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D
uring the past decade, quantum com-
puting has grown from a field known 
mostly for generating scientific papers 
to one that is poised to reshape comput-
ing as we know it [1]. Major industrial 

research efforts in quantum computing are currently 

underway at many companies, including IBM [2], Mi-
crosoft [3], Google [4], [5], Alibaba [6], and Intel [7], 
to name a few. The European Union [8], Australia [9], 
China [10], Japan [11], Canada [12], Russia [13], and the 
United States [14] are each funding large national re-
search initiatives focused on the quantum information 
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sciences. And, recently, tens of start-up companies have 
emerged with goals ranging from the development of 
software for use on quantum computers [15] to the im-
plementation of full-fledged quantum computers (e.g., 
Rigetti [16], ION-Q [17], Psi-Quantum [18], and so on). 
However, despite this rapid growth, because quantum 
computing as a field brings together many different 
disciplines, there is currently a shortage of engineers 
who understand both the engineering aspects (e.g., mi-
crowave design) and the quantum aspects required to 
build a quantum computer [19]. The aim of this article 
is to introduce microwave engineers to quantum com-
puting and demonstrate how the microwave commu-
nity’s expertise could contribute to that field.

To begin, we pose the question, What’s the big deal 
about quantum computing anyway? To put things in 
perspective, let’s start by considering a regular digi-
tal computer—or, in the language of quantum engi-
neers, a classical computer. The fundamental unit of 
information in a computer is the bit. In a conventional 
computer, one bit of memory is stored in the charge 
on a dynamic random-access memory (DRAM) cell. 
A memory register with N bits has 2N  possible states 
in the range { , , , , }.0 00 0 01 0 10 1 11f f f ff f  Thus, a 
300-b memory can store any of 2300  possible bit strings, 
a set so large that it is physically impossible to print 
it out since there is not enough matter in the universe 
to make the ink, not to mention the paper (the infor-
mation capacity of the observable universe, if every 
degree of freedom of every particle was used to encode 
a bit, is roughly 2 b300  [20]). However, while a 300-b reg-
ister can assume any of its 2300  possible states, we know 
that each bit is either zero or one, so at any given time 
the register can store only one of the bit strings.

In a classical computer, computations are carried out 
by moving bits into a CPU, where logical operations are 
implemented in physical circuitry. The essential func-
tion of the CPU is to provide a prescribed output bit 
string for each possible input bit string so as to carry out 
a desired logical operation. Since this is digital circuitry, 
we know that for each input bit string the processor 
will produce exactly one output bit string and that this 
input-to-output mapping is defined in hardware, per-
haps with some subset of the input bits determining the 
logical operation applied to the remainder of the bits.

In a quantum computer, we still have physical 
objects representing bits, but the difference is that the 
memory register exists as a quantum state. The basic 
building block in a quantum register is the quantum 
bit, or qubit. Just like a regular bit, a qubit has a zero 
(ground) state and a one (excited) state. However, what 
distinguishes a qubit from a classical bit is that it can be 
in a superposition of its zero and one states. Mathemat-
ically, the state of a qubit is described by a 2D complex 
state vector of unit amplitude,

	 | | | ,0 1
0

1
0 1H H H}

a

a
a a= = +; E � (1)

where |0H  and |1H  are the zero and one computa-
tional-basis vectors of the qubit, respectively, and the 
complex coefficients 0a  and 1a  are referred to as proba-
bility amplitudes. Physically, the probability amplitudes 
describe the likelihood that one would find the qubit 
in the associated state were a measurement to be car-
ried out: | | |P 0 0

2H a=" ,  and | .| |P 1 1
2H a=" ,  Note that in 

(1) we have implicitly introduced Dirac notation, where 
each of our computational-basis vectors is represented 
by a ket (i.e., |0H  and | ).1H

A quantum register comprises an ensemble of qubits, 
and, just as with the digital register, an N-qubit regis-
ter has 2N  possible states. However, since qubits can 
exist in superposition states, the instantaneous state of 
the quantum register can be in any superposition of its 
2N  basis states; that is, | 0 00 0 01 1 11

TfH} a a a= =f f f6 @  
| | | ,0 00 0 01 1 110 00 0 01 1 11f f g fH H Ha a a+ + +f f f  where 

the probability amplitudes, ,ia  are constrained so that 
| |0 00

2a +f  | | | | .10 01
2

1 11
2ga a+ + =f f  Similar to the case 

of a single qubit, each probability amplitude describes 
the likelihood that the associated bit string would be 
measured the associated bit string if the state of the 
quantum register were measured.

Computation on a quantum computer is typically 
carried out as an in-memory operation. That is, rather 
than moving data from the memory to a CPU and back, 
the quantum register is operated upon directly. An 
operator that can be applied to a quantum register is 
described by a unitary matrix ,Ut  which preserves the 
length of the unit state vector ( ) .UU I=@t t  A universal 
quantum computer permits the application of any arbi-
trary unitary operation to the quantum register; i.e., a 
universal quantum computer can perform any trans-
formation of the form

	 | | ,UH H} }=l t � (2)

where Ut  is an arbitrary unitary matrix.
Unitary operators should be nothing new to a micro-

wave engineer; the scattering matrix of a lossless passive 
network is unitary ( ).SS I=@  In fact, from a mathemati-
cal perspective, the way a quantum computation acts 
upon the 2N  states of a quantum register is identical to 
the operation that occurs when N incident waves scatter 
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from a lossless N-port network (see Figure 1). Therefore, 
we can see that familiar microwave concepts, such as 
superposition and interference, are also useful in pro-
viding intuition with respect to quantum computing; 
complex microwave signal amplitudes are analogous 
to complex quantum probability amplitudes, and, 
whereas the signals in Figure 1(a) carry power, those in 
Figure 1(b) carry probabilities.

There is an important distinction between the 
physical N-port model and the conceptual model of 
quantum computation: while the microwave N-port 
has one physical port associated with each input/out-
put wave, the equivalent diagram describing quantum 
computation has a port associated with each of its 2N  
computational states. Thus, the computational space of 
a universal quantum computer grows exponentially 
with the number of qubits. This massive computational 
capacity explains why quantum computing is so prom-
ising: even at roughly 50 qubits, the computational 
space is too large to simulate using the best supercom-
puters, while an ideal quantum computer can easily 
operate across the entire expanse [5].

Although superposition and interference make 
qubits a little more complex than classical bits, those 
features alone do not provide the exponential com-
putational space described previously. For instance, 
a set of N isolated qubits is only about as complex as 
a set of N classical bits because, when the qubits oper-
ate in isolation, only a small subset of possible super-
position states is accessed; practically speaking, we 
really still have 2N degrees of freedom here. However, 
when the individual qubits are allowed to interact, the 
total register of qubits accesses the full set of available 
superposition states. For example, the two-qubit state 

| . | | | | ,( )0 5 00 01 10 11H H H H H} = + + +  which can be real-
ized by two isolated qubits, may be “factored” into 
two single-qubit states | . | | (| | ).( )0 5 0 1 0 1#H H H H H} = + +  
On the other hand, the Bell state /| (| | )00 11 2H H H} = +  
cannot be factored (try it!), so it cannot be thought of as 
representing the information of two independent bits. 
States that cannot be thought of as combinations of 
single-qubit states are called entangled, and the genera-
tion of such states is essential in accessing the power of 
quantum computing.

While universal quantum computing permits op
eration on all 2N  computational states of a quantum 
register, we cannot perform a measurement of a quan-
tum superposition state. Instead, when we mea-
sure the state of the quantum register at the end of 
a computation, the computer must make a decision. 
As dictated by the postulates of quantum mechan-
ics, such a measurement returns a single classical bit 
of information per measured qubit, meaning that, if 
one measures the state of an N-qubit quantum reg-
ister, one will find the register in one of its 2N  basis 
states, with the likelihood of each outcome equal to 
the modulus of the associated probability amplitude 
(i.e., | | | ,P 0 00 0 00

2f H a= f" ,  | | | ,P 0 01 0 0
2

1f H a= f" ,  and 
so on). Additionally, the act of measuring the state 
of a quantum register will cause any superposition 
state to collapse, and the best one can do is that the 
postmeasurement state of the register agrees with the 
measurement result. It is the job of the quantum algo-
rithm designer to manipulate the quantum register 
into a state where, if measured, a certain bit string that 
corresponds to the desired solution will be returned 
with high probability.

So, from a high level, that’s it. Quantum computing 
provides access to an exponential computational space, 
with the caveat that at the end of a computation you 
get only one answer. The remainder of this article is 
aimed at digging deeper. The following questions are 
addressed: What are the requirements of a technology 
to be used in a universal quantum computer? How can 
these requirements be met with practical components? 
How is the state of a quantum processor controlled? 
How is it measured? What is the state of the art today, 
and how must this be improved in the future if the full 
promise of quantum computing is to be realized? And, 
finally, as a microwave engineer, why should you care? 
Throughout the article, superconducting qubit technol-
ogy is used to illustrate the key concepts.

