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ABSTRACT

Science and technology innovation is a critical determinant of a nation’s competitiveness in the global
economy and a key driver of wellbeing for its residents. Building research partnerships with other nations
can create and sustain a lasting competitive advantage and facilitate the international transfer of knowledge
and skills. While it is tempting to continue to collaborate with established partners, emerging partners may
represent a source of untapped benefit. In this paper, we discuss how modeling approaches and techniques
may be used to identify innovation partnerships. We describe a number of modeling methods that can be
applied in isolation or in combination to inform the partnership identification and selection process. Key
findings include that there is a multiplicity of available modeling tools which can be applied, depending on
how the problem is scoped with respect to partners, science domains, time frames, and objectives. We
develop an objectives hierarchy which can be used to direct future decision making efforts, and we contrast
the assumptions and requirements underlying various methodological approaches.

Keywords: Innovation, Predictive Modeling, Decision Modeling, Uncertainty, Problem Framing

1. INTRODUCTION

For countries to be competitive in the global economy, scientific progress and technological innovation
constitute an essential national capability [1]. Nations must negotiate the uncertainties of the global
economy by developing new tactics to accomplish their development goals and improve standards of living
for their residents. One such tactic is finding new partners with whom to collaborate and share knowledge
and resources. The ability of the US to leverage international advances in important science and technology

areas supports long-term national economic development and human wellbeing goals [2]-[3].
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While collaboration with established players in established fields has relatively predictable benefits, it is
possible that too conservative an approach will result in missing out on opportunities with potential
emerging partners in emerging fields [4]. There may be path dependencies at work when the US identifies
priorities for international collaboration, where self-reinforcing mechanisms carry the US along the
established trajectory, as opposed to seeking new and disruptive innovation models and partners [5].
Opportunities are potentially being missed for international collaboration with pioneering scientists in

countries that differ from where the US has historically partnered.

The National Science Foundation (NSF) supports efforts aimed at international scientific collaboration in
various ways, and has numerous interests in their success. In today’s global environment of rapid scientific
and technological change, the NSF must devise a proactive strategy to identify emerging research partners
and leverage untapped intellectual resources. This concern was expressed by Dr. Arden L. Bement, former
NSF Director: “Many nations are accelerating their investments in research and development, education,
and infrastructure in order to drive sustained economic growth. To continue being a global leader in S&T,

we must ensure that we have access to discoveries being made in every corner of the world” [6].

With the goal of better understanding the global science landscape, and directing attention toward building
research partnerships with new targets of opportunity, a workshop was convened on 13-14 February, 2019
in Washington, DC. Participants discussed models and methods that can use data and knowledge to identify
non-obvious opportunities for international collaboration, so that NSF officers can be alert to the

possibilities, and monitor and leverage them.

2. UNDERSTANDING THE INTERNATIONAL COLLABORATION LANDSCAPE
We define a target of opportunity to be an identifiable class of activities that can be mapped to funding
vehicles available to NSF. Models should be structured to transform obtainable data into an understanding

2
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about such targets in terms of relevant organizational and mission-focused objectives. Modeling efforts
should also be directed toward generating new understanding of the global research environment in general
— the dynamics of how players and fields emerge and interact and what kinds of actions can affect those
dynamics. Perhaps most critical, we (and NSF) are concerned with detecting emergence of new, important,
and even surprising pools of scientific activity, so that NSF and the nation are well-positioned for rich

involvement.

To illustrate, Figure 1 spotlights some findings on nanotechnology research activity. A well-developed
search strategy [7]-[8] retrieves over 2 million records from Web of Science. We can analyze those to
tabulate traditional measures of national R&D activity (publications and citations) enriched by the addition
of emergence scores. “Emergence Scores” reflect the extent of publication on frontier topics within the
domain showing recently accelerating attention. Their calculation emphasizes upward trending in
publication, while meeting criteria of novelty, perseverance, and community [9]. Figure 1 selects the five
nations showing the greatest concentration of nanotechnology research publication that addresses such
emergent topics. The surprising “emerging country” is Iran. In the early decade tabulated, Iran shows 49
papers, escalating rapidly to nearly 31,000 in the more recent decade. Taken together, publications,
citations, and emergence scores help situate a country’s R&D activity. A natural next step is to probe more

deeply, say within Iran, about which organizations are publishing on which nanotechnology topics.
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Figure 1: Nanotechnology publication data from five nations

A conceptual difficulty in understanding the international science landscape is that this innovation process
can be characterized at numerous different scales. Depending on where we draw the boundaries around the
innovation process model, different strategies for approaching the question of how to identify emerging
partners present themselves. Namely, NSF can define several distinctions related to the area of scientific
collaboration — partner, scientific domain, time horizon, and goals. In other words, with whom should NSF

collaborate, on what topic, over what time frame, and why?

