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Abstract. Monge matrices and their permuted versions known as pre-
Monge matrices naturally appear in many domains across science and
engineering. While the rich structural properties of such matrices have
long been leveraged for algorithmic purposes, little is known about their
impact on statistical estimation. In this work, we propose to view this
structure as a shape constraint and study the problem of estimating a
Monge matrix subject to additive random noise. More specifically, we
establish the minimax rates of estimation of Monge and pre-Monge ma-
trices. In the case of pre-Monge matrices, the minimax-optimal least-
squares estimator is not efficiently computable, and we propose two
efficient estimators and establish their rates of convergence. Our theo-
retical findings are supported by numerical experiments.

1. INTRODUCTION

A matrix § € R™*"2 is called a Monge matriz [38] or a submodular matriz [57], if
Gi,j+9k,g§9i,g+9k7j, forall 1 <i¢<k<n;, 1<j5<¥l<ns. (1.1)

In addition, a matrix 8 € R™*"™2 ig called an anti-Monge matriz or a supermodular matriz if
—0 is a Monge matrix. The Monge property dates back to Gaspard Monge’s work on optimal
transport [51]. Since then, it has been widely used and studied in optimization, discrete mathematics
and computer science [1,8,11,13,38,60] as it allows for simple and fast algorithms in a variety of
instances [9,11,38,55,56].

Many of these problems turn out to be invariant under relabeling of the rows and columns of the
Monge matrix. Consequently, we introduce the following definition. A matrix 8 € R™*™2 is called
pre-Monge if there exist permutations 7y : [n1] — [n1] and 72 : [ng] — [ng] such that the matrix
O(71,m2) defined by

9(71‘1,7[‘2)1” = 0(7T1(i),7‘(‘2(j)), for all (Z,j) S [nl] X [ng],

is Monge. Note that the terminology permuted Monge has also been used to define the same ob-
ject [11]. A pre-anti-Monge matrix is defined analogously. Like Monge matrices, pre-Monge matrices
have also been studied in the context of optimization [10, 14] where the latent permutation yields
new computational challenges. For example, even checking that a matrix is pre-Monge is a nontrivial
algorithmic task [22,45].

However, previous work on pre-Monge matrices has focused on the noiseless setting and algo-
rithms typically fail when the pre-Monge matrix is contaminated by random noise. This motivates
us to take a statistical approach and study estimation of a pre-Monge matrix under random noise.
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1.1 Geometric interpretation and spectral ordering.

The Monge property has strong ties with geometric properties of certain datasets, starting with
the seminal work of Monge on optimal transport [51]. In this subsection, we demonstrate how the
Monge property arises in the context of seriation [3,30-32,43,44] where the goal is to recover the
latent ordering of objects based on pairwise distances or inner products.

Let X € R™? be a data matrix with rows xiﬂ e ,xz € R?. Moreover, suppose that for all
i,7 € [n — 1], we have that (z;4+1 — xi)T(xjH — x;) > 0. In other words, the differences between
consecutive points form an acute angle so that the points z1, ..., z,, may be ordered along a common
direction. In this case, it is easy to check that the Gram matrix § = XX " is an anti-Monge matrix,
and the distance matrix D, defined by D;; = ||z; — z;||3 for 4,7 € [n], is a Monge matrix.

Suppose that we do not know the order of the points, or equivalently, we observe T (1), ..., Zzr(n),
where there is an unknown permutation 7 : [n] — [n]. How can we reorder the points in order
to recover the above geometric structure (i.e. so that the differences between consecutive points
form an acute angle)? Intuitively, assuming that such a reordering exists suggests that the n points
should approximately lie along a hidden direction. Therefore, we can apply principal component
analysis as follows. Let us assume without loss of generality that the points are centered so that
> iy w; =0 and thus 372, 6;; = >7"_, 0; j = 0. Then the leading right singular vector of X gives
the hidden direction, and the leading left singular vector v of X, i.e., the leading eigenvector of
the Gram matrix 6 is the first principal component of the data points. The entries of v then give a
one-dimensional embedding of the points, from which we easily recover the original order.

Indeed, this intuition can be made rigorous using Corollary 2.6 of [28], which is a variant of the
Perron-Frobenius theorem and states that the leading eigenvector of a doubly centered anti-Monge
matrix (i.e. having row and column sums equal to zero) is monotone. Hence the leading eigenvector
v of the Gram matrix 6 is monotone. If the unknown permutation 7 relabels the points, then the
leading eigenvector of the Gram matrix becomes vy, defined by (vr); = vy(;). As a result, sorting
the entries of v; recovers the permutation 7 and, therefore, the latent order of the points. The
above method for spectral ordering is similar to the one for seriation proposed in [3].

1.2 Our contribution

In this work, we study the estimation of pre-(anti-)Monge matrices under additive sub-Gaussian
noise. Statistically, we establish the minimax rates of estimation (up to logarithmic factors) for
both Monge and pre-Monge matrices in Sections 2 and 3.1 respectively, where the upper bounds
are achieved by the least-squares estimators.

Algorithmically, for estimating pre-Monge matrices, we further introduce two efficient estimators
and study their rates of convergence. The Variance Sorting estimator introduced in Section 3.2,
as the name suggests, employs second-order information to estimate the latent permutation. In
Section 3.3, we study the singular value thresholding estimator based on our result (Proposition 6)
on the approximation of pre-Monge matrices by low-rank ones.

Furthermore, we provide various numerical experiments in Section 4 to corroborate the theo-
retically established rates of estimation. Using Dykstra’s projection algorithm, we give a detailed
implementation of the least-squares estimator for (anti-)Monge matrices, which is of practical in-
terest.

The proofs of all theorems and auxiliary lemmas can be found in Section 5.

1.3 Related work

This work connects to several lines of research that are described below.
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Total positivity. The Monge property is closely related to the notion of total positivity [41]. An
entrywise positive matrix § € R™*"2 is called totally positive (of order 2), if

0; 0k > 0;00r;, foralll<i<k<ng, 1<j5</0<ny.

Therefore, an entrywise positive matrix 6 is totally positive if and only if log(6) is anti-Monge,
where log(+) is applied to each entry of € individually. As a result, total positivity is also known
as log-supermodularity. Total positivity plays an essential role in statistical physics via the FKG
inequality [33] and appears frequently in many other areas of probability and statistics [41, 42].
More recently, there have been new developments in studying totally positive distributions and
related estimation problems [26,47,58]. In a companion paper [39], we study minimax estimation
of a totally positive distribution by employing mathematical tools that are closely related to those
in the current paper.

Latent permutation learning. Estimating a pre-Monge matrix from its noisy version falls into
the category of matrix learning with latent permutations, which has recently observed a surge of
interest. Models involving latent permutations include noisy sorting [7], the strong stochastic tran-
sitivity model [17,62], feature matching [20], crowd labeling [64], statistical seriation [30] and graph
matching [24,48], to name a few. Many of the previous approaches for learning latent permutations
under such models are based on sorting row or column sums of the observed matrix (or equivalently,
degrees of vertices) [19,54,63] or certain refinements [49, 50]. However, since adding a constant to
all entries in a row or column of a Monge matrix does not change its Monge property, first-order
information such as row sums is uninformative for the Monge structure, and thus cannot be used
to identify the latent permutation. Instead, we propose a new algorithm based on variance sorting.
We show in Section 3.2 that this novel use of second order information is decisive when estimating
pre-Monge matrices.

Graphon estimation. Another related, substantial body of literature is that on graphon estima-
tion [5,15,34,70], where the goal is to estimate a bivariate function f : [0,1]? — R from samples
{f(Xi,Y;):1<i<mng, 1< j <ng}. Unlike regression, the design points (X;,Y;) are not observed
in graphon estimation, so the observations can be viewed as an n; X ng matrix with latent permu-
tations acting on its rows and columns. There have been extensive studies on graphon estimation
with various structures, including block models [2], smoothness [46] and low-rank structure [61].
While our setup is not about recovering an underlying function f, the current work can be viewed
as a study of denoising observations in graphon estimation with the Monge structure.

Shape-constrained estimation. Estimation of a Monge matrix, which we study in Section 2, falls
in the scope of shape-constrained estimation. Closest to the present work is the estimation of
a bivariate isotonic matrix under Gaussian noise [18]. In fact, every anti-Monge matrix can be
written as the sum of a rank-two matrix and a bivariate isotonic matrix (Lemma 7). However,
our results suggest that the set of Monge matrices is in fact qualitatively different from the set of
bivariate isotonic matrices. Particularly, the minimax rate of estimation in Theorem 1 is different
from that given by Theorem 2.1 of [18], and the low-rank approximation rate in Proposition 6 is
different from that given by Lemma 4 of [62].

Shortly before completing the current work, we became aware of a concurrent work by Fang,
Guntuboyina and Sen [27] that studies multivariate extensions of isotonic regression. The two-
dimensional version almost coincides with the anti-Monge structure (without permutations) that
we study, and the rate achieved by the least-squares estimator specialized to dimension two, as
expected, coincides with the main term of the rate given by Theorem 1 in our current paper.
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However, it is worth noting that the two proofs follow drastically different paths. While the proof
in [27] relies on metric entropy estimates from [4,35], our proof is based on spectral decomposition
of the difference operator D defined in (2.2), a technique which has been used for example to study
the performance of total variation regularization [40, 69]. Moreover, assuming n = nj = ng, our
upper bound given in Theorem 1 contains a log factor of order log(n), while the one in Theorem 4.1
of [27] potentially scales like log(n)3, a minor improvement which nonetheless shows the potential
merits of our proof technique.

Notation. For a positive integer n, let [n] = {1,2,...,n}. For a finite set S, we use |S| to denote its
cardinality. For two sequences {a,}>2; and {b,}°2 of real numbers, we write a,, < by, if there is a
universal constant C' such that a,, < Cb, for all n > 1. The relation a,, 2 b, is defined analogously.
We use ¢ and C (possibly with subscripts) to denote universal constants that may change from line
to line. Let A and V denote the min and the max operators between two real numbers respectively.
Given a matrix M € R™*"2 we denote its i-th row by M; . and its j-th column by M. ;. We denote
by ||M||r and ||M|| the Frobenius norm and the operator norm of M, and by |[[M]||; and || M|~
the ¢! and ¢>®-norm of M when viewed as a vector in R™"2, respectively. We write M for the
Moore-Penrose pseudoinverse of M. Finally, let S,, denote the set of permutations 7 : [n] — [n].

2. ANTI-MONGE MATRIX ESTIMATION

We start with estimation of a Monge matrix under sub-Gaussian noise, without latent permuta-
tions. It is mathematically equivalent to study estimation of an anti-Monge matrix 6* € R™*"2
which we find more convenient for the presentation. Throughout this work, without loss of gener-
ality, we also assume that ny > no.

Consider the difference operator D € R(™ 1™ defined by

~1 1 0 0 0
0 -1 1 0 0

D= _ : (2.2)
0 0 0 ~1 1

and we define D € R(™~1)*"2 in the same way.
Using a telescoping sum argument, it is easy to check that the set of anti-Monge matrices 6 such
that —@ satisfies (1.1) can be expressed as

M= M""2 = {9 € R™*™ : DD > 0},

where the symbol > denotes entrywise inequality.
For each § € M, we define the quantity

V(0) := 011+ Opyny — Ony1 — 01y = |DODT |1, (2.3)

where the last equality follows from a telescoping sum. We remark that V() is a global seminorm
of 8, and turns out to play a role in the rate of estimation.

