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The gain-bandwidth product is a fundamental figure of merit that restricts the operation of optical ampli-
fiers. Here, we introduce a design paradigm based on exceptional points, which relaxes this limitation and
allows for the building of a new generation of optical amplifiers that exhibits a better gain-bandwidth scal-
ing. Additionally, our results can be extended to other physical systems such as acoustics and microwaves.
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I. INTRODUCTION

The quest for new photonic devices and functionalities
is currently pushing the limit for novel design paradigms
and material platforms. One of the most fundamental
processes in optical science and engineering is signal
amplification. Current amplification mechanisms include
incoherent pumping (atomic or band inversion followed
by stimulated emission) or coherent pumping (such as in
nonlinear wave-mixing processes). Based on their geom-
etry, optical amplifiers (OAs) [1,2] can be classified into
traveling-wave [3] or standing-wave [4] devices. The for-
mer offers a larger bandwidth of operation at the expense of
attainable gain and footprint (a few millimeters in length).
On the other hand, the latter can have larger gain due
to the power recycling in the resonator, which allows for
a much smaller device size, suitable for large-scale inte-
gration. However, the same resonant condition leads to a
very narrow bandwidth. This fundamental limitation per-
tinent to cavity-based optical amplifiers (and generally
also to electronic and microwave amplifiers) is known
as the gain-bandwidth product and is often expressed
as [5]: χ = √

GB = constant, where G is the maximum
gain and B is the bandwidth [which is usually defined as
the full width at half maximum (FWHM) of the power-
gain curve—here, we adopt this definition]. Relaxation of
this constraint beyond its standard scaling will enable a
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new level of integration for high-performance photonic
circuits. Previous studies have demonstrated noise-free
phase-sensitive amplification that is not limited by any
fundamental gain-bandwidth constraint in parametrically
driven coupled-mode systems [6–10]. There, one com-
bines parametric amplification with frequency-conversion
processes, which effectively removes the instability intro-
duced by the amplification process. Such multitone setups
require well-controlled pump amplitudes and demand
strong external driving, which can be rather challenging.
Thus it is desirable to develop simpler designs that exhibit
improved gain-bandwidth behavior.

Here, we introduce an OA scheme based on optical
resonators operating at exceptional points (EPs)—special
types of singularity that arise in systems described by
non-Hermitian Hamiltonians when two or more eigen-
values and the corresponding eigenstates of the Hamilto-
nian coalesce [11–15]. We show that the gain-bandwidth
product of the proposed device scales differently from
that of standard resonator-based amplifiers and leads to
improved performance without requiring any additional
control tones. These predictions are confirmed by per-
forming full-wave finite-difference time-domain (FDTD)
analysis using realistic microring-resonator geometries and
material parameters.

To this end, we consider the structure shown in Fig. 1.
This device consists of a microring resonator coupled to
two identical waveguides, one of which is terminated by a
mirror, while the other is used as an input and output port.
Optical gain is applied to the ring where the amplification
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process takes place. In the absence of the mirror, the sys-
tem has two orthogonal eigenmodes, clockwise (CW) and
counterclockwise (CCW), with identical resonant frequen-
cies ω0. This type of spectral degeneracy with coalesced
eigenvalues but orthogonal eigenmodes is referred to as a
diabolic point (DP). Thus our device without the mirror
operates at a DP. Under this condition and by using tem-
poral coupled-mode theory (TCMT) [16,17], we find the
scattering coefficient between the input (s1) and output (s3)
ports as follows [16]:

s31 ≡ s3

s1
= −2γ

i(ω − ω0) + 2γ + α − g
, (1)

where α is the decay rate due to loss (radiation and material
losses, excluding those caused by coupling to the waveg-
uides), γ is the loss rate due to coupling to each of the
two waveguides, g is the applied gain rate, and ω is the
angular frequency of the input signal. From Eq. (1), we
obtain the maximum power amplification at resonance
as GDP ≡ |s31(ω0)|2 = 4γ 2/(2γ + α − g)2 and the band-
width (in terms of angular frequency) as BDP = 2(2γ +
α − g). Substituting 2γ + α − g = 2γ (GDP)

−1/2 into the
expression for BDP, we obtain the following relation:

χDP ≡
√

GDPBDP = 4γ , (2)

which is defined as the gain-bandwidth product for an
amplifier with a first-order pole and is consistent with the
discussion in Ref. [5]. It is clear that, for this amplifier,
the gain-bandwidth product is constant and is limited by
the waveguide-resonator coupling rate γ . The subscript DP
here emphasizes that these quantities are obtained for an
optical amplifier operating at a DP.