The first distinction relates to perhaps the most obvious question — with whom should NSF pursue
partnerships? International collaborations take many flexible forms and at different scales including 1) the
governmental scale of federal, state and local levels (could be agency-agency level); 2) institution scale; 3)
department scale; 4) group scale; and 5) individual scale. At the largest scale, NSF might want to identify

broad geographic regions or nations with which to collaborate on scientific ventures. While establishing
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agreements with various countries can help facilitate the innovation process, a smaller-scale perspective is
likely needed to develop any tangible benefits. Identifying particular institutions, and ultimately individual
scientists, provides actionable information to NSF and US-based researchers for partnering. However,
national-level diplomatic relationships and agreements may be needed to facilitate small-scale partnerships.
As a practical matter, individual PlIs need to identify other emerging Pls, program managers need to identify
emerging institutional partners for their programs at a specific scientific domain level, directorate leaders
need to identify emerging institutional or national partners in their broad scientific domain, and NSF can
identify emerging national partners. Larger-scale collaborations are built on or supported by smaller-scale
collaborations, or are implemented by smaller-scale collaborations, and ultimately are attributed to
individual collaborations. Most large-scale collaborations have signed MOUs among two or more parties.
Essentially these collaborations can be classified into two major formats: the bottom-up spontaneous
collaborations, and top-down diplomatic collaborations. Typically, the former serve as the basis of the
latter. Deep and sustaining collaborations often involve multiple sectors including academic, governmental,

and industrial sectors.

Similarly, scale becomes a question when deciding which research topics to pursue. When thinking at broad
geographic scales, it might be reasonable to consider also broad topics of scientific inquiry — for example,
the field of chemistry. As we narrow our scope, we may identify specific sub-fields within a broad scientific
field, for example, the field of nanotechnology. Drilling down even deeper, we may then explore open
questions and active research niches, such as research on carbon fiber nanotubes. Understanding exactly at

what breadth and depth research is to be pursued will impact the strategy for finding research partners.

Another critical consideration is that of timeframe. There are multiple approaches for making sense of
possible futures. When it comes to near-term predictions (<4 years), the odds are good that these may be a
continuation of near-past trends. This means that near-term predictions could simply project empirical
metrics and indicators. In contrast, long-term trends ( >4 years) may be subject to discontinuities [10].

5
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These can range from a change in the US administration to major technological breakthroughs. Long-term
predictions therefore may make use of more sophisticated modeling approaches and/or scenario analysis.
At any given time, most decisions taken up by the NSF are near-term. However, to be well positioned to
take best advantage of emergent opportunities for partnerships, NSF should engage in periodic strategic

outlook activities, scanning the long-term horizon for trends, disruptions, and emerging opportunities.

Finally, the objectives themselves for pursuing various international collaborations have significant bearing
on partners, topics, and time frames. The National Science Foundation Act of 1950 defines the mission of
the NSF as “fo promote the progress of science; to advance the national health, prosperity, and welfare;

b

and to secure the national defense...”. In terms of international collaboration, the NSF Office of
International Science & Engineering states as its vision that “NSF collaborates internationally to advance
the U.S. economy, enhance our nation’s security, give the U.S. the competitive edge to remain a global
leader, and advance knowledge and global understanding.”' We note that the latter quoted language
parallels the former. Further, “NSF's international role in science and engineering is guided by its key
strategic goals of Discovery, Learning, and Research Infrastructure -- that is, investing in a diverse,
internationally competitive and globally engaged workforce of scientists, engineers and well-prepared
citizens, investments in discovery across the frontier of science and engineering, connected to learning,
innovation, and service to society; and broadly accessible, state-of-the-art and shared research and

education tools.””