In this work, we consider additive sub-Gaussian noise. Namely, for a zero-mean random matrix
e € R™*™  we say that ¢ is sub-Gaussian with variance proxy o2, or simply & ~ subGy, xn, (c2), if
for any matrix M € R™*"2 it holds that

Elexp(Tr(M "¢)] < exp(o?|| M||}/2).
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Suppose that we observe
y=0"+¢,

where & ~ subGy,, xn, (02). We study the performance of the least-squares estimator

0's := argmin ||0 — y||%, (2.4)
feM
in terms of the mean squared error
1 .
6 —0%|%.
—— -0}

Our upper bound is stated in the following theorem.

THEOREM 1. Let 8% € M™™2 be an anti-Monge matriz, and suppose that we observe y = 0*+¢
where € ~ subGy,, xn, (02). Then, the least-squares estimator 0' achieves the rate

1
ning

. . 0.2 0'2V o* 2/3
185~ 01 5 | 7 (T ) gt gt 02

nino

with probability at least 1 — exp(—ny). Moreover, the same bound holds in expectation.

Assuming Gaussian noise, the following theorem provides a lower bound that matches the above
upper bound up to a logarithmic factor. For Vj > 0, let us define

Myy = Mp"™ = {0 € M™ ™ . V(0) < Vp}.

ny,n2

THEOREM 2. Consider the model y = 0% + €, where 6" € My " and € has i.i.d. N(0,0?%)
entries. For any Vo > 0, it holds that

1 - 2 277\ 2/3
inf sup E —HQ—Q*H%} 2 [i + <U O> } Ao?,
0 0*eMy, ninz n2 ning

where the infimum is taken over all estimators measurable with respect to the observation y.

3. PRE-ANTI-MONGE MATRIX ESTIMATION

In this section, we move on to study the estimation of a pre-anti-Monge matrix, that is, an anti-
Monge matrix whose rows and columns have been shuffled by latent permutations. Let S,, denote the
set of permutations 7 : [n] — [n]. For any matrix # € R™*"2 and permutations m € Sy, T2 € Sp,,
recall that 6(m, m2) denotes the matrix defined by 6(m1,m2); ; = 0(m1(3), m2(j)). Define the sets

M(my,me) :={0(m,m2) : 0 € M} and My, (71, m2) = {0(m1,m2) : 0 € My,}

of anti-Monge matrices shuffled by fixed permutations.
Suppose that we observe

y=0"(m1,m) +¢, (3.5)
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where (75, 75,0%) € Spy X Spy X M and € ~ subGy, s, (02). Our goal is to estimate the pre-anti-
Monge matrix 0* (7}, 75).

If two rows (or columns) of #* differ by a constant vector, then the matrix we obtain from
switching these two rows is still anti-Monge. Therefore, even if the noise ¢ is zero, neither the
pair of permutations (7}, 73) nor the matrix 6* can be inferred from y. As a result, measures of
permutation and estimation errors such as ||0* (71, 72) — 6* (7%, 75)|| r and ||@ — 0*|| , may be not be
pertinent. This is why, instead of studying identifiability of the permutations and the anti-Monge
matrix, we focus on the denoising error

16 — 6" (x5, 75) |

for any estimator 6 of the pre-anti-Monge matrix.
Depending on the application, it might be important to differentiate between proper and improper
estimators 6. In this context, a proper estimator is an estimator

feM:= U M(my,m2),
T1ESn, , T2ESn,

that is, an estimator that needs to be a pre-anti-Monge matrix itself. By contrast, an improper
estimator can be any matrix 6 € Rmxm2,

The rest of this section is organized as follows. We first establish the minimax rate for estimating
a pre-anti-Monge matrix in Section 3.1. It is achieved by the global least-squares estimator, which
is proper by nature, but is likely to be computationally infeasible. Next, we give a computationally
feasible proper estimator in Section 3.2 under additional assumptions. Finally, in Section 3.3, we
present another computationally feasible estimator based on singular value thresholding that yields
a better rate than the one in Section 3.2, but may be improper. This presents a shortcoming if one
wants to leverage the Monge structure for downstream numerical computations.

3.1 Minimax rates of estimation

We work under the technical assumption that * € My, where Vj is known. Define
My, = M0 {0 € R"™ : V(9) < Vo).

Our upper bound is achieved (up to a logarithmic factor) by the global least-squares estimator over
the entire parameter space

08" € argmin || — y|%. (3.6)
QGMVO

If the minimizer is not unique, an arbitrary one is chosen.

THEOREM 3.  Suppose that we have y = 0*(r},m3) + €, where 6* € My}™ and e ~ subG(a?).
Then the global least-squares estimator (3.6) achieves the rate

1

n1N9

. 2] 2 2/3
108 — 0= (s, 5% < [” "g(””+(” VO) log(n1)"/3 log(na)’*| A o2
n9 ning

with probability at least 1 —ny ™. Moreover, the same bound holds in expectation.
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Note that this rate is the same (up to a logarithmic factor in the first term) as that for estimating
an anti-Monge matrix without latent permutations in view of Theorem 1. Therefore, the lower
bound of Theorem 2 for the smaller class implies minimax optimality of the above upper bound
(up to a logarithmic factor).

We conjecture that a similar bound holds true for a version of the least-squares estimator where
the projection onto My is replaced by the unrestricted version M, but our current proof technique
does not allow us to conclude this.

3.2 Efficient estimation via variance sorting

While the global least-squares estimator retains the minimax rate even in the presence of latent
permutations, solving the optimization problem (3.6) is unlikely to be computationally efficient.
Thus we now discuss polynomial-time estimators. In this subsection, we assume that the noise
matrix € is homoscedastic with independent sub-Gaussian entries, i.e.,

gij ~subG(Co?) and Var[g; ] = o°.

As in the previous section, the estimator is based on projecting a permuted version of the
observations onto My, but we use an efficient method to find estimators of the permutations with
respect to which we project on. Let us first focus on estimating the row permutation 7. Since
adding a constant to all entries in a row of the underlying matrix does not change its anti-Monge
property, there is no first-order information that helps distinguish between the rows of y. Instead,
we exploit second-order information, namely, the variance of row differences of y.

The intuition behind the following algorithm is that if we knew the index 7, *(1) corresponding
to the first row of #*, the anti-Monge property would imply that the variances between any other
row i € [n1] and row 1 in the unpermuted matrix 6%,

no 1 no 2
* * * *
E ik 91,k - E ( il 91,4) )
ng
k=1 /=1

are monotonically increasing in i. Hence, given 71(1), we could estimate these variances and sort
the rows accordingly. The precise method is given in the following Variance Sorting Subroutine.

Algorithm 1 Variance Sorting

1. For each pair of rows (¢, ) of y, compute the variance of their difference

n2 n2

. 1 2
{NEDY [yi,k — Yk —— > (Yie — yj,e)] , (3.7)
k=1 n2 =1
and define
(i0,Jo) = argmax  &(i,7). (3-8)

(i,4)€[n1]?,i<j

2. Define 711 € Syn, so that {€(io, 77" (4))}/2, is nondecreasing in i. In particular, we can pick 71(1) = 4o and
7A1'1 (’I’Ll) = jo.

Note that in Algorithm 1, the pair (ig,jo) is an estimator for the extremal rows 7, *(1) and
71 1 (n1), but the choice of which index corresponds to 77 (1) is broken arbitrarily by the constraint
10 < jo. In turn, the resulting estimator ; can only be reliable up to a global flip of the coordinates.
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In order to obtain denoising rates, this indeterminacy can be overcome by projecting y onto the set
of anti-Monge matrices under both possible orientations and picking the best fit.

To facilitate our presentation, we define the reversal permutation 7} € S, by 7{(i) =n; —i+1
for i € [n1], and define similarly 7§ € Sy, by 75(i) = na —i + 1 for ¢ € [ng]. In short, Algorithm 2
below applies the Variance Sorting subroutine twice to estimate both row and column permutations,
and then estimates 6 by the (computationally efficient) least-squares estimator in the convex set of
anti-Monge matrices along these estimated permutations.

Algorithm 2 Main Algorithm

1. Find 7; using the Variance Sorting subroutine, Algorithm 1.

2. With y replaced by vy and the roles of indices 1 and 2 switched, find 72 using the Variance Sorting subroutine,
Algorithm 1.

3. Compute the least-squares estimator 0 as follows. If

gél}\}lvu 10(71, 72) — yl|7 < eg}\;lao [10(r} 0 71, 72) — yll7,

then we define 7} := #1. Otherwise, we define 7] := 7} o #;. Finally, we set

6:= argmin [|6—y%.
6 My (74 ,72)

Note that we only allowed a potential flip 7] for 71, although there is also such an ambiguity for
9. This suffices because if § € My, then 0(n], 7h) € My,, and as a result

My, (71, T2) U My, (7] 0 71, 7ra)
= Mvo(ﬁ'l,fQ) UMVO(WE o ﬁl,ﬁz) U MVO<ﬁ1,F5 o) U MVO(WE o 7AT1,7T5 0 7).
The estimator computed by the Main Algorithm achieves the following rate of estimation.

THEOREM 4. Suppose that y = 0*(ny,75) + €, where 6% € M%’m and € has independent

subG(Co?) entries with variance 0. Let the estimator 0 be given by the Main Algorithm. Then it
holds with probability at least 1 —ni "™ that

1

nin2

log n1>1/2.

16— " (w7} S (0 + V) (22

Moreover, the same bound holds in expectation.

This rate achieved by our efficient estimator is consistent, but it is suboptimal in view of the
minimax rate given by Theorem 3.

3.3 Denoising via singular value thresholding

While the Variance Sorting algorithm above yields efficient estimators of the latent permutations,
the rate of convergence it achieves is suboptimal. We now aim for the easier task of denoising
the pre-anti-Monge matrix without learning the latent permutations, in the hope of obtaining an
efficient estimator with a faster rate of convergence. More precisely, under model (3.5), we look for

a possibly improper estimator 6 € R™*"2 so that Hé — 0*(mg, 7r§)H2F is small.
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To this end, we consider the well-studied singular value thresholding (SVT) estimator [17, 36].
Let the singular value decomposition of y be

n2

+

Y= E Aiuv;
i=1

Then the SVT (hard-thresholding) estimator is defined as

n2

éSVt = Z ]l{)\i > p}/\iuiv;, (3.9)
=1

where we choose the threshold to be p := Co/n1 for a sufficiently large constant C' > 0. The rate
of estimation achieved by the SVT estimator is given in the following theorem.

THEOREM 5. Suppose that we have y = 0*(w},73) + &, where 0% € M™"2 and & ~ subG(c?).
The singular value thresholding estimator 65Vt achieves the rate

. 2 3/217(p*\1/2
Ly el < [" ”V(“]

o 3/4
ning nd

n
2 2

with probability at least 1 — exp(—ny). Moreover, the same bound holds in expectation.

This rate sits between the minimax rate given by Theorem 3, and the rate for the Variance Sorting
estimator given by Theorem 4. Note that for this result, the noise € needs not be homoscedastic,
and moreover, no knowledge of Vj is required, i.e., the SVT estimator adapts to the quantity V (6*).

The proof technique leading to upper bounds for the SVT estimator is well developed [17, 62].
Our contribution mainly lies in the following low-rank approximation result for an anti-Monge
matrix, which is of independent interest.