Items beyond the scope of the article include qu
antum algorithms and derivations of the quantum 
mechanical properties of superconducting circuits. 
For review articles describing these items in detail, 
the curious reader is referred to [21] and [22]. In addi-
tion, we refer the reader to [23] for a detailed review 
of superconducting qubits. A sidebar, “Key Concepts,” 
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Figure 1. The similarity between (a) scattering from a 
lossless microwave N-port and (b) quantum computation 
using an N-qubit quantum computer. While the 
mathematical operations are identical, the number of 
ports for the microwave network is a physical number of 
terminals, whereas the number of ports for the quantum 
operator scale exponentially in the number of qubits.
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Key Concepts
In quantum computing, we manipulate the state of a 
quantum system through the Hamiltonian operator. 
But what exactly do we mean by “the state of a 
quantum system”? What is a quantum operator, and 
what is the significance of the Hamiltonian operator? 
Here, we answer each of these questions, using 
the quantum mechanical LC circuit as an example. 
Interested readers can find a more thorough 
background in one of the classic textbooks in the field, 
including [35], [36], and [46].

What Is a Quantum State?
In classical physics, we imagine an atom as a 
planetary system, with the electron orbiting the 
nucleus, i.e., describing the position of the electron 
with a function ( ) .r t  Quantum mechanics replaces 
this picture of a solid point-like electron with an 
“electron cloud” described by a complex-valued 
function ( , )r t}  whose physical significance is that 

( , )| |r t 2}  is the spatial probability density of the 
electron’s position at time t. The function ( , )r t}  is 
called a wave function.

Similarly, in classical electrical engineering, we 
can describe the state of a circuit—in this case, 
the LC resonator—by its time-dependent flux ( )tU  
and charge Q(t), but quantum mechanics replaces 
that picture with the wave function ( , ).t} U  
Analogous to the atomic system, ( , )| |t 2} U  is the 
probability density for the flux .U  What this means 
is that a measurement of the flux through the 
inductor at time t yields a random result, and the 
probability that the result is between aU  and bU  is 

U
| ( , )| .t dy 2

a

b } U UU

A wave function provides a complete representation of 
the state of a quantum system. While we have described 
the wave function of the quantum LC resonator in terms 
of flux, it is also possible to express the wave function 
with respect to a different observable. For instance, one 
could write the wave function in terms of charge, , ,Q t}^ h  
where, interestingly, , t} U^ h and ,Q t}^ h are related via a 
Fourier transform,

	 , , ,t Q t e dQ
2
1 /jQ

'
}

r
}U =

3

3 'U

-

-^ ^h h# � (S1)

where '  is the reduced Planck constant. Just 
as the time and frequency domain pictures of 
a signal carry the same underlying information, 
both ,Q t}^ h and , t} U^ h are equally valid wave 
functions that fully describe the same underlying 
quantum state. However, while , t} U^ h describes 
the probability distribution for a measurement 
of flux in the LC resonator, ,Q t}^ h describes the 

probability distribution for a measurement of 
charge across the capacitor.

What Is a Quantum Operator?
In quantum mechanics, all physical observables are 
represented by linear transformations—or, as physicists 
often call them, linear operators—which are applied 
to the wave function. In fact, for every observable in 
classical mechanics, there is a corresponding operator 
in quantum mechanics. For instance, one can write 
operators for the voltage, current, flux, charge, or other 
desired quantities. While, as with a wave function, the 
exact form of an operator depends on which basis 
we write it in, it turns out that the eigenvalues of an 
operator are independent of basis. Moreover, in quantum 
mechanics, eigenvalues of operators have special 
meaning: for a measurement outcome to be possible, it 
must be an eigenvalue of the associated operator. Moving 
forward, we focus here on the total energy operator, 
which has particular significance to quantum computing.

What Is the Importance of the 
Hamiltonian Operator?
The linear operator corresponding to the system’s total 
energy is called, for historical reasons, the Hamiltonian, 
and it is denoted by H.t  The Hamiltonian is of particular 
importance to our study of quantum computing for 
two primary reasons. First, its eigenvalues are the 
discrete energies, ,En  that can be measured in a 
quantum system. Physicists refer to these energies as 
quantum levels or eigenenergies. For the undriven LC 
resonator of Figure S1(a), / ,E n 1 2n 0'~= +^ h  where 

/1 LC0~ =  is the resonant frequency of the circuit 
and n is an integer that is greater than or equal to zero. 
When determining the state of a quantum processor, 
we typically make an indirect measurement of the 
qubits’ energies. In the case of transmon qubits, 
we measure impedance, which depends on energy 
because of the nonlinearity of a transmon qubit (see 
the “Readout” section). Since the energies are discrete, 
it is also helpful to expand the wave function in terms 
of the eigenfunctions [ ]n} U^ h  of the Hamiltonian 
operator, which are referred to as energy eigenstates:

	 , ,t t n
n 0

n} a }U U=
3

=

^ ^ ^h h h/ � (S2)

where the energy eigenstates satisfy the typical 
eigenvalue equation,

	 .EH n n n} }U U=t ^ ^h h � (S3)

Since (S3) is really a set of n independent equations, 
this choice of expansion leads us to a matrix 
representation for the Hamiltonian operator and 
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a vector representation for the wave function in the 
eigenenergy basis:

	 ,
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Note that | t H}^ h  is simply the wave function 
expressed as a vector in the energy eigenstate basis. 
There is something pretty deep here. Each entry in the 
Hamiltonian matrix corresponds to one of the possible 
measurement outcomes; that is, if a measurement 
of the energy in the system were made, then the 
outcome must be one of the diagonal entries of (S4). 
Since there is a 1:1 correspondence between the 
eigenvalues, ,En  and the energy eigenstates, ,n} U^ h  
each of the energy eigenstates is associated with 
a definite energy; in other words, one can find the 
probability of measuring E i  as .| |i 2a  Interestingly, this 
would not be true if we used a different basis for our 
expansion of the wave function since the Hamiltonian 
matrix would no longer be diagonal.

Note, that the left-hand side of (S5) represents the 
state without giving its decomposition in any particular 
basis. This is common practice in the quantum physics 
community. For an n-level system, one typically writes 
| ,0H  | , ,1 fH  |nH rather than, for instance, ,0} U^ h  

, , ,n1 f} }U U^ ^h h  and, when we say in the main text 
that we use the |0H and |1H states as computation-
basis states, it means that our computational bases 
are the 0} U^ h and 1} U^ h components, and we are 
operating on 0a  and .1a

But what if we wanted to determine expressions 
for the energy eigenstates in the flux basis? Each of 
the energy eigenstates can be found by solving the 
eigenvalue (S3), plugging in the appropriate value 
for .En  Since the Hamiltonian operator in the flux 
basis is [22] / / / ,C L2 2H d d2 2 2' U U= - +t ^^ ^h h h  this 
corresponds to solving a second-order differential 
equation of the form

	 .C L E2 2 0
d
d2

2

22

n n
' }

U
U U- + - =c ^m h � (S6)

The first three energy eigenstates appear in 
Figure S1(b). Note that, if the wave function were 
expressed with respect to a different basis, then the 
general procedure would be exactly the same, but 
the form of the Hamiltonian operator would change 
in the new basis.

Figure S1. The quantum LC resonator. (a) An undriven LC resonator. (b) The first three wave functions (solid lines) 
and energy levels (dashed lines) for the undriven quantum LC resonator, plotted as a function of flux, normalized to 

/ .C 20ZPF '~U =  The wave functions have been offset to align with the associated energy level. (c) A quantum LC 
resonator with a drive source. It is assumed that C CD %  so that 0~  is not affected by this additional capacitance.
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explains some quantum mechanics fundamentals that 
are relevant to the remainder of the article. It has been 
provided for those who are new to the field, and it may 
be helpful to read it before proceeding.

What Is Required to Build 
a Quantum Computer?
Just as the construction of a classical computer has well-
defined technological requirements, so does the design 
of a universal quantum computer. These requirements 
can be summarized as five items known as the DiVin-
cenzo criteria [24]:

1)	 A well-understood and scalable qubit technology: If 
we are going to control a large array of qubits, 
we will need a model that describes how the 
qubits interact with external controls and with 
one another. Beyond simply having a model, 
the technology should also be amenable for 
use in large arrays of qubits without a loss 
of performance.

2)	 A mechanism for initializing each qubit into a known 
state: It is essential that we can reliably initialize 
the state of a quantum processor to some well-
known state. While the exact state (e.g., |00 0f H or 
| )1 11f H  is not important, it is essential that any 
initialization procedure be robust for all possible 
preinitialization states of the quantum processor.

3)	 Fast gate operations with respect to the qubit coher-
ence time: A qubit behaves as an analog object 
during computation, and its coherence time is 
a metric that quantifies the characteristic tim-
escale on which its state randomizes. Since a 
quantum computation consists of a series of 
gate operations, it is critical that the individual 
processes be carried out on a timescale orders 
of magnitude shorter than the coherence time of 
the individual qubits.

4)	 A universal set of quantum gates: A universal 
quantum computer allows for arbitrary unitary 
computations, which require a universal gate set. 