To identify collaborations that can meet NSF’s objectives, it is helpful to articulate a relevant set of goals
(noting that there are many equivalent ways of structuring them). We propose here an objectives hierarchy
[11]. On the top tier of the hierarchy are elements derived from NSF’s mission. That is, we assume NSF’s

collaboration strategy is driven by a desire to maximize the positive economic, political,

1 https://www.nsf.gov/od/oise/about.jsp
2 https://www.nsf.gov/od/oise/IntlCollaborations/index.jsp
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scientific/technological, and societal impacts of those collaborations. At the lower level of the hierarchy are
the means by which collaborations can contribute to those higher-level objectives. Through a facilitated
brainstorming discussion, we generated the following structured list of lower-level objectives for each main

NSF objective (Figure 2). Descriptions can be found in Supplemental Information.

Achieve Organizational
Mission

2. National Prosperity and 3. National Defense and

1. Progress of Science Welfare il

2a. Maximize the nation’s
la. Maximize NSF’s domain short- and long-term 3a. Maximize national
awareness leadership position in human security

and technical capital

2b. Maximize efficiency and

effectiveness of capabilities, 3b. Maximize diplomatic
facilities and funds devoted goodwill

to science

Ib. Maximize export of
knowledge and capability
from the US to partners

L 2c¢. Maximize intermediate-
lc. Maximize import of

knowledge and capability
from partners to the US

term positive economic 3c. Maximize soft power

impacts deriving from relationships
science

1d. Maximize
democratization and
standardization of global
science

Figure 2: Innovation objectives hierarchy

3. MODELING METHODS
Many modeling approaches have potential to identify international partnership opportunities. These range
from qualitative, expert-driven exercises to computationally-complex and resource-intensive techniques.

From a data and modeling perspective, many of the activities in individual innovation processes are hidden
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from view. However, some key activities are publicly documented, and these can be explored via modeling
approaches to shed light on the nature and developmental stage of innovation processes. For example,
research projects may lead to publications and/or conference presentations, while patent applications
document inventions. These and other documents often contain other important data, including dates, the
agents involved, their roles, geographic locations, and the specific topics on which the events focused.
Topics are specific and generally more detailed than scientific domains. They may be identified by
classifications or keywords, but most often through text analysis of abstracts. With such data, partial models
of innovation processes and ecosystems can be constructed. While incomplete, these models often

represent core processes and networks in the global ecosystem.

Multiple methods may be used with publication and patent data to identify emergent targets of opportunity.
Which method is appropriate depends on the nature of the question being asked and the scale and time
frame of interest. Therefore, there is no single “best” approach to identify emerging partnership
opportunities; rather there exists a plurality of methodologies that can be used individually or in concert to
provide a picture of the overall scientific landscape. Of course, every method need not be used in every
analysis — analysis ought to be commensurate with the detail required to adequately answer the question
and the resources available to conduct the analysis. In the Supplemental Information, we review selected

approaches and comment on their strengths and weaknesses.

Different modeling techniques rest on various assumptions and have different requirements regarding data,
computational intensity, and so on. Table 1 describes the main differences between the modeling

approaches.
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Modeling

method

Table 1: Comparison of modeling approaches

Application

Data, assumptions, requirements

Expert

narrative

Cross-
impact
balance

analysis

Bibliometric

tracking

Project future developments not represented
in available data. Learn lessons that are not
suitable for any formal publication. Fill

knowledge gap at the individual level.

Macro-level cascading effects of specific

partnerships/disciplines

Near-term trends in disciplines, countries,

research groups and individuals

No data requirements. Personal
experience and opinions need to be
evaluated. It can be used together with
other approaches such as event analysis
and game theory. Good elicitation
techniques need to be used to ensure
unbiased responses.

No data requirements, similar to expert
narrative. Cross-impact balance analysis
provides a de-biasing technique for
expert elicitation, where key system
variables and their distinct alternative
states may be specified by the analyst or
through a participatory  research
approach.

Patent and R&D publication databases,
analysis and representation software.
Need to coordinate between information
providers,  information  personnel,
technology analysts, researchers, and

managers/users [12]



Simulation

Decision

analysis

Game theory

Social
Network
Analytics
Event

Analytics

Estimate number of publications, citations,
or patents for levels of investment in

particular partnerships

Prioritization of opportunities, based on

multiple criteria and perspectives

Implications of political relationships for

science partnerships

Discover patterns in relationships between
collaborators  (individual, institutional,
geographic, etc.)

