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Abstract 

Sound principles of statistical inference dictate that uncertainty shapes learning. In this work, we revisit 

the question of learning in volatile environments, in which both the first and second-order statistics of 

observations dynamically evolve over time. We propose a new model, the volatile Kalman filter (VKF), 

which is based on a tractable state-space model of uncertainty and extends the Kalman filter algorithm to 

volatile environments. The proposed model is algorithmically simple and encompasses the Kalman filter 

as a special case. Specifically, in addition to the error-correcting rule of Kalman filter for learning 

observations, the VKF learns volatility according to a second error-correcting rule. These dual updates 

echo and contextualize classical psychological models of learning, in particular hybrid accounts of Pearce-

Hall and Rescorla-Wagner. At the computational level, compared with existing models such as hierarchical 

Gaussian filter, the VKF gives up some flexibility in the generative model to enable a more faithful 

approximation to exact inference. Importantly, as expected based on theory and empirical observations, 

this results in a positive relationship between volatility and learning rate signals, which does not hold for 

the binary version of the hierarchical Gaussian filter. When fit to empirical data, the VKF is better behaved 

than alternatives and better captures human choice data in two independent datasets of probabilistic 

learning tasks. The proposed model provides a coherent account of learning in stable or volatile 

environments and has implications for decision neuroscience research.  

Author Summary 

Sound principles of statistical learning dictate that uncertainty influences behavior. However, despite the 

success of statistically founded algorithms for learning in stable environments, in which uncertainty 

behaves in simple and predictable ways, it is challenging to develop a simple yet efficient algorithm for 

learning in volatile environments, in which uncertainty dynamically changes over time. In this article, we 

develop a model for learning in volatile environments. The proposed model is consistent with key 

concepts of classical learning theories from behavioral psychology. Furthermore, our model is 

algorithmically simpler, theoretically more accurate, and empirically more parsimonious than the state-

of-the-art models of learning in volatile environments. The proposed model provides a coherent theory 

of learning under uncertainty.  
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Introduction 

Our decisions are guided by our ability to associate environmental cues with the outcomes of our chosen 

actions. Accordingly, a central theoretical and empirical question in behavioral psychology and 

neuroscience has long been how humans and other animals learn associations between cues and 

outcomes. According to both psychological and normative models of learning [1–4], when animals 

observe pairings between cues and outcomes, they update their belief about the value of the cues in 

proportion to prediction errors, the difference between the expected and observed outcomes. 

Importantly, the degree of this updating depends on a stepsize or learning rate parameter. Although some 

accounts take this as a free parameter, analyses based on statistical inference, such as the Kalman filter 

[5], instead demonstrate that the learning rate should in principle depend on the learner’s uncertainty. 

The dynamics of uncertainty – and hence, of learning rates – then depend on the assumed or learned 

dynamics of the environment. For instance, the Kalman filter is derived assuming that the true 

associations fluctuate randomly, but at a known, constant speed. In this case the asymptotic uncertainty, 

and learning rate, are determined by how quickly the associations fluctuate and how noisily they are 

observed. However, in volatile environments, in which the speed by which true associations change might 

itself be changing, uncertainty (and learning rates) should fluctuate up and down according to how quickly 

the environment is changing [6,7]. This normative analysis parallels classical psychological theories, such 

as the Pearce-Hall model [3], which posit that surprising outcomes increase the learning rate while 

expected ones decrease it. Those models measure surprise by the absolute value of the discrepancy 

between the actual outcome and the expected value, i.e. the unsigned prediction error [3].  

Behavioral studies have also shown that human learning in volatile environments is consistent 

with the predictions of this class of models [6,8]: learning rates fluctuate with the volatility of the 

environment. There is also evidence for a neural substrate for such dynamic learning rates: for instance, 

neuroimaging studies have shown that activity in the dorsal anterior cingulate cortex covaries with the 

optimal learning rate [6] and recent work suggests a mechanistic model of adaptive learning rate [9]. 

Theoretical and empirical work also suggests that neuromodulatory systems, particularly acetylcholine, 

norepinephrine and serotonin, might be involved in encoding uncertainty signals necessary for computing 

learning rate in stable and volatile environments, respectively [7,8,10–12]. Finally, various approximate 

learning algorithms have been fruitful for studying individual differences in learning [13–16]. 

The theoretical studies establish the question of why the learning rate should be dynamically 

adjusted, and the empirical studies provide evidence that it does so. However, a complete understanding 

of a learning system requires understanding of how these theories could be realized at the process or 
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algorithmic level [17]. This is as yet much less clear: as discussed below, statistically grounded theories of 

learning under volatility tend to be somewhat impractical and opaque. Furthermore, while their general 

analogy with the more rough and ready psychological theories like Pearce-Hall seems clear, there is not a 

direct mapping comparable to the way for example the Kalman filter encompasses and rationalizes the 

classical Rescorla-Wagner theory.  

A fully Bayesian account of learning turns on two different aspects. The first is a generative model, 

that is a set of explicit probabilistic assumptions about how the environment evolves and generates 

outcomes. Inverting the generative model with Bayes’ rule gives rise to an optimal inference algorithm 

for estimating the latent environmental variables from observable outcomes. In situations more 

complicated than the smooth world of the Kalman filter, however, exact inference is generally intractable 

and the second aspect comes into play: additional approximations are required to achieve a practical, 

algorithmic- or process-level inference model. An influential model, proposed by Behrens and colleagues 

[6] addressed the first but not the second of these points. It comprises a two-level generative model for 

learning, in which a variable governing the observed associations fluctuates according to a Gaussian 

random walk with a speed (i.e., diffusion variance) determined, at each timepoint by a second higher-

level, variable, itself fluctuating with analogous dynamics. Although this model has been conceptually 

influential, it lacked any tractable or biologically-plausible inference model at the algorithmic level: 

instead, its predictions were simulated by brute-force integration. Another model, called the hierarchical 

Gaussian filter (HGF) [8,18] extended Behrens’ generative model to a more general one consisting of 

multiple levels of hierarchy, in which the extent of diffusion noise at each level is determined by the 

preceding level [19]. Importantly, it also addressed the second issue by offering a tractable approximate 

inference rule for the process, based on a variational approach. This filter provides a biologically-plausible 

model for hierarchical learning and is able to capture dynamics over an arbitrary number of cascading 

layers with an algorithm that is easily generalizable. 

Here we revisit the question of approximate inference in a two-level model of learning in volatile 

environments. A key theoretical complication faced by the aforementioned models is that the variables 

at each level of the hierarchy, above the first, represent variances for the corresponding random walks at 

the next level down. Since variances must be positive, if the hierarchy is taken as a cascade of analogous 

unbounded Gaussian random walks, nonlinear transformations must be introduced at each stage to 

ensure positivity. This, in turn, complicates inference: in particular, even after employing a variational 

approximation (as the HGF does) to decouple inference about each variable from the others, solving the 

resulting subproblems still requires further approximation to accommodate the nonlinearity at each 
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stage. Informed by this reasoning, we propose a novel model for learning in volatile environments that is 

conceptually derived from that of Behrens et al. [6] and the 2-level case of the HGF. However, we 

introduce a distinct diffusion dynamics for the upper level, which ensures positivity and also an exact, 

conjugate solution to the variational maximization. The resulting model thus gives up some of the elegant 

flexibility of the HGF (its ability recursively to chain through an arbitrarily deep hierarchy) in return for a 

simpler inference rule requiring fewer approximations for the most widely used, 2-level, case. We 

separately encounter, and take a distinct approach to, a second issue of nonlinearity that arises in these 

models, which arises when (as has almost always been the case in empirical studies of human learning in 

this area) the observable outcomes like rewards are binary-valued instead of continuous. The resulting 

algorithm, called VKF, is a generalization of Kalman filter algorithm to volatile environments and 

resembles models that hybridize the error-driven learning from the Rescorla-Wagner model and the 

Kalman filter with Pearce-Hall’s dynamic learning rate (as proposed by different authors, for example by 

Li et al. and Le Pelley [20,21]). Notably, in volatile environments, the learning rate fluctuates with larger 

and smaller than expected prediction errors, as suggested by models such as Pearce-Hall. 