The second reason that the Hamiltonian operator 
is significant to our current discussion is that the time 
evolution of a quantum state is governed by the so-
called Schrödinger equation:

	 | | .j
t

t t
d
d H' H H} }= t^ ^h h � (S7)

In quantum computing, our goal is to control the time 
evolution of a quantum system, so intuition into the 
dynamics of the Schrödinger equation is essential. It 
turns out that expanding the wave function in terms 
of the energy eigenstates as done earlier greatly 
simplifies the solution to the Schrödinger equation, 
which collapses to

	 ,
t
t j

E t
d

d n
n n'

a
a=-

^ ^h h � (S8)

with the solution / .expt jE t0n n n 'a a= -^ ^h h " ,  Thus, 
one can write the full wave function in the energy 
eigenstate basis as

	 | | ,t e n0
n

j t

0
n

nH H} a=
3

~

=

-^ ^h h/ � (S9)

where / / .E n 1 20n n '/~ ~= +^ h  So, the expansion 
coefficients experience a phase progression that 
varies with index n, but the overall energy in the 
system stays the same. That the energy does not 
change through time is exactly what one would expect 
for an undriven lossless LC resonator.

So how do we cause the circuit to switch between 
states as we want to do when we control a qubit? This 

can be accomplished by adding a drive source to the 
circuit as in Figure S1(c). If we keep our basis states 
as the energy eigenstates of the undriven circuit [i.e., 
those of the circuit in Figure S1(a)], then the effect of 
the microwave drive is to add extra off-diagonal terms 
to the Hamiltonian:
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where c  is a coupling parameter related to the 
microwave design. When the new Hamiltonian is 
plugged into the Schrödinger equation, the extra 
off-diagonal terms cause mixing between adjacent 
levels:

	 ,
t
t j

E t j v t t
d

d 0
0 0 1D'
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a c a=- -

^ ^ ^ ^ ^h h h hh � (S11)

and, for ,n 1$
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Therefore, by engineering the Hamiltonian to add 
drive terms at appropriate frequencies, amplitudes, 
phases, and durations, we can control the evolution of 
the circuit’s quantum state.
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Fortunately, this can be constructed from a set of 
single qubit gates (i.e., operations applied to just 
one qubit) and a suitable choice of a single two-
qubit gate [25]. There are many different options 
for the constituents of a universal gate set.

5)	 A method for measuring the state of individual qubits: 
Finally, we must be able to determine the solution 
of a computation in a manner that is faithful to 
the probability amplitudes of the quantum state. 
What this really means is that we need a method 
to measure the state of each qubit.

How Can We Build a Quantum Computer?
How can we actually go about building a quantum 
computer that satisfies the requirements described 
previously? Let us consider the constraints one by one.

A Well-Understood Qubit Technology
First, we need a technology that provides scalable 
and well-understood qubits. A variety of candidate 
qubit technologies exist, including trapped ions [26], 
bulk and integrated photonics [27], cold atoms [28], 
semiconductor spin qubits [29], and superconduct-
ing circuits [23]. Here, we focus on superconducting 
circuits, which are monolithically fabricated devices 
that are engineered, controlled, and measured using 
familiar microwave circuit techniques. In particu-
lar, we discuss one type of superconducting qubit 

called the transmon, which is a nonlinear microwave 
resonator [30].

To understand the transmon, we start by describ-
ing the behavior in the quantum mechanical limit of 
a simpler circuit, a parallel LC resonator [Figure 2(a)] 
characterized by a resonant frequency, / ,LC10~ =  
and a quality factor (Q-factor), / .Q R C L=  Normally, 
we assume that the amount of energy stored in an 
LC resonator can adopt any positive value. However, 
if we were to measure the energy in a high Q-factor 
resonator with very high sensitivity, we would find 
that the result is quantized to a set of allowed ener-
gies known as quantum energy levels,

	 ,E n 2
1

n 0,LC '~= +` j � (3)

where 10 J s34 $'. -  is the reduced Planck constant and 
the index n is a nonnegative integer. The corresponding 
energy diagram appears in Figure 2(b). The equal spac-
ing of the energy levels makes a lot of sense; the elec-
tromagnetic quantum of energy is ,'~  and here we see 
that the step between allowed energies is equal to .0'~  
Thus, moving between the various energy levels cor-
responds to adding or removing an integer number of 
microwave quanta (photons) at the resonant frequency 
of the circuit. If we were to use this device as a qubit, 
we could employ the |0H and |1H states for our compu-
tational basis.
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Figure 2. From a linear resonator to the transmon. (a) The linear resonator circuit diagram. (b) The energy diagram for a 
high Q-factor LC linear resonator. (c) The drive circuit (left) and the linear resonator (right). (d) The fixed-frequency transmon 
(nonlinear resonator). The transmon is an LC resonator with a nonlinear inductance, realized with a Josephson junction (JJ) 
(represented by the X symbol). (e) The transmon energy diagram. The energy spacing between each level is unique due to the 
transmon nonlinearity. (f) The frequency-tunable transmon with RF and dc control ports: the XY drive (left), transmon qubit 
(nonlinear resonator) (center), and flux bias (Z drive) (right).
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Why do we usually ignore these quantum energy 
levels and just assume things are continuous? Micro-
wave engineers rarely work in a situation where the 
electromagnetic quantum, ,'~  is anywhere near the 
energy scale associated with the thermal energy of 
the environment, ,kTA  where .k 1 38 10 J/K23#. -  is 
Boltzmann’s constant and TA  is the ambient tem-
perature to which the resonator is thermalized. In 
the usual limit (e.g., at room temperature), Johnson 
noise from the resistor drives the resonator into a 
random distribution across many energy levels. 
In this case, the energy levels are literally in the 
noise. However, once we enter  the regime where 

/ ( / ),T k f50 1mK GHzA #'+ .~  quantum mechani-
cal effects start to manifest. The thermal excitation 
probability goes as / ;exp kTA'~-" ,  so, to ensure that 
thermal excitations of the resonator are lower than 
1%, we need to reduce TA  to five times below / .k'~  
A commercial dilution refrigerator can get down to 
10 mK, so we expect to observe quantum mechanical 
behavior as long as 1GHz.0 $~

So far, things look promising. We have a device 
that behaves quantum mechanically if cooled to low-
enough temperatures, and we understand its proper-
ties (e.g., )0~  well enough that we can engineer them 
through the choice of circuit parameters. However, 
if we are going to use it as a qubit, we will need a 
way to deterministically transition between the |0H  
and |1H  states. To do this, a drive at 0~  can be capaci-
tively coupled to the circuit, as in Figure 2(c). The 
drive causes the circuit to move between the vari-
ous energy levels, and it is the basis for controlling 
the quantum state of the resonator. However, there 
is a problem. We want a system that behaves as if it 
has only two levels (i.e., |0H  and | ).1H  But when we 
excite the resonator at ,0~  we end up driving all the 
transitions, which leads to a superposition state that 
includes the higher levels. Therefore, instead of the 
two-level qubit described earlier, we have a system 
with many active levels.

Fortunately there is a fairly straightforward change 
we can make to the LC resonator that enables us to 
independently address the | |0 1"H H transition: if we 
add nonlinearity to the resonator, the energy level 
spacing becomes nonuniform, a property that quan-
tum engineers refer to as anharmonicity. In a transmon 
qubit, this nonlinearity is realized by replacing the 
inductor we had in the LC resonator by a Josephson 
junction (JJ), which is a superconducting tunnel junc-
tion that behaves as a nonlinear inductor of inductance 

/ / ,L L I I10
2 2

J J J C= -  where IJ  is the current through the 
JJ, IC  is the critical current of the JJ, /L I20 0J CrU=  is the 
zero-flux inductance of the JJ, / .q 2 07 mV ps0 $' .rU =  
is the magnetic flux quantum, and .q 0 16 aC=  is the 
charge of an electron. The transmon circuit is shown 

in Figure 2(d), and its energy levels are illustrated in 
Figure 2(e).

Defining Josephson and capacit ive energies,  
/E I 20J C rU= ^ h and / ,E q C22

QC = ^ h  respectively, and 
in the usual case that ,E EJ C&  the quantum energies of 
the transmon qubit are [30]

	 ,E n E n n2
1

12 6 6 3n 0
2C

Linear resonator 
energies

Anharmonicity

'. ~ + - + +` ^j h
1 2 3444 444 1 2 34444 4444

� (4)

where / L C10 0J Q~ =  and / .EC 'h =-  For typical 
transmon parameters (L 8 nH0J =  and C 80 fFQ =  [31]), 

/20~ r  and /E 2C 'h r=-  are roughly 6.2 GHz and 
–240 MHz, respectively, (for these same parameters, 
/E 2J 'r  is approximately 20 GHz, so our assumption 

that E EJ C&  is valid). From (4), we can write the various 
transition frequencies

	 ,E E
01

1 0
0'

.~ ~ h=
-

+ � (5)

	 ,E E 212
2 1

0'
.~ ~ h= - + � (6)

	 ,E E 323
3 2

0'
.~ ~ h=

-
+ � (7)

and so on. As depicted in Figure 2(e), the effect of the 
JJ nonlinearity is to create anharmonic energy levels 
( ).01 12 23f! !~ ~ ~  If we restrict the bandwidth of the 
microwave drive signal such that only 01~  is excited, 
then it is possible to treat this device as if it were an 
ideal two-level qubit.

