
Local Reasoning for Global Graph Properties

Siddharth Krishna1, Alexander J. Summers2, and Thomas Wies1

1 New York University, New York, NY, USA, {siddharth,wies}@cs.nyu.edu
2 ETH Zürich, Zurich, Switzerland, alexander.summers@inf.ethz.ch

Abstract. Separation logics are widely used for verifying programs that manipu-

late complex heap-based data structures. These logics build on so-called separation

algebras, which allow expressing properties of heap regions such that modifica-

tions to a region do not invalidate properties stated about the remainder of the heap.

This concept is key to enabling modular reasoning and also extends to concurrency.

While heaps are naturally related to mathematical graphs, many ubiquitous graph

properties are non-local in character, such as reachability between nodes, path

lengths, acyclicity and other structural invariants, as well as data invariants which

combine with these notions. Reasoning modularly about such graph properties

remains notoriously difficult, since a local modification can have side-effects on a

global property that cannot be easily confined to a small region.

In this paper, we address the question: What separation algebra can be used to

avoid proof arguments reverting back to tedious global reasoning in such cases?

To this end, we consider a general class of global graph properties expressed as

fixpoints of algebraic equations over graphs. We present mathematical foundations

for reasoning about this class of properties, imposing minimal requirements on the

underlying theory that allow us to define a suitable separation algebra. Building

on this theory, we develop a general proof technique for modular reasoning about

global graph properties expressed over program heaps, in a way which can be

directly integrated with existing separation logics. To demonstrate our approach,

we present local proofs for two challenging examples: a priority inheritance

protocol and the non-blocking concurrent Harris list.

1 Introduction

Separation logic (SL) [31,37] provides the basis of many successful verification tools that

can verify programs manipulating complex data structures [1, 4, 17, 29]. This success is

due to the logic’s support for reasoning modularly about modifications to heap-based data.

For simple inductive data structures such as lists and trees, much of this reasoning can

be automated [2, 11, 20, 33]. However, these techniques often fail when data structures

are less regular (e.g. multiple overlaid data structures) or provide multiple traversal

patterns (e.g. threaded trees). Such idioms are prevalent in real-world implementations

such as the fine-grained concurrent data structures found in operating systems and

databases. Solutions to these problems have been proposed [14] but remain difficult to

automate. For proofs of general graph algorithms, the situation is even more dire. Despite

substantial improvements in the verification methodology for such algorithms [35, 38],

significant parts of the proof argument still typically need to be carried out using non-

local reasoning [7, 8, 13, 25]. This paper presents a general technique for local reasoning
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1 method acquire(p: Node, r: Node) {

2 if (r.next == null) {

3 r.next := p; update(p, -1, r.curr_prio)

4 } else {

5 p.next := r; update(r, -1, p.curr_prio)

6 }

7 }

8 method update(n: Node, from: Int, to: Int) {

9 n.prios := n.prios \ {from}

10 if (to >= 0) n.prios := n.prios ∪ {to}

11 from := n.curr_prio

12 n.curr_prio := max(n.prios ∪ {n.def_prio})

13 to := n.curr_prio;

14 if (from != to && n.next != null) {

15 update(n.next, from, to)

16 }

17 }
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Fig. 1: Pseudocode of the PIP and a state of the protocol data structure. Round nodes

represent processes and rectangular nodes resources. Nodes are marked with their default

priorities def_prio as well as the aggregate priority multiset prios. A node’s current

priority curr_prio is underlined and marked in bold blue.

about global graph properties that can be used within off-the-shelf separation logics.

We demonstrate our technique using two challenging examples for which no fully local

proof existed before, respectively, whose proof required a tailor-made logic.

As a motivating example, we consider an idealized priority inheritance protocol (PIP),

a technique used in process scheduling [39]. The purpose of the protocol is to avoid

priority inversion, i.e. a situation where a low-priority process causes a high-priority

process to be blocked. The protocol maintains a bipartite graph with nodes representing

processes and resources. An example graph is shown in Fig. 1. An edge from a process

p to a resource r indicates that p is waiting for r to be available whereas an edge in

the other direction means that r is currently held by p. Every node has an associated

default priority and current; these are natural numbers. The current priority is used for

scheduling processes. When a process attempts to acquire a resource currently held by

another process, the graph is updated to avoid priority inversion. For example, when

process p1 with current priority 3 attempts to acquire the resource r1 held by process

p2 of priority 1, p1’s higher priority is propagated to p2 and, transitively, to any other

process that p2 is waiting for (p3 in this case). As a result, all nodes on the created cycle3

will get current priority 3. The protocol maintains the following invariant: the current

priority of each node is the maximum of its default priority and the current priorities of

all its predecessors. Priority propagation is implemented by the method update shown

in Fig 1. The implementation represents graph edges by next pointers and handles both

adding an edge (acquire) and removing one (release - code omitted). To recalculate

the current priority of a node (line 12), each node maintains its default priority def_prio

and a multiset prios which contains the priorities of all its immediate predecessors.