In the next section, we review the Kalman filter algorithm and present the generative model 

underlying the VKF and the resulting learning algorithm. The full formal treatment is given in the S1 

Appendix. Next, we show that the proposed model outperforms existing models in predicting empirical 

data.  

Results 

Theoretical results 

Kalman filter for tracking in environments with stable dynamics 

The Kalman filter is the cornerstone of statistical tracking theories, with widespread applications in many 

technological and scientific domains including psychology and neuroscience [4,7,22,23]. The Kalman filter 

corresponds to optimal statistical inference for a particular class of linear state space environments with 

Gaussian dynamics. In those environments, the hidden state of the environment is gradually changing 

across time (according to Gaussian diffusion) and the learner receives an outcome on each time 

depending on the current value of the state (plus Gaussian noise). In these circumstances, the posterior 

distribution over the hidden state is itself Gaussian, thus tracking it amounts to maintaining two summary 

statistics: a mean and a variance.  
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Formally, consider the simplest case of prediction: that of tracking a noisy, fluctuating reward (e.g. 

that associated with a particular cue or action), whose magnitude 𝑜𝑡  is observed on each trial 𝑡. Assume 

a state space model in which, on trial t, the hidden state of the environment, 𝑥𝑡 (the true mean reward), 

is equal to its previous state 𝑥𝑡−1 plus some process noise  

 𝑥𝑡 = 𝑥𝑡−1 + 𝑒𝑡 , Equation 1 

where the process noise 𝑒𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑣) has a variance given by 𝑣. A critical assumption of the Kalman 

filter is that the process uncertainty, 𝑣, is constant and known. The outcome then noisily reflects the 

hidden state, 𝑜𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝑥𝑡 , 𝜎2). Here the observation noise is again Gaussian with known, fixed 

variance, 𝜎2. The Kalman filtering theory indicates that the posterior state at time 𝑡, given all previous 

observations, 𝑜1, …, 𝑜𝑡, will itself be Gaussian. Its mean, 𝑚𝑡, is updated at each step according to the 

prediction error:  

 𝑚𝑡 = 𝑚𝑡−1 + 𝑘𝑡(𝑜𝑡 − 𝑚𝑡−1), Equation 2 

where 𝑘𝑡 is the learning rate (or Kalman gain) 

 𝑘𝑡 = (𝑤𝑡−1 + 𝑣)/(𝑤𝑡−1 + 𝑣+, 𝜎2), Equation 3 

which depends on the noise parameters and the posterior variance 𝑤𝑡−1 on the previous trial. Note that 

𝑘𝑡 < 1 in all trials and it is larger for larger values of 𝑣. On every trial, the posterior variance also gets 

updated: 

 𝑤𝑡 = (1 − 𝑘𝑡)(𝑤𝑡−1 + 𝑣). Equation 4 

Note that although it is not required for prediction (that is for updating 𝑚𝑡), it is also possible to compute 

the autocovariance (given observations 𝑜1,…, 𝑜𝑡), defined as the covariance between consecutive states, 

𝑤𝑡−1,𝑡 = cov[𝑥𝑡−1, 𝑥𝑡], which is given by 

 𝑤𝑡−1,𝑡 = (1 − 𝑘𝑡)𝑤𝑡−1. Equation 5 

This equation indicates that when the Kalman gain is relatively small, the autocovariance is large, which 

means that information transmitted by observing a new outcome is expected to be quite small. We will 

see in the next section that this autocovariance plays an important role in inference in volatile 

environments. 

VKF: A novel algorithm for tracking in volatile environments 

We next consider a volatile environment in which the dynamics of the environment might 

themselves change. In the language of the state space model presented above, the process noise 

dynamically changes. Thus, the variance of the process noise (𝑒𝑡 in Equation 1) is a stochastic variable 

changing with time (Figure 1A). To build a generative model, we need to make some assumptions about 

the dynamics of this variable. Our approach here is essentially the same as that taken by Smith and Miller 
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[24] and by Gamerman et al. [25] (see also West et al. [26]). Consider a problem in which the process 

variance dynamically changes. In the previous section, we saw that the state 𝑥𝑡 diffused according to 

additive noise. Because variances are constrained to be positive, it makes sense to instead assume their 

diffusion noise is multiplicative to preserve this invariant. Therefore, we assume that the current value of 

precision (inverse variance), 𝑧𝑡, is given by its previous value multiplied by some independent noise. 

Formally, the current state of 𝑧𝑡 is given by 

 𝑧𝑡 = 𝑧𝑡−1𝜖𝑡, Equation 6 

where 𝜖𝑡 is an independent random variable on trial 𝑡, which is distributed according to a rescaled beta 

distribution (as detailed in S1 Appendix), such that the mean of 𝜖𝑡 is 1 (that is, conditional expectation of 

𝑧𝑡 is equal to 𝑧𝑡−1) but has spread controlled by a free parameter 0 < 𝜆 < 1. The value of noise, 𝜖𝑡, is 

always positive and is smaller than (1 − 𝜆)−1. Therefore, while “on average”, 𝑧𝑡 is equal to 𝑧𝑡−1, 𝑧𝑡 can 

be smaller than 𝑧𝑡−1, or larger by a factor up to (1 − 𝜆)−1. Thus, the higher the parameter 𝜆, the faster 

the diffusion.  

To build up the full model, first consider a simplified case in which the latent state 

𝑥𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑡 , 𝑧𝑡
−1) is directly observed at each step and, further, has some known mean 𝜇𝑡. Although 

this sub-problem greatly simplifies the main problem by isolating 𝑥𝑡 from 𝑥𝑡−1,  it provides the foundation 

for inference in the full model. This is because it is similar to the problem that remains once a variational 

approximation is introduced. It can be formally shown (see S1 Appendix) that in the simplified case, 

estimating the process variance, i.e. the posterior over 𝑧𝑡 at each step given all previous observations, is 

tractable. Specifically, the posterior distribution over 𝑧𝑡 takes the form of a Gamma distribution, whose 

inverse mean, 𝑣𝑡, is updated according to the observed sample variance: 

 𝑣𝑡 = 𝑣𝑡−1 + 𝜆((𝑥𝑡 − 𝜇𝑡)2 − 𝑣𝑡−1), Equation 7 

where 𝑣𝑡 = 𝐸[𝑧𝑡]−1. Note that this equation amounts to an error-correcting rule for updating 𝑣𝑡, in which 

the error is given by (𝑥𝑡 − 𝜇𝑡)2 − 𝑣𝑡−1: the difference between the observed and expected squared 

prediction errors. 

Now we are ready to build the full generative model in which both 𝑧𝑡 and 𝑥𝑡 dynamically evolve 

over time (Fig 1). In this model, as before, the observation, 𝑜𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝑥𝑡 ,𝜎2), follows a Gaussian 

distribution with the mean given by the hidden variable 𝑥𝑡, which itself is given by 𝑥𝑡 =

𝑁𝑜𝑟𝑚𝑎𝑙(𝑥𝑡−1, 𝑧𝑡
−1): a diffusion whose precision (i.e. inverse variance) is given by another dynamic 

random variable, 𝑧𝑡. The value of 𝑧𝑡 in turn depends on its previous value multiplied by some noise that 

finally depends on parameter 𝜆 according to Equation 6. Therefore, this generative model consists of two 

chains of random variables, which are hierarchically connected to each other. Unlike each of those two 
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chains separately, however, when they are conjoined in this hierarchical model, inference is not tractable 

and therefore we need some approximation. We use structured variational inference for approximate 

inference in this model [27,28]. This technique assumes a factorized approximate posterior distribution 

and minimizes the mismatch between this approximate posterior and the true posterior using the 

principle of variational inference.  

 

Fig 1. The generative model of VKF. The generative model consists of two interconnected hidden 

temporal chains, 𝑥𝑡 and 𝑧𝑡, governing observed outcomes, 𝑜𝑡. Arrows indicate the direction of influence. 

On each trial, 𝑡, outcome, 𝑜𝑡, is generated based on a Gaussian distribution, its mean is given by the hidden 

random variable 𝑥𝑡, and its variance is given by the constant parameter 𝜔. This variable is itself generated 

according to another Gaussian distribution, which its mean is given by 𝑥𝑡−1, and its variance is given by 

another hidden random variable, 𝑧𝑡
−1.  This variable is itself generated based on its value on the previous 

trial, 𝑧𝑡−1, multiplied by some positive noise distributed according to a scaled Beta distribution governed 

by the parameter 𝜆. The inverse mean of this variable on the first trial is assumed to be given by another 

constant parameter, 𝑣0. See Equations 1-2 for further explanation. 

