
Synthesizing Efficient Hardware from High-Level
Functional Hardware Description Languages

Mahshid Shahmohammadian, Geoffrey Mainland
Department of Computer Science

Drexel University
{ms4323,mainland}@drexel.edu

Abstract—Functional hardware description languages (FHDL)
provide powerful tools for building new abstractions that enable
sophisticated hardware system to be built from the composition
of smaller, reusable parts. Raising the level of abstractions in
hardware designs means the programmer can focus on high-
level circuit structure rather than mundane low-level details. The
language features that facilitate this include high-order functions,
rich static type system with type inference, and parametric
polymorphism. We use hand-written structural and behavioral
VHDL, Simulink, and the Kansas Lava FHDL to re-implement
several components taken from a Simulink model of orthogonal
frequency-division multiplexing (OFDM) physical layer (PHY).
Our development demonstrates that an FHDL can require fewer
lines of code without sacrificing performance.

Index Terms—circuit generation, functional hardware descrip-
tion languages, high-level hardware design, field-programmable
gate array

I. INTRODUCTION

The current standard tools for low-level hardware designs
are VHDL and Verilog. They provide concurrent description of
circuits, multipurpose modules, a strongly typed language (in
the case of VHDL), and the ability to model as well as simulate
a circuit before translating the design into real hardware in
the synthesis process. Simulink provides a much higher-level
“box and wires” view of hardware designs. However, Simulink
components cannot be parameterized over signal types, and
writing reusable modules is difficult. Functional hardware
description languages (FHDLs) have a long history, beginning
with µFP [1], which was based on Backus’s FP [2] language.
These languages emphasize building complex designs from core
primitives and combining forms; their power derives in part
from the abstractions they provide for defining new combining
forms.

Hardware implementations written using FHDLs typically
require writing fewer lines of code than low-level languages
like VHDL and Verilog, and testing is easier—in Kansas Lava,
the FHDL we use in this paper, all FHDL programs are also
valid Haskell programs, and programs compute identical results
whether synthesized or run in a Haskell environment. Because
Haskell is pure (and lazy), programmers can apply powerful
reasoning techniques, like equational reasoning, directly to
Kansas Lava programs. Standard functional language features
like polymorphism, type inference, and static type-checking

The work described in this paper was supported by the National Science
Foundation through grant CCF-1717088.

allow modular programming and catch common programmer
errors at compile time.

We demonstrate these benefits be re-implementing several
components of a Simulink model of orthogonal frequency-
division multiplexing (OFDM) physical layer (PHY) using
Kansas Lava and VHDL. Our Kansas Lava implementations
are significantly shorter without sacrificing performance.

II. BACKGROUND AND MOTIVATION

The benefits of the functional style of programming apply
not only to the software domain, but also to hardware design.
Backus [2] argued for these benefits, encouraging programmers
to focus on building new abstractions and reasoning about
programs algebraically. Functional languages facilitate this style
or programming by providing a core language with a flexible
set of combining forms for constructing larger programs from
smaller programs with clear algebraic properties. In µFP [1], a
FHDL based on FP, both the behavior and layout of a hardware
circuit are described using primitive functions and combining
forms. This leads to a circuit description that is concise and
that obeys identifiable algebraic laws.

Embedding a FHDL in a functional language leverages the
feature of the host language and avoids having to write a
new language implementation from scratch. Lava [3], a FHDL
embedded in the functional language Haskell, supports both
hardware simulation and verification. Using Haskell’s rich
type system simplifies hardware descriptions. Other Haskell
features, like combinators, type classes, and Monads are also
leveraged in Lava—combinators enable the composition of
smaller circuits to construct larger circuits, and Monads allow
the interpretation of a single circuit description as either a
Haskell program or a VHDL generator.

Sheeran [4] has reviewed many useful FHDLs and argued
that hardware designers may not be aware of the power
of the features unique to FHDLs, such as type inference,
polymorphism, higher-order functions, and type classes. This is
likely because FHDL designers focus on the language features,
whereas hardware designers are concerned primarily with
performance. In this paper, we are concerned with performance
and show that one can often get the best of both worlds.

Examples of generating “clever circuits” to bring low-level
circuit information such as circuit delays and wiring into higher
levels at the time of specification are presented in [5] and [6],
respectively.



We focus on the Kansas Lava [7] FHDL, which is a domain
specific language (DSL) embedded in Haskell. Kansas Lava
is the most recent incarnation of Lava [3], itself a spiritual
successor to µFP. Rather than creating a language and compiler
from scratch, embedding a language in Haskell provides all
the benefits of the host language, such as access to its rich
type system. Higher-order functions simplify the creation of
reusable patterns for combining circuits. Because Haskell is
lazy and pure, programmers can use equational reasoning to
reason about correctness. Parametric polymorphism simplifies
abstracting designs over attributes like signal width. Kansas
Lava uses Haskell’s sized types to enforce signal compatibility
at compile time. As well as supporting VHDL generation, a
Kansas Lava program is also a valid Haskell program, which
makes it easy to test a design before synthesis.