Verifying that the PIP maintains its invariant using established separation logic (SL)

techniques is challenging. In general, SL assertions describe resources and express the

fact that the program has permission to access and manipulate these resources. In what

3 The cycle can be used to detect/handle a deadlock; this is not the concern of this data structure.
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follows, we stick to the standard model of SL where resources are memory regions

represented as partial heaps. We sometimes view partial heaps more abstractly as partial

graphs (hereafter, simply graphs). Assertions describing larger regions are built from

smaller ones using separating conjunction, φ1 ∗φ2. Semantically, the ∗ operator is tied to

a notion of resource composition defined by an underlying separation algebra [5, 6]. In

the standard model, composition enforces that φ1 and φ2 must describe disjoint regions.

The logic and algebra are set up so that changes to the region φ1 do not affect φ2 (and

vice versa). That is, if φ1 ∗ φ2 holds before the modification and φ1 is changed to φ′
1,

then φ′
1 ∗ φ2 holds afterwards. This so-called frame rule enables modular reasoning

about modifications to the heap and extends well to the concurrent setting when threads

operate on disjoint portions of memory [3, 9, 10, 36]. However, the mere fact that φ2 is

preserved by modifications to φ1 does not guarantee that if a global property such as the

PIP invariant holds for φ1 ∗ φ2, it also still holds for φ′
1 ∗ φ2.

For example, consider the PIP scenario depicted in Fig. 1. If φ1 describes the

subgraph containing only node p1, φ2 the remainder of the graph, and φ′
1 the graph

obtained from φ1 by adding the edge from p1 to r1, then the PIP invariant will no longer

hold for the new composed graph described by φ′
1 ∗φ2. On the other hand, if φ1 captures

p1 and the nodes reachable from r1 (i.e., the set of nodes modified by update), φ2 the

remainder of the graph, and we reestablish the PIP invariant locally in φ1 obtaining φ′
1

(i.e., run update to completion), then φ′
1 ∗φ2 will also globally satisfy the PIP invariant.

The separating conjunction ∗ is not sufficient to differentiate these two cases; both

describe valid partitions of a possible program heap. As a consequence, prior techniques

have to revert back to non-local reasoning to prove that the invariant is maintained.

A first helpful idea towards a solution to this problem is that of iterated separating

conjunction [30, 44], which describes a graph G consisting of a set of nodes X by a

formula Ψ = ∗x∈X N(x) where N(x) is some predicate that holds locally for every

node x ∈ X . Using such node-local conditions one can naturally express non-inductive

properties of graphs (e.g. “G has no outgoing edges” or “G is bipartite”). The advan-

tages of this style of specification are two-fold. First, one can arbitrarily decompose

and recompose Ψ by splitting X into disjoint subsets. For example, if X is partitioned

into X1 and X2, then Ψ is equivalent to∗x∈X1
N(x) ∗∗x∈X2

N(x). Moreover, it is

very easy to prove that Ψ is preserved under modifications of subgraphs. For instance,

if a program modifies the subgraph induced by X1 such that∗x∈X1
N(x) is preserved

locally, then the frame rule guarantees that Ψ will be preserved in the new larger graph.

Iterated separating conjunction thus yields a simple proof technique for local reasoning

about graph properties that can be described in terms of node-local conditions. However,

this idea alone does not actually solve our problem because general global graph proper-

ties such as “G is a direct acyclic graph”, “G is an overlay of multiple trees”, or “G

satisfies the PIP invariant” cannot be directly described via node-local conditions.

Solution. The key ingredient of our approach is the concept of a flow of a graph: a

function fl from the nodes of the graph to flow values. For the PIP, the flow maps

each node to the multiset of its incoming priorities. In general, a flow is a fixpoint of

a set of algebraic equations induced by the graph. These equations are defined over a

flow domain, which determines how flow values are propagated along the edges of the

graph and how they are aggregated at each node. In the PIP example, an edge between
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nodes (n, n′) propagates the multiset containing max(fl(n), n.def_prio) from n to

n′. The multisets arriving at n′ are aggregated with multiset union to obtain fl(n′).
Flows enable capturing global graph properties in terms of node-local conditions. For

example, the PIP invariant can be expressed by the following node-local condition:

n.curr_prio = max(fl(n), n.def_prio). To enable compositional reasoning about

such properties we need an appropriate separation algebra allowing us to prove locally

that modifications to a subgraph do not affect the flow of the remainder of the graph.