The resulting learning algorithm is very similar to the Kalman filtering algorithm and encompasses 

Kalman filter as a special case. Importantly, the new algorithm also tracks volatility on every trial, denoted 

by 𝑣𝑡, which is defined as the inverse of expected value of 𝑧𝑡. Therefore, we call the new algorithm the 

“volatile Kalman filter”. In this algorithm, the update rule for the posterior mean 𝑚𝑡 and variance 𝑤𝑡 over 

𝑥𝑡 (Equations 9-13 below) is exactly the same as the Kalman filtering algorithm, but in which the constant 

process variance is replaced by the estimated volatility on the previous trial, 𝑣𝑡−1. The volatility also gets 

updated on every trial according to expected value of (𝑥𝑡 − 𝑥𝑡−1)2 

 𝑣𝑡 = 𝑣𝑡−1 + 𝜆(𝐸[(𝑥𝑡 − 𝑥𝑡−1)2] − 𝑣𝑡−1), Equation 8 

where the expectation should be taken under the approximate posterior over 𝑥𝑡−1 and 𝑥𝑡. Therefore, the 

volatility update rule takes a form of error correcting, in which the error is given by 𝐸[(𝑥𝑡 − 𝑥𝑡−1)2] −
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𝑣𝑡−1 with the noise parameter, 𝜆, as the step size. Thus, the higher the noise parameter, the higher the 

speed of volatility update is. Therefore, we call 𝜆 the “volatility update rate”. Also, note that the 

expectation in this equation depends on the autocovariance. 

It is then possible to write 𝐸[(𝑥𝑡 − 𝑥𝑡−1)2] in terms of the variance and covariance of 𝑥𝑡−1 and 𝑥𝑡 

to obtain Equation 8 below and complete the VKF learning algorithm:  

 

 𝑘𝑡 = (𝑤𝑡−1 + 𝑣𝑡−1)/(𝑤𝑡−1 + 𝑣𝑡−1 + 𝜎2), Equation 9 

 𝑚𝑡 = 𝑚𝑡−1 + 𝑘𝑡(𝑜𝑡 − 𝑚𝑡−1), Equation 10 

 𝑤𝑡 = (1 − 𝑘𝑡)(𝑤𝑡−1 + 𝑣𝑡−1), Equation 11 

 𝑤𝑡−1,𝑡 = (1 − 𝑘𝑡)𝑤𝑡−1, Equation 12 

 𝑣𝑡 = 𝑣𝑡−1 + 𝜆 ((𝑚𝑡 − 𝑚𝑡−1)2 + 𝑤𝑡−1 + 𝑤𝑡 − 2𝑤𝑡−1,𝑡 − 𝑣𝑡−1), Equation 13 

where 𝜎 is the constant variance of observation noise. In addition to the volatility update parameter, 𝜆, 

which is constrained in the unit range, this algorithm depends on another parameter, 𝑣0 > 0, which is the 

initial value of volatility. Notably, the Kalman filter algorithm is a special case of the VKF in which 𝜆 = 0 

and the process variance is equal to 𝑣0 on all trials. In the next section, we test this model with synthetic 

and empirical datasets. 

Binary VKF 

We have also developed a binary version of VKF for situations in which observations are binary. The 

generative model of the binary VKF is the same as that of VKF with the only difference that binary 

outcomes are generated according to Bernoulli distribution with the parameter given by 𝑠(𝑥𝑡) =

1 (1 + exp(−𝑥𝑡))⁄ , where 𝑠(𝑥𝑡) is the sigmoid function, which maps the normally distributed variable 𝑥𝑡 

to the unit range. For this generative model, the inference is more difficult because the relationship 

between hidden states and observations is nonlinear. Therefore, further approximation is required to 

perform inference here, because observations are not normally distributed and Equation 1 does not hold. 

For the binary VKF, we assumed a constant posterior variance, 𝜔, and employed moment matching (which 

is sometimes called assumed density filtering [29,30]) to obtain the posterior mean. The resulting 

algorithm is then very similar to the original VKF with the only difference that the update rule for the 

mean (i.e. Equation 10) is slightly different: 

 𝑘𝑡 = (𝑤𝑡−1 + 𝑣𝑡−1)/(𝑤𝑡−1 + 𝑣𝑡−1 + 𝜔), Equation 14 

 𝛼𝑡 = √𝑤𝑡−1 + 𝑣𝑡−1 , Equation 15 

 𝑚𝑡 = 𝑚𝑡−1 + 𝛼𝑡(𝑜𝑡 − 𝑠(𝑚𝑡−1)), Equation 16 
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 𝑤𝑡 = (1 − 𝑘𝑡)(𝑤𝑡−1 + 𝑣𝑡−1), Equation 17 

 𝑤𝑡−1,𝑡 = (1 − 𝑘𝑡)𝑤𝑡−1, Equation 18 

 𝑣𝑡 = 𝑣𝑡−1 + 𝜆 ((𝑚𝑡 − 𝑚𝑡−1)2 + 𝑤𝑡−1 + 𝑤𝑡 − 2𝑤𝑡−1,𝑡 − 𝑣𝑡−1). Equation 19 

 

Note that the learning rate for the binary VKF is 𝛼𝑡 defined by Equation 15. Furthermore, we have 

introduced a parameter, 𝜔 > 0, specifically for inference (i.e. does not exist in the generative model). We 

call this parameter the noise parameter, because its effects on volatility are similar to the noise parameter, 

𝜎 for linear observations (through 𝑘𝑡, Equation 14). However, it is important to note that unlike 𝜎, this 

parameter does not have an inverse relationship with the learning rate, 𝛼𝑡.   

Simulation analyses 

Comparing VKF with known ground truth 

First, we study the performance of VKF on simulated data with known ground truth. We applied the VKF 

to a typical volatility tracking task (similar to [6,8]). In this task, observations are drawn from a normal 

distribution whose mean is given by the hidden state of the environment. The hidden state is constant +1 

or –1. Critically, the hidden state was reversed occasionally. The frequency of such reversals itself changes 

over time; therefore, the task consists of blocks of stable and volatile conditions. We investigate 

performance of VKF in this task because its variants have been used for studying volatility learning in 

humans [6,8]. Note that, as here, it is common to study these models’ learning performance when applied 

to situations that do not exactly correspond to the generative statistical model for which they were 

designed. In particular, it has been shown using this type of task that humans’ learning rates are higher in 

the volatile condition [6,8]. Fig 2 shows the performance of VKF in this task. As this figure shows, the VKF 

tracks the hidden state very well and its learning rate is higher in the volatile condition. Furthermore, the 

volatility signal increases when there is a dramatic change in the environment. Note that as for other 

models previously fit to tasks of this sort, the switching dynamics at both levels of hidden state here are 

not the same as the random walk generative dynamics assumed by our model. These substitutions 

demonstrate that the principles relating volatility to learning are general, and so the resulting models are 

robust to this sort of variation in the true generative dynamics.  
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Fig 2. Behavior of the VKF. A-C) A switching probabilistic learning task in which observations are 

randomly drawn from a hidden state (with variance 0.01) that switches several times. The relationship 

between the hidden state and observations are either linear (A-C) or binary (D-F). The volatility signal with 

the VKF increases after a switch in the underlying hidden state and the learning rate signal closely follows 

the volatility. The grey lines show the switching time. Dots are actual observations. These parameters used 

for simulating VKF: 𝜆 = 0.1, 𝑣0 = 0.1, 𝜎2 = 0.1, 𝜔 = 0.1. 

In another simulation analysis, we studied the performance of the binary VKF in a similar task, but 

now with binary observations, which were used in previous studies [6,8]. Here, observations are drawn 

from a Bernoulli distribution whose mean is given by the hidden state of the environment. The hidden 

state is a constant probability 0.8 or 0.2, except that it is reversed occasionally. As Fig 2 shows, predictions 

of the binary VKF match with the hidden state. Furthermore, the volatility signal increases when there is 

a dramatic change in the environment, and the learning rate is higher in the volatile condition. Similar 

simulation analyses with higher levels of volatility show the same behavior: the volatility signal and the 

learning rate are generally larger in volatile blocks, in which the environment frequently switches (Fig 3). 
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Fig 3. Behavior of the VKF in highly volatile condition for linear. (A-C) and binary (D-F) observations. 