III. OVERVIEW OF SOFDM

The subject of the re-implementations in this paper is
SOFDM, a Simulink model of OFDM physical layer, developed
by Drexel’s Wireless System Laboratory [8]. Fig. 1 shows a
complete overview of an OFDM PHY pipeline.

Re-implementation of SOFDM Components

The re-implemented components include:
• Modulation mapping which, given a modulation, maps

bit sequences to I/Q constellation points.
• Data interleaving, which permutes transmitted data to

enhance robustness to noise.
• Carrier frequency offset (CFO) estimation for synchro-

nization
• Schmidl-Cox algorithm for frequency and timing recovery
All components were re-implemented in hand-written VHDL

(structural and behavioral), Simulink, and Kansas Lava. The
correctness of the re-implemented components was confirmed
by checking for input/output equivalence with the original
implementation using random input test vectors.

IV. EVALUATION

Components developed using all three approaches were
synthesized to a Virtex 7 FPGA. Performance metrics such
as area utilization, clock frequency, throughput, and power
consumption were measured for each re-implementation effort.
The rest of this section provide the re-implementation perfor-
mance results for the selected components from the SOFDM
model.

Serial to 
Parallel

Symbol 
Mapping

QAM 
Modulation Inverse FFT Parallel to 

Serial Cyclic Prefix Digital to 
Analog

Parallel to 
Serial

Symbol 
Demapping

QAM 
Demodulation FFT Serial to 

Parallel
Cyclic Prefix 

Remove
Analog to 

Digital

Channel

Transmitter

Receiver

Data

Data

Figure 1. Architecture of transmitter and receiver chain in OFDM

Area Utilization

Table I presents the cell usage of selected components for
different re-implementations.

Modulation mapping block mostly contains multiplexers and
look-up tables (LUT), memory and digital signal processing
(DSP) cell usage are negligible. Data interleaving uses memory
units and multiple counter blocks, so the synthesis area
utilization reports show a better comparison of FPGA slice
usage between different approaches. The carrier frequency
offset (CFO) estimation component is a complex design,
presenting more of a challenge for a FHDL. This block utilizes
DSP logic, both memory and LUTs, and required the use of the
COordinate Rotation DIgital Computer (CORDIC) algorithm.
The Schmidl-Cox synchronization block also used of DSP and
memory.

Implementations of the Schmidl-Cox algorithm [9, 10] in
different approaches, helps the receiver in OFDM chain locate
the beginning of the transmitted signal for synchronization.

The configurable logic block (CLB) in 7 series FPGAs
provides high-performance FPGA logic as various input LUTs,
distributed memory along with shift registers, carry logic for
arithmetic purposes, and multiplexers. A flip-flop (FF) can
register each 5-input LUT output. A slice consists of four 6-
input LUTs along with their eight associated flip-flops as well
as multiplexers and carry logic, then two slices form a CLB.
These CLBs are the primary logic resources for combinational
and sequential circuit designs [11].

Table I shows that LUT, FF, and memory unit usage is lowest
for Kansas Lava and hand-written behavioral VHDL. In the
structural VHDL implementation, which mimics the structure
from the Simulink model, the CLB usage is quite similar to
Simulink’s. The Kansas Lava implementation utilizes far fewer
slices than the other re-implementations. It is significant that the
VHDL generated from Kansas Lava for the data interleaving
block manages to produce Block RAM (BRAM) memory units
instead of LUTs and shift registers. This required no special
programmer effort.

Power Consumption

Total power consumption of the circuit consists of static and
dynamic power. Static power consumption relates to leakage
of current in the transistors built in the FPGA. Dynamic power
consumption is related to capacitors of the circuit being charged
and discharged often. The power consumption results in Table I
show the device static and dynamic power consumption for each
step after Virtex 7 FPGA VC707 synthesis, implementation, and
bit stream generation. Static and dynamic power consumption
for different approaches are provided in Table I. The total
on-chip power is listed in Table II for better comparison.

The ambient temperature for each step has been measured
after bit stream generation to help ensure an accurate static
device power consumption. The VHDL generated by Kansas
Lava has the smallest total on-chip power for all components.