II. AMPLIFICATION AT EXCEPTIONAL POINTS

We now investigate the behavior of the same system
in the presence of the mirror. We first do so by using
TCMT [18]:

dacw

dt
= [i(ω0 − ω) − 2γ − α + g]acw +

√
2γ s1,

daccw

dt
= [i(ω0 − ω) − 2γ − α + g]accw +

√
2γ s3reiφ ,

s3 = −
√

2γ acw,

s5 = −
√

2γ accw,
(3)

where we consider s5 to be the output port, acw and
accw are the amplitudes of the resonator mode in the CW
and CCW direction, respectively, r is the magnitude of
the field-reflection coefficient of the mirror, and exp(iφ)

is an additional phase due to reflection and propagation

s1

input

drop

s2

s5
g

acwaccw

s4s3

mirror

r

g

g

a

FIG. 1. The schematics of the proposed optical amplifier (OA)
based on a microring resonator working at an exceptional point
(EP). The input s1 couples into the microring resonator (coupling
rate γ ) and is amplified by the gain g. The clockwise mode acw
couples into the counterclockwise mode accw, while the opposite
is not true because of the mirror at the drop port. The output s5
is amplified in this process. Here, r is the magnitude of the field-
reflection coefficient of the mirror and α is the decay rate due to
radiation and material losses.

in the waveguide. In the absence of any input signal,
the above system is described by the following effective
coupled-mode equations:

i
d
dt

[
acw
accw

]
= H

[
acw
accw

]
, H =

[
� 0

−2iγ reiφ �

]
, (4)

where � = ω − ω0 − i(2γ + α − g). Interestingly, H is
a nondiagonalizable Jordan matrix that features a chi-
ral EP [18], which has been previously implemented by
controllably placing scatterers within the mode volume
of a resonator [19–21]. We emphasize that the unidi-
rectional coupling in the Hamiltonian H does not break
the reciprocity between the input and output ports of the
waveguide [21,22].

Under external driving from port s1, the scattering coef-
ficient between the input and output ports is as follows:

s51 ≡ s5

s1
= 4reiφγ 2

[i(ω − ω0) + 2γ + α − g]2 . (5)

This solution is only valid below the lasing threshold g =
2γ + α. Importantly, the scattering coefficient s51 exhibits
a double pole as compared to the single pole in Eq. (1). As
we will see shortly, this will have drastic consequences.
Under these conditions, the maximum value of the ampli-
fication is GEP ≡ |s51(ω0)|2 = 16r2γ 4/(2γ + α − g)4. On
the other hand, the bandwidth obtained from Eq. (5) by set-
ting |s51(ω)|2 = GEP/2 is given by BEP = 2F(2γ + α − g)

with F =
√√

2 − 1 ≈ 0.64. The subscript EP here empha-
sizes that these quantities are obtained when the system
operates at a chiral EP. When comparing these results with
those obtained for the DP-based amplifiers, we find that the
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(a) (b)

FIG. 2. (a) Amplification enhancement for an EP-based OA (as compared with the standard DP-based OA) as a function of their
identical bandwidths as measured in units of γ . (b) The same as in (a) but for bandwidth enhancement as a function of the identical
amplification. The insets in (a) and (b) show the relations between the material gain values that are necessary to achieve identical
bandwidths or identical amplifications, respectively (see the text). Finally, the squares indicate the parameters used in the full-wave
simulation (see Sec. III). These plots are obtained for r = 1.

bandwidth in the current scenario is reduced by a factor of
F , while the gain is enhanced according to the quadratic
relation GEP = r2G2

DP. Following the same process as in
the derivation of Eq. (2), we substitute 2γ + α − g =
2γ r1/2(GEP)

−1/4 obtained from the above expression for
GEP into the expression for BEP and obtain the following
relation:

χEP ≡ G1/4
EP BEP = 4γ F

√
r. (6)

In the spirit of Eq. (2), we define the expression in Eq.
(6) as the gain-bandwidth product for an amplifier oper-
ating at an EP. Clearly, χEP defined in Eq. (6) is constant
and limited by the device parameters γ (as is the case for
χDP) and the reflectivity r of the mirror. We note here that
the proposed device operating at an EP corresponds to an
amplifier with a second-order pole. Equation (6) is one
of the central results of this work. It shows that the gain-
bandwidth product for the EP regime scales differently than
for the case of a DP. As we will demonstrate below, this
provides superior performance over the standard amplifier
operating at a DP.

