHODS  145 

Many modeling approaches have potential to identify international partnership opportunities. These range 146 

from qualitative, expert-driven exercises to computationally-complex and resource-intensive techniques. 147 

From a data and modeling perspective, many of the activities in individual innovation processes are hidden 148 
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from view.  However, some key activities are publicly documented, and these can be explored via modeling 149 

approaches to shed light on the nature and developmental stage of innovation processes.  For example, 150 

research projects may lead to publications and/or conference presentations, while patent applications 151 

document inventions.  These and other documents often contain other important data, including dates, the 152 

agents involved, their roles, geographic locations, and the specific topics on which the events focused.  153 

Topics are specific and generally more detailed than scientific domains.  They may be identified by 154 

classifications or keywords, but most often through text analysis of abstracts.  With such data, partial models 155 

of innovation processes and ecosystems can be constructed.  While incomplete, these models often 156 

represent core processes and networks in the global ecosystem. 157 

 158 

Multiple methods may be used with publication and patent data to identify emergent targets of opportunity.  159 

Which method is appropriate depends on the nature of the question being asked and the scale and time 160 

frame of interest. Therefore, there is no single “best” approach to identify emerging partnership 161 

opportunities; rather there exists a plurality of methodologies that can be used individually or in concert to 162 

provide a picture of the overall scientific landscape. Of course, every method need not be used in every 163 

analysis – analysis ought to be commensurate with the detail required to adequately answer the question 164 

and the resources available to conduct the analysis. In the Supplemental Information, we review selected 165 

approaches and comment on their strengths and weaknesses. 166 

 167 

Different modeling techniques rest on various assumptions and have different requirements regarding data, 168 

computational intensity, and so on. Table 1 describes the main differences between the modeling 169 

approaches. 170 

 171 

 172 

 173 

 174 
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Table 1: Comparison of modeling approaches 175 

Modeling 

method 

Application Data, assumptions, requirements 

 

Expert 

narrative 

Project future developments not represented 

in available data. Learn lessons that are not 

suitable for any formal publication. Fill 

knowledge gap at the individual level. 

No data requirements. Personal 

experience and opinions need to be 

evaluated. It can be used together with 

other approaches such as event analysis 

and game theory. Good elicitation 

techniques need to be used to ensure 

unbiased responses. 

Cross-

impact 

balance 

analysis 

Macro-level cascading effects of specific 

partnerships/disciplines 

No data requirements, similar to expert 

narrative. Cross-impact balance analysis 

provides a de-biasing technique for 

expert elicitation, where key system 

variables and their distinct alternative 

states may be specified by the analyst or 

through a participatory research 

approach. 

Bibliometric 

tracking 

Near-term trends in disciplines, countries, 

research groups and individuals 

Patent and R&D publication databases, 

analysis and representation software. 

Need to coordinate between information 

providers, information personnel, 

technology analysts, researchers, and 

managers/users [12] 
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Simulation Estimate number of publications, citations, 

or patents for levels of investment in 

particular partnerships 

Historical data from which to fit 

probability distributions, or theoretical 

assumptions about probability 

distributions in the absence of empirical 

data 

Decision 

analysis 

Prioritization of opportunities, based on 

multiple criteria and perspectives 

Data is needed on decision-maker 

objectives and criteria, available 

alternatives, performance of alternatives 

along criteria. May include 

uncertainties/probabilities.  

Game theory Implications of political relationships for 

science partnerships 

Knowledge of player (decision-maker) 

objectives, which might be different for 

each player, the available strategies that 

each player can pursue, and the 

associated payoffs of pursuing each 

strategy given what the other player does  

Social 

Network 

Analytics 

Discover patterns in relationships between 

collaborators (individual, institutional, 

geographic, etc.) 

Data is needed on collaborations such as 

joint publications, proposals, patents, 

etc. 

Event 

Analytics 

Understanding and visualizing the dynamics 

and patterns of different innovation 

trajectories which transform inputs into 

outcomes.  

Requires a conceptual innovation 

process model. Temporal event data 

which represent innovation inputs, 

intermediate products, and outcomes. 

Data might require substantial cleaning, 
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matching, transforming, and linking 

efforts [13] 

Bayesian 

network 

models 

Assessing role of international research 

collaborations on US economic impacts 

derived from science, US leadership in 

science, and other objectives; identifying 

which types of collaborations are most likely 

to benefit US objectives 

Historical data on US international 

scientific collaborations by type and 

characteristics of collaborations; 

economic output data by sector; 

scholarly publications in different fields; 

international students studying in the 

US; other data 

Structural 

equation 

models 

Assessing role of international research 

collaborations on diplomatic goodwill, US 

scientific output, or other measures 

Survey data from scientists, agencies, 

firms with knowledge of or experience in 

international collaborations, 

international relations, and other 

variables 

Agent-based 

models 

Discovering emergent patterns and dynamics 

of innovation processes 

Requires understanding of underlying 

agent behaviors (between agents and 

their environment) and ability to 

represent behaviors mathematically  

 176 

Given the strengths, weaknesses, and context-specific appropriateness of the various methodological 177 

approaches, certain approaches may have more or less utility in answering different types of questions.  178 

Figure 3 attempts to organize and recommend methods based on collaboration objectives (why) and timing 179 