Table I
CELL USAGE ON FPGA, POWER CONSUMPTION AS STATIC AND DYNAMIC POWER (mW), AND TIMING REPORTS AS SETUP AND HOLD SLACK TIMES (ns) OF

SELECTED COMPONENTS FOR DIFFERENT RE-IMPLEMENTATIONS

Cell Usage Power Slack Time

I/O LUT Memory DSP FF Carry Static Dynamic Setup Hold

Modulation Mapping
System Generator 38 27 0 0 0 3 338 26 0.647 2.571
Structural VHDL 39 25 0 0 21 0 331 19 0.748 0.968

Behavioral VHDL 39 25 0 0 5 0 322 15 0.857 1.042
Kansas Lava 39 13 0 0 13 0 299 24 0.812 1.760

Data Interleaving
System Generator 11 52 4 0 59 17 337 7 0.428 0.103
Structural VHDL 11 72 2 0 48 3 337 7 0.751 0.120

Behavioral VHDL 11 86 24 0 24 4 289 6 0.660 0.170
Kansas Lava 11 68 1 0 39 2 278 7 0.340 0.137

CFO Estimation
System Generator 175 3409 487 0 3840 364 304 151 0 0.085
Behavioral VHDL 162 2871 0 0 123 432 350 40 0.544 0.020

Kansas Lava 130 1441 0 0 145 349 347 24 0.565 0.330
Schmidl-Cox

System Generator 297 4498 1913 52 1525 922 326 81 1.997 0.090
Behavioral VHDL 229 3286 17 44 1553 644 327 44 3.529 0.099

Kansas Lava 223 4202 1 61 1285 1018 326 35 0.387 0.159

Timing and Clock Frequency

Setup time in timing reports from synthesis is the minimum
time in which the data signal must be stable before the next
clock edge happens in order for the data to be reliably sampled
by the clock. Hold time is the minimum time in which the
data signal must be stable after the next clock edge happens
in order for the data to be sampled reliably [12].

Setup and hold slack times as timing reports of selected
components in different re-implementations are presented in
Table I. The maximum clock frequency is presented in Table II
as well. The observed maximum clock frequency of the
VHDL generated from Kansas Lava is comparable to other
approaches. This timing information is also used to calculate
circuit throughput.

Throughput and Throughput over Area

The rate in which the number of bits of output is produced
in maximum frequency (or in minimum clock period) is
the maximum throughput of the circuit. Based on the clock
frequency (or clock cycle period) from the timing reports for
each step we can calculate throughput as follows:

Number of transmitting bits × Maximum clock frequency

The throughput of each re-implementation is given in Table II.
Another useful metric to provide a trade-off between through-

put and area utilization is throughput over area that is calculated
by dividing the maximum throughput of the component by the
number of CLBs used on FPGA for each re-implementation.
This performance metric is optimized by targeting maximum
throughout along with minimum numbers of slices on board.

The number of CLBs are calculated by the fact that in 7
series FPGAs every CLB contains 8 look-up tables, 16 flip
flops and 2 slices [11]. The number of utilized slices in Table II
are taken from utilization reports produced during synthesis.

Generated VHDL from Kansas Lava shows comparing
throughput results to other re-implementations of different
components. Since area utilization from Kansas Lava is the
most efficient one, throughput over area for this approach seem
quite promising.

Effort of Programming

Finally, programming effort is compared in Table II using
lines of code (LOC) for different approaches. The Kansas Lava
implementations are the shortest. In our experience, they are
also more concise and easier to understand than hand-written
VHDL. Kansas Lava programs contain type signature of every
circuit function that may not be included as the lines of codes
and can be inferred by the compiler.

V. CONCLUSION AND DISCUSSION

High-level FHDLs can assist the hardware developer in
designing circuits in a more concise manner by providing a
higher level of abstraction without sacrificing performance.

This paper provides a case study of such FHDL called
Kansas Lava to re-implement a Simulink model of OFDM
PHY layer [8]. Multiple approaches Simulink, structural and
hand-written VHDL and Kansas Lava have been presented
along with associated performance reports from Virtex 7 FPGA
implementations.

Given the results described, we conclude:
• The Kansas Lava FHDL reduces programming effort.
• Kansas Lava makes efficient use of FPGA resources.