We first consider the case when the two amplifiers based
on an EP and a DP, respectively, have the same bandwidth.
This occurs for different levels of pumping related by
g̃EP = F−1g̃DP + 2(1 − F−1), where g̃ = (g − α)/γ , and
α, γ are identical for both amplifiers but g is different.
Under these conditions, the amplification-enhancement
factor ηG is:

ηG ≡ GEP

GDP
|BEP=BDP = 4r2F4

(2 − g̃DP)2 . (7)

The amplification enhancement for identical bandwidth is
plotted in Fig. 2(a), together with the relation between the
pumps at the DP and EP to achieve identical bandwidths

(inset). In Fig. 2(a), the critical point at which ηG = 1 (for
an identical bandwidth) is denoted by p . Above point p
(where g̃DP = 2

√
2F2 ≈ 1.17), we have ηG > 1, i.e., the

EP-based amplifier outperforms the DP-based amplifier.
Notably, the value of the amplification-enhancement factor
increases rapidly as the two amplifiers approach the lasing
condition at g̃DP = g̃EP = 2.

FIG. 3. A schematic diagram of the proposed photonic struc-
ture used in our FDTD simulations. The geometric and mate-
rial parameters used in the simulations are as follows: waveg-
uide width w = 0.25 μm (for both the straight and the ring
waveguides), ring radius R = 5 μm, and edge-to-edge distances
between the ring and waveguides d = 0.15 μm. To implement
the mirror, we assume a thin layer of silver with a thickness of
100 nm. (In practice, there are several design principles for build-
ing a mirror; for instance, by using photonic crystals [23–25]
or a section of different material [26].) The material refractive
index is n1 = 3.47 [corresponding to semiconductor materials
such as silicon or (Al,Ga)As] and the background index is taken
to be n2 = 1.44. These values have been used before in DP-based
microring amplifiers [4,27]. Finally, we model the applied gain
by considering a gain curve with a finite bandwidth (for more
details, see Appendix A).
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FIG. 4. Full-wave FDTD simulations for EP- and DP-based amplifiers operating close to λ = 1.55 μm and having (a) identical
bandwidth and (b) identical maximum amplification, respectively. The solid and dashed red lines correspond to outputs at ports s5 and
s4, respectively, while in the DP case (blue line) the output port is s3. The superior performance in terms of higher amplification in (a)
and larger bandwidth in (b) is evident in both cases. The operating points of both scenarios correspond to the square dots in Figs. 2(a)
and 2(b), respectively. Excellent agreement between the FDTD results and the TCMT is observed in both cases. The details of the
design parameters used in our simulations are listed in the caption of Fig. 3 and in the text.

Next, we consider the situation in which both amplifiers
have the same maximum amplification (GEP = GDP) but
different bandwidths. This condition is met at g̃EP = 2 −√

2r(2 − g̃DP). In this case, the bandwidth enhancement
factor ηB is given by following:

ηB ≡ BEP

BDP
|GEP=GDP =

√
2rF√

2 − g̃DP
. (8)

Figure 2(b) depicts ηB for increasing power amplification,
together with the relation between the pumps at the DP
and EP as a function of g̃DP. In Fig. 2(b), the critical point
at which ηB = 1 (for an identical gain) is denoted by p . As
before, the critical point p [identical to that of Fig. 2(a)]
divides the operation domain into two regimes with ηB < 1
(dashed line) and ηB > 1 (solid line). We see that the value
of ηB increases rapidly (eventually diverging) close to the
lasing condition g̃DP = g̃EP = 2 (not shown in the figure).