The volatility and learning rate signal are larger in volatile conditions in which the hidden state is frequently 

changing. The parameters used were the same as Fig 2. 

The VKF is a relatively simple model that approximates exact solution to an intractable inference 

problem. To further address the question how accurate is this approximation, next, we compared the 

performance of the VKF to other approaches: first, one representing (as close as was feasible) exact 

Bayesian inference, and, second, a different approach to approximate inference, the HGF.  

Comparing VKF with the particle filter 

We first compared the behavior of the VKF with a computationally expensive but near-exact method as 

the benchmark. For sequential data, the particle filter is a well-known Monte Carlo sequential sampling 

method, which approximates the posterior at every timepoint with an ensemble of samples; it approaches 

optimality in the limit of infinite samples. We used a Rao-Blackwellized particle filter (RBPF) [31] for this 

analysis, which combines sampling of some variables with analytical marginalization of others, conditional 

on these samples. In this way, it exploits the fact that inference on the lower level variable (i.e. 𝑥𝑡 in Fig 

1) is tractable using a Kalman filter, given samples from the upper level variable (i.e. 𝑧𝑡 in Fig 1). Therefore, 

this approach essentially combines particle filter with Kalman filter. We used the same sequence 



 13 

generated in previous analyses (Fig 2) and compared the RBPF algorithm with 10,000 samples as the 

benchmark, assuming the same parameters for both algorithms. As shown in Fig 4, the behavior of VKF is 

very well matched with that of this benchmark for Gaussian observations. In particular, predictions and 

volatility estimates of the two algorithms were highly correlated, with correlation coefficients of 1.00 and 

0.95, respectively, in this task. We also quantified the relative error, defined as the average mismatch 

between predictions of VKF and ground truth lower-level states,  𝑥𝑡 , measured in units of increased error 

relative to the benchmark error of RBPF (see Methods), as 22.9%.  

 

 

Fig 4. Comparison of VKF with the benchmark sampling methods. RBPF was used as the benchmark 

(with 10000 particles). The behavior of the VKF closely follows that of the benchmark. The parameters 

used were the same as Fig 2. 

We next compared the performance of the binary VKF with that of the particle filter benchmark. 

For the binary VKF, the inference is more difficult because the relation between the state and the 

observation is also nonlinear. For the same reason, it is not possible to use RBPF to marginalize part of the 

computation here because the submodel conditional on the variance level is also not analytically 

tractable; instead we used a conventional particle filter sampling across both levels. We ran the particle 

filter on this problem with 10,000 samples and the same parameters as that of the binary VKF. As Fig 5 

shows, the latent variables estimated by the VKF and the benchmark particle filter are again quite well 

matched, although the particle filter responds more sharply following contingency switches. Similar to the 
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previous analysis, predictions and volatility estimates were well correlated with correlation coefficients 

given by 0.91 and 0.68, respectively. The relative error in state estimation for binary VKF was 5.4%. 

 

 

Fig 5. Comparison of binary VKF with the benchmark sampling methods. Particle filter was used as 

the benchmark (with 10000 particles). Both the VKF and the benchmark show higher learning rate in the 

volatile condition and estimated volatility signals by the two models are highly correlated. The parameters 

used were the same as Fig 2. 

Comparing VKF with HGF 

We next compared VKF to another approximate approach with more comparable computational 

complexity. In particular, we compared it to the HGF (with two latent levels), as the latter is the most 

commonly used algorithm for learning in volatile environments. Similar to our model, the generative 

model of the HGF assumes that there are two chains of state variables, 𝑥𝑡 and 𝑧𝑡, in which the distribution 

over 𝑥𝑡 is given by a normal distribution with the mean and variance depending on 𝑥𝑡−1 and 𝑧𝑡, 

respectively. These two algorithms differ in two ways, however. First, for the generative models, the form 

of the process noise controlling the diffusion of 𝑧𝑡 is different. In our model, the noise is a positive variable 

with a beta distribution. The HGF, however, assumes that the process noise for 𝑧𝑡 is additive and normally-

distributed, and hence exponential transformation is needed to ensure that the variance of 𝑥𝑡 is non-

negative. These differences, in turn, give rise to differences in the resulting approximate inference rules, 

particularly for inference over the volatility level, 𝑧𝑡. Our model has specific conjugacy properties, which 
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make the inference for 𝑧𝑡 tractable if 𝑥𝑡 is isolated from 𝑥𝑡−1  (e.g. if 𝑥𝑡−1 is fixed and under a variational 

approximation; see theoretical explanation above and S1 Appendix for mathematical proofs). However, 

even in this case when 𝑥𝑡 is isolated from 𝑥𝑡−1, the inference over 𝑧𝑡 in the HGF is not tractable and 

therefore requires further approximation. The approximate inference model of the HGF thus relies on a 

second-order Taylor approximation to deal with this issue, in addition to the variational approximation 

used by both the VKF and the HGF. By eliminating this additional approximation, the VKF avoids one 

source of potential inaccuracy. Also, the VKF’s conjugacy ensures a simple (one-parameter Gamma) 

distribution for the posterior estimate at the top (volatility) level, which may also contribute to stability, 

vs. a two-parameter Gaussian approximation, in which numerical problems (e.g., negative values for the 

approximated posterior uncertainty) can arise.  

However, directly comparing the effect of these two approaches to inference is difficult because 

they are closely linked with two different sets of generative assumptions. To focus our comparison on the 

approximations, we studied the ability of each algorithm to reproduce data generated from its own, 

corresponding generative model, in roughly comparable parameter regimes. Then to ensure any 

differences were related to the approximate inference itself, rather than to the different generative 

statistics themselves (e.g., supposing one problem is just harder), we scored each model in terms of error 

relative to optimal inference as proxied by the particle filter. This represents the best achievable 

performance for each specific generative process. We also performed a number of followup analyses to 

further pursue this question, in S1 Text. 

Thus, we generated a sequence of observations using the generative model of the HGF (see 

Methods). We then used the generated sequence as the input to the HGF inference algorithm, using true 

generative parameters. We repeated this process 1000 times. In 82 of these simulations, the HGF 

encountered numerical problems: its inferred trajectory encountered numerical problems, i.e. negative 

estimates of the posterior variance over the top (volatility) level. This problem is due to the Taylor 

approximation used to extrapolate the variational posterior in the approximate inference model of the 

HGF. Only for the remaining 918 simulations were we able to quantify the error of HGF, defined as the 

mismatch between predicted and true lower level states 𝑥𝑡 (see Methods). We also performed inference 

on the same generated data using a RBPF (derived under the HGF generative assumptions) [31], as a proxy 

of exact inference. We compared these two results to obtain a measure of fractional relative error in the 

HGF over and above the (unavoidable) error from the RBPF. Similarly, we quantified the error of the VKF 

relative to the RBPF: data were simulated under the VKF generative model (see Methods), which were 

then used as the input to the VKF inference model and its associated RBPF. This analysis revealed that the 
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relative error of the HGF and VKF is 21.4% (SE=6.8%) and 2.7% (SE=0.3%), respectively, indicating that the 

VKF performance is closer to the particle filter than the HGF. We performed a number of control analyses 

confirming these results with different sets of parameters, and using an alternative baseline independent 

of the RBPF (S1 Text). 

Effects of volatility on learning rate for binary outcomes 

Following Behrens’ seminal study [6], the majority of previous work studying volatility estimation used 

binary outcomes. This is also important from a psychological perspective, because seminal models such 

as Pearce-Hall indicate that learning rate, or as it is called in that literature “associability”, reflects the 

extent that the cue has been surprising in the past. In fact, modern accounts of learning in decision 

neuroscience are partly built on this classic psychological idea, and there is evidence that volatility-

induced surprising events increase the learning rate in probabilistic learning tasks in humans [6,32–34]. 

Here, we highlight a crucial difference between the binary versions of the HGF and VKF regarding the 

relationship between volatility and learning rate. 