Understanding and visualizing the dynamics
and patterns of different innovation
trajectories which transform inputs into

outcomes.

Historical data from which to fit
probability distributions, or theoretical
assumptions about probability
distributions in the absence of empirical
data

Data is needed on decision-maker
objectives and criteria, available
alternatives, performance of alternatives
along criteria. May include
uncertainties/probabilities.

Knowledge of player (decision-maker)
objectives, which might be different for
each player, the available strategies that
each player can pursue, and the
associated payoffs of pursuing each
strategy given what the other player does
Data is needed on collaborations such as
joint publications, proposals, patents,
etc.

Requires a conceptual innovation
process model. Temporal event data
which represent innovation inputs,
intermediate products, and outcomes.

Data might require substantial cleaning,

10
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matching, transforming, and linking

efforts [13]

Bayesian Assessing role of international research | Historical data on US international
network collaborations on US economic impacts | scientific collaborations by type and
models derived from science, US leadership in | characteristics of  collaborations;

science, and other objectives; identifying @ economic output data by sector;
which types of collaborations are most likely | scholarly publications in different fields;
to benefit US objectives international students studying in the

US; other data

Structural Assessing role of international research | Survey data from scientists, agencies,
equation collaborations on diplomatic goodwill, US | firms with knowledge of or experience in
models scientific output, or other measures international collaborations,

international  relations, and other
variables
Agent-based | Discovering emergent patterns and dynamics | Requires understanding of underlying
models of innovation processes agent behaviors (between agents and
their environment) and ability to

represent behaviors mathematically

Given the strengths, weaknesses, and context-specific appropriateness of the various methodological
approaches, certain approaches may have more or less utility in answering different types of questions.
Figure 3 attempts to organize and recommend methods based on collaboration objectives (why) and timing
(when), science domain (what), partners (who), and partner research processes and ecosystem (how). With
respect to the last consideration, this is meant to shed light on how innovation processes operate within a
partner country (which may be to varying degrees a black box), as well as characterizing the overall science

landscape. Whereas the questions of partner and science domain are more prescriptive, the latter
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consideration attempts to descriptively characterize the process, mechanisms, and overall status of the

scientific community.

1. Progress of Science

2. National Prosperity and Welfare

3. National Defense

la. Maximize |1b. Maximize lc. Maximize |1d. Maximize |2a. ize the (2b. 2c.Maximize  |3a. Maximize |3b. Maximize |3c. Maximize
NSF's domain  |export of import of democratizatio |nation’s short and |efficiencyand |intermediate national diplomatic soft power
awareness knowledge and |knowledge and |n and long term effectiveness of | term positive  |security goodwill relationships
capability from |capability from |standardization |leadership capabilities, economic
US to partners | partners to US |of global position in human |facilities and impacts
science and technical funds devoted |deriving from
capital to science science
Descriptive Descriptive Descriptive Cross-impact | Machine-learning, | Expert Machine- Game theory | Cross-impact | Cross-impact
models models models balances , Bayesian network |narrative, learning, balances balances
(bibliometric [ (bibliometric (bibliometric expert narrative | models cross-impact Bayesian
counting, other | counting, other |counting, other balances network
counting counting counting models
methods, methods, methods,
statistics) statistics), statistics)
judgement or
categorization
about innovation
Cluster and Cluster and Cluster and Expert narrative | Machine-learning, | Expert Machine- Expert Expert Expert
network network analysis | network approaches, Bayesian network | elicitation learning, narrative narrative narrative
analysis analysis game theory models Bayesian approaches, |approaches, |approaches,
network game theory |game theory |game theory
models
Regression, Regression, Regression, Agent based Agent based | Agent based | Agent based
ELITE Modeling | ELITE Modeling |ELITE Modeling | modeling modeling modeling modeling
Analysis Analysis Analysis
(mapping) (mapping) (mapping)