Our discussion clearly demonstrates that operating at an
EP can provide superior performance with very large val-
ues of ηG or ηB. However, from a practical perspective,
the operating point should be chosen sufficiently far away
from the lasing threshold to avoid noise-induced instabili-
ties that can force the system into the lasing regime. Based
on the detailed implementation and the noise level, this can
pose an upper limit on the enhancement factors. In Fig. 2,
we choose the mirror reflectivity as r = 1. This can be
achieved, for example, by using photonic-crystal arrange-
ments. Importantly, we note that if r deviates slightly from
unity, the locations of the critical points p in Fig. 2(a) and
2(b) will shift, which will affect only the design parameters
but not the general conclusion about the improved scaling
of the gain-bandwidth product at an EP.

III. IMPLEMENTATION AND FULL-WAVE
ANALYSIS

We have so far discussed the operation of our proposed
EP-based OAs using optical TCMT. In order to confirm
these predictions, we explore realistic implementations by
performing two-dimensional (2D) full-wave FDTD sim-
ulations [28,29]. In particular, we study a 2D version of
the schematic shown in Fig. 3 using the geometric and
physical parameters listed in the caption of Fig. 3.

Figures 4(a) and 4(b) depict the simulation results for the
two different scenarios discussed above, i.e., equal band-
width or equal maximum amplification. The tuning of the
amplifiers to operate in either of these regimes is done by
setting up the correct gain parameters (for more details, see
Appendix A). As shown in Fig. 4(a), for a fixed bandwidth
of 21.2 GHz, a large amplification-enhancement factor is
achieved with ηG = 16.7, corresponding to 12.2 dB. On
the other hand, Fig. 4(b) shows that for an equal maximum
amplification of 20 dB, the bandwidth in the EP case can
be doubled, to ηB = 2.1. These results, which are obtained
by using full-wave FDTD, are consistent with the theo-
retical values predicted by TCMT and clearly indicate the
potential utility of the proposed structure.

Finally, Fig. 5 plots the field distribution for the two
cases of DP and EP amplifiers (corresponding to the struc-
ture of Fig. 3 without and with the mirror) for the scenario
depicted in Fig. 4(b) at resonance. In the EP case, one
can observe the interference pattern that results due to
the coexistence of CW and CCW waves. Note that the
minimum of the field (see the inset) is not zero, which
can be understood by recalling that the CCW component
has a larger amplitude (due to amplification) than the CW
component. This can also be confirmed by inspecting the
time evolution of the fields (not shown here).
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(a) (b)

FIG. 5. The absolute value of the complex electric field distri-
butions associated with (a) a DP-based and (b) and an EP-based
amplifier for the resonant frequency when they both have an
equal gain [i.e., corresponding to the case of Fig. 4(b)]. The inset
in (b) highlights the interference pattern between the CW and
CCW components in the latter case. The legend colors represent
the value of the electric field normalized by the value of the input
field. Note that the plotted fields correspond to the steady-state
solution under external excitations and not to the eigenmodes of
the system.

IV. DISCUSSION

The scaling features of the gain-bandwidth products
associated with the geometry shown in Fig. 1 can be
understood intuitively by noting that light traverses the
ring twice in the forward and backward directions, which
explains the gain enhancement. This observation raises the
question of whether one can achieve the same performance
by concatenating two ring resonators. As we discuss in
Appendix B, this is indeed possible and gives exactly the
same results. Interestingly, even in this latter case, one can
show that the system exhibits a second-order EP, though
an unusual one (for a detailed discussion, see Appendix
B). This provides an advantage in terms of scalability,
since one can add more microrings to obtain higher-order
poles with far more superior performance. However, from
a practical perspective, this latter design (with concate-
nated rings) will be more prone to fabrication errors (all
the different ring parameters have to exactly match) and
will require a more complex pumping scheme. This is in
contrast to the design of Fig. 1, which is more robust and
does not suffer from these problems (for a more detailed
discussion of the robustness associated with the structure
of Fig. 1, see Ref. [18]).

Another possible implementation that can combine the
enhanced performance with the robustness is the S-bend
ring resonator, which is also known to provide unidirec-
tional coupling [30–32]. As shown in Appendix C, the
output power demonstrates similar scaling behavior to that
of EP-based OAs with a mirror.