We compared performance of HGF and VKF for binary observations, mimicking the sorts of 

experiments typically used to study volatility learning in the lab [6]. In this case, the generative dynamics 

of the latent variables did not match either model, but instead used a discrete change-point dynamics 

again derived from these empirical studies. The binary versions of the HGF and VKF use different 

approximations to deal with the nonlinear mapping between hidden states and binary observations, on 

top of the ones discussed before. Whereas the HGF employs another Taylor approximation to deal with 

binary observations, the binary VKF is based on a moment-matching approximation. Importantly, these 

different treatments of binary observations result in qualitative differences in the relationship between 

the learning rate and volatility. Accordingly, in the binary VKF, the learning rate closely follows the 

volatility estimate, similar to the VKF for continuous-valued observations and echoing the intuition from 

the psychological and decision neuroscience literatures. In the binary version of HGF, however, the 

relationship between the learning rate and volatility is more involved because the learning rate is also 

affected by the sigmoid transformation of the estimated mean on the previous trial. Fig 6 illustrates these 

signals in an example probabilistic switching task for both models. To demonstrate this point 

quantitatively, we generated 500 time-series and fitted both models to these time-series. The correlation 

between the learning rate and volatility estimates for these time-series were then calculated using the 

fitted parameters of each model. As expected, the learning rate and volatility signals of the binary VKF 

were positively correlated in all simulations (average correlation coefficient about 1.00), whereas those 
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of binary HGF were, unexpectedly, negatively correlated in all simulations (average correlation coefficient 

= –0.74). Note that this qualitative difference is a general behavior of these models and is not due to a 

particular setting of parameters (S1 Text). 

 

 

Fig 6. Behavior of the binary VKF and HGF. Predictions of the two models about the relationship 

between volatility and learning rate are different.  Fitted parameters for each model were used for obtaining 

volatility, learning rate and state prediction signals here. 

Testing VKF using empirical data 

We then tested the explanatory power of the VKF to account for human data using two experimental 

datasets. In both experiments, human subjects performed a decision-making task, repeatedly choosing 

between two options, where only one of them was correct. Participants received binary feedback on every 

trial indicating which option was the correct one on that trial. 

Such a test requires fitting the binary VKF to choice data by estimating its free parameters. The 

binary VKF relies on three free parameters: volatility learning rate, 𝜆, the initial volatility value, 𝑣0, and 

the noise parameter for binary outcomes, 𝜔. Fig 7 shows the behavior of the binary VKF as a function of 

these parameters. As Fig 7 shows, the volatility learning rate parameter determines the degree by which 



 18 

the volatility signal is updated and its effects are particularly salient following a contingency change. The 

effects of initial volatility are more prominent in earlier trials. The noise parameter indicates the scale of 

volatility throughout the task. Note that the noise parameter also has a net positive relationship with the 

learning rate in the binary VKF.  

 

 

Fig 7. Effects of parameters on the VKF. A) The volatility and state prediction signals within the binary 

VKF are shown for a baseline scenario. B-D) The impact of changing parameters with respect to the 

baseline scenario is shown for (B) the volatility learning rate, 𝜆, (C) the initial volatility 𝑣0, and (D) the 

noise parameter, 𝜔. 

To model choice data, the predictions of the binary VKF were fed to a softmax function, which has 

a decision noise parameter, 𝛽. We first verified that these parameters can be reliably recovered using 

simulation analyses with synthetic datasets, in which observations and choices of 50 artificial subjects 

were generated based on the binary VKF and the softmax (see Methods for details of this analysis). We 

then fitted the parameters of the VKF to each dataset using hierarchical Bayesian inference (HBI) 

procedure [35], an empirical Bayes approach with the advantage that fits to individual subjects are 

constrained according to the group-level statistics. We repeated this simulation analysis 500 times. As 

reported in Table 1, this analysis revealed that the model parameters were fairly well recoverable, 

although estimation of the volatility learning rate and initial volatility were more prone to error.  

Parameters True parameters 
Estimated parameters 

25% quantile Median 75% quantile 

𝜆 0.2 0.20 0.23 0.27 

𝑣0 5.0 4.80 5.24 5.64 
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𝜔 1.0 0.96 1.06 1.15 

𝛽 1.0 1.12 1.14 1.17 

Table 1. Recovery analysis for parameters of the VKF. A dataset including 50 artificial subjects were 

generated based on the binary VKF and a softmax choice model. The same procedure used in analysis of 

empirical data (HBI) was used then to estimate the parameters. We have reported the mean of parameters 

across all 50 artificial subjects. This procedure was repeated 500 times. 

In the first experiment (Fig 8), 44 participants carried out a probabilistic learning task (originally published 

in [36]), in which they were presented with facial cues and were asked to make either a go- or a no-go- 

response (i.e., press a button, or withhold a press, respectively) for each of four facial cues in order to 

obtain monetary reward or avoid monetary punishment. The cues were four combinations of the 

emotional content of the face image (happy or angry) and its background color (grey or yellow) 

representing valence of the outcome. Participants were instructed that the correct response is contingent 

on these cues. The response-outcome contingencies for the cues were probabilistic and manipulated 

independently, and reversed after a number of trials, varying between 5 and 15 trials, so that the 

experiment consisted of a number of blocks with varying trial length (Figure 4B). Within each block, the 

probability of a win was fixed. The task was performed in the scanner, but here we only focus on 

behavioral data. 120 trials were presented for each cue (480 trials in total). Participants learned the task 

effectively: performance, quantified as the number of correct decisions given the true underlying 

probability, was significantly higher than chance across the group (t(43)=14.68, p<0.001; mean: 0.68, 

standard error: 0.01). The focus of the original studies using this dataset was on socio-emotional 

modulation of learning and choice [34,36]. Here, however, we use this dataset because the task is a 

probabilistic learning tasks in which the contingencies change throughout the experiment. We considered 

a model space including the binary VKF, binary HGF, a Kalman filter (KL) that quantifies uncertainty but 

not volatility, and also a Rescorla-Wagner (RW) model that does not take into account uncertainty or vary 

its learning rate. For all these learning models, we used a softmax rule as the response model to generate 

probability of choice data according to action values derived for each model as well as value-independent 

biases in making a go response for all these models. Note that the response model also contained value-

independent biases in making or avoiding a go response due to the emotional or reinforcing content of 

the cues (see Methods). 
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Fig 8. The probabilistic learning task in Experiment 1 used for testing the VKF. A) Participants had 

to respond (either go or no-go) after a face cue was presented. A probabilistic outcome was presented 

following a delay. B) An example of the probability sequence of outcome (of a go response) for one of the 

four trial-types and predictions of the (binary) VKF model. The response-outcome contingencies for the 

cues were probabilistic and manipulated independently. The dots show actual outcomes seen by the model. 

This model space was then fit to choice data using HBI [35]. Importantly, the HBI combines 

advantages of hierarchical model for parameter estimation [37] with those of approaches that treat the 

model identity as a random effect [38], because it assumes that different subjects might express different 

models and estimates both the mixture of models and their parameters, in a single analysis. Thus, the HBI 

performs random effects model comparison by quantifying model evidence across the group (goodness 

of fit penalized by the complexity of the model [39]). This analysis revealed that, across participants, VKF 

was the superior model in 37 out of 44 participants (Fig 9). Furthermore, the protected exceedance 

probability in favor of VKF (i.e. the probability that a model is more commonly expressed than any other 

model in the model space [38,40] taking into account the null possibility that differences in model 

evidence might be due to chance [40]) was indistinguishable from 1. In a supplementary analysis, we also 

considered the particle filter model. Since that model is a Monte Carlo sampling method and too 

computationally intensive to embed within a further hierarchical estimation over subjects and other 

models, we fitted the model separately to each subject and compared it with the other models (see S1 

Text for details). This analysis revealed that the VKF is the most parsimonious even compared to the 

particle filter model.  
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Fig 9. Bayesian analysis of VKF in the first experiment. A) Bayesian model comparison results 

comparing VKF with HGF, Rescorla-Wagner (RW) and Kalman filter (KF). Protected exceedance 

probabilities (PXPs) and model frequencies are reported. The PXP of the VKF is indistinguishable from 1 

(and from 0 for other models) indicating that VKF is the most likely model at the group level. The model 

frequency metric indicates the ratio of subjects explained by each model. B) Estimated parameters of the 

VKF at the group-level. C) Learning rate signals, time-locked to the change points, estimated by the VKF 

for all participants (gray) and the mean across participants (red). The x-axis indicates trials relative to 

change points. The error-bars in B are obtained by applying the corresponding transformation function on 

the group-level error-bars obtained by the HBI [35] and, therefore, are not necessarily symmetric. 