PROPOSITION 6.  For any 8 € M"™"2 and positive integer r, there exists a rank-(3r +3) matriz

6 € R">"2 sych that
ning

16— 6lF < 2= 5=V (9)*.

r3
Note that using a similar proof, the same rate as in Theorem 5 can be obtained for a soft-
thresholding estimator as well, that is, for

n2
gsoft .— Z (()\Z —p)V O)uw;,
i=1
with a similar scaling for p.

As the rate given in Theorem 5 does not match the minimax rate, it is natural to ask whether this
suboptimality is an artifact of the proof or a true weakness of the SVT estimator. In Appendix B,
we present a worst-case anti-Monge matrix which cannot be approximated by any low-rank matrix
at a rate better than that given by Proposition 6. This in turn gives evidence that the rate of
convergence for the SVT estimator in Theorem 5 might be the best achievable by this method.
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4. NUMERICAL EXPERIMENTS

In order to compare our theoretical guarantees with the empirical performance of the proposed
estimators, we conducted experiments on synthetic data, using Dykstra’s algorithm to project onto
the cone of anti-Monge matrices.

We first present this projection algorithm in Section 4.1. We then show the experimental results
of the projection onto the cone of anti-Monge matrices in Section 4.2 and of the two efficient
strategies for denoising pre-anti-Monge matrices in Section 4.3.

4.1 Dykstra’s algorithm for projecting onto the set of anti-Monge matrices

Since the set M is a convex cone specified by O(ning) constraints, the least-squares estimator
(2.4) can be calculated by a general purpose convex optimization software such as SCS [52, 53]
or EOCS [25]. The most computationally intensive subroutine of these methods is usually solving
linear systems associated with the constraints specifying M. Using direct methods to find these
solutions results in a runtime that scales like (n1n2)3, rendering calculations relatively slow even for
moderate values of n1 and ns. Hence, we chose to implement a specialized algorithm to calculate 8
based on Dykstra’s projection algorithm [6,21].

In its general form (see Algorithm 3), this algorithm is designed to calculate the projection of
a vector y € R? onto the intersection of m convex sets My, ..., M,, by iteratively projecting
carefully chosen points to each individual set. This is similar to alternate projections of a point to
each of the sets My, ..., M,,, but when initialized with y € R¢, Dykstra’s algorithm not only finds
a point in the intersection () iclm] M, but its iterates actually converge to the projection of y onto

Njem M-

Algorithm 3 Dykstra's algorithm

Input: y € R?, the point to project; M, ..., My, a collection of cones
Output: 6, an approximation to the projection of y onto M1 N---NM,,
function PROJECTDYKSTRA(y)

fori=1,...,mdo
pi = 04 > Initialize residuals
end for
Om =1y > Initialize iterates
while not converged do
fori=1,...,m do
0i < T, (Oi—2)%m+1 + Pi) > Project shifted iterates
Di < Oi—2)%m+1 +pi — 0; > Compute new residual
end for
end while
return 6

end function

To apply Dysktra’s algorithm to the problem of projecting onto the cone of anti-Monge matrices,
note that we can write M = ("2 722! M,, 4, with

i1=1 io=1

Mihiz = {0 e R™"™ Z (_1)j1+j20i1+j1,i2+j2 > O}’
j1€{071}7j2€{071}

because a matrix is anti-Monge if and only if each contiguous 2 x 2 submatrix is anti-Monge. The



ESTIMATION OF MONGE MATRICES 11

projection of y onto M;, ;, can be explicitly calculated to be the matrix with entries

[HMHJQ (y)] 1147102472
(_1)j1+j2
= Yir+j1,ia+j2 T 4 max — Z
k1€{0,1}, kac{0,1}

ki1+k
(_1) ! 2yi1+k17i2+k2’0

for j1,j2 € {0,1}, and
[HMil,iQ (y)]fth = y£1 ,327

i (01, 05) ¢ (i + {0,1}) x (i + {0, 1}).
This leads to Algorithm 4 for projecting a matrix y € R™*"2 onto M.

Algorithm 4 Fast Projection onto M

Input: y € R"*"2
Output: 6 ~ ITrm(y)
function PROJETANTIMONGE(y)

N+ 0 € RMm—bx(z—1) > Initialize residuals
0« v, > Initialize iterates
while not converged do
foriis =1,...,nm1—1,i2=1,...,n2 — 1 do
7 <— max{ — Zjle{o’l}dée{o’l}(—1)j1+j201'1+j1,7;2+j2/4 + 771'1,1'2,0} > Compute new residuals

for j; € {0,1}, j2 € {0,1} do

Oir 151 sin+io 4 Oir i sintin + (=12 (5 — miy i) > Project shifted iterates
end for
Niy,iaz € 7] > Store residuals
end for
end while
return 6

end function

The rate of convergence of Dykstra’s method can be shown to be linearly exponential in the
iterations [23], that is, if we denote by ) the kth iterate of 6 in Algorithm 4 and by 8* = IT((y),
then |0 —0*||5 < ¥ for a constant ¢ < 1. However, note that the constant ¢ may get closer to one
with increasing nj and ng, which is the case for isotonic regression as shown in [23] and matches
our experience: simulations for larger values of ny and no require more iterates before convergence.

In practice, convergence in Algorithm 4 can be checked by evaluating a measure of feasibility
such as ||DOD || s, or by checking when the distance between two successive iterates is small.

4.2 Experiments for anti-Monge matrices

In the following two sections, we assume n = ny = no for simplicity.

For the estimation of anti-Monge matrices, we consider the following family of ground truth
signals, motivated by the construction of the lower bounds in the proof of Theorem 2. First, for
n € Nand V,o > 0, define 0; ,,) € R"*" as

= | ) | ST

| icmlicm,
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where k = (Vn/o)'/3. The ground truth 07 (n) is obtained by centering 0, (,,) to have zero column

and row sums. Finally, we set y = 6] n) T € where €; ; id N(0,0) and report the average denoising

error |0 — Gi(n)H%/nQ over 20 repetitions.

Our simulations recover the three regimes for n that appear in Theorem 1, although at different
signal-to-noise ratios governed by V/o. Namely, on the one hand, for V.= o = 1, we see in
Figure 1(a) an error decay of n= 192 ~ n=! for n between 10 and 160, obtained by linearly regressing
the logarithm of the errors onto the logarithm of the n values. On the other hand, for V = 2-10°,
we can see both a plateau when the trivial o2 error bound in Theorem 1 is active, as well as a decay
of n=13% ~ n=4/3 at the beginning of the decay becoming effective, where the slope in the doubly
logarithmic plot is read off between two consecutive points as indicated in Figure 1(b).

Similarly, fixing n = 200, ¢ = 1, and varying V between 1072 and 107, we can observe a
V0-65 ~ V2/3 scaling in Figure 2(a). The overall curve is shallower, plateauing both at the far low
and high end of V, corresponding to the 0?/n and o2 rates becoming active, respectively.

Finally, in Figure 2(b), when setting n = 300, V = 1, and varying ¢ between 10~7 and 1, we
obtain slopes of 020! and ¢!#* on the low and high end, while the lowest slope between consecutive
points in the curve is o'3*, which matches the theoretical rates of o2, ¢2/n and (Vo2/n?)?/3,
respectively.

4.3 Experiments for pre-anti-Monge matrices

To illustrate the practical performance of the efficient methods presented for denoising a pre-anti-
Monge matrix, Variance Sorting and singular value thresholding (see Sections 3.2 and 3.3 respec-
tively), we further perform experiments by using both methods on the following family of ground
truth matrices:

Vv
05 () = mD*(DT)T.
These were chosen because the singular value decay we proved in Proposition 6 is tight for these
matrices (see Lemma 23). By contrast, each ground truth example in the previous subsection,
Hi(n), is a rank-one matrix, and hence should lead to an overall better performance of singular
value thresholding that is independent of n.
For the Variance Sorting algorithm, we set V' = 1, ¢ = 0.5 and report the approximation error

induced by the estimated permutations, i.e.,

1
min  — ||§* (w1 0 71, M 0 ) — 6|2
wle{id,w;}’rﬂ” (1 0 1, © 72) |7
ma€e{id,m5}

for 6" = 057@), averaged over 256 repetitions. This measure of the approximation quality of the
estimated permutations corresponds to the upper bound used in the proof of Proposition 14 (see
(5.34)) and is applicable since by construction, #* has row and column sums equal to zero. It is the
dominating part in the error analysis, leading to the rate reported in Theorem 4, and it allows us
to study a larger range of n, avoiding the need for subsequent projection of the permuted y matrix.

In Figure 3(a), we observe that while for smaller n, we see a slower decay than predicted, for
larger n, the decay scales like n=047 ~ n~1/2, close to the predicted rate.

Finally, we perform singular value thresholding on the same set of ground truth matrices, this
time setting V' =1, 0 = 0.1, and varying n between 20 and 500. For this experiment, in Figure 3(b),
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we plotted the full denoising error,
1 .
16 — o* 2 7
16— 03

averaged over 64 repetitions. As in the other experiments, we can see an error decay that is close
to our theoretical guarantees, that is, n=97 ~ n=3/4,

Projection onto anti-Monge matrices Projection onto anti-Monge matrices
V=1, 0=1, varying n V=2000000, c=1, varying n
3e-01
. —e— simulation, V=1, =1 1004
2e-01 —-== regression, slope = -1.02
= 1071 %
< <
ok ot
= =
Q|> 6e-02 o 901 slope = -1.34
|
‘D 4e-02 @
3e-02
2e-02
10t 20 30 40 60 10° 400 500 600 700
n n
(a) n~! scaling (b) n=%/3 scaling

Figure 1: Varying n for projection onto M. When an arrow is present, “slope” indicates the slope
between two consecutive points.

Projection onto anti-Monge matrices Projection onto anti-Monge matrices
n=200, c=1, varying V V=1, n=300, varying o
10°4 slope = 1.84
1073 4
slope = 0.65
10—5 4
o~ o~
S N
ol Q10774
© 10714 S
I | 107°+
) «©
- - slope = 1.34
10711_
10713.
10-24 slope = 2.01
107! 10t 103 10° 107 1077 107 10=> 107* 1073 1072 107! 10°
4 o
(a) Scaling with respect to V (b) Scaling with respect to o

Figure 2: Varying o, and V individually for projection onto M. When an arrow is present, “slope”
indicates the slope between two consecutive points.
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Approximation error using variance sorting Denoising error using SVT
V=1, 0=0.5, varying n V=1, 0=0.1, varying n

L —— Vv=1,0=01
(\E_ 2e-02 —== regression, slope = -0.73
% o~

EY <

| e
(’@ ;:4 10-34

o -~

~ N

lk. ”&—

N

q;{ %&D

"y |

R -24 ©

el 10 slope = -0.56 2

S &
=

Eg

10? 10° 102
n n
(a) Variance sorting (b) Singular value thresholding

Figure 3: Algorithms for denoising pre-anti-Monge matrix. When an arrow is present, “slope” in-
dicates the slope between two consecutive points.

5. PROOFS

In this section, we provide the proofs of our results. Recall that D is defined in (2.2) and D is
defined analogously for dimension no. In the sequel, whenever we introduce notation in dimension
n1, the analogous object in dimension ny is denoted by the same symbol with a tilde.