So how nonlinear is a transmon? From (4), we see 
that each time a photon is added to the resonator, the 
resonant frequency drops by .| |h  Moreover, h  is a 
parameter that can be engineered through the choice 
of .CQ  However, one cannot arbitrarily increase the 
anharmonicity without paying a price in other per-
formance metrics, and a typical value for /| | 2h r  is 
roughly 200 MHz. Nonetheless, this is a very strong 
nonlinearity: one photon of energy (e.g., .3 3 10 J24# -  at 
5 GHz) causes a 200-MHz shift in the transmon’s reso-
nant frequency. However, despite this, the transmon is 
still referred to by quantum engineers as weakly anhar-
monic, since the relative difference between the 01~  and 

12~  transitions is much smaller than .01~  This weak 
anharmonicity means that the minimum duration of 
the microwave pulses used to drive the 01~  transition 
will be limited by the necessity to avoid exciting the 

12~  transition.
In many architectures, one must be able to dynami-

cally tune the | |0 1"H H transition frequency ( )01~  of a 
transmon. This is facilitated by replacing the JJ with a 
superconducting loop interrupted by two JJs. Such a 
loop, known as a dc superconducting quantum interference 
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device (dc SQUID), behaves like a single JJ where LJ0  
depends on the magnetic flux bias through the loop. 
The flux bias is typically provided by an on-chip bias 
coil near the SQUID. A complete schematic of a flux-
tunable transmon qubit with microwave (XY) and dc-
SQUID flux (Z) drivelines is shown in Figure 2(f), and 
photographs of a junction and complete qubit appear in 
Figure 3(a)–(c). The reason for the terms XY and Z will 
be become apparent shortly.

A critical property of a qubit is its coherence time: 
the timescale on which the state of the qubit is ran-
domized by noise or loss. For a quantum technology 
to be useful in a quantum computer, its coherence time 
should be much greater than the timescale on which 
its quantum state can be manipulated. Quantum engi-
neers refer to two quantities to describe decoherence: 
T ,1  which is the energy relaxation time, and T ,2  which 
is the dephasing time (in the physics community, it 
is customary to use the notation TX  to denote time 
constant X related to decoherence; here, we maintain 
this notation, with the caveat that we reserve the itali-
cized T to refer to noise temperatures.). T1  is related 

to the loaded Q-factor of the qubit ( ).QL  A qubit ini-
tially in its |1H  state will randomly flip to the |0H  state 
due to electrical losses on a characteristic timescale of 

/ .QT 011 L ~=  These losses can be resistances associated 
with the qubit materials or losses due to the coupling 
of the qubit to its control wiring. Achieving a typi-
cal value for T1  of 50 sn  for /2 5 GHz01~ r =  requires 

. ;Q 1 6 106
L #.  many years of materials research went 

into achieving this specification.
The second metric, T ,2  is related to the frequency 

jitter of the qubit. For example, fluctuations in the JJ 
critical current cause the qubit frequency to fluctuate, 
leading to the accumulation of random phase. In tun-
able qubit architectures, another important source of 
noise is the flux-bias (frequency-control) line. Fixed-
frequency (i.e., nontunable) transmons can usually 
achieve a better T2  than tunable transmons.

Based on the preceding discussion, this tech-
nology appears to meet our f i rst  requirement; 
i t  i s  monolithic, so the qubits can be mass pro-
duced, and we can engineer the properties of the 
devices at the circuit level, so we have a pretty good 
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Figure 3. A typical transmon qubit as seen through imaging. The (a) closeup view and (b) cross section of a JJ. (c) A 
complete qubit. The distributed qubit capacitance, XY coplanar waveguide (CPW) line, and Z CPW line are highlighted in 
blue, yellow, and green, respectively. A blow-up of the SQUID and flux-bias coupling is also shown. The JJs are typically 
patterned with electron beam lithography and made by a two-step aluminum (Al) deposition, interrupted by an oxidation step 
in a liftoff process, on sapphire or high-resistivity silicon wafers. Larger features in the circuit are typically patterned with 
photolithography and made with Al or niobium metallization in a liftoff or etching process. State-of-the-art JJ uniformity is 
typically in the 1% range, contributing a ~30-MHz variation in the qubit frequency. In most cases, superconducting qubits 
are made in low-volume research foundries on 100–200-mm tools, so, in practice, device parameter variation can significantly 
exceed 1%.
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understanding of the quantum behavior. But what 
about the other criteria?

Initialization
Initialization is relatively easy. Qubits naturally relax 
on the timescale T ,1  so initialization into |0H  can be 
done simply by waiting. Of course, since we want our 
qubit operations to be faster than ,T1  we may need a 
way to initialize faster than T .1  A variety of techniques 
have been discovered and are in active use (e.g., [32] 
and [33]).

Fast and Universal Gates
Our next two criteria—fast gates with respect to the 
coherence time of our qubits and a universal gate 
set—are related, so we treat them together. What we 
are really after here is to develop an understanding 
of how the quantum state of a transmon-based pro-
cessor is controlled via electrical signals. To develop 
this understanding, we begin by first considering how 
quantum states can be controlled in an abstract sense. 
We will see that the total energy operator, known as 
the Hamiltonian operator, is the handle that enables con-
trol of the quantum state. We then consider how quan-
tum gates can be implemented, first in the abstract 
sense, and then we apply this knowledge to see how 
single- and two-qubit gates can be carried out on 
transmon qubits.

To begin, let’s consider how physics permits the con-
trol of a quantum state in the first place. Recall that, 
when we perform a quantum computation, our goal is 
to apply a unitary operation, , ,t tU 0

t ^ h  that takes a state 
| t0 H}^ h  to a new state | t H}^ h  in time ,t t t0T = -  i.e.,

	 | , | .t t t tU 0 0H H} }= t^ ^ ^h h h � (8)

So what physics can we leverage to implement the 
unitary operator , ?t tU 0

t ^ h  The key here is understand-
ing how a quantum state evolves as a function of 
time and how to leverage this intuition to engineer 
quantum gate operations. The time evolution of a 
quantum state is dictated by the time-dependent 
Schrödinger equation,

	 | ( ) | ,dt
d t

j
t tH

'
H H} }=- t ^ ^h h � (9)

which says that the time evolution of a quantum state is 
entirely determined by the Hamiltonian (total energy) 
operator of the system, .tHt ^ h  Since the state of an 
N-qubit register is described by a state vector of length 

,2N  the Hamiltonian operator for an N-qubit regis-
ter is a 2 2N N#  matrix. Hence, a single qubit has a  
2  #  2 Hamiltonian, a pair of qubits share a 4  #  4 
Hamiltonian, and so on. Solving (9), given an ini-
t ial state at t t0=  under the assumption that the 

Hamiltonian operator commutes with itself through-
out the operation,

	 | | .expt
j

t t tH d

,
t

t

t t

0

U
0

0

'
H H} }= - l lt

t

^ ^ ^
`

h h h
j

' 1
1 2 3444444 444444

# � (10)

Thus, we can control the state evolution of a quantum 
register if we can program its Hamiltonian; therefore, 
the name of the game in quantum control is to engi-
neer knobs that permit doing so deterministically. 
These knobs may be microwave drive signals (super-
conducting [23] and semiconductor spin qubits [34]), 
flux biases (superconducting qubits [23]), laser drive 
signals (trapped ion qubits [26]), phase shifters (pho-
tonic qubits [27]), and so on. Shortly, we will dive into 
the details of how this is accomplished for transmon 
qubits. However, let us first consider what kind of gate 
operations we need to develop.

For universal quantum computing, we need to 
apply an arbitrary 2 2N N#  unitary to a quantum regis-
ter. Producing a fully controllable 2 2N N#  Hamiltonian 
would be intractable. Fortunately, any arbitrary quan-
tum operator Ut  can be decomposed into a sequence of 
elementary operations applied to just a single qubit or a 
pair of qubits. These elementary operations are referred 
to as quantum gates, and the quantum algorithms used to 
implement a desired 2 2N N#  unitary operator are built 
up using sequences of them. Thus, we can focus our 
attention on one- or two-qubit subsystems when consid-
ering how to control a quantum computer.

Single-Qubit Gate Operations
First, we consider single-qubit gate operations in gen-
eral before seeing how one carries out such operations 
on transmon qubits. In regular digital logic, there are 
really only two useful cells that operate on a single bit: 
an inverter and a buffer. However, in quantum com-
puting, where individual bits can exist in a complex 
superposition state, there is a full continuum of gate 
operations that can be carried out. Single-qubit states 
are easy to understand using a visual representation of 
the qubit state. After removing an unobservable global 
phase term from (1), we can write the state in terms of 
two variables, i  and :z

	 | | | .cos sine2 0 2 1jH H H}
i i= + z` `j j � (11)

In quantum computing, where 
individual bits can exist in a complex 
superposition state, there is a full 
continuum of gate operations that 
can be carried out.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 01,2020 at 19:47:20 UTC from IEEE Xplore.  Restrictions apply. 



34	  		  	 August 2020

The continuum of values that can be assigned to these 
two variables maps to the surface of a sphere, which is 
referred to as the Bloch sphere.