Figure 3: Modeling approaches addressing innovation objectives

4. PRACTICAL MODELING CHALLENGES AND RECOMMENDATIONS

One serious modeling challenge is uncertainty and the stochastic nature of the variables that might affect
such collaborations. Relevant uncertainties should be incorporated into models wherever practical.
Associating important model parameters with probability distributions and running simulations allows
analysis and presentation not of a single modeled state, but an ensemble of possible states which reflect the
inherent uncertainty. Similarly, some models should incorporate full uncertainty analysis using the
following three general steps: (1) characterize uncertainty sources in model inputs, parameters, and
structures as well as uncertainty in data used for model development and calibration, (2) run stochastic
simulations for propagation of the above uncertainty, and (3) quantify uncertainty of the model outputs
using various statistical approaches. When data are unavailable, we can still calculate confidence intervals

for model outputs given inputs, examine the dependency of model outputs to single and multiple model
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inputs, and identify key model inputs and parameters. When data are available, we can evaluate goodness-
of-fit between model outputs and the data, calculate biasness of model simulation relative to the data,
quantify false positives/negatives and specificity, and estimate value-of-information in the data for model

simulations.

Model validation involves determining the correspondence between model results and the behavior of the
real world system. It can only be conducted when data are available. Given that the problem at hand is
relatively new and interdisciplinary in nature, there are not sufficient data for much model development
and calibration. And with such limited data, it is difficult to validate/invalidate a model or build strong
evidence on usefulness of a model. Furthermore, models and data may contain errors, and models may be

misused. Therefore, over-reliance upon models is itself risky.

A special challenge for identifying newcomers is how to deal with weak signals. In the above discussion of
stochastic modeling, it is often the case that only moments (e.g., mean and variance) of model outputs are
used for evaluating confidence intervals and calculating biasness. However, newcomers often emerge in a
research field in an unnoticeable way. For example, the research leading to the 2018 Nobel Prize of Physics
was published in Optics Communications, which had an impact factor of only 1.887, as of 2017. Prediction
models for scientific discovery must not incentivize or drive policy and funding decisions to the point where
they can discourage research where impact is not felt immediately or in disciplines where breakthrough
discoveries have been rare in more recent time frames [14]. If development of game-changing
methods/technologies is a rare event, special techniques are required to study such events, e.g. rare event

sampling can be used to ensure that such events will not be missed in the stochastic modeling.

Finally, once partners are identified, it is still not clear what type of collaboration should occur.
Collaborations include joint research and/or education projects, scholar and student exchanges, joint student
advising, sharing research facilities, joint organizations of workshops and conferences, joint offering of

13
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classes, co-writing books, co-editing proceedings, and joint degree and dual degree programs. As all these
collaborations ultimately come down to individual interactions, the importance of face-to-face meetings
and social activities can never be overemphasized. Joint and dual degree programs and student exchange
programs sustain and deepen relationships and collaborations. Forms and outcomes of collaboration are
often tightly linked. With so many possibilities, tools such as mental modeling can be used to elicit
capability gaps and potential collaboration solutions [15], and decision analytic strategy tables may be used

generate thematic combinations (strategies) of collaboration efforts [16].

5. CONCLUSIONS

In a global marketplace, international collaborations should be top strategic considerations of our
governments. While the default path forward is to continue collaborating with established, trusted partners,
the opportunity cost of missing out on emerging newcomers can be great. Therefore, methodological
approaches to synthesize existing data and generate insight should be developed and implemented. In this
paper, we have attempted to identify the “tools for the toolbox,” with guidance on what contexts may be
more appropriate for certain techniques. The following practical takeaways can be used by analysts and
policymakers to effectively develop, implement, and derive actionable insights from models:

e Numerous methodologies exist, but not all of them are appropriate for each decision context,
dependent on the appropriate level of analysis, driven by scope and scale considerations. Thus, we
don’t advocate any single method. Rather, the choice of method is contextual, and we advocate
using multiple approaches coherently to address a problem from multiple perspectives and/or at
multiple scales to generate the intended insights. A robust computational toolbox, with many
available techniques, is better than reliance upon a single approach.

e [t is critical to properly frame the scale of the problem, namely in terms of collaboration partner,

scientific domain, time horizon, and goals — the who, what, when, and why.
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As with any modeling endeavor, it is important to not rely simply upon point estimates, but quantify
the uncertainty associated with the results. A number of computational methods exist for
conducting such analyses.

No model can pick guaranteed winners for prioritizing international collaboration. Rather, model
outputs inform decision makers, e.g., about dependencies within scientific communities or research
agendas which may be areas of opportunity for NSF to monitor or leverage. Such insights might
also help NSF more critically reflect on the likely impact of research proposals received. Our hope

and belief is that models can support successful decision making.
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