5.1 A structural lemma

To gain insight into the set of anti-Monge matrices, we first state and prove the following struc-
tural lemma, which says that any anti-Monge matrix can be written as the sum of a constant-row
matrix, a constant-column matrix, and an anti-Monge, bivariate isotonic matrix. Several structural
decompositions of this type are known, e.g., Lemma 2.1 of [11] and Lemma 2.5 of [29]. Our lemma
is stated in a form that is convenient for application, and we provide a self-contained proof which
also facilitates understanding the structure of an anti-Monge matrix.

LEMMA 7. For each 0 € M™™2 there exists a unique triple (R, S, B) of matrices in R"*"2
such that

o = R+ S+ B;
e RDT =0 and DS =0, i.e., R has constant rows and S has constant columns;
® 51 = Bi,l = Blyj =0 fOTi c [m], j S [ng]

Moreover, we have that

e B is anti-Monge;

e B is bivariate isotonic, i.e., B has nondecreasing rows and colummns;
o max{||Rl|oc; [[S]loc; |1 Blloc} < 4[|0]oo;

® [[Blloc = Bnymy = V(6).

PRrROOF. By the condition S;; = B;; = 0 for i € [n;], the first column of R is equal to that of
0. Since R has constant rows, it is uniquely defined by R = #.117 where 1 denotes the all-ones
vector in R"2. Moreover, by the condition By ; = 0 for j € [no], the first row of S is equal to that
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of § — R. Since S has constant columns, it is uniquely defined by S = 1(f — R);,. where 1 denotes
the all-ones vector in R™. Finally, define B =60 — R — 5. .
Since DS = RDT =0, wehave DBD" = D(§—R—S)D" = DOD" > 0. so that B is anti-Monge.

Moreover, this implies
(DB)ij < (DB);j+1, forie€[ni],j€ng—1], and (5.10)
(BDT)Z'J‘ < (B[)T)H_Lj, for ¢ € [n1 — 1}, ] S [TLQ] (5.11)
The first column and first row of B are equal to 0 by construction. Consequently, we obtain that
(DB).; = 0, and by (5.10), this gives DB > 0 and similarly #DT > 0 by (5.11) . Together, these

facts yield that B is bivariate isotonic.
Additionally, from the triangle inequality and the way we constructed R, S, and B, we get

[Rlloo < [10llo,  IS]loo < 2[[0llcc,  and [ Blloo < 4/[6]]co-

Since B also inherits the variation of 6 and is nonnegative, || B/ = V(B) = V(0), which completes
the proof. ]

5.2 Proof of Theorem 1

To control the performance of a least-squares estimator, we employ Chatterjee’s variational
formula [16] that we recall below. See, e.g., Lemma 6.1 of [30] for this deterministic form.

LEMMA 8 (Chatterjee’s variational formtlla). Let M be a closed subset of R®. Suppose that
y = 0% + ¢ where 0* € M and ¢ € RY. Let 0 € argminge v ||ly — 0|13 be a projection of y onto M.
Define the function fo« : Ry — R by

t2
for(t) = sup (€,0 — 0%y — —.
feM, [|0—6*||2<t 2

Then we have

16 — 6%||2 € argmax fg«(t).
>0

Moreover, if there exists t* > 0 such that fp«(t) <0 for all t > t*, then Hé — %2 < t*.

To control the supremum in Lemma 8, note that it suffices to consider Gaussian noise here, since
the generalization to sub-Gaussian noise is taken care of by Theorem 20.

PROPOSITION 9. Fiz an anti-Monge matriz 6* € M, and suppose that Z € R™*"™2 has i.i.d.
N(0,1) entries. Then for any integer k € [ning] and any t > 0, we have

E[Gesagja 20 0*>} St [\/7714- \/k‘ log(ng) + \/log(nl) log(n2) (n2n2>1/4]

+ W log(n1) log(na) V(7).
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To show Theorem 1 taking Proposition 9 as given, let ¢ > 0 and 1 < k < nino to be chosen later.
Note that by Theorem 19 and Proposition 9, we obtain

({00 0eM, |00 |r<t}) =E_ 4 sup <Z,9—9*>}

Zi,]NN(O,l)[ veM
166"l - <t

S t{yir + VElog(na) + v/log(n1) log(na) (”1:2)” 1 + Vo () Log(na) V(6°),

where 72 denotes Talagrand’s «o functional. Therefore, Theorem 20 yields that with probability
1 — dexp(—s?),

sup (e,0 —0%) <to [\/nTJr \/k: log(ng) + \/IOg(nl) log(n2) (nlkn2)1/4]

oeM
16—6" || <t

+ 04/ nlkn2 V1og(ni)log(ng) V(6%) + ost.

Let us define )
t
fo-(t) = sup (e,0 —0")— —.
geM 2
l6—6*llr<t

we obtain that for any

t>tr:=Co [\/771 +V/klog(nz) + v/log(n1) log(n2) <n1k712>1/4]

+C [a, / ”116”2 Vog(n1) log(n2) V(e*)] 24 Cos,

where C is a sufficiently large constant, it holds with probability at least 1 — 4 exp(—s?) that

o= (t) <0.
Therefore by Lemma 8, we obtain that with probability at least 1 — 4 exp(—s?),
1 R (t*)2
— 16" —0*|% < 5.12
=0 < (5.12)

< or[ L Klogtna) | logtn)log(na)]  [log(m)log(ma) gy o 5
n9 nin9 \/nlngk nmgk nin9

We now choose s = 2,/n;. Balancing the terms that depend on k leads to the choice

2/3
*— (o) /3 log(n ) 1/3 og(n ﬂ
k* = (n1n2)'/? log(n1) [ log( 1“0@] ,

in addition to possibly rounding £* to an integer which we omitted to simplify the presentation.
Therefore, we obtain that with probability 1 — exp(—ny), if 1 < k* < njng, then

L g g < 7 07 loB(na) log(m) ! [ foglm) + V() (o/og())] "

ning ~ ng (ning)2/3

2 2 * 2/3
<sZ 4+ (0‘/(9)> log(n1)'/?log(na)*®. (5.13)

n2 ninz




ESTIMATION OF MONGE MATRICES 17

If k* < 1, we replace it by 1, increasing the klog(nz)/(nin2) term while decreasing the ones with
1/vk in (5.12), hence leading to the same rate as in (5.13). If k* > nny, note that the k/(niny)
term is already of the order 2, so a basic bound of ¢ on the empirical process term yields the rate

1

el AR T

Combined, this yields that with probability at least 1 — exp(—n1),

2 2 *\\ 2/3
707 + <UV(9)> log(n1)1/3 log(n2)2/3 Ao?.
2

ninz

1

)l
el AR 1P

To obtain the bound in expectation, we can first integrate the exponentially decaying tale
of (5.12), and then choose the optimal k in the same way.

5.3 Proof of Proposition 9

Our main strategy consists in decomposing the noise matrix Z into three terms according to the
spectral decomposition of the linear map D, defined by D(A) = DADT for A e Rm*n2,

Spectral decomposition of the difference operator. Denote the (reduced) singular value decompo-
sition of D by D = USW T, where we order the singular values in ¥ in ascending magnitude. In
addition, we write W = [wl ‘ ‘ wm,l].

First, let II; denote the projection onto ker D. Moreover, let J = {(I,r) € [n1] X [ng] : Ir < k}
and J¢ = [n1] x [ng] \ J. Define the projection IIy by

IIx(A) = Z wyw, A, , and so
(Lryed

(I-T)(A) = > wuw/ A, .
(LryeJe

With these two projections, we decompose

E[ sup (Z,0—-0"<E[ sup (II;(2),0—-6%)]+E[ sup ((I-1I)I2(Z),0—6%)]

oeM oeM oeM
lo—6%[ <t lo—6%[| <t lo—67| <t
+E[ sup ((/-IL)(I —I)(Z),0 - 67)]. (5.14)
oeM
lo—6]|r<t

We now bound the three terms in (5.14) separately.

Bounding the first term in (5.14). Recall that II; be the projection onto ker D. We claim that
dim(ker D) = n; +ny — 1. Given a matrix 0 € ker D, i.e., DD = 0, we apply Lemma 7 to obtain
the unique decomposition § = R+ S+ B, where RD' = 0 and DS = 0. It follows that DBDT = 0.
Since the first column and the first row of B are both identically zero, it is easy to see from an
inductive argument that B = 0 so that ker D contains only matrices of the form § = R+ S. The set
of constant-row matrices R has dimension n;; the set of constant-column matrices S with S;1 =0
for i € [n1] has dimension ny — 1. Thus dim(ker D) = ny + ng — 1. Consequently, we have

Bl swp  (11(2).0 - 6')] < B[ (Z)] ] < tv/m F s — 1 <ty
S
lo—67[ <t
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Bounding the second term in (5.14). Similarly, it suffices to compute the rank of IIz, which is
bounded as follows

n2
[T =Y 1<) k/r<klog(ny). (5.15)
(Lryed r=1
Therefore, we obtain
E[ sup (I = )Ix(2),6 — 67)] <tE[|(I - IL)2(Z)||r] S tv/klog(na).
€
l0—6~||F<t

Bounding the third term in (5.14).~N0te that I —II; is the projection onto the image of the linear
map D', defined by DT (A) = D" AD. Hence we have

(I =T)(I = 5)(2),0 - 6*) = (D" (DT)T(I —2)(2)D'D, 0 — 6%)
= ((D")"(I - )(2)D', D(6 - 6*)DT).
Since Z has mean zero, it is sufficient to control

E[ sup (D" (I—-1I)(Z)D', DOD")]. (5.16)
feM
[0—0"lp<t
To bound this quantity, we need the following lemma, whose proof is deferred to Section 5.4.
LEMMA 10.  For any i € [n1], j € [na], the quantity [(DT)T (I — 1) (Z)(D")];; is sub-Gaussian
with variance proxy

O(log(ng) [(i A(ny =) (§ A (n2 — 5)) A ”1;2} )
Let us define ® € R(m—1x(n2-1) by
®; j = /log(n1) log(nz) [(ﬂ/\ Vni — Z) <\[J/\ Vg — j) ARy, nlkm ] )

and let @ denote element-wise division. Lemma 10, together with a union bound readily yields

E[[|(DY)T(I — 15)(Z) D' @ ®||«] < 1.

In addition, it holds for every 6 that
(DYT(1 —T02)(Z) D', DODT) = (DY) T (1
I(DhH (1

1,)(Z)Dt © ®,% © DIDT)
I1,)(Z)D' @ @||||® © DIDT ||y

IN

by Hoélder’s inequality. We therefore obtain
E[ sup (DN (I—102)(2)D', D(6 - )DT)]

1055 <t
<E[|(D")"(I - 15)(Z)D' @ ®||~)] sup |® @ DODT |y
106" [ p<t
< sup  [|®® (DD, (5.17)

oM
166"l m<t
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It remains to bound this supremum. For § € M, because DIDT > 0 we can write
|®@© (DID")||1 = (®,DOD ") = (®, D0 — 0*)D ") + (&, DO*DT). (5.18)

The second term in (5.18) can be bounded by

~ ~ nin
(®.D0"D") < @[ DO"D " 1 < [ = vlog (1) log(nz) V/(67).

For the first term in (5.18), we need the following lemma, whose proof is deferred to Section 5.5.

LEMMA 11. We have the estimate

~ nin
|DT®DF < log(n)log(nz) /== +log®(n1) log? (n2).