The Bloch sphere representation of a qubit is 
shown in Figure 4(a). Any single-qubit state can be 
represented by a unit vector, known as a Bloch vector, 
on the surface of the Bloch sphere. The ground state 
|0H  is at the north pole, the excited state |1H  is at the 
south pole, and all other points on the surface of the 
sphere represent unique superposition states. Since 
all single-qubit states lie on the surface of the Bloch 
sphere, any single-qubit gate operation corresponds 
to a rotation of the Bloch vector around some axis. 
When a measurement of the qubit state is carried out, 
the result depends solely on the elevation angle, ;i  
that is, | /cosP 0 22H i= ^ h" ,  and | / .sinP 21 2H i= ^ h" ,  So 
one can easily estimate the measurement probabilities 

from this graphical representation. On the other 
hand, since any single-qubit gate can be viewed as 
a rotation operation, its impact will depend on both 
i  and .z

When we carry out single-qubit gate operations, we 
are moving the Bloch vector of a qubit around the sur-
face of the Bloch sphere, and the handle that enables 
us to achieve this goal is the Hamiltonian operator 
of the qubit. But what exact Hamiltonian operator(s) 
would we like to engineer? That is, what form would 
we like our single-qubit Hamiltonian to take if we wish 
to rotate the Bloch vector around an arbitrary axis? To 
answer this question, let’s consider an expression for a 
generic single-qubit Hamiltonian,

	 ,w w w2H R
X X Y Y Z Z

'~
v v v= + +t t t t^ h � (12)
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Figure 4. The Bloch sphere is a valuable tool to understand single-qubit states and control operations. (a) The Bloch sphere 
representation of a qubit state | ( / )| / | .( )cos exp sinj2 0 2 1H H H} i z i= + " ,  The effect of (b) Pauli matrices ,Xvt  (c) ,Yvt  and (d)  Zvt  
is to rotate the qubit state around the x-, y-, and z-axes, respectively. The effect of (e) Yvt  on an initial state | |( ) 00 H H} =  and 
(f) Zvt  on an initial state / .| ( ) | |( )0 0 1 2H H H} = +  The action of the (g) Yr  and (h) Y /2r  gates. The Bloch sphere pictures show 
the effect of the gates on a qubit that is initially in the |0 H state, whereas the matrices describe the effect on an arbitrary state.
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where R~  is an angular frequency of rotation; ,wX  
,wY  and wZ  are dimensionless weights (| | | |w w2 2

X Y+ + 
| | );w 12

Z =  and

	 , ,j
j0

1
1
0

0
0

1
0

0
1andX Y Zv v v= =

-
=

-
t t t; = ;E G E� (13)

are the Pauli spin matrices [37]. What we have done 
here is write the general Hamiltonian of our qubit in 
terms of three independent operators ( ,Xvt  ,Yvt  and ) .Zvt  
It turns out that breaking things up in this way is par-
ticularly useful when trying to visualize the effect of 
the Hamiltonian on the qubit dynamics.

As illustrated in Figure 4(b)–(d), the presence of 
each of the Pauli spin matrices in a Hamiltonian corre-
sponds to rotation of the Bloch vector around one of the 
major axes; i.e., ,Xvt  ,Yvt  and Zvt  describe rotation about 
the x-, y-, and z-axes, respectively. Example time evo-
lutions for Yvt  and Zvt  operators appear in Figure 4(e) 
and (f), respectively. Rotation around the y-axis causes 
the measurement probabilities to oscillate with time; 
these probability oscillations are referred to by the 
quantum community as Rabi oscillations. On the other 
hand, rotation around the z-axis leaves the measure-
ment probabilities unaffected and influences only the 
qubit phase ( ).z  By controlling the duration through 
which the Yvt  and Zvt  operators are enabled, we can 
carry out deterministic rotations around the y- and 
z-axes, respectively. For instance, as shown in Fig-
ure 4(g), if we enable Yvt  for a duration / ,t Rr ~=  then 
we can execute a Yr  gate, which initially flips a qubit 
in state |0H to state |1H and vice versa, analogous to a 
classical NOT gate. Similarly, as shown in Figure 4(h), 
if we turn on Yvt  for a duration / ,t 2 Rr ~=  then we can 
execute a Y -/2r pulse, which creates a superposition 
state from a qubit initialized to the |0H or |1H states. If 
we had control knobs that permitted us to enable and 
disable each of the Pauli operators at will, we would 
be able to perform any single-qubit gate operation we 
wanted. Now, let’s see how this is accomplished for the 
transmon qubit.

Control of Transmon Qubit
Let’s first write the Hamiltonian of the isolated qubit of 
Figure 2(d) and consider the drive later. Throughout, we 
make the assumption that the control operations do not 
take us out of the two-level computational space, and 
we will deal with the constraints this imposes when 
we describe the practical requirements for single-qubit 
control. The Hamiltonian of the isolated transmon can, 
then, be determined by considering the qubit’s two 
lowest energies [see (4)]:

	 .2H0
01

Z
'~

v=-t t � (14)

What this means is that the state of a transmon qu
bit naturally rotates about the –z-axis of the Bloch 
sphere at a frequency ,01~  i.e., | / |cost 2 00H H} i= +^ ^h h  

/ | ,expsin j t2 10 0 01 Hi z ~-^ ^h h" ,  where 0i  and 0z  are 
the init ial values of i  and ,z  as defined in Fig-
ure 4(a). For this reason, we typically refer to 1~  as 
the qubit frequency.

To understand the action of quantum gate opera-
tions, it is helpful to first remove the natural rotation of 
the qubit, analogous to working in the baseband enve-
lope domain. After making this change of coordinates 
to what we call the rotating frame, the isolated qubit 
Hamiltonian simplifies as 0H ,0 R =t  since there is no rela-
tive motion in the new frame. Note that the subscript R 
has been added to signify that the expression is valid in 
the rotating frame. Moving forward, we will work in the 
rotating frame.

Now we are ready to talk about how one can apply 
gates to the transmon. Let us assume that we want to 
apply a phase gate, which rotates the single qubit state 
around the z-axis by some desired angle. To see how 
one might do that, we can rewrite (14) in the rotating 
frame, while allowing for a frequency detuning, ,01T~  
from the idling value of ,01~

	 .2H , Z0 01
01

R
'T T

~
~

v=-t t^ h � (15)

So we can enable a rotation around the z-axis by con-
trolling the frequency of the qubit through the flux-
tuning line, which, accordingly, is referred to as Z 
control. This mechanism is similar to the way a phase-
locked loop adjusts the phase of a voltage-controlled 
oscillator (VCO) using the frequency-tuning voltage.

What about rotations around the x- and y-axes? Since 
these are transverse rotations (i.e., from |0H to |1H and 
vice versa), a method to couple energy into the circuit 
is required. This can be achieved through capacitive 
[as in Figure 2(e)] or inductive coupling of a microwave 
generator to the transmon, and it adds a drive term to 
the Hamiltonian. If ,sinv e t tt 01RF D~ r z= + -^ ^ ^ ^h h hh  
then the drive term corresponding to capacitive cou-
pling is

,cos sin
e t

C C
C

Z2 2H D
D,R

D Q Q
D X D Y

'. z v z v
+

+t t t
^ ^ ^ ^h h h h

� (16)

where /Z L C0Q J Q/  (typically, ZQ  is roughly 300X  
[31]). The overall Hamiltonian is now H H .,0 R D,R+t t  So 
the microwave drive induces a rotation of the Bloch 
vector around an axis in the xy-plane whose angle is 
determined by the carrier phase ( ).Dz  The rate of this 
rotation is determined by the amplitude of the micro-
wave signal. For a universal gate set, we really only 
require rotations around the x- and y-axes, so the key 
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requirements are that we can shift the carrier by 90° 
and that we have accurate control of the integrated 
envelope amplitude, which sets the amount of rotation.

Now, let’s consider some practical constraints. The 
required amplitude of the drive signal depends on ,CD  
which sets the drive-coupling strength. However, the 
driveline presents a resistive loss channel to the qubit, lim-
iting the qubit relaxation time to / ,QT 101 loading

1
D# c ~=-  

where QD  is the Q-factor imposed on the qubit due to 
loading by the driveline. The loading is related to the 
drive capacitance via / / ,Q C C Z Z2

0D Q D Q. ^ h  where Z0  
is the generator impedance. We typically engineer QD  
to be on the order of 5 107#  or so, which means that 
we need to keep our coupling very weak: CQ  and CD  
are usually on the order of 100 fF and 25 aF, respec-
tively [31]. Referring to Figure 3(c), we see that the small 
drive capacitance has been realized as coupling from an 
open-circuited coplanar waveguide (CPW) line to the 
qubit across a region of the ground plane, which can 
be designed using modern electromagnetic simula-
tion tools.

Care also must be taken in coupling the dc flux bias 
to the qubit. While noise on the XY line drives XY 
rotations of random phase, noise on the Z driveline 
results in fluctuations of the qubit frequency, analo-
gous to noise on the control line of a VCO. To keep 
these fluctuations in a range where they do not limit 
the coherence of the qubit, the magnetic coupling is 
very weak, with typical mutual inductances on the 
order of 2 pH. Such small inductances can be realized 
by keeping both the self-inductance of the flux line 
and the geometry of the SQUID small, as illustrated 
in Figure 3(c).