To examine the detailed behavior of the model, we also analyzed learning rate signals estimated 

by the VKF at the time of changes in action-outcome contingencies. For this analysis, we fitted each 

subject’s choice data individually to the binary VKF model to generate learning rate signals independently. 

Fig 9C shows variations in the learning rate signal time-locked to the change points. Across 44 participants, 

40 (i.e. 91%) showed a positive change in learning rate following change points. There was a significant 

difference between learning rate before (obtained by averaging over 5 trials prior to change) and after 

change points (obtained by averaging over 5 trials) (mean increase = 0.10, P<0.001), similar to previous 

studies with change-point dynamics [41]. 

In the second experiment, 174 participants performed a learning task (originally published in [42]), 

in which they chose to accept or reject an opportunity to gamble on the basis of their estimation of 

potential reward. Thus, subjects were asked to estimate the probability of reward based on binary 

feedback given on every trial. The reward probability was contingent on the category of the image 

presented during each trial and its time-course has been manipulated throughout the experiment. During 

each trial, participants were also presented with the value of a successful gamble. In the original study 

[42], Jang et al. used this learning task, in combination with a follow-up recognition memory test, to study 

the influences of computational factors governing reinforcement learning on episodic memory. Here, 

however, we only analyze the learning part of this dataset because the task is a probabilistic learning task 

with switching contingencies. For every image category, the reward probability has switched at least twice 

during the task. Most participants learned the task effectively, as their gambling decisions varied in 
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accordance with the probability of reward. In particular, they accepted to gamble more often in trials with 

high reward probability than those with low reward probability (t(173)=18.5, p<0.001; mean: 0.25, 

standard error: 0.01). Thirteen subjects were excluded from the analysis because a logistic regression 

(with intercept and two regressors: reward probability and trial value) showed a negative correlation 

between reward probability and their decisions to gamble, suggesting that they had not understood the 

task instructions. We analyzed data of the remaining 161 subjects.  

We fitted the same model space used above, in which the learning models were combined with 

the softmax as the response model to generate probability of choices. This model space was then fit to 

choice data using the HBI (Fig 10). This analysis revealed that the binary VKF outperformed other models 

in 102 out of 161 participants (with 0.62 model frequency). Across all participants, the protected 

exceedance probability in favor of the VKF was indistinguishable from 1. Note that the second-best model 

was the Kalman filter model with model frequency of 0.3, suggesting that about 30% of subjects reduced 

their learning rate over time but were not sensitive to volatility. This may be because there are overall 

fewer switches in this task compared to the previous one. Nevertheless, across all subjects, analysis of 

learning rate signals time-locked to the change point shows a significant increase in learning rate (median 

increase = 0.03, Wilcoxon sign rank test because samples were not normally distributed, p<0.001). This 

effect was positive for 64% of participants.  

 

Fig 10. Bayesian analysis of VKF in the second experiment. A) Bayesian model comparison results 

comparing VKF with HGF, Rescorla-Wagner (RW) and Kalman filter (KF). Similar to the previous dataset, 

the PXP of the VKF is indistinguishable from 1 (and from 0 for other models) indicating that VKF is the 

most likely model at the group level. B) Estimated parameters of the VKF at the group-level. C) Learning 

rate signals, time-locked to the change points, estimated by the VKF for all participants (gray) and the mean 

across participants (red). The x-axis indicates trials relative to change points. The error-bars in B are 

obtained by applying the corresponding transformation function on the group-level error-bars obtained by 

the HBI [35] and, therefore, are not necessarily symmetric. 
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Discussion 

In this work, we have introduced a novel model for learning in volatile environments. The proposed model 

has theoretical advantages over existing models of learning in volatile environments, because it is based 

on a novel generative model of volatility that makes it possible to have a simple approximate inference 

model, which is also very loyal to the exact inference. Using empirical choice data in a probabilistic learning 

task, we showed that this model captures human behavior better than the state-of-the-art HGF. 

The Kalman filter is the cornerstone of tracking theories, with widespread applications in many 

technological and scientific domains including psychology and neuroscience [4,7,22,23]. For example, in 

movement neuroscience, the Kalman filter has been used as a model of how the brain tracks sensory 

consequences caused by a motor command. In learning theories, the Kalman filter provides a normative 

foundation for selective attention among multiple conditioned stimuli predicting a target stimulus, such 

as food. Nevertheless, the Kalman filter is limited to environments in which the structure of process noise 

is constant and known. Like other models such as the HGF, the VKF fills this gap by extending the Kalman 

filter to inferring the process variance in volatile environments in which the variance is itself dynamically 

changing. In particular, VKF contains two free parameters, a volatility update rate (i.e. 𝜆) indicating the 

extent of noise in process variance dynamics and the initial value of volatility (𝑣0). The Kalman filter is a 

special case of VKF, in which the volatility update rate is zero and the constant process noise is equal to 

𝑣0.  

A complete understanding of a learning system requires understanding of how computational 

theories should be realized at the algorithmic level [17]. Previous works have shown that at this level, the 

normative perspective might shed light on or even encompass related psychological models, as for 

example temporal difference models of reinforcement learning encompass the classical Rescorla-Wagner 

theory. The proposed model builds a normative foundation for the intuitive hybrid models combining 

critical features of Rescorla-Wagner and Pearce-Hall theories for conditioning [20,21,34]. Specifically, the 

learning process of VKF depends on two components. The first component is the classical prediction error 

signal, which is defined as the difference between the observed and expected outcome, similar to 

Rescorla-Wagner error signal. The second component is the learning rate modulated by the volatility 

estimate, which is itself a function of surprise (i.e. the squared prediction error) according to Equation 13. 

Therefore, although the detailed algebraic computation of the surprise term slightly differs, the structure 

of the model is consistent with the classical Pearce-Hall model, and like it the rate of learning in VKF 

depends on surprise. This construction clarifies the relationship between the Pearce-Hall associability, its 
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update, and volatility inference in hierarchical learning models such as the HGF and that of Behrens et al. 

[6]. 

The generative model of VKF is based on a novel state-space model of variance dynamics for 

Gaussian-distributed observations with known mean, in which the inference (for the volatility level 

considered in isolation) is tractable. This particular generative model leads to exact inference without 

resorting to any approximation. To build a fully generative model for volatile environments, we then 

combined this state-space model with the state-space model of the Kalman filter. Therefore, the full 

generative model of VKF contains two temporal chains (Fig 1), one for generating the mean and the other 

one for generating the variance. Although the inference is tractable within each chain, the combination 

of both chains makes the exact inference intractable. Therefore, we used structured variational 

techniques for making approximate inference, which isolates the tractable submodel as part of the 

variational maximization.  

The state-of-the-art algorithm for learning in volatile environments is HGF [8,18], which is a 

flexible filter which can be extended iteratively to hierarchies of arbitrary depth. The VKF has the same 

conditional dependencies as the HGF with two latent levels. There are, however, two critical differences 

between the VKF and the HGF. First, the generative process underlying the variance is different between 

the two models. The HGF assumes additive Gaussian diffusion at each level, transformed by an 

exponential to allow it to serve as a variance for the next level down. In contrast, the generative model of 

process variance in the VKF uses a form of multiplicative diffusion, which guarantees non-negativity. 

Secondly, these generative differences lead to algorithmic ones. Although both models conduct inference 

under a variational approximation, due to the nonlinearity in the HGF, it is not possible to analytically 

maximize the variational family, and additional approximations are required. As mentioned, the 

generative process of the VKF is tailored to permit exact maximization of the variational distribution. Thus 

altogether, the VKF trades away the more general generative structure that underlies the HGF, to achieve 

a simpler and more accurate approximation to a more specific (two latent chains) case. We compared the 

performance of VKF and HGF in predicting human choice data in a probabilistic learning task, similar to 

those tasks that have been modeled with HGF in the recent past [8]. Bayesian model comparison showed 

that the VKF predicts choice data better in the majority of participants.  