If ||0 — 6*||p < t, then the above lemma together with the Cauchy-Schwarz inequality yields

(®,D(0—6")D") (5.19)
= (D'®D,0 —6%) < |D"®D||p||0 - 0% F

<t [ log(n1) log(n2) (”1]{”2)1/ " 1 log(n) log(ng)} .

Combining (5.16)—(5.19), we conclude that

E[ sup (({—-IL){ —12)(Z),0—0%)]
05 <t

ninz nin2z

log(n1) loa() V(67) + ¢ [ log(nn) log(n2) ("2) " 4 1og(my) 1og<nz>} .

The bounds on the three terms of (5.14) together yield the desired result.
5.4 Proof of Lemma 10
By definition of Ils, it holds that

(DT -)(2)DT = Y USW T wew] Zaa WEIDT

(tr)ede

= Y (w] Ziw,)USTe STUT
(b,ryede

= ) (wl Zw)S, 5 Uee[ UT
,ryede

= Y (w] Z@)S 5 U U (5.20)
(tr)ede
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We now study the sub-Gaussianity of the (4, j)-th entry of this quantity. Since Z has i.i.d. N'(0,1)
entries, it holds for each A > 0 that

Eexp (A Z (w, Zwr) ”12 UgU]r):IEexp ()\ Z Tr(le)er)Efli_lU-ngO
L,ryede t,ryeJe

::Eexp{W?[Z<A 3 zgji;ﬂﬁjﬁwﬂ»wl)]}
(LryeJe

gexp{ﬁuwzwz 50,0 ). 620

Note that |w,w, ||F = 1, and (@,w/ , @wy ) = 0 for any pairs (r,£) # (17, '), so we have

H S oss) K%MWMA‘

E: E%gz 2URU?,. (5.22)
(,r)eje

L,ryede

It remains to bound this quantity. Without loss of generality, assume that n; is odd, so n; — 1
is even. The matrix D has the same left-singular vectors as

2 -1 0 0 0]
-1 2 -1 0 0

DD' = . :
0 0 -1 2 -1
[0 0 0 -1 2

which are known [65] to be

: N
Ui, = sm<W”>, ij=1,...,n1 — L.
ni ni

Moreover, the matrix D has (non-zero) singular values

&J_zsm<;;>, i=1,...,n —1. (5.23)
Note that because of the symmetry
. [T . (mj(ny —1) .
sim|—)=sin| ——=], i1=1,...,n1 —1,
ni ni
it is enough to consider i = 1,... ”1771 We make use of the following inequalities to control the
sin terms involved:
|sin(z)| < 1, for all z € R; 5.24)
sin(z) < x, for = € [0, 00); 5.25)
2 1 T
> — - fi €0, -
sin(x) > — 2x, orx €|

5l (5.26)
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Plugging in the entries of U and X yields

Z ey 4 sin (mf> sin (?;)
Yooy cUs, Uz =
00 =rr il g 2
(t,r)eJde (¢,r)ege 16n1ng sin (;;f ) sin (2@)
mnz )eJc
nl 1
S minz Z 7
r=1 f fk/ﬂ
ni no
1 1 1
ST 3 5 SR BRI pE e
r=1 Z [k/r]+1 r=1
(i) NN £ 2
N n1n225%+n1ngzﬁ+nm2 Z 2
r=1 r=1 r=k+1
(i)
S S log(ng) + 2 + = S S log(ng), (5.27)

where we used (5.24) on the numerator and (5.26) on the denominator in (¢) and the bound
> okt 7}2 < 1 for any k > 1 in (ii) and (iid).
On the other hand, even without using the constraint (¢,r) € J¢, we have

N2 i\ 2

sm( )sm(l)

> - =
T

il 2 T 2
Sln( 1) sn(nz)
> OSOSRULTL S D

7T~ y 2 2 2 2
(eryede fr<™2 nymny sin (2” 1) sin (g;;) r>"112 1Ny sin (2”—) sin (TTQ)
(1) (Mjr) ningij
S Z + log(ns)
~ 2
2T nina(0r) ning
.o . 2
i
Y U9 1 i108(ns)
remny 12
-
(”) 1 nin
(i) mana log(na) + ij log(na) < ijlog(ns), (5.28)

S ning 1J

where in (7), we used (5.25) for the numerator and (5.26) for the denominator as well as (5.27) with

k: replaced by ”1;92, and (i1) follows from counting integer points in the set {(¢,7) : fr < ";—?2} as
n (5.15).

A similar argument yields bounds with i replaced by ni — i, or j replaced by ng — j. Combining
this observation with (5.20), (5.21), (5.22), (5.27) and (5.28) completes the proof.
5.5 Proof of Lemma 11

=2
Define &' = —r—rsae—s,

<I>’]:<\ﬁ/\\/m> <\//\\/’/127—) /mnz

e.,
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To simplify the notation, let &, = &}, = &y, = @) . =0forall i € [n1], j € [n2]. We need to
bound -
IDT®'D|F = Z Z(q);fl,jfl + @ — P — (I);,]él)Z'
i=1 j=1

By symmetry, it suffices to consider summation over i € [*5- 1. j¢€ ["27_1] where ® = \/ij A /2.
Moreover, note that the summand vanishes if (7 —1)(j — 1) > *4*2. Hence we can further split the
sum into two parts:

1. over {z c [nIQj], ] € [mgj] : (Z_ D@ —1) < ™2 <ij}, and
2. over {i € [M—], j € ["—] iy < ™2}

To bound the first part of the sum, first consider the case ¢ < j, where we have

(-1 -1) < (- 1j<i(—1) <ij.

Adjusting signs to ensure both differences in the following expression are positive, it is easily checked
that

(@ g+ ¥~ -, ) < [V D) - Vi D0 - D+ Vi - Vi D] il

By the conditions (i —1)(j — 1) < ™ < ij and i < j, we obtain

ninz

] 1
1 2 + 1,
ning ning
1 d
k Ki—1) T
i/j < v
ning

Z i2k‘ < X ning i2k‘ < ning

~ -9 — *
pr Ty ning P ki® nins \/ k
An analogous argument yields the same bound for the case 7 > j.

Next, we consider the sum of (Qg_m_l + <I>§7j — (I);—Lj — q)g}j_1)2 over (4,7) such that 45 < ™72,
where we have

(@) + @ — @y — @) = <m+ Vii == 1)j = /i(j - 1))2
= (Vi-vi1) (Vi- Vi)

Now even summing over all indices ¢ € [n1], j € [n2] yields

ny n2 ny n2

ZZ <\[2— m>2 (f— W)Q < ZZ 1; < log(nq)log(nsz).

i=1j=1 i=1 j=1
Combining all the pieces, we obtain
IDT @ DIf} = log(n1) log(n2) | DT @' D[}

ninz

S tog(nn) log(na) (1) "2 + log(ns) log(na) )
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5.6 Proof of Theorem 2

First, consider the set C of constant-row matrices, which is a subset of M. Note that V(6*) =0
for any 6* € C. Since there are n; rows, it is not hard to see that the minimax rate of estimation
over C is 0% n; in the squared Frobenius norm. The lower bound of order o2 /g then follows from
normalization by nins.

Next, we turn to the second term in the lower bound, which is based on Assouad’s Lemma
(Theorem 21). To this end, we construct an embedding of the hypercube into My .

Consider integers ki € [n1] and kg € [ng], and let m; = ny/k; and mg = ng/ks. Assume without
loss of generality that m; and mq are integer. Denote the elements of the hypercube {—1,1}%1xF2
by (Tuw : (u,v) € [k1] x [ka]). For each 7 € {—1,1}¥1>F2 define ™ € M in the following way. For
i € [n1] and j € [ng], first identify the unique u € [k1],v € [ko] for which (u —1)m; < i < wm; and
(v —1)mg < j < vmg, and then take

uUv Tuw
0. =V : .
b 0 <2k1k‘2 + 8k1k2)

First, we check that 7 € M and that V(67) < V{. For the former, it is enough to check that for
each 1 <17 < ny,1 < j < ng, we have that HZ-TJ + 0;+1,j+1 — 9277]-“ — HiTJrLj > 0. We distinguish the
following two cases:

1. There exists u € [k1] such that (u — 1)m; < ¢ < i +1 < wmy, or there exists v € [ko]
such that (v —1)me < j < j+1 < vmg. Then, either 67, = 07, ;, 67,1 = 0], ;.4 or
07 ;=07 ;11,071 ; = 0711 j11 respectively. In both cases, the difference above is 0.

2. There exist u € [k1],v € [ke] such that (v — 1)m; < ¢ < um; < i+1 < (u+ 1)m; and

(v—1)mgo < j<wvmg < j+1<(v+1)ms. In this case, for any 7, we have

075+ i1 g1 — 0001 — 01
oy (wet (u+Dw+1) —uw+1) = (u+1 4 T F Tutlodl = Tuwdl = Tutlo
0 2k ko 8k1 ko

1 4
> — =
=V <2k¢1k‘2 8]451]432) 0

Thus, §7 € M. We now check that V(07) < V. Note that V(07) can be written as the sum
> (07407 1 —07 41 —0741 ;). As we have seen above, this sum is nonzero in only (k1—1)(k2—1)
cases, and it equals exactly

1 Tupw + Tut+1lw+1 — Tuw+l — Tutlw

9T — ) ) I )

vien) 2. W (rilk:g * 8k1k
u€lk1—1],v€[ke—1]

Y ((kl — Dk = 1) | 711 Thiky — Tiky _Tk11>

2k1 ks 8k1ko
(kl — 1)(k}2 — 1) 4 (kl — 1)(]€2 — 1) +1
<V =W < W.
=70 < 2k1 ko + 8k1ko 0 2k1ko =70

We now proceed to show our lower bound using Theorem 21, which states that

~ d 52(97 97’)
inf sup R(0,0") > —min———>"—"-- min (1— [Py — P, )
0 oeMpVO ( ) 8 7 d (1, 7") dH(T,T’)Zl( [P 0 l7v)
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where dy denotes the Hamming distance and ¢2(6,60') = —L—||§ — ¢'||%. Note that

nin2

T ’Tl 1 T T/
52(9 07) = nins Z(Hi,j - 9i,j)2

5J

1 - -
=— > > > (660’

172 u€lki],v€lke] (u—1)m1<i<umi (v—1)ma<j<vma

V02 Tup — Tqi,v 2
S XX (M)

u€lk1],v€lk2] (u—1)m1<i<umi (v—1)ma<j<vme

VO2 Z mima(Tu — 7—1/; u)2 V02m1m2 / VO2 ’
= ’ — = dy(1,7") = —=—=dg(7, 7).
21.2 21.2 ) 31.3 ’
n1N9 welkimelka] 64kiks 16n1n2kiks 16k ks
Thus, we have
. 62(07—,07’) VO2
min = .
TH#T! dH(T, T/) 16]6‘{’]{%
To bound ||Pgr — P, ||7v, we use Pinsker’s inequality:
1 nin / Viénin
2 2 2 nr '\ 0 172 /
|Por — Pyr |7y < §D(Pgr||IP’67/) = 1o =(07,07) = 7641{:%1{:%02(1}1(7—’7 ).