It is also important to consider which waveforms we 
want to apply to the microwave control port. We would 
like to use microwave pulses to drive the qubit state 
around the surface of the Bloch sphere as quickly as 
possible without introducing errors. But, since a trans-
mon qubit is a weakly anharmonic device, we need to 
be especially careful that our microwave pulses do not 
excite the 12~  transition. When engineering the qubit, 
there is a tradeoff between the dephasing time and 
anharmonicity, with a larger anharmonicity (a smaller 

)CQ  corresponding to more dephasing [30]. In practice, 
a typical value of /2h r-  is roughly 200 MHz. So car-
rying out fast XY pulses is quite challenging, since 
the relative energy at this offset frequency must be 
suppressed by more than 40 dB to prevent errors due 
to |2H population from being the dominant source of 
gate error. On the other hand, gates with a duration of 
approximately 10 ns are necessary to limit errors due to 
decoherence. To balance this tradeoff, XY pulses typi-
cally employ Gaussian or raised-cosine envelopes in 
conjunction with spectral-shaping techniques, such as 
Derivative Removal by Adiabatic Gate (DRAG) [38], [39], 

which can be employed to place a notch in the pulse’s 
spectral content at .f12

How strong should these pulses be? If we want to 
carry out an XY gate of duration tT  that rotates the 
qubit state by an angle, ,Ti  while using a raised-
cosine envelope, the required peak power available 
from the generator at the reference plane shown in 
Figure 2(e) is

	 / .P Q t2 2
AV D' T Ti= ^ ^h h � (17)

It is important to note here that the rotation angle 
scales with amplitude as opposed to power since a 
qubit is a coherent device. Taking the value of QD  given 
previously, we find that carrying out a -r pulse (cor-
responding to a 180º rotation) within 10 ns requires a 
peak available power of roughly m,63 dB-  which is 
only a tiny fraction of the energy makes it to the qubit.

The signal-to-noise ratio (SNR) of the XY control 
signal is also an important consideration because 
noise on the XY driveline causes decoherence by driv-
ing small rotations about random axes on the Bloch 
sphere. The weak coupling of the XY line to the qubit 
helps reject noise, but there’s still a limit to how much 
noise can be tolerated. The characteristic timescale at 
which the qubit state randomizes due to noise on the 
driveline is

	 ,S
Q
a

noise
1 D'

c =- � (18)

where Sa  is the spectral density of available noise 
power at .01~  This formula makes sense because 
more noise should cause more decoherence, and a 
higher QD  means that the qubit is more weakly cou-
pled to the XY driveline. How much attenuation do 
we need between our pulse generator and the qubit 
to sufficiently suppress generator noise? Recall that 
QD  sets the decoherence rate due to resistive loading 
from the XY line. If we require noise

1c-  to be at least as 
large as ,loading

1
c
-  then we need .Sa 10'1 ~  Rephrasing in 

terms of the effective noise temperature looking back 
toward the generator from the drive port ( ),Tdrive  we 
need // ( / ) .T k 48 2mK GHz10 10drive #'1 ~ ~ r=  So, for 
a qubit frequency of 5 GHz, we need T 240 mK,drive 1  
which is roughly 30 dB lower than room tempera-
ture. A typical conservative approach is to attenuate 
the drive signal by a ratio of / ,T TGEN BASE  where TGEN  
and TBASE  are the temperatures to which the genera-
tor and quantum integrated circuit are thermalized, 
respectively, with the attenuation distributed along 
the thermal gradient to balance the thermal noise of 
the attenuators with heating due to dissipation. This 
approach assumes that the noise floor of the genera-
tor is thermally limited, and additional attenuation 
may be required if the pulse generator has a higher 
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equivalent output noise floor, as is typically the case. 
Assuming a 30-mK base temperature and a thermally 
limited pulse generator at room temperature, this ap
proach would require 40  dB of attenuation, meaning 
that pulses with a peak power of roughly −23 dBm must 
be generated at room temperature. This number grows 
proportionally as the generator noise floor increases.

Two-Qubit Gates
In addition to controlling the state of individual qubits, 
we also need to interact pairs of qubits in a well-con-
trolled manner to implement two-qubit gates. There 
are many possible two-qubit gate operations; to under-
stand how one can be implemented, we consider the 
circuit shown in Figure 5, which consists of a pair of 
frequency-tunable qubits coupled through a capaci-
tance. Imagine that the qubits are tuned to be at the 
same frequency and that both are initially in the same 
state (e.g., | |00H H} =  or | | ).11H H} =  This is analogous to 
a common mode in classical electronics, so no energy 
is exchanged between the qubits. On  the other hand, 
if only one of the qubits is initially in the excited state, 
energy will periodically swap back and forth between 
the qubits. The rate of the energy exchange will depend 
on the coupling strength, which is set by the relative 
size of CC  with respect to the qubit capacitances. This 
interaction can be turned on and off by tuning the rela-
tive qubit frequencies using the Z control line so that 
the qubits are on- and off-resonance, respectively. Thus, 
we can perform deterministic operations by enabling 
the interaction for a controlled duration. Gates leverag-
ing this form of interaction are referred to as iSWAP 
gates and are characterized by a time evolution opera-
tor (recall, a two-qubit gate operates on a state vector of 
the form | ),00 01 10 11
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where the parameter s~  describes the rate at which 
energy moves back and forth between the two qubits.

If we enable the interaction for exactly half of the 
exchange cycle (i.e., ),tsT~ r=  the time evolution oper-
ator becomes

	 .j
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This swaps the |10H  and |01H  amplitudes while leaving 
|00H  and | 11 H  unchanged, as swapping does nothing 

if the two qubits are in the same initial state. The |01H  
and |10H  amplitudes also experience a −90° phase shift, 
which creates entanglement. It can be shown that this 
gate satisfies the requirements for universal quantum 
computing [40].

While just one two-qubit gate is required for univer-
sal quantum computing, it is desirable to minimize the 
steps in an algorithm. In this respect, it is often advan-
tageous to employ other gates in the family described 
by (19) as well as controlled Z [41] and controlled NOT 
[42] gates, which can be realized through flux tuning 
and a cross-resonant microwave drive, respectively.

Putting It All Together
Now that we understand how to implement the gates in 
a quantum algorithm, we can consider the simple gate 
sequence shown in Figure 6, which is used to generate 
a maximally entangled two-qubit state. To begin, the 
qubits are initialized to the |00H  state and detuned in 
frequency. Next the XY line of each qubit is excited by a 
/2-r pulse (90º rotation), with qubit 1 rotating about the 

–y-axis and qubit 2 rotating about the +y-axis, result-
ing in a superposition state | . | |j0 5 00 01H H H} = - +^  
| | .j 10 11H H+ h  This state is the equivalent of uniform 

noise in that, if a measurement were carried out, any 
of the four possible outcomes would be equally likely.

Next, the qubits are momentarily brought on-
resonance to perform an iSWAP r^ h  gate, resulting 
in state . | | | | .5 00 01 10 110 H H H H- + +^ h  At this point, 
if we were to measure qubit 1, the state of qubit 2 
would depend upon the measurement outcome. 
That is, if we found qubit 1 in the |0H  state, qubit 2 
would collapse to / | | ,1 2 0 1H H+^ ^h h  whereas, if we 
found qubit 1 in the |1H  state, qubit 2 would collapse 
to / | | .1 2 0 1H H- -^ ^h h  Therefore, the iSWAP gate has 
entangled the two qubits.

Finally, we can apply a /2-r pulse about the x-axis to 
qubit 1 to interfere with the |01H  and |10H  states, result-
ing in the final state /| | | .1 2 00 11H H H} = +^ ^h h  This is 
a pretty interesting state. If we were to measure either 
qubit 1 or 2, we would find |0H with a 50% probability 
and |1H with a 50% probability. However, once we mea-
sured the first qubit, we would then know the state of 
the other qubit with a 100% probability. This entangle-
ment, or correlation, is unique to quantum systems, 
and it is the essential feature that enables one to build 

Qubit 1 Qubit 2

CC

Figure 5. Capacitively coupled qubits.
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up computational spaces that are exponential with respect 
to the number of qubits.

Readout
Our fifth and final requirement is that we must be 
able to perform measurements of individual qubits. As 
mentioned, such measurements are nominally projec-
tive, meaning that at the end of a one, the state of a qubit 
that was initially | |10H Ha b+  becomes |0H with prob-
ability | |2a  and |1H with probability | | ,2b  and the evalu-
ation tells us which of these outcomes has occurred. 
For practical quantum algorithms, we would like our 
readout technique to provide error rates of 1% or lower. 
How can we do this?

Let’s consider the requirements. First, we need a 
physical parameter of the qubit whose value in the |0H  
and |1H states differs enough that measuring that prop-
erty distinguishes the states with a high probability. In 
conventional DRAM, this parameter is the charge of a 
storage capacitance. Similarly, each superconducting 
qubit type has different electric and magnetic proper-
ties available for measurement. Second, and critically, 
we must be able to selectively activate the measurement: 
qubits do their thing (superposition, entanglement, and 
so on) only in private. Therefore, our measurement 
apparatus must not be extracting information, either 
intentionally or through parasitic losses, while the qubits 
are being controlled for logic gates.

What characteristic of the qubit |0H or |1H states can 
be used to distinguish them during measurement? For 
the transmon qubit, one choice of a physical parameter 

is the qubit’s energy, since the states |0H and |1H are 
precisely those where the qubit has definite and differ-
ent energies. However, this amounts to detecting the 
presence (if the qubit is in | )1H  or absence (if the qubit 
is in | )0H  of a single ~5-GHz microwave photon carry-
ing an energy of about 20 eV,n  and conventional pho-
todetection technology is far too insensitive. There is 
another parameter that does differ between the two qubit 
states. Because the transmon is a nonlinear resonator 
its admittance depends on its oscillation amplitude. So 
one can determine the state of a qubit by measuring its 
reflection coefficient.