Table II
NUMBER OF FPGA SLICES, MAXIMUM CLK FREQUENCY (MHz), TOTAL ON-CHIP POWER CONSUMPTION (mW), THROUGHPUT (Mbps), THROUGHPUT

OVER AREA (Mbps/CLB), AND NUMBER OF LINES OF CODE (LOC) FROM THE SELECTED COMPONENTS FOR DIFFERENT RE-IMPLEMENTATIONS

Slices Max. Freq. Total Power Throughput Throughput/Area LOC
Modulation Mapping

System Generator 12 125 364 2000 333.3 -
Structural VHDL 6 91 350 1456 485.3 128

Behavioral VHDL 10 77 337 1232 246.4 99
Kansas Lava 8 167 323 2672 668 59

Data Interleaving
System Generator 25 83 344 332 25.5 -
Structural VHDL 28 83 344 332 23.7 336

Behavioral VHDL 31 100 295 400 25 101
Kansas Lava 19 87 285 348 34.8 42

CFO Estimation
System Generator 1132 29 455 986 1.7 -
Behavioral VHDL 581 30 390 960 3.3 122

Kansas Lava 464 24 371 768 3.3 123
Schmidl-Cox

System Generator 1680 26 407 416 0.5 -
Behavioral VHDL 975 22 371 484 0.9 132

Kansas Lava 1580 14 361 224 0.3 101

• Dynamic and on-chip power consumption as well as
throughput and clock frequency of all Kansas Lava
implementations are comparable if not superior to the
other implementations.

VI. FUTURE WORK

The ultimate goal of this work is to implement a full OFDM
pipeline in a FHDL. As well as being an interesting extension
of the present case study, this would enable the comparison of
various implementations of a full OFDM pipeline instead of
component-by-component comparisons. One possible objection
to the current study is that it does not demonstrate the ability
of a FHDL to scale to larger designs; the implementation of a
full OFDM pipeline would address such a concern.

We are working on extending Ziria [13] so that it can serve as
a FHDL. Ziria, a domain-specific language for wireless physical
layer protocols, like OFDM, currently supports compilation
to efficient CPU code. The work described in this paper is
part of an effort to add a VHDL back-end to Ziria. Because
it performs aggressive whole-program optimizations [14], we
expect that it can provide much better performance than other
FHDLs for larger designs.

REFERENCES

[1] M. Sheeran, “µFP, a Language for VLSI Design,” in Proceedings of
the 1984 ACM Symposium on LISP and Functional Programming, ser.
LFP ’84. New York, NY, USA: ACM, 1984, pp. 104–112. [Online].
Available: http://doi.acm.org/10.1145/800055.802026

[2] J. Backus, “Can Programming Be Liberated from the von Neumann
Style?: A Functional Style and Its Algebra of Programs,” Communications
of the ACM, vol. 21, no. 8, pp. 613–641, Aug. 1978.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: Hardware
Design in Haskell,” in Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’98.
New York, NY, USA: ACM, 1998, pp. 174–184. [Online]. Available:
http://doi.acm.org/10.1145/289423.289440

[4] M. Sheeran, “Hardware Design and Functional Programming: a Perfect
Match.” J. UCS, vol. 11, pp. 1135–1158, Jan. 2005.

[5] ——, “Generating Fast Multipliers Using Clever Circuits,” in Formal
Methods in Computer-Aided Design, A. J. Hu and A. K. Martin, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 6–20.

[6] E. Axelsson, K. Claessen, and M. Sheeran, “Wired: Wire-Aware Circuit
Design,” in Correct Hardware Design and Verification Methods, ser.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Oct.
2005, pp. 5–19.

[7] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling,
“Introducing Kansas Lava,” in Implementation and Application of
Functional Languages, ser. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, Sep. 2009, pp. 18–35.

[8] J. Chacko, C. Sahin, D. Nguyen, D. Pfeil, N. Kandasamy, and
K. Dandekar, “FPGA-based latency-insensitive OFDM pipeline for
wireless research,” in 2014 IEEE High Performance Extreme Computing
Conference (HPEC), Sep. 2014, pp. 1–6.

[9] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchro-
nization for OFDM,” IEEE Transactions on Communications, vol. 45,
no. 12, pp. 1613–1621, Dec. 1997.

[10] P. Morris, “Hardware design and implementation of the Schmidl-Cox
synchronization algorithm for an OFDM transceiver,” 2015.

[11] “7 Series FPGAs Configurable Logic Block User Guide (UG474),” p. 74,
2016.

[12] V. Expert, “"Setup and Hold Time" : Static Timing Analysis (STA) basic
(Part 3a).” [Online]. Available: http://www.vlsi-expert.com/2011/04/static-
timing-analysis-sta-basic-part3a.html

[13] G. Stewart, M. Gowda, G. Mainland, B. Radunovic, D. Vytiniotis,
and C. L. Agulló, “Ziria: A DSL for Wireless Systems Programming,”
in Proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’15), Istanbul, Turkey, Mar. 2015, pp. 415–428.

[14] G. Mainland, “Better Living through Operational Semantics: An Op-
timizing Compiler for Radio Protocols,” Proceedings of the ACM on
Programming Languages, vol. 1, no. 1, pp. 19:1–19:26, Sep. 2017.