It follows that

. Vo [ning
1 — ||Pygr — P, >(1—— .
O e Bl = (120 [ )

Putting things together in Assouad’s lemma, we obtain

~ V2 % anLQ)
inf sup R(d,6" 20<1— e )
oo B0 2 gz 1 8o\ ki

2
If \/3?7”2 < Vp < 4onins, then we can choose k1 and ko such that kiko is of order (Lﬁm)g,
which yields that

~ 2y 2/3
inf sup R(6,0%) = <U O> .
6 96Mv0 ning

IfVy < \/%, then (%)2/3 < %, so the second term in the statement of Theorem 2 is

dominated by the first term. Finally, if Vj > 4onins, then (
trivial. This completes the proof.

5.7 Proof of Theorem 3

2y, 12/3
"—VO) / > o2, so the rate becomes
ning

Similar to the proof of Theorem 1, the main technical step in this proof is to bound the supremum
of an empirical process. This is dealt with in the following proposition, whose proof is deferred to
Section 5.8. Note that both the statement and the proof are very similar to Proposition 9, and that
we can restrict our attention to noise matrices that are Gaussian.
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PROPOSITION 12. Fiz any matriz 0 € R™*™ and permutations m € Sp, and ma € Sy,.
Suppose that Z € R™*"2 has i.i.d. N(0,1) entries. Then for any integer k € [nins| and any t > 0,
we have

nin
E ,up (Z,0(m1,m2) — 9*>} St [\/m + \/klog(TlQ)} 4/ %\/ log(n1) log(nz) Vo,
eMy;
1001, m2)—6% | <t

where we use the convention that the supremum over the empty set is —oo.

We assume without loss of generality that the underlying true permutations 7} and 75 are the
identities throughout the proof. For fixed permutations m; € S,, and m € S,,,, we obtain from
Theorem 19 and Proposition 12 that

’72({0(71-1771'2) —0":0¢ MVoa ||9(77177T2) - 9*||F < t})
xIE)[ sup (8,9(W177T2)—9*>}

GEMVO
18(7r1,m2)—0* || F <t

St v+ Vilog(ng) | + /2 /log(n) log(nz) Vo.

Therefore, Theorem 20 yields that with probability 1 — 4 exp(—s?),

sup (e,0(m1,m2) — 6%) < to [\/nl + \/klog(nz)} +o04/ nlkm V1og(ny) log(na) Vo + ost.
e My,
161, m2) 6" 1<t

Taking s = 24y/n;log(ni) and applying a union bound over all (71, m2) € S,, X Sp, (which has
log-cardinality log(ni!ng!) < 2nilogn;), we get that with probability at least 1 —n; ™,

sup (€,0(my,m2) — 67)
(71,72,0)ESn; XSny X My,
671, m2)—0% || p<t

<to [\/m log(n1) + vk log(ng)] + 04/ nlkm V1og(n1)log(ng) V.

Let us define )

t
fox(t) = sup <579(771,772)—9*>—§
(71'1 ,7r2,9)€3n1 X5n2 XMVO
10(m1,m2)—0" || p <t

Then for any

t>t":=Co [\/m log(n1) + 'k log(ng)} + C|:U~ / mkm v/ log(n1) log(nsa) Vo} i

where C'is a sufficiently large constant, it holds with probability at least 1 —nj "' that

fo<(t) <0.
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Therefore by Lemma 8, we obtain

1 - *)2 1 1 \/1 1
”egls o G*H%‘ < (t ) S 0_2 |: Og(nl) + k 0g(”2):| +o Og(nl) Og(nQ)Vv()7
n1no n1N9Y N9 n1N9 vVningk

noting that by assumption, 0* € (Jres,, My, (71, m2).
7Tg€$n2

Balancing the terms that depend on k leads to the choice

k* = (ning)'/3 (122223) 1/3 (1;0> 2/3,

and therefore we obtain that with probability 1 —n; ™,

1 - 210 2y, \ 2/
Hegls o G*H%‘ S o g(nl) + (U 0) log(nl)l/?) log(n2)2/3,
ninz no ning

if 1 < k* < ning. We conclude by arguing similar to the proof of Theorem 1 to handle the other
possible cases of £* and to get an error bound in expectation instead of with high probability.

5.8 Proof of Proposition 12

Note that Proposition 12 is very similar to Proposition 9, and so are their proofs. The difference
is that Proposition 12 has extra complications arising from the presence of permutations, while at
the same time it is simpler because we restrict 6 to My, C M. Hence, we focus only the differences
to the proof of Proposition 9 here.

Since Z is equal in distribution to Z(m; ', 75 1), we have

(Z,0(m1,m0) — 6%) £ (2,0 — " (x7 Y, m3 h))

in distribution for any permutations 71 € Sy, 72 € Sp,. Therefore, by replacing * (77!, 75 1) with

0*, it suffices to prove that for any matrix 8* € R™*"2 it holds that

nin
B[ sup (2,0-0)] St v+ VElogna)| + (/72 log(n) log(nz) Vo.
e My,
0" |lp<t
Note that this supremum is very similar to that studied in Proposition 9, with the main differences
being that 6* can be any matrix in R™*"? while # is restricted to My;. As in the proof of
Proposition 9, (5.14), the supremum can be split into three terms:

E[ sup (Z,0-0")] <E[ sup (I(2),0—-0"]+E[ sup ((I—1II)I(Z),0—06")]

GGMVO 96./\/[\/0 96MV0
10—0%| p<t l6—6%r<t 160l F<t
+E[ sup ((I—1IL)(I —112)(Z),0 —67)].
feMy,
l0—0*[F<t

The first two terms can be bounded exactly as before, because we only need the condition
|0 — 6*||p < t but not any other property of 8*. Up to a constant factor, the third term can be
bounded by (recall (5.16) and (5.17) in the proof of Proposition 9)

sup  [|®© (DIDT)|;.
96./\/[\/0
0—0* | p<t
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Thanks to the constraint 6 € My, in this case, we immediately obtain

~ ~ ~ nin
|® © (DD )|l = (@, DD ") < ||®]|oc|| DID |11 S lk 2 V/log(n1) log(n2) Vo.

Hence, it holds

IE[ sup <(1_n1)(1_n2)(2),9_9*>]5,/"1]6"2 log(n1) log(na) Vo.

feM
16—6"[| - <t

Combining the bounds on the three terms completes the proof.
5.9 Proof of Theorem 4

We assume without loss of generality that the underlying true permutations 7} and 75 are the
identities throughout the proof, except where the notations 7] and 75 are explicitly used. Recall
that we defined the reversal permutation 7] € S,,, by 7} (i) = ny —i+1 for i € [n;]. Given estimators
71, 9, let us define

0 := argmin 16 — 6%||%. (5.29)

feM Vo (7t1,7t2)UM Vo (ﬂ'i oft1,72)

The theorem follows from the next two propositions combined. The first proposition says that
the final denoising error can be bounded by the sum of the minimax rate (the error rate incurred
by the projection step of the algorithm), and the error incurred by the permutation estimators.
The second proposition controls the error incurred by the permutation estimators.

PROPOSITION 13.  Suppose that we have y = 0* + &, where the noise matriz has independent
subG(Co?) entries with Varle; ;] = o2. Let the estimators (71,7, 72, 0) be given by Algorithm 2,
and define 6 according to (5.29). Then it holds with probability at least 1 —n] ™" that

1~ o?log(n 2V \ /? 1 - .
166 H%s[ B ”+< ) log(n1)"/*log(ns)* | Ao® + 16— 6°3.
ninsg no ning ning

PROPOSITION 14.  Suppose that we have y = 6* 4+ ¢, where 6* € M%’m and the noise matriz €
has independent subG(Ca?) entries. For the permutation estimators 71 and %2 given by the Variance
Sorting subroutine, Algorithm 1, let  be defined by (5.29). Then it holds with probability at least
1—ny? that

1 0 *12 2
—— [0 - 0"} < (o> + oVo)

ning

log nq ) 1/2
no '

The error bound in Proposition 14 is clearly dominating, and combining the two propositions
yields the statement of the theorem in probability. Taking into account that we can do the same
analysis keeping track of the failure probability independently of n1 and integrate, we obtain bounds
in expectation instead of probability as well.
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5.10 Proof of Proposition 13

To employ the variational formula in Lemma 8, let us view 0 defined by (5.29) as the ground
truth, and view y — 0 = ¢ + 0* — 0 as the noise. Correspondingly, we define

~ - 2
f3(t) = sup (e+0"—0,0—-0)— —. (5.30)
QGMVO (7AF1,7Ar2)UMVO (71';07?('1,7?2) 2
160 F<t

To facilitate our analysis, for each pair of permutations (71, m2) € Sy, X Sp,, we define

T2 . — argmin || —H*H%v
0EMy, (m1,m2)

and note that we have that either § = 67172 or § = §™1°71:72 50 € My, (711, 7r2) U My, (0 0 7y, 7o)
and Lemma 8 is applicable.
We further estimate the supremum in (5.30) by

1) < sup (.6 d)
GEMVO (frl,frz)UMVO (7T£Oﬁ'1,ﬁ'2)
10—6]l p<t

- - +2
+ sup 0" —0,0—-0)— — (5.31)

OEMy (1, 7r2) UMy, (] oft1,72) 2

0—6]1 <t
- - +2

< sup (e,0(m), mh) — 070™2) + ¢]|0* — 0| p — 7 (5.32)

(71,7 ,m2,75,0) E:S,%l XS,%Q XMy,
16(mq,7m5) 071 72| p <t

Note that the random variables 71, 5 and 0 depend on ¢, so it is not clear how to control the first
supremum in (5.31). Instead, in (5.32) we take a supremum over all (71, 7}, T2, 75, 0) € S2 x 82, x
My, where each individual quantity (), 75) — 67 is deterministic.

For fixed permutations 7, 7] € Sy, and ma, 7 € S,,, we obtain from Theorem 19 and Proposi-
tion 12 that

72({0(7_[_/1’ Wé) - éﬁlﬂm NS MVO? ||9(7Ti,71’é) - 9~7T1,7r2||F < t})
. Z,Q /7 / _éT(l,ﬂ'Q i|
Zi,deN(o,l)[ HSRAPVO (2, 8(m3, m2) )

10(m my) 07172 p<t
nin
<t [,/nl + \/klog(ng)] + 1T2x/log(n1) log(ng) Vb.

Therefore, Theorem 20 yields that with probability 1 — 4 exp(—s?),

=E

sup <57 G(Wia 7T/2) - 97r1,7r2>
96Mv0
10(w],w5) =012 || p<t

Sto [\/771 + \/klog(ng)] + 04/ nlan log(ny)log(ng) Vo + ost.
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Taking s = 34y/n1log(n1) and applying a union bound over all 71, 7] € S, and ma, 75 € Sp,, We
see that with probability at least 1 —nj ",

A OT1,72
sup <5,9(771,7T2) —0 >
(77177T'177F2,7r§,9)€i5‘3ll xS2, x My,
l0(my,m5) =071 72| <t

Sto [v/nilog(n) + /klog(nz) | + oy |72 /log (1) log(na) Vo

This together with inequality (5.32) yields that for any

1/2 _
t>t":=Co {\/m log(n1) + vk log(nz)} + C|:U\ / nl:Z Vlog(ny) log(ns) Vb} +C0—0"||F

where C' is a sufficiently large constant, it holds with probability at least 1 — nj "' that

fé(t) < 0.