A generic approach is shown in Figure 7(a). A non-
linear resonator (the qubit) whose admittance is state-
dependent is connected via a passive network, ( ),Y ~  to 
a load that represents the measuring device. The goal 
is to design ( )Y ~  such that a probe signal scattering 
off the network can robustly distinguish between the 
two qubit states while preserving the qubit’s internal 
Q-factor at .01~  Naively, one could imagine connect-
ing the qubit through a capacitor Cl  to a transmis-
sion line and using the qubit to scatter a microwave 
probe pulse, as illustrated in Figure 7(b). Note that a 
circulator has been employed to separate the forward 
( )a1  and reflected ( )b1  waves. The admittance differ-
ence between the two quantum states could, then, 
be detected as a phase shift in the reflected signal 
(while we demonstrate the essential concepts here 
using a reflection measurement setup, in many cases 
state readout can also be performed with a transmis-
sion measurement).
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Figure 6. An example quantum algorithm used to generate a maximally entangled pair. (a) The quantum circuit diagram and 
associated waveforms. (b) The effect of each step of the quantum algorithm. a.u.: arbitrary units.
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However, the circuit shown in Figure 7(b) has a 
fundamental limitation. The time it takes for the probe 
pulse to interact with the qubit and acquire an ampli-
tude and phase shift is characterized by a ring-up rate, 

/ ,Qq ml ~=  where / /Q C C Z Z2
0m Q Q= l^ ^h h is the con-

tribution to the loaded Q-factor of the qubit associated 
with its coupling to the transmission line. To make the 
measurement fast, we want a high ,l  corresponding to 
a strong coupling between the qubit and transmission 
line, i.e., a low .Qm  However, in this circuit, the qubit’s 
energy can leak through Cl  into the transmission line; 
in fact, it does so with precisely the same timescale, 
so .T 1

1 . l-  In other words, the measurement ring-
up time is also the ring-down time of the qubit itself. 
Therefore, in this circuit, the qubit lifetime and mea-
surement time are necessarily equal, which precludes 
any possibility of a high-accuracy readout because the 
qubit has a high probability to decay while we’re mea-
suring it.

To circumvent this problem, a typical readout sys-
tem is configured as in Figure 7(c) and contains an 
additional linear readout resonator that is coupled 
to the readout line through capacitor .Cl  The read-
out resonator has resonance frequency ,r 01 !T~ ~=  
where /2T r  is typically between 500 MHz and 
1.5 GHz. The qubit and the readout resonator inter-
act dispersively, meaning that the qubit pulls the 
readout resonator frequency. Because of the qubit 
nonlinearity, this frequency pull is different in the 
two states by an amount called the dispersive shift, 

,2|  where

	
g r
2

10T T
|

h

h

~
~=

+
c `m j� (21)

and /g C C C201g r Q r. ~ ~^ ^h h is the strength of the 
coupling between the qubit and the resonator through 
Cg  [30], [43], [44].
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The readout resonator can now be coupled rela-
tively strongly to the measurement line through Cl  for 
fast ring-up and measurement times. Since the qubit 
frequency is detuned from the readout resonator by 
many linewidths, the readout resonator effectively 
shorts the resistive load presented by the readout line, 
and T1  can remain much larger than T .m  In this cir-
cuit, the ring-up rate, ,l  and the qubit lifetime, T ,1  are 
constrained by /T .1 TKl |  In addition to speed, the 
measurement result also depends on the phase con-
trast between the |0H and |1H states. If we choose the 
dispersive shift to be roughly equal to the readout res-
onator linewidth, 2 .| l  [30], and probe between the 
|0H and |1H state readout resonator frequencies, a phase 
contrast as high as 180º can be realized, as shown in 
Figure 7(d) and (e), and the state can be determined 
using demodulation techniques similar to those used 
for binary phase-shift keying.

For an optimal design achieving a 180º phase con-
trast, ,T2 1 TKl  detuning the readout resonator from 
the qubit eases the tradeoff between T1  and l  [45]. To 
get a feel for the numbers, suppose we want to mea-
sure the transmon in 500 ns. Assuming that we need 
the ring-up time to be, at most, half the total measure-
ment time, the readout circuit would limit the qubit’s 
lifetime to (  ) ( ) .T 1 250 62 5GHz ns s.1

2#K n=  So we 
have made the qubit lifetime 125 times larger than the 

measurement time, which is sufficient for research 
experiments, but we will still have a %1+  readout 
error due to the qubit relaxing during measurement. 
Additionally, the limit of T1  due to loading by the 
readout circuit is shorter than the state-of-the-art lim-
its due to material losses, so the setup in Figure 7(c) 
leaves performance on the table.

Dispersive measurement with the architecture of Fig-
ure 7(c) was standard for transmon qubits between 2005 
and 2010. However, as superconducting qubit coherence 
times increased and gate error rates decreased, the read-
out accuracy had to keep up. To decrease the number of 
errors stemming from qubit relaxation due to loading 
by the readout circuit and enable the readout of mul-
tiple qubits using frequency domain multiplexing, it is 
now common to further shape the admittance function 
( )Y ~  in Figure 7(a). This can be done by adding addi-

tional transmission zeros at the qubit frequency [33], 
incorporating secondary readout resonators [47], or 
including a bandpass filter near the readout resonator 
frequency, with strong rejection at the qubit frequency, 
as in Figure 7(f) [48], [49]. Such a filter is referred to as 
a Purcell filter in the superconducting qubit literature. 
Figure 8 shows a four-transmon device [48], with each 
transmon (one of whose capacitance, ,Cq  is highlighted 
in red) connected to a CPW readout resonator (blue) 
via capacitance Cg  (yellow). The four readout resona-
tors are coupled to a common quarter-wave resonator 
that serves as a Purcell filter (green). In this example, 
the readout probe tone is injected via a small capacitor 
at the left of the photograph and transmitted to a bond 
pad at the right.

Having explained how the state of a qubit can be 
read out through a dispersive measurement of an 
ancillary linear resonator, we ask the question, Just 
how easy or hard is it to actually do this? Similar to the 
design of a communication system, we need to under-
stand how the error probability depends on design 
parameters. Assume that the reflected signal we are 
trying to measure has amplitude AS  and root-mean-
square noise voltage nv  within some measurement 
bandwidth and that this signal takes on two distinct 
phases, / ,2S!i  corresponding to the |0H  and |1H  states. 
The measurement will consist of distinguishing 
between two points in the in-phase/quadrature (IQ) 
plane, as shown in Figure 9. The error probability 
given this geometry is [50]

	 2
1 erfc

2 2
1 erfc sin 2 SNR ,P A

error
n

D

v

i= =c ` `m j j � (22)

where SNR is the RF SNR in the measurement band-
width.

We can now express Perror  in terms of physical 
parameters. Assuming an ideal measurement, the RF 
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Figure 8. A four-transmon device with individual readout 
resonators (blue) coupled to a common Purcell filter (green). 
(Source: [48]; used with permission.) In this case, the 
readout is accomplished via a transmission measurement. 
The input probe signal ( )a1  is injected on the left, and the 
output signal ( )b1  is taken from the right.
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signal power referenced to the readout resonator port 
can be related to the energy stored in the resonator as 

/ ,P E 2RF l=  so / ,P n 2RF p'~ l= r  where p~  is the mea-
surement frequency and nr  is the average number of 
photons populating the readout resonator. In prac-
tice, this is a dynamic measurement that is carried out 
before the resonator has a chance to settle. Addition-
ally, photons are lost since the measurement has finite 
quantum efficiency. To compensate for these facts, we 
can introduce a loss factor, ,e  giving / .P n 2RF p'e ~ l= r  
Typically, e  is in the range of 10–20%. The system noise 
is / / / ,P kT T T2 1noise SYS p RX Q'x ~ x= = +^ ^h h  where TRX  
is the input-referred noise temperature of the measure-
ment receiver and /T k2Q p'~=  is the quantum limit 
for noise added by a phase-preserving amplifier. The 
error probability is thus

	 / .sinP T T
n

2
1

2 1erfcerror
S

RX Q

i e lx=
+

rc ` j m � (23)

As such, error rates improve if we use more pho-
tons, integrate longer, improve the phase contrast, or 
decrease .TRX  However, in optimizing the measure-
ment, the noise temperature is constrained by the quan-
tum limit ,T TRX Q$  and the integration time must be 
kept low enough such that |1 -H state readout errors due 
to relaxation are insignificant ( / ).P 2T1error,relaxation . x

An obvious approach to improving the readout 
SNR is to drive the readout resonator harder. How-
ever, the interaction goes both ways, and the average 
number of microwave photons nr  “stored” in the res-
onator affects the qubit frequency as well. When the 
nonlinear frequency pull on the qubit due to the field 
intensity in the resonator (also known as the ac Stark 
shift  )n2 r01T~ |= r  becomes comparable to the qubit’s 
nonlinearity ( ),h  we start breaking down the distinct 
energy-level structure that defines the qubit, and the 
qubit becomes essentially useless. For typical trans-
mon parameters, this can already happen when the 
resonator stores just n 25+r  photons. Even worse, at 
lower powers, the drive can already cause transitions 
between the qubit states [51]. For this reason, the read-
out resonator drive power is typically limited such that 
the resonator is populated with only a handful of pho-
tons ( ).n 10Kr  The power associated with populating 
the resonator with nr  photons is / ;P n 2p'~ l= r  for typi-
cal design parameters, this is on the order of just 30 aW 
per photon. Since the energy in the resonator can be, at 
most, roughly 10 photons, our peak drive power can be 
no more than approximately −125 dBm, referenced to 
the resonator drive port.