Finally, we remark that in our current design of Fig. 1,
the output is collected from the same input port. This may
seem to pose some challenges. However, we note that, in
general, almost all optical systems that involve lasers and
amplifiers also contain additional nonreciprocal elements

such as isolators to protect the laser from any feedback.
In our proposed structure, one can use a nonreciprocal
three-port device, known as an optical circulator, to direct
the output power from port s5 to a different port than the
input. Alternatively, one can also use port s4 (as indicated
in Fig. 1) as an output port. In this case, the expression
for the gain-bandwidth product is more complex and less
transparent but for large amplification, the output at s4 will
approximate to the output at s5 and the improved scaling
still holds. These predictions are confirmed using FDTD
as indicated by the dashed red lines in Fig. 4. In produc-
ing these curves, the material gain is adjusted to satisfy
the identical bandwidth and/or amplification conditions in
both (a) and (b) as has been done before when the output
port was s5.

V. CONCLUSION

In conclusion, we introduce a design paradigm for
optical amplifiers based on chiral exceptional points. An
important feature of the proposed structure is the unique
scaling of its gain-bandwidth product, which is different
from that of conventional amplifiers and allows for achiev-
ing more gain or larger bandwidth. Mathematically, these
results can be understood by noting that operating at an
EP results in a double pole in the scattering coefficients (as
opposed to a single pole in the standard DP case), i.e., s51 in
Eq. (5) is proportional to s2

31 in Eq. (1), which is the reason
for the improved scaling for the gain-bandwidth product.
Importantly, we have explored realistic implementations
using current photonics technology to implement these
amplifiers based on chiral exceptional points (for com-
pleteness, we have also confirmed these conclusions for a
parity-time-(PT ) based EP in Appendix D). Our results
open the door for building a new generation of on-chip
optical amplifiers with superior performance, which can
prove beneficial for both classical and quantum optics
applications. We emphasize that our proposed scheme can
be directly mapped into other physical systems such as
microwaves and acoustics. Finally, it would be interesting
to explore the relation between the gain-bandwidth scal-
ing of optical amplifiers operating at exceptional points as
presented in our work and the linewidth enhancement pre-
dicted when the system operates as a laser [33,34]. We will
pursue this in future work.
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APPENDIX A: FDTD SIMULATION

The transmission of the passive resonators used in our
simulations based on a DP or an EP without any mate-
rial gain is shown in Fig. 6. The operating resonant
frequency is located at f0 = 193.652 THz, with a free
spectral range (FSR) of 2.58 THz. The maximum trans-
mission for the DP-based resonator is 0.998, indicating
α/γ = 0.002, which is a small quantity. The maximum
transmission for the EP-based resonator is 0.952, which
can be used to deduce the value of the reflection coeffi-
cient r2 = 0.954—consistent with the r2 = 0.953 obtained
from a direct FDTD simulation test on the reflectivity of
the mirror.

In our simulations, the applied material gain has a finite
bandwidth as expressed by the Lorentz model:

ε(ω) = εb + ε′ω2
0

ω2
0 − ω2 − 2iδω

, (A1)

where εb is the permittivity of background material in the
absence of any gain and/or loss or dispersion, ω0 is the
operating resonant frequency of the microring. δ = 1013

rad/s is the gain-curve linewidth, and ε′ is a constant. The
function ε(ω) is chosen to ensure that the gain curves are
centered around the longitudinal mode of interest but have
a bandwidth smaller than the free spectral range of the res-
onator in order to filter the undesired modes. To proceed
with the computations, we set the value of ε′ for every
case and use FDTD to calculate the maximum amplifica-
tion at resonance. This quantity can be then used to obtain
the normalized gain values g̃DP and g̃EP (see the formu-
las for GDP and GEP), which in turn allows us to compare
our FDTD results with the results obtained using Eqs. (6)

n
oissi

ms
n

ar
T

DP
EP

Frequency (THz)

FIG. 6. The transmission of the DP- and EP-based resonators
without any material gain. In the amplifiers discussed in the text,
we introduce a material gain, based on the Lorentz model, to the
microring resonator.

and (7) in the main text. In particular, in the simulations
of Fig. 3 in the main text, we use ε′ = −2.133 × 10−4

for the DP amplifier and ε′ = −2.00194 × 10−4 and ε′ =
−1.6198 × 10−4 for the EP amplifiers of Figs. 3(a) and
3(b), respectively.