Therefore, by Lemma 8 applied to the set My, (71, T2) U My, (7] o 1, 72), we obtain

1 PO t*)? 1 k1 1 1 1~
||9 _ 9H2 < ( ) < 0_2 |: Og(nl) + Og(nQ):| +o Og<n1) Og(nQ)VvO + ||9 _ H*H%‘
no ning \/’I’Ll’l’Lgk‘ ning

Balancing the terms that depend on k yields that with probability 1 —nj ",

1 1 . = 1 -
—— |0 -6*% < ——110 — 0)|% + ——1|0 — 6*||?
nmﬂ HFNMWH |b+mmH 17

_ olog(m) <02V0

2/3 )
1/3 2/3 n_ p*|2
R R ) B e e

if for the optimal k£*, we have 1 < k* < nins. The other cases can be handled as in the proof of
Theorem 1.

5.11 Proof of Proposition 14

5.11.1 Reduction to the row/column-centered case. First, we reduce the problem to the case
where the underlying matrix 6* has centered rows and columns. If 8* is not centered, we may
choose a matrix R € R™*"™ with constant rows and a matrix S € R™*"2 with constant columns,
so that if 0 := #* — R — S, then for all i € [n1], j € [na],

ni B no B
D Oki=> 0i4=0.
k=1 /=1

Since R and S have constant rows and columns respectively, we have V(0) = V(6*) by defini-
tion (2.3), and thus § € My,. More importantly, according to the definition of £(i, j) in (3.7), its
value does not change if we replace y by y — R — S. Therefore, we may assume without loss of
generality that

Yy = 0+ £,

which does not change the estimators 71, 7} and 72 output by the algorithm.
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Furthermore, we have

min 160 —0*|)3 = min 160 — 0])%, (5.33)
GEMVO (ﬁl,ﬁg)UMVO (ﬂgofrl,frz) QEMVO (frl,frg)u./\/lvo (ﬂiofrl,frz)

since if # minimizes the left-hand side, then § — R — S minimizes the right-hand side. Hence it
suffices to show that the right-hand side of (5.33) is bounded by the desired rate.
Note that by symmetry of the anti-Monge constraint,

My, (7] o1, T2) = My, (71, ™5 0 r2)  and

My, (71, T2) = My, (7] o 71, ] 0 72).

In light of this, it is sufficient to show

n{l_idn , 10(mry 0 71,2 0 712) — 0|3 S [0° + oV (0)]n1y/nalogny, (5.34)
myefid, 7]
maefid,nh}

which we do in the sequel. This gives an upper bound on (5.33) and thus completes the proof.

5.11.2 Preliminaries. Before proceeding to proving (5.34), we start with some lemmas.

LEMMA 15.  For vy € R"™ such that >_;_, vk = 0, it holds that
n
> (=70 =n i
k<t k=1

The proof follows by inspection.
LEMMA 16. Let f:[n] x [n] = R be a symmetric bivariate function such that
f@,m)V f(m,j) < f(i,5), foralll<i<m<j<n. (5.35)
Let 7 : [n] — [n] be a permutation and T € R. Suppose that
f,5) <7, ifi<j and (i) > n(j). (5.36)
Then we have f(m(i),i) < 7 for all i € [n].

PRrROOF. Suppose that f(7(j),j) > 7 and 7(j) < j for some index j € [n]. Since 7 is a bijection,
there must exist an index i < 7(j) < j such that 7 (i) > 7(j). However, by (5.35) we then have

fG,3) = f(7(5),5) >,

which contradicts assumption (5.36). A similar argument yields a contradiction in the case that
f(7(4),7) > 7 and 7(j) > j. Therefore, we obtain that f(n(j),j) < 7 for all j € [n]. O

Next, we study the quantity (i, 7) used in the algorithm defined by (3.7). Throughout the rest
of the proof, we use the notation

n2

£, 5) = (Oi — 0;0)*. (5.37)

k=1
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LEMMA 17. Suppose that y = 0 + €, where 0 has centered rows and columns, and € has inde-
pendent subG(Co?) entries with Varle; ;] = 0. Then it holds that for all distinct i,j € [n1],

E[£(i,§)] = f(i,§) + 2(ny — 1)0?, (5.38)

and that with probability 1 — n1—107 forall i, € [n1],

£(3,5) — E[g(i,j)” <7i= 0[02 + oV (0)]/n2logni, (5.39)

where C' > 0 is a universal constant and V(0) is defined as in (2.3).

The proof of the lemma, is deferred to Section 5.12.
Next, we study properties of the expectation E[{(i, )], or equivalently f(i,7), thanks to (5.38).

LEMMA 18. It holds for all 1 <i <m < j < nq that f(i,m)+ f(m,75) < f(i,7).

PRrROOF. Fix indices 1 < i <m < j < nj. Since all the row sums of 0 are zero by assumption, it
follows from Lemma 15 that

ne ~ 1 ~ ~ ~ ~
f(i,5) = Z (0 — 9j,k)2 = Z (i — Ojk — b0+ 93;()2- (5.40)

k=1 2 <t

Note that we have
(éi,k - ém,k - éi,é + ém,e) + (ém,k - 9j,k - ém,é + éj,l) = (éi,k — éj,k - éz',é + éj,e),

where each of the three bracketed terms is nonnegative because 6 is anti-Monge. Therefore, we
obtain

= = = = \2 . 7 = = = \2 = = = = \2
(Oik = Omge = Oie + Ome)” + (O — Oj — Ome + 00) " < (i — Ok — 00+ 010)"
This together with (5.40) completes the proof. O

5.11.3 Proof of main bound (5.34). We condition on the event of probability 1 —n; ' that (5.39)
holds. Consider the permutation estimator #; defined as in the algorithm so that {&(iq, 77 ' (4))}1,
is nondecreasing. Note that we made the decision of whether to consider ¢y or jy as an estimator for
T 1(1) arbitrarily by demanding ig < jo. In the following, we make use of the fact that this orienta-
tion aligns with the assumption of 7} = id, that is, we use 77 (ip) < 77 (jo). If the reverse inequality
holds, then we may repeat the same proof with 7; replaced by 7] o 71, to obtain permutation
guarantees for the reversed permutation instead.

We claim that for f defined in (5.37),
fi,5) <127, ifi < jand #1(i) > 71(5). (5.41)

To establish the claim, we first consider any pair (i, ) for which ig < i < j and 71(i) > 71(j)-
Thus by the definition of 71, we have £(ig,7) > £(io,j). Then it follows from Lemma 18, (5.38)
and (5.39) that

f(i,5) < flio,j) — f(io, 1) = E[§(i0, 5)] — E[£(io, )] < &(io,5) — &(io, 1) + 27 < 27.
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Next, consider any pair (¢, j) where ¢ < g and 71(7) > 71(j). By the definition of (ig, jo) in (3.8),
we have that ig < jo and &(ig, jo) > &(i,70). Together with Lemma 18, (5.38) and (5.39), this
implies that

f(isio) < f(i,jo) — [0, jo) = E[£(i, jo)] — B[ (o, jo)] < &(i, jo) — &(io, jo) + 27 < 27. (5.42)
Moreover, we have &(i,1i9) > &(ig, j) since 71(¢) > 71(j). Therefore, by (5.38) and (5.39) it holds
f(io,3) = f(iyio) = El€(io, )] — E[§(4i0)] < &(io, J) — &G, i0) + 27 < 27. (5.43)

Combining (5.42) and (5.43), we obtain

ng n2

F:3) = O = 00" <27 [ (B = Oio)* + (B — Oi)’|
k=1 k=1

= 2f(io,J) + 2f(i,i0) < 127.

Therefore, claim (5.41) is established.
Note that assumption (5.35) of Lemma 16 holds in view of Lemma 18 and the fact that f(i,j) > 0.
Hence claim (5.41) and Lemma 16 together yield that for all i € [n],

n2
A e - — — 2
FE1),8) =Y (Oayiyn — k)™ < 127,
k=1
Summing over ¢, we conclude that

10(71,id) — 0]|% < 12704,

contingent on the assumption that for the ground truth permutation 75, we have (7%)~!(ig) <
(73)7(jo). If not, repeat the same proof with 7; replaced by 7f o 71 to obtain

16(x 0 71,id) — 0% < 127n1.

Finally, the proof remains valid if we replace  and y by their transposes, and switch the roles
of row and column indices. Hence it also holds with probability 1 — nflo that

16(id, 7o) — B]|% A ||6(id, 75 o 7o) — B]|% < [02 + aV(é)]nm/nl logn;.
We then complete the proof of (5.34) by using the triangle inequality to see that for some choice
of m € {id, m}}, w2 € {id, w5}, it holds that
Hé(’f(l oMy, T O 7?(2) — G_H% < 2”0_(7_1'1 oM, T O 7ATQ) — 5(7_1'1 oy, Id)”% + 2“9_(7_T1 oy, Id) — 0_”%7
= 2||8(id, 72 0 7t2) — 6|3 + 2[|6(71 0 71,id) — O] F

< [02 + O—V(Q_)]nl\/TLQ log n;.
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5.12 Proof of Lemma 17
Recall that y = § + ¢ where Var[e; ;] = 02, and recall the notation

n2 n2

2
€5 =) [yi,k — Yk —— > (Wie — yj,e)] :
n2
k=1 =1
For the statement about its expectation, (5.38), we need to prove that for distinct 7, j € [nq],
no B B
E[£(i, )] = Y _(Oig — 03%)* +2(na — 1)0”. (5.44)
k=1
For the statement about its deviation, (5.39), we claim that it suffices to prove that with probability
. . 2 N ~ 9] 1/2
‘5(2,]) - ]E[f(z,])]‘ < o%v/nologng + U[Z(Gm —0;1) ] v/1ogny. (5.45)
k=1
To see this, note that Lemma 15 gives
= 1 1
] 7. \2 g ] 7 7. \2 2 72
D Oin = 08)* = - D Oik =050 050 +0;0* < (O naV (0)7,
k=1 k<t k<t

where we used that \@k + éj,g — 07j7k — éi’g’ < Vp. Plugging this bound into (5.45) and applying a
union bound over all 4, j € [n;] then completes the proof.
The claims (5.44) and (5.45) can be simplified as follows. For distinct i, j € [n1], we let

n

n
_ _ 1 2
n=ng, T=Y.—-Y,, YV=0.—0j., 6=¢.—¢;., and (= E (xk—a E :Cg) .
k=1 =1

Note that § has independent subG(Co?) entries and E[07] = 20%. We need to prove that

E[(] =) 7 +2(n— 1)o7
k=1

and that with probability 1 — nl_m,

n 1/2
‘C—E[CHSUQ nlognl—i—U(Z'yz) V1ognj.
k=1

Recall that all the rows and columns of # are centered by assumption, so we have > p1 vk =0.
Using this, we get the following Hoeffding decomposition

=3 (- 2y =Y Y- L) 2 Y
k=1 i=1 k=1 k=1 k=1 k=1
In particular, it follows that

El¢] = [I7]3 + 2(n — 1)o”.
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Moreover, we have that with probability 1 — n1_12,

n n 2 n
¢~ Bl < | D007 - 2n0%| + )%(Zak) =207+ 2| Y i
k=1 k=1 k=1
< o%y/nlogn; + o||v|[2/logn1,

where concentration of the first two terms is due to Lemma 22, and the last term is subG(Ca?||v||3).
This completes the proof.