There is an additional difference between these models for binary outcomes, which results in a 

qualitative difference in the relationship of the volatility signal and learning rate (Fig 6). Consistent with 

classical Pearce-Hall models, surprising events increase learning rate in our model, a quality that is 

expected based on normative considerations [6] and empirical observations [6,32–34]. As we have shown 
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using simulation analyses, volatility and learning rate signals are negatively correlated for binary HGF, 

which is a consequence of using a Taylor approximation to account for binary data. We employed a 

different approximation strategy to account for binary outcomes, called moment matching, which 

preserves the positive relationship between volatility and learning rate. 

Recent work highlight the importance of uncertainty processing and its effects on learning rate 

for understanding a number of psychiatric disorders [33,34,43–45]. For example, Browning et al. [33] 

found that anxiety reduces people’s ability to adjust their learning rate according to volatility. In a recent 

study [34], we also found that in threatening contexts evoked by angry face images, socially anxious 

individuals show disruptions in benefiting from stability in the action-outcome contingency. Their dorsal 

anterior cingulate cortex, a region previously shown to reflect volatility estimates [6,32], also failed to 

reflect volatility in those contexts. This is because anxious individuals updated their expectations too 

rapidly in the stable conditions, possibly because they perceive any uncertainty as a signal of contingency 

change (i.e. volatility). Process-level models, such as VKF, can play important role in this line of research 

and we hope that this work be useful for quantifying critical computations underlying learning in the 

future. 

In the last decade, scholars in the field of computational psychiatry have started to map deficits 

in decision making to parameters of computational models. In fact, these parameters could serve as 

computationally-interpretable summary statistics of decision making and learning processes. Parameters 

of the VKF are also particularly useful for such a mapping. There are three parameters that influence 

different aspects of learning dynamics in the VKF. The volatility update parameter captures the degree 

that the individual updates its estimate of volatility. Given the generative model of the VKF, this parameter 

also determines the subjective feeling of noise at the volatility level. Another parameter of the VKF is the 

initial volatility, which influences the learning process on early trials. These two parameters have similar 

effects for linear and binary observations. For the binary VKF, there is another parameter that is only 

relevant to the inference model (not the generative process), 𝜔, which we called it the noise parameter. 

As shown in Fig 8, this parameter governs the scale of volatility and learning rate throughout the learning 

process. Notably, our simulation analyses showed that these parameters are fairly identifiable from choice 

data. 

In this study, we assumed that the observation noise in the generative process of the VKF is a free 

parameter, 𝜎; the HGF and traditional Kalman filters also have analogous parameters. In many situations, 

however, humans and other animals might have to learn the value of this noise. In particular, in addition 

to volatility, trial-by-trial estimation of this noise is relevant for optimal learning in situations in which 
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observation noise might dynamically change. Deriving an efficient inference model for simultaneous 

tracking of both signals is substantially more difficult due to dependencies arising between variables. Our 

generative model of the variance and the corresponding tractable inference can be helpful for that 

purpose, which should be further explored in future studies. 

The goal of the current study was to further process-level models of volatility by proposing a 

model that closely match optimal statistical inference, building on a number of studies that have been 

proposed in the past 15 years. Since exact inference is not possible, these studies have relied on different 

approximate inference approaches, such as sampling, Taylor approximation, variational inference or 

message-passing algorithms. Our approach for treatment of binary observations using moment matching 

is similar to the message-passing approach taken recently for studying dynamical systems [46,47]. We 

chose this approach rather than the Taylor approximation used previously [18] because it has been shown 

that methods based on moment matching perform better than derivative-based methods in 

approximating exact inference for binary Gaussian process models [48].  

An important concern about Bayesian process-level models is whether their computations are 

biologically plausible. Similar to any other model that extends the Kalman filter, normalization is required 

for computing the Kalman gain in the VKF. Furthermore, our model requires the squared prediction error 

for updating volatility. Although performing these computations might not be straightforward with 

current neural network models, they are not biologically implausible. Another crucial question is how 

these approximate Bayesian models could be realized at the mechanistic level [49]. Recently, 

metaplasticity has been proposed as a mechanistic principle for learning under uncertainty [9,12,50]. 

Metaplasticity allows synaptic states to change without substantial changes in synaptic efficacy [51] and 

therefore provides a mechanism for reinforcement learning under volatility [9].  

Bayesian models have recently been used for online inference of sudden changes in the 

environment [41,52]. Although those situations can be modeled with generative processes with discrete 

change-point detection, Behrens et al. [6] showed that models with volatility estimate might be as good 

as or even better than models with specific discrete change-points. Our simulations also showed that VKF 

can be successfully applied to those situations. In such situations, the volatility signal plays the role of a 

continuous change-point estimator, which substantially increases after a major change. This is because 

those sudden changes in the environments cause a large “unexpected uncertainty” signal [7,11], which 

substantially increases the volatility. 

In this article, we introduced a novel model for learning under uncertainty. The VKF is more 

accurate than existing models and explains human choice data better than alternatives. This work 
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provides new opportunities to characterize neural processes underlying decision making in uncertain 

environments in healthy and psychiatric conditions. 

Methods 

Simulation analysis for comparing VKF with benchmark 

We implemented particle filter models using MATLAB Control Systems Toolbox. The particle filter is a 

sequential Monte Carlo method, which draws samples (i.e. particles) from the generative process and 

sequentially updates them. We implemented this model separately for the linear and binary observations, 

with 10000 particles and generative parameters.  Note that for linear outcomes, inference on the lower 

level chain is analytically tractable given samples from the upper level chain. Therefore, we used RBPF 

[31] for the linear problem, which combines Monte Carlo sampling with analytical marginalization. We 

used Spearman rank correlation because signals were not normally distributed. 

Simulation analysis for comparing accuracy of VKF and HGF 

The generative model of the HGF with 2 levels is based on a probabilistic model with the same 

dependencies as those in our generative model (Fig 1). Under this generative model, 3 chains of random 

variables are hierarchically organized to generate observation, 𝑜𝑡: 

𝑥3
(𝑡)

~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑥3
(𝑡−1)

, 𝜈), 

𝑥2
(𝑡)

~𝑁𝑜𝑟𝑚𝑎𝑙(𝑥2
(𝑡−1)

, exp( 𝜅𝑥3
(𝑡)

+ 𝜔)), 

𝑥1
(𝑡)

~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑥2
(𝑡−1)

, 𝜎2), 

𝑜𝑡 = 𝑥1
(𝑡)

 

where 𝜈 > 0 is the variance at the third level, 𝜅 > 0 determines the extent to which the third level affects 

the second level, 𝜔 indicates the tonic level variance at the second level, and 𝜎 is the observation noise. 

For the simulation analysis of the accuracy VKF and HGF, we generated data according to the HGF 

generative model (with normal observations) according to these parameters: 𝜈 = 0.5, 𝜅 = 1, 𝜔 = −3, 

and 𝜎 = 1. The initial mean at the second and third levels were 0 and 1, respectively. We generated 1000 

time-series (100 trials) using these parameters. These parameters were also then used for inference based 

on the HGF algorithm. However, in 82 simulations, the HGF encountered numerical problems (negative 

posterior variance), because its inferred trajectory conflicted with the assumptions of the inference 

model.  For the remaining time-series, we also performed inference using an RBPF under the generative 

model of the HGF and the true parameters (10000 particles). The RBPF exploits the fact that inference on 
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the lower level chain (i.e. 𝑥2) is tractable given samples from the upper level. Specifically, this approach 

samples 𝑥3 and marginalizes out 𝑥2 using the Kalman filter. The relative error of the HGF with respect to 

RBPF was defined as 𝐸𝐻𝐺𝐹/𝐸𝑅𝐵𝑃𝐹−𝐻𝐺𝐹 − 1, in which 𝐸𝐻𝐺𝐹  and 𝐸𝑅𝐵𝑃𝐹−𝐻𝐺𝐹 are the median of absolute 

differences between the ground truth generated latent variable, 𝑥2, and the predictions of the HGF and 

the particle filter, respectively. A similar analysis was performed by generating 1000 time-series (100 

trials) using the generative model of the VKF with parameters 𝜆 = 0.15, 𝑣0 = 1, and 𝜎 = 1. We also 

performed inference using the RBPF based on VKF generative assumptions and the true parameters and 

computed the relative error for VKF, 𝐸𝑉𝐾𝐹/𝐸𝑅𝐵𝑃𝐹−𝑉𝐾𝐹 − 1. For both algorithms, we computed correlation 

coefficient between their estimated signals at both levels and those from the corresponding RBPF. To 

compute correlation coefficient across simulations, correlation coefficients were Fisher-transformed, 

averaged, and transformed back to correlation space by inverse Fisher transform [53,54]. 