APPENDIX B: CASCADED AMPLIFIERS AND
EXCEPTIONAL POINTS

In the EP-based amplifier proposed in Fig. 1, light trav-
els from port s1 to s3, gets reflected, and travels back to
the same input port in the opposite direction. This intuitive
picture can explain the enhancement in the net amplifica-
tion. It also raises the question of whether it is possible to
achieve the same functionality by concatenating two ring
resonators. By referring to Fig. 7(a), it is not difficult to see
that this structure has an identical scattering coefficient to
that of Fig. 1 with r exp(iφ) = 1. This is also confirmed
by using FDTD with ε′ = −2.00194 × 10−4, as shown in
Fig. 7(b).

At first sight, this may seem surprising but, interestingly,
the system in Fig. 7 also has a chiral EP, since mode acw
couples to bccw, while the opposite is not true. In fact, here
there is also another chiral EP arising from the unidirec-
tional coupling from bcw to accw, which would allow the
amplifier to work for backward-propagating light as well.
Interestingly, this scheme can be used to build amplifiers
with higher-order EPs by just cascading as many rings as
needed, thus providing a clear advantage in terms of scala-
bility. In practice, however, this system will be more prone

s1

input

(b)

(a) s2

s3s4

s5

bccw

acw

Frequency (THz)

)
B

d( 
n

oit
acifil

p
m

A

output

EP
Cascade

FIG. 7. (a) A cascaded amplifier can achieve the same function-
ality as the structure in Fig. 1 with r exp(iφ) = 1, as confirmed
in (b) using FDTD.
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to fabrication errors, since it will require all the rings to
have identical parameters within a small margin of error
(disorder in the coupling parameters will not affect the
chiral EP). Additionally, it will also require a complex
pumping scheme and more power consumption to provide
gain to all the rings. On the other hand, the structure pro-
posed in Fig. 1 does not suffer from these problems. In
particular, any variation in the ring parameter will affect
both modes equally, which will shift the central frequency
but retain the same gain-bandwidth relation. Additionally,
it contains only one ring and thus requires simpler pumping
and less power consumption.

APPENDIX C: S-BEND RING RESONATOR

Another possible implementation that can combine the
enhanced performance with the robustness is the S-bend
ring resonator shown in Fig. 8. This structure is also known
to provide unidirectional coupling [30–32]. By using the
scattering matrices Sj =

[
tj iκj
iκj tj

]
(with t2j + κ2

j = 1, where
j = 1, 2, 3, 4) at each junction (denoted by the dashed
black lines in Fig. 8), we obtain the relation between the
electric field amplitudes acw and accw at the beginning and
at the end of each section along the ring between any two
junctions. This, in turn, can be used to calculate the scat-
tering coefficients. In particular, when S2 = S4 and S3 = I ,
where I is the unit matrix (i.e., we remove the lower
waveguide altogether), we obtain the following:

u51 ≡ u5

u1
= 2
t2κ2

1 κ2
2 exp(iωτ)

[1 − 
t1t22 exp(iωτ)]2
, (C1)

where 
 = exp[−2π Im(neff)L/λ] is the round-trip gain of
the ring resonator and τ = Re(neff)L/c. Here, neff is the
effective index of the ring-waveguide mode, L is the cir-
cumference of the ring waveguide, and λ is the free-space
wavelength. The maximum amplification (at the resonant
frequency) and the bandwidth are then found to be as
follows:

GS = 4
2t22κ
4
1 κ4

2

(1 − 
t1t22)4
,

BS = 2F
1 − 
t1t22√


t1t2
τ−1.

(C2)

Consequently, the gain-bandwidth product is given by
following:

χS ≡ G1/4
S BS = 2

√
2Fκ1κ2(t1t2)−1/2τ−1, (C3)

with the right-hand side being a constant. This last expres-
sion reveals that the gain-bandwidth product in the S-bend
geometry scales in a similar fashion to the structure shown
in Fig. 1. From an experimental perspective, one can add

u1 u2

u5
acw

accw

u4u3

bc

S1

S3

S2
S4

FIG. 8. The S-bend ring can provide a unidirectional coupling
between the CW and CCW modes. This structure is studied with
scattering matrices Sj (j = 1, 2, 3, 4) in the four coupling regions
(dashed lines).

the second waveguide and measure the output from u4,
where it can be shown that the output power demonstrates
similar scaling behavior.