Our final degree of freedom is ,TRX  so let’s try to under-
stand the requirements to achieve error rates of 1%. Let’s 
assume that we want to limit x  to 300 ns to avoid exces-
sive errors due to relaxation during the measurement. 

Taking . ,0 2e =  2 3 MHz,#l r=  n=r  8 photons, Si = 180o 
and p~ = 5  GHz, we require a receiver noise tempera-
ture of roughly 0.56 K, which is approximately twice the 
quantum limit. Needless to say, achieving this level of 
performance is a very challenging task.

State-of-the art cryogenic semiconductor amplifiers 
still have approximately four times too much noise for 
this application [52]. Moreover, even if the noise of semi-
conductor low-noise amplifiers could be brought down 
to ,TQ  the devices still dissipate far too much power to 
be heatsunk to the 10-mK stage of a dilution refrigera-
tion system. Therefore, we need to use something else if 
we are going to achieve the system sensitivity required 
to perform one-shot dispersive readout of transmon 
qubits. In fact, it turns out that the performance we 
want for transmon qubit readout became possible only 
during the past 10–15 years through the development 
of near-quantum-limited Josephson parametric ampli-
fiers [53]–[56], which are currently an essential element 
that enables high-speed, one-shot dispersive readout of 
transmon qubits. For more details related to parametric 
amplifiers, we refer the reader to a review article on 
this topic, appearing elsewhere in this focus issue [57]. 
Of course, semiconductor low-noise amplifiers are also 
required in the readout chain as second-stage ampli-
fiers, since nearly 60 dB of cryogenic gain is required to 
overcome practical room-temperature noise floors and 
parametric amplifiers with the requisite linearity are 
not available.

The Road to Practical Applications
To review, a quantum processor can be built using non-
linear microwave resonators whose quantum state is 
controlled using a combination of microwave pulses 
and time-varying bias signals and measured using 
microwave reflectometry. During the past decade, 
these superconductive processors have advanced tre-
mendously, culminating in the recent demonstration of 
quantum supremacy: the ability to perform a computa-
tion that is impractical even for today’s most powerful 
of supercomputers [5]. However, today’s quantum pro-
cessors are still limited.

With a regular digital computer, error rates are so 
low that we can write software while assuming that 
the bits never suffer physical errors. Conversely, super-
conducting qubits suffer relatively high error rates, 
meaning that they can perform only a finite number of 
logic operations before the quantum state randomizes. 

Superconductive processors have 
advanced tremendously, culminating 
in the recent demonstration of 
quantum supremacy.
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For example, a transmon with an energy decay con-
stant of T 50 s1 n=  and a two-qubit gate time of 20 ns  
can undergo only 2,500 gates before it has a high 
probability of suffering an error. With such high error 
rates, how can a quantum computer actually complete a 
full algorithm? There are currently two main approaches.

In the near term, it is assumed that errors are un
avoidable, and researchers are currently considering 
how to conduct useful quantum computation with a 
modest number of imperfect qubits. The key thing here 
is that the algorithms must be short compared to the 
qubits’ coherence times. This is tricky, though: if the 
quantum algorithm is too short, it can be simulated on 
a conventional computer, obviating the need for the 
quantum computer. The most promising uses seem 
to be in simulating chemistry [58]–[62]. Applications 
in this regime of so-called noisy intermediate-scale 
quantum (NISQ) computation [63] constitute an area of 
active research.

However, the long-term goal of the community is 
to develop fault-tolerant quantum computers. Much in 
the same way that redundancy is used in conventional 
error-correcting code memory to lower error rates, it 
is theoretically possible to combine many imperfect 
physical qubits into a single logical qubit whose error 
rate is lowered exponentially in the number of constitu-
ent physical qubits by using quantum error correction. 
Quantum error correction is somewhat more subtle 
than conventional error correction because quantum 
states cannot be copied (this fact is called the no-cloning 
theorem). This limitation makes the subject of quan-
tum error-correcting codes somewhat more delicate 
and richer than conventional error-correction codes. A 
computer operating with logical qubits is called fault-
tolerant because it continues to work without logical 
errors, even when individual physical qubits suffer 

faults. According to current estimates based on today’s 
best physical qubit systems, a single logical qubit with 
low-enough error rates to be used in a fault-tolerant 
computer would need roughly 1,000 constituent physi-
cal qubits, and a fault-tolerant computer would need 
approximately 1,000 logical qubits, necessitating 
roughly 1 million physical qubits [64].

Let’s take stock of what that means in terms of control 
electronics, wiring, and packaging. In today’s state-of-
the-art technology [5], each qubit is driven by dedicated 
on-chip lines that carry microwave signals for XY rota-
tions and 500-MHz dc signals for Z rotations. The XY 
pulses are generated by a pair of high-speed (1 gigas-
ample per second) digital-to-analog converters (DACs) 
driving an IQ mixer, while the Z pulses are generated 
by another high-speed DAC, so we need three DACs 
per qubit. The signals are carried from the pulse gen-
erators to individual qubits through dedicated coaxial 
cables and CPW interconnects. The cables interface to 
the package via blind-mate connectors, and the package 
connects to the chip via wire bonds (see Figure 10). Can 
these technologies be scaled to a 1-million-qubit com-
puter? For the control system, this would mean at least 
3 million DACs and millions of coaxial cables running 
into a cryostat holding a chip package with millions of 
blind-mate connectors. This is where microwave engi-
neering really comes in: the cost, size, thermal, assem-
bly, reliability, and signal integrity concerns arising in 
a system with that much microwave hardware demand 
innovations in the microwave domain.

Let us consider the optimization of the microwave 
interface required to control a million-qubit system. If 
the control system used in the recent quantum suprem-
acy experiment at Google [5] were scaled to control a 
1-million-qubit system, it would occupy three football 
fields of floor space and consume roughly 40 MW of dc 
power, not to mention the significant power that would 
be required to compensate for losses associated with 
signal distribution. Development of integrated con-
trol systems specifically tailored toward this applica-
tion [65]–[68] is an important area for future research 
that could impact quantum computing in the way that 
integrated beamformers have enabled more scalable 
phased arrays [69].

Innovation is also required in the interconnections 
used in quantum computing systems. Control sig-
nals are currently brought from the electronics into 
the cryostat and down to the quantum chip through 
coaxial cable, which raises several important ques-
tions. How do we connect the cables to the package? 
The connection has to have a low loss to avoid ther-
mally loading the 20-mK stage of the cryostat. Dilu-
tion refrigerators can cool to approximately W10 n  at 
20 mK, so, assuming that we have one dilution cooler 
per 65,000 qubits and that we need to source roughly 

Figure 10. The package used in a recent quantum 
computing experiment at Google. (Source: [5]; used 
with permission.) Vertical launch connectors around the 
perimeter connect to coaxial cabling and a printed circuit 
board (PCB). The PCB is covered by a magnetic shield (the 
square box in the center).
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 300 An  of dc current per qubit, the connector at the 
20-mK stage must have a contact resistance of 2 mK X  
per line. The microwave connector also must have low 
crosstalk despite its high density. Developing a cost-
effective connector with a low-enough profile while 
maintaining acceptable channel-to-channel crosstalk 
is another critical step toward a fault-tolerant quan-
tum computer. Another important concern for the 
cables themselves is the thermal load they bring into 
the cryostat. Can we find a wiring solution that is 
dense and cost effective and that will not overwhelm 
the cryostat’s cooling-power budget? As we go from 
systems with 100 to 1,000 qubits, these questions will 
need to be answered.

Next, we can consider the quantum chip itself. The 
typical pitch of 2D grids of transmon qubits is approxi-
mately 1 mm, so a notional grid of 1 million qubits might 
therefore cover a square measuring 1 m on a side. Such 
a device will not be composed of a single silicon chip. 
Instead, many smaller chips will need to be stitched 
together. Multichip assembly and 3D integration tech-
nologies will have to be adapted to the material sets, 
loss and crosstalk requirements, cryogenic operation, 
and layout constraints imposed by this application. The 
chip-to-chip interconnect will need to have exquisitely 
low loss and low crosstalk while maintaining the cou-
pling strength needed to do fast qubit–qubit logic gates. 
Electromagnetic, thermal, and mechanical simulations 
of the packaged assembly will become crucial. Parasitic 
resonances and package modes in assemblies of the 
envisioned size could overlap the qubit frequencies, and 
their coupling to the qubits will have to be understood 
and mitigated. These are just a few of the many areas in 
which microwave engineering will be required in the 
quest to implement a fault-tolerant quantum computer. 
As the systems progress, it will be essential that more 
microwave engineers engage in these efforts.
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