5.13 Proof of Theorem 5

This proof technique was developed by [17,62], and our presentation follows that of Theorem 2
of [62]. We assume without loss of generality that the underlying true permutations 7} and 73
are the identities throughout the proof. Let || - || denotes the operator norm of a matrix. It is well
known (see Theorem 4.4.5 of [68]) that ||| < Co/n1 with probability at least 1 — exp(—n1). We
condition on this event in the sequel.

Recall that the singular value decomposition of y is

n2

.

y= E Aiuv;
i=1

where Aq, ..., A, are ordered non-increasingly, and the SVT estimator is defined as
na
OVt = Z ]l{)\i > p}/\iuiv;,
i=1

where we choose p = 2C10,/n1. Moreover, write the singular value decomposition of * as

n2

0" = Nui(v)),
i=1
where AJ,..., A, are ordered non-increasingly. Let s be the number of singular values of 6* that

are larger than Cio./n1, and define

S
0, = Nur(v)".
i=1
Note that the for each i > s, by Weyl’s inequality, we have

Ai <A+ lell < Croy/ny + Croy/ny = p.

Therefore, 6°'t has rank at most s, and so has 6. It follows that

) A ) e 1/2
109 — 0%|[ 5 < (109 = 04| + (105 — 67| 7 < V25 |65 — 6] + [ > (A;ﬂ :
1=s+1

Moreover, it holds that

167 = Bsll < 116 — wll + lle]l + 116" — 0s]| < 4Cr0 /1.
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Plugging this bound into the previous one, we obtain

no n2
Hésvt _ G*H%’ g 302n1 + Z (sz)Z g Z [0'2711 A ()\2‘)2] (5.46)
i=s+1 =1

For any integer r > 6, Proposition 6 yields a rank-r matrix § € R™*"2 such that

ning

16— 6*11% < [4C

r3

Since 6, = >i_ Afuf(v) " is by definition the best rank-r approximation of #* in the Frobenius
norm, we see that

no
S 02 =16, - 071 < M2y
i=r+1
Hence it follows from (5.46) that
16— 6% % < oy + gV (6)2,

Choosing the optimal r* and considering the boundary cases r* < 1 and r* > ng then yields
[02 . 03/2‘/(0*)1/2] o2

1 A
——[|6°" — "||% <

ning 3/4

Ny
By repeating the same proof keeping track of the failure probability of the statement, we can obtain
bounds in expectation as well.

5.14 Proof of Proposition 6

By rescaling, we may assume that V(0) = 1 without loss of generality. Lemma 7 yields that
0 = R+ S+ B, where R and S are rank-one matrices, and B is anti-Monge, bivariate isotonic (i.e.,
B has nondecreasing rows and columns). Additionally, we have B; ; = By ; = 0 for i € [n1],j € [na],
and By, n, = 1. It suffices to find a low-rank approximation of the matrix B.

5.14.1 Subdivision. We claim that there exist two increasing sequences of indices {zk};;ill and
{je}%il such that

o 0<ip—ik_1 <ny/rforkelr+1];
o 0<js—je—1 <ng/rand By, j, — By, j, ,+1 < 1/r for £ € [2r].

For {i}}; 11, it suffices to choose ig = 0, i, = ix_1 + [n1/r] for k € [r] and i,41 = n1. For {j,}2",,
since By, 1 = 0, By, n, = 1 and B has nondecreasing rows, there is an increasing sequence of indices
{J;};—, such that By, gy = Bnyj,_,+1 < 1/r for all j € [r]. Moreover, by inserting (at most) another
r indices between the indices j, to obtain a new sequence { jg}%;l, we can guarantee that not only
B, j, — Bnij,_,+1 < 1/r, but also j, — je—1 < na/r.

5.14.2 Low-rank approzimation. Let {i;}, 1] and {je}2", be chosen so that the above conditions

are satisfied. We define a matrix X € R™*"2 by setting X;; = B;j, ,4+1 for all i € [n;] and
Jo—1 < j < jg where ¢ € [2r]. By definition, all columns of X with indices in (jy_1, j¢| are the same,
so X has rank at most 2r.
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Furthermore, we define a matrix ¥ € R™*"2 by setting Y; ; = (B — X);,_,+1,; for all j € [n2]
and ix_1 < ¢ < i where k € [r + 1]. Similarly, all rows of Y with indices in (ix_1, x| are the same,
so Y has rank at most r + 1.

It remains to bound ||A||% where A = X +Y — B. First, let us focus on a block with double
indices in (ix—1, %) X (je—1,Je]. On each of these blocks, by definition it holds that:

e X has constant rows, and Y has constant columns;
e the first column of Y is zero, and the first column and first row of A is zero.

Then by Lemma 7 (applied with the corresponding blocks of (B, X, Y, A) in place of (0, R, S, B)),
we see that A is bivariate isotonic on each of these block, and

Aiyge = V(Biy_y +1:ie-141:5¢) = Biy 14 15e-14+1 + Biyjy — Bi_141.4, — Bigje_111-

Therefore, it follows that

i Je
2 . . . . 2
E E A7 < (ik —ik—1)(de — Je-1)AG, j,
1=tk —1+1j=je—1+1

ning (o MIN2 2

< =3 AL = 2 V(B i +14.)
r r
where the second inequality holds thanks to the above choice of indices.

Summing over all the blocks, we obtain

r+1 2r ik r+1 2r

Je
JAIE=323" >  X AL < TR S V(Bi st ati)

k=1 ¢=1 i=i}_1+1j=j;_1+1 k=1 ¢=1

5.14.8 Bounding the sum of variations. It remains to bound the above sum. Recall that a tele-
scoping sum gives

r+1 ..

(i) (42)
> V(Bir_ittiggest1:e) = V(Brmjeoit150) = Buage — Buaget1 < 1/m,
k=1

where (7) holds because the first row and first column of B are zero, and (i) holds because of our
choice of {j,}2",. As a result, it holds by Hélder’s inequality that

2r r+1 ) 2r )
S V(Bi it t10) < D>V (Brmgjo_yi1g,)” < 2r(1/r)% =2/,
/=1 k=1 (=1

We therefore obtain [|A[|% < 2"%12 The proof is complete since A = X+Y —-B = R+S+X+Y —0,
where the matrix R+ S + X + Y has rank at most 3r + 3.
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APPENDIX A: EXISTING RESULTS

In this appendix, we state some existing results that are used in our proofs.
The following result is Talagrand’s majorizing measure theorem [66]. See also Theorem 8.6.1
of [68].

THEOREM 19 (Talagrand’s majorizing measure theorem).  For any set M C R? and a Gaussian
random vector € ~ N (0, 14), we have

E sup (g, 0) < v2(M),
e M

where v2(-) denotes Talagrand’s va functional.
The following theorem gives a tail bound on the supremum of a sub-Gaussian process [66, 68].

THEOREM 20 (Generic chaining tail bound). Consider a sub-Gaussian vector & ~ subGy(c?).
For any set M C R® and s > 0, it holds with probability at least 1 — 2 exp(—s2) that

sup (¢,0) < o[72(M) + s - sup [|0]2].
beM beM

PROOF. By Theorem 8.5.5 of [68], we have that for any 8* € M,

sup |(e,0 — 6")| < o [y2(M) + s - diam(M)]
feM

with probability at least 1 — 2 exp(—s?), where diam(-) denotes the diameter of a set. Moreover, we
have with probability 1 — 2 exp(—s?) that

[(e,67)] S 05167 |2-
It follows that with probability at least 1 — 4 exp(—s2),

sup (g,0) < sup [{g,0 — 6%)| + |{,0")| < 0[72(/\/1) + s - diam(M) + s|]9*||2].
oeM oeM

Since diam(M) + [|6*]|2 S supgeaq ||0]|2, the proof is complete. O
Assouad’s lemma is used to prove the lower bounds (see [67, Lemma 24.3]).

THEOREM 21 (Assouad’s Lemma). Consider a parameter space M. Let Py denote the distri-
bution of the observation given that the true parameter is 0 € M. Let Eg denote the corresponding
expectation. Suppose that for each T € {—1,1}¢, there is an associated 07 € M. Then it holds that

inf sup By 26,67 > Srnin o) (= By — By )
inf sup Eg+£°(0,0*) > — min———> min — |Pgr =P, ||7v),
0 oxeM 8 r#£7 dH(T, 7'/) dg (1,7")=1 0
where € denotes any distance function on M, dy denotes the Hamming distance, || - |7y denotes

the total variation distance, and the infimum is taken over all estimators 8 measurable with respect
to the observation y.
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The following lemma can be proven with basic concentration theory, or follows as a special
instance from the Hanson-Wright inequality [37,59].

LEMMA 22.  Suppose that e € R™ is a random vector with independent centered subG(o?) entries.
Then it holds that for allt > 0,

]PH il (e2 - ]E[eﬂ)‘ > t} < 2exp [— cmin (tQ %)}

oin’

APPENDIX B: LOWER BOUNDS FOR THE SVT ESTIMATOR

Let us focus on the special case n; = no = n, and study a worst-case matrix in M = M™", for
which the approximation rate given by Proposition 6 is tight.

LEMMA 23. There exists a matriz 8 € M™™ such that

2

n
i 0, — 0% > =V (6)>.
). hg}gnkrll =0l 2 = (9)
PRrROOF. Consider the matrix v
0 :=—ptDHT
n

for Vo > 0. It is anti-Monge because

DODT = EI > 0.
n

It also follows from (2.3) that
%
V(0) = |DODT 1 = 21| = V.

Moreover, the singular values of D are given in (5.23), so the eigenvalues of § are
Vo ( . ﬂi)—2
;= —(sin—) .
Hi 4dn 2n
Using the fact that /2 <sinz < z for = € [0, 7/2], we obtain

Von < < 4Von
2,2 =M= 5

3

If the spectral decomposition of 6 is 6 =7 | ,uiwiw;r , then the best rank-r approximation of 6 in
the Frobenius norm is 6, = Zzzl ,uiwiw; , and

n n 2,2 2,2
10 -0z = % 2> S s Yot
' 1 = ' 7.‘-424 ~ 7.3

1=r+1 1=r+1

which completes the proof. O
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Since the anti-Monge matrix # in the above proof cannot be approximated by a low-rank matrix
at a better rate, we conjecture that for this choice of 4, the rate of convergence given by Theorem 5
for the SVT estimator (3.9) is tight. Intuitively, if we set threshold p in definition (3.9) to be larger,
then the resulting estimator has a lower rank, thus incurring a larger bias according to the above
lemma. On the other hand, setting threshold p to be smaller incurs a larger variance due to the
noise €.

More precisely, under the model y = § + ¢ where ¢ has i.i.d. N'(0,0?) entries, we conjecture that
for any choice of threshold p in the estimator (3.9), it holds with constant probability that
‘ésvt B 9H2F > 0j n 03/2{/3(9)1/2

n n3/4

This is because we believe that the bias-variance trade-off in the proof of Theorem 5 is optimal.
However, we are unable to prove a lower bound based on a similar argument in [62], since there,
the authors are able to exploit a varying signal-to-noise ratio within the classes of matrices they
consider. This allows them to employ a triangle inequality argument instead of a explicit bias-
variance decomposition that holds with equality. Potential other approaches include analyzing an
explicit unbiased estimate of the risk for SVT [12], and studying the exact asymptotic optimal
choice of threshold p as in [36]. However, since any of these approaches require asymptotic random
matrix theory, we consider them beyond the scope of the current work.

1
3l
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