For comparing accuracy of the VKF and HGF for binary observations, we generated 500 time-series 

in the probabilistic switching task with binary outcomes (Fig 2). Parameters of the HGF and VKF were fitted 

to these time-series using a maximum-a-posteriori procedure, in which the variance over all parameters 

was assumed to be 15.23. The prior mean for all parameters (except 𝜔 in HGF) was assumed to be 0. We 

followed the suggestions made by Mathys et al. [55] and assumed an upper bound of 1 for both ν and 𝜅. 

We particularly chose –1 as the initial prior mean for 𝜔 to ensure that the HGF is well defined at the prior 

mean. 

Recovery analysis of parameters 

For this analysis, data were generated based on the binary VKF (Equations 14-19). In particular, the 

observation on trial 𝑡, 𝑜𝑡, was randomly drawn based on the sigmoid-transformation of 𝑚𝑡−1. The choice 

data were also generated randomly by applying the softmax as the response model with parameter 𝛽. 

Similar to experiment 1, for each artificial subject, we assumed 4 sequences of observations and actions 

(i.e. 4 cues) with 120 trials. These values were used as the group parameters: 𝜆 = 0.2, 𝑣0 = 5, 𝜔 = 1, and 

𝛽 = 1. For generating synthetic datasets for simulations, the parameters of the group of subjects (50 

subjects) assigned to each model were drawn from a normal distribution with the standard deviation of 

0.5. 

Implementation of models for analysis of choice data 

We considered a 3-level (binary) HGF [18] for analysis of choice data, with parameters, 0 < 𝜈 < 1, 0 <

𝜅 < 1, and 𝜔. We also considered a constant parameter for 𝜔 at –4, as Iglesias et al. [8]. However, since 
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the original HGF with a free 𝜔 outperformed this model (using maximum-a-posteriori estimation and 

random effects model comparison [38,40]), we included the original HGF in the model comparison with 

binary VKF. Similar to the HGF toolbox, we assumed that the initial mean at the second and third levels 

are 0 and 1, respectively, and the initial variance of the second and third levels are 0.1 and 1, respectively. 

For implementing the binary VKF, we assumed an upper bound of 10 for the initial volatility parameter, 

𝑣0.  

Ethics statement 

All human subjects data used here are reanalyses of anonymized data from previously published studies. 

Data from human subjects in experiment 1 are from a study [36] that was approved by the local ethical 

committee (“Comissie Mensgebonden Onderzoek” Arnhem-Nijmegen, Netherlands). Data from human 

subjects in experiment 2 are reported by Jang et al. [42] and the study was approved by the Brown 

University Institutional Review Board. 

Experiment 1 

Each of the learning models was combined with a choice model to generate probabilistic predictions of 

choice data. Expected values were used to calculate the probability of actions, 𝑎1 (go response) and 𝑎2 

(no-go response), according to a sigmoid (softmax) function: 

𝑝𝑡(𝑎1) =
1

1 + 𝑒−𝛽𝑚̅𝑡(𝑠𝑡,𝑎1)−𝑏(𝑠𝑡)
 

𝑝𝑡(𝑎2) = 1 − 𝑝𝑡(𝑎1) 

where 𝑚̅𝑡 was equal to 𝑚𝑡 for the VKF, and it was equal to 2𝜎(𝜇̂1
𝑡 ) − 1 for the HGF (as implemented in 

the HGF toolbox). Moreover, 𝛽 is the decision noise parameter encoding the extent to which learned 

contingencies affect choice (constrained to be positive) and 𝑏(𝑠𝑡) is the bias towards 𝑎1 due to the 

stimulus presented independent from learned values. The bias is defined based on three free parameters, 

representing bias due to the emotional content (happy or angry), 𝑏𝑒, bias due to the anticipated outcome 

valence (reward or punishment) cued by the stimulus, 𝑏𝑣, and bias due to the interaction of emotional 

content and outcome, 𝑏𝑖. No constraint was assumed for the three bias parameters. For example, a 

positive value of 𝑏𝑒 represents tendencies towards a go response for happy stimuli and for avoiding a go 

response for angry stimuli (regardless of the expected values). Similarly, a positive value of 𝑏𝑣 represents 

a tendency towards a go-response for rewarding stimuli regardless of the expected value of the go 

response. Critically, we also considered the possibility of an interaction effect in bias encoded by 𝑏𝑖. 

Therefore, the bias, 𝑏(𝑠𝑡), for the happy and rewarding stimulus is 𝑏𝑒 + 𝑏𝑣 + 𝑏𝑖, the bias for the angry 
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and punishing stimulus is −𝑏𝑒 − 𝑏𝑣 + 𝑏𝑖, the bias for the happy and punishing stimulus is 𝑏𝑒 − 𝑏𝑣 − 𝑏𝑖 

and the bias for the angry and rewarding stimulus is −𝑏𝑒 + 𝑏𝑣 − 𝑏𝑖. 

Experiment 2 

This experiment was conducted by Jang et al. [42] to test the effects of computational signals governing 

reinforcement learning on episodic memory. The learning task consisted of 160 trials. On each trial, the 

trial value was first presented, followed by the image (from one of the animate or inanimate categories), 

response (play or pass) and the feedback. The feedback was contingent on the response made by the 

participant and given the probability of reward given the image category. Thus, if the participant chose 

play and the trial was rewarding, they were rewarded the amount shown as the trial value. If they chose 

to play and the trial was not rewarding, they lost 10 points. If the choice was pass, the participant did not 

earn any reward (i.e. 0 point), but was shown the hypothetical reward of choosing play. Data were 

collected using Amazon Mechanical Turk.  

For modeling choice data, the softmax function with parameter 𝛽 was used as the response model, in 

which the expected value of play was calculated based on the probability of reward estimated by the 

learning models and the value of trial shown at the beginning of each trial. The expected values were 

divided by 100 (the maximum trial value in the task) before being fed to the softmax to avoid numerical 

problems. 

Model fitting and comparison  

We used a hierarchical and Bayesian inference method, HBI [35], to fit models to choice data. The HBI 

performs concurrent model fitting and model comparison with the advantage that fits to individual 

subjects are constrained according to hierarchical priors based on the group-level statistics (i.e. empirical 

priors). Furthermore, the HBI takes a random effects approach to both parameter estimation and model 

comparison and calculates both the group-level statistics and model evidence of a model based on 

responsibility parameters (i.e. the posterior probability that the model explains each subject’s choice 

data). The HBI quantifies the protected exceedance probability and model frequency of each model, as 

well as the group-level mean parameters and corresponding hierarchical errors. This method fits 

parameters in the infinite real-space and transformed them to obtain actual parameters fed to the 

models. Appropriate transform functions were used for this purpose: the sigmoid function to transform 

parameters bounded in the unit range or with an upper bound and the exponential function to transform 
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parameters bounded to positive value. To ensure that the HGF is well defined at the initial prior mean of 

fitted parameters (i.e. zero), we assumed 𝜔 = 𝜔𝑓 − 1, where 𝜔𝑓 is the fitted parameter.  

The initial parameters of all models were obtained using maximum-a-posteriori procedure, in which the 

initial prior mean and variance for all parameters were assumed to be 0 and 6.25, respectively. This initial 

variance is chosen to ensure that the parameters could vary in a wide range with no substantial effect of 

prior. These parameters were then used to initialize the HBI. The HBI algorithm is available online at 

https://github.com/payampiray/cbm.  

Supporting information 

S1 Text. Supplementary results. 

S1 Appendix. Formal treatment of the VKF model. 
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