APPENDIX D: AMPLIFIERS AT EPs IN PT
SYMMETRIC DIMERS

In order to make the connection between our results here
and the work on PT symmetry—and, at the same time,
illustrate that the predicted superior performance of EP-
based amplifiers is general and not restricted to the geome-
try investigated in the main text—we consider an amplifier
based on the archetypal PT -symmetric dimer [13,14,35–
41] shown in Fig. 9(a). It consists of two identical micror-
ings coupled to each other with coupling rate κ . Both rings
have the same radiation loss and are coupled to identical
waveguides with equal coupling coefficients. Addition-
ally, we assume that the top ring has a material gain g
while the lower ring has an additional loss factor −g.
By using TCMT, we obtain the following:

dacw

dt
= [i(ω0 − ω) − γ − α + g]acw + iκbccw +

√
2γ s1,

dbccw

dt
= [i(ω0 − ω) − γ − α − g]bccw + iκacw,

s3 = −
√

2γ bccw.
(D1)

By solving the above system, we obtain the expression for
the steady state transfer function as follows:

s31 ≡ s3

s1
= −2iκγ

[i(ω − ω0) + γ + α]2 + κ2 − g2 . (D2)

Note that this solution is only valid below the las-
ing threshold g2 = κ2 + (γ + α)2. The system exhibits
an EP when g = κ . Under this condition, the maximum
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s1

input
(a)

(b)

s2

s3

acw

bccw

DP
EP
PT1
PT2

(w -w0)/g

noitacifilp
m

A

output

g

–g

g

g

a

a

FIG. 9. (a) A PT -dimer-based optical amplifier having an
exceptional point at g = κ . (b) A comparison between the struc-
ture in (a) and those in Fig. 1 (with and without a mirror) for
identical γ and assuming α = 0, when gPT1 = 1.36γ (dashed
green line) and gPT2 = 2.5γ (solid green line). Clearly, one can
increase the amplification of the PT amplifier while at the same
time maintaining the same bandwidth. From a practical per-
spective, however, increasing the amplification requires stronger
coupling κ (i.e., smaller separation between the two rings), which
is limited by the fabrication tolerance.

amplification is given by GPT = 4g2γ 2/(γ + α)4, while
the bandwidth takes the value BPT = 2F(γ + α). Inter-
estingly, in contrast to the structure investigated in the
main text, here the bandwidth is independent of the gain.
In other words, the gain-bandwidth product can be made
arbitrarily large by a judicious choice of the design param-
eters and the applied gain—a feature that has previously
been noted for linear microwave amplifiers based on wave-
mixing processes [6,42], though without establishing the
connection with the physics of exceptional points. To illus-
trate this point, Fig. 9(b) depicts a comparison between
the three different structures of Fig. 1 (with and with-
out a mirror) and Fig. 9(a). Here, we choose α ≈ 0 and
identical values of γ for all three devices. The bandwidth
of the PT -based amplifier is 2Fγ ≈ 1.28γ . This same
bandwidth can be achieved for the other two geometries
by setting gDP = (2 − F)γ ≈ 1.36γ and gEP = γ . When
gPT = gDP, the PT system exhibits lower amplification,
as shown by the dashed green line in Fig. 9(b). However,
in theory, the maximum amplification can be increased
indefinitely by increasing gPT without affecting the band-
width. For example, by choosing gPT = 2.5γ , the maxi-
mum amplification of the PT structure can significantly

surpass that of the other two scenarios, while at the same
time maintaining the same bandwidth [the solid green line
in Fig. 9(b)].

From a practical perspective, however, increasing the
gain-bandwidth product will require the fabrication of
samples with stronger coupling between the two rings,
which is obviously limited by the minimum achievable
edge-to-edge separation between the rings. Additionally,
the PT geometry is very sensitive to fabrication errors
and tolerance, as well as uncertainties in the operating
conditions such as, for instance, thermal effects.
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