(when), science domain (what), partners (who), and partner research processes and ecosystem (how). With 180 

respect to the last consideration, this is meant to shed light on how innovation processes operate within a 181 

partner country (which may be to varying degrees a black box), as well as characterizing the overall science 182 

landscape. Whereas the questions of partner and science domain are more prescriptive, the latter 183 
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consideration attempts to descriptively characterize the process, mechanisms, and overall status of the 184 

scientific community.  185 

 186 

 187 

Figure 3: Modeling approaches addressing innovation objectives 188 

 189 

4. PRACTICAL MODELING CHALLENGES AND RECOMMENDATIONS 190 

One serious modeling challenge is uncertainty and the stochastic nature of the variables that might affect 191 

such collaborations. Relevant uncertainties should be incorporated into models wherever practical. 192 

Associating important model parameters with probability distributions and running simulations allows 193 

analysis and presentation not of a single modeled state, but an ensemble of possible states which reflect the 194 

inherent uncertainty. Similarly, some models should incorporate full uncertainty analysis using the 195 

following three general steps: (1) characterize uncertainty sources in model inputs, parameters, and 196 

structures as well as uncertainty in data used for model development and calibration, (2) run stochastic 197 

simulations for propagation of the above uncertainty, and (3) quantify uncertainty of the model outputs 198 

using various statistical approaches. When data are unavailable, we can still calculate confidence intervals 199 

for model outputs given inputs, examine the dependency of model outputs to single and multiple model 200 
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inputs, and identify key model inputs and parameters. When data are available, we can evaluate goodness-201 

of-fit between model outputs and the data, calculate biasness of model simulation relative to the data, 202 

quantify false positives/negatives and specificity, and estimate value-of-information in the data for model 203 

simulations. 204 

 205 

Model validation involves determining the correspondence between model results and the behavior of the 206 

real world system. It can only be conducted when data are available. Given that the problem at hand is 207 

relatively new and interdisciplinary in nature, there are not sufficient data for much model development 208 

and calibration. And with such limited data, it is difficult to validate/invalidate a model or build strong 209 

evidence on usefulness of a model. Furthermore, models and data may contain errors, and models may be 210 

misused. Therefore, over-reliance upon models is itself risky.  211 

 212 

A special challenge for identifying newcomers is how to deal with weak signals. In the above discussion of 213 

stochastic modeling, it is often the case that only moments (e.g., mean and variance) of model outputs are 214 

used for evaluating confidence intervals and calculating biasness. However, newcomers often emerge in a 215 

research field in an unnoticeable way. For example, the research leading to the 2018 Nobel Prize of Physics 216 

was published in Optics Communications, which had an impact factor of only 1.887, as of 2017.  Prediction 217 

models for scientific discovery must not incentivize or drive policy and funding decisions to the point where 218 

they can discourage research where impact is not felt immediately or in disciplines where breakthrough 219 

discoveries have been rare in more recent time frames [14]. If development of game-changing 220 

methods/technologies is a rare event, special techniques are required to study such events, e.g. rare event 221 

sampling can be used to ensure that such events will not be missed in the stochastic modeling. 222 

 223 

Finally, once partners are identified, it is still not clear what type of collaboration should occur. 224 

Collaborations include joint research and/or education projects, scholar and student exchanges, joint student 225 

advising, sharing research facilities, joint organizations of workshops and conferences, joint offering of 226 
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classes, co-writing books, co-editing proceedings, and joint degree and dual degree programs. As all these 227 

collaborations ultimately come down to individual interactions, the importance of face-to-face meetings 228 

and social activities can never be overemphasized.  Joint and dual degree programs and student exchange 229 

programs sustain and deepen relationships and collaborations. Forms and outcomes of collaboration are 230 

often tightly linked. With so many possibilities, tools such as mental modeling can be used to elicit 231 

capability gaps and potential collaboration solutions [15], and decision analytic strategy tables may be used 232 

generate thematic combinations (strategies) of collaboration efforts [16].  233 

 234 

5. CONCLUSIONS   235 

In a global marketplace, international collaborations should be top strategic considerations of our 236 

governments. While the default path forward is to continue collaborating with established, trusted partners, 237 

the opportunity cost of missing out on emerging newcomers can be great. Therefore, methodological 238 

approaches to synthesize existing data and generate insight should be developed and implemented. In this 239 

paper, we have attempted to identify the “tools for the toolbox,” with guidance on what contexts may be 240 

more appropriate for certain techniques. The following practical takeaways can be used by analysts and 241 

policymakers to effectively develop, implement, and derive actionable insights from models:  242 

• Numerous methodologies exist, but not all of them are appropriate for each decision context, 243 

dependent on the appropriate level of analysis, driven by scope and scale considerations. Thus, we 244 

don’t advocate any single method. Rather, the choice of method is contextual, and we advocate 245 

using multiple approaches coherently to address a problem from multiple perspectives and/or at 246 

multiple scales to generate the intended insights. A robust computational toolbox, with many 247 

available techniques, is better than reliance upon a single approach.  248 

• It is critical to properly frame the scale of the problem, namely in terms of collaboration partner, 249 

scientific domain, time horizon, and goals – the who, what, when, and why.  250 
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• As with any modeling endeavor, it is important to not rely simply upon point estimates, but quantify 251 

the uncertainty associated with the results. A number of computational methods exist for 252 

conducting such analyses.  253 

• No model can pick guaranteed winners for prioritizing international collaboration. Rather, model 254 

outputs inform decision makers, e.g., about dependencies within scientific communities or research 255 

agendas which may be areas of opportunity for NSF to monitor or leverage. Such insights might 256 

also help NSF more critically reflect on the likely impact of research proposals received. Our hope 257 

and belief is that models can support successful decision making.  258 

 259 
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