To this end, we make the useful observation that a separation algebra induces a

notion of an interface of a resource: we say that two resources a and a′ are equivalent

if they compose with the same resources. The interface of a resource a could then be

defined as a’s equivalence class, but more-succinct and simpler representations may be

possible. In the standard model of SL where resources are graphs and composition is

disjoint graph union, the interface of a graph G is the set of all graphs G′ that have the

same domain as G; in this model, a graph’s domain could be defined to be its interface.

The interfaces of resources described by assertions capture the information that is

implicitly communicated when these assertions are conjoined by separating conjunction.

As we discussed earlier, in the standard model of SL, this information is too weak to

enable local reasoning about global properties of the composed graphs because some

additional information about the subgraphs’ structure other than which nodes they

contain must be communicated. For instance, if the goal is to verify the PIP invariant, the

interfaces must capture information about the multisets of priorities propagated between

the subgraphs. We define a separation algebra achieving exactly this: the induced flow

interface of a graph G in this separation algebra captures how values of the flow domain

must enter and leave G such that, when composed with a compatible graph G′, the

imposed local conditions on the flow of each node are satisfied in the composite graph.

This is the key to enabling SL-style framing for global graph properties. Using iter-

ated separating conjunctions over the new separation algebra, we obtain a compositional

proof technique that yields succinct proofs of programs such as the PIP, whose proofs

with existing techniques would involve non-trivial global reasoning steps.

Contributions. In §2, we present mathematical foundations for flow domains, imposing

the minimal requirements on the underlying algebra that allow us to capture a broad

range of data structure invariants and graph properties and reason locally about them in a

suitable separation algebra. Building on this theory we develop a general proof technique

for modular reasoning about global graph properties that can be integrated with existing

separation logics (§3). We further identify general mathematical conditions that can be

used when desired to guarantee unique flows, and provide local proof arguments to check

the preservation of these conditions (§4). We demonstrate the versatility of our approach

by presenting local proofs for two challenging examples: the PIP and the concurrent

non-blocking list due to Harris [12].

Flows Redesigned. Our work is inspired by the recent flow framework explored by

some of the authors [22], but was redesigned from the ground up. We revisit the core

algebra behind flow reasoning, and derive a different algebraic foundation by analysing

the minimal requirements for general local reasoning; we call our newly-designed

reasoning framework the foundational flow framework. Our new framework makes
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several significant improvements over [22] and eliminates its most stark limitations. We

provide a detailed technical comparison with [22] and discuss other related work in §5.

2 The Foundational Flow Framework

In this section, we introduce the foundational flow framework, explaining the motivation

for its design with respect to local reasoning principles. We aim for a general technique

for modularly proving the preservation of recursively-defined invariants over (partial)

graphs, with well-defined decomposition and composition operations.

2.1 Preliminaries and Notation

The term (b ? t1 : t2) denotes t1 if condition b holds and t2 otherwise. We write f : A →
B for a function from A to B, and f : A ⇀ B for a partial function from A to B. For a

partial function f , we write f(x) = ⊥ if f is undefined at x. We use lambda notation

(λx. E) to denote a function that maps x to the expression E (typically containing x). If

f is a function from A to B, we write f [x ֌ y] to denote the function from A ∪ {x}
defined by f [x ֌ y](z) := (z = x ? y : f(z)). We use {x1 ֌ y1, . . . , xn ֌ yn} for

pairwise different xi to denote the function ǫ[x1 ֌ y1] · · · [xn ֌ yn], where ǫ is the

function on an empty domain. Given functions f1 : A1 → B and f2 : A2 → B we write

f1 ⊎ f2 for the function f : A1 ⊎ A2 → B that maps x ∈ A1 to f1(x) and x ∈ A2 to

f2(x) (if A1 and A2 are not disjoint sets, f1 ⊎ f2 is undefined).

We write δn=n′ : M → M for the function defined by δn=n′(m) := m if n = n′

else 0. We also write λ0 := (λm. 0) for the identically zero function, λid := (λm. m)
for the identity function, and use e ≡ e′ to denote function equality. For e : M → M and

m ∈ M we write m⊲e to denote the function application e(m). We write e◦e′ to denote

function composition, i.e. (e ◦ e′)(m) = e(e′(m)) for m ∈ M , and use superscript

notation ep to denote the function composition of e with itself p times.

For multisets S, we use standard set notation when clear from the context. We write

S(x) to denote the number of occurrences of x in S. We write {x1 ֌ i1, . . . , xn ֌ in}
for the multiset containing i1 occurrences of x1, i2 occurrences of x2, etc.

A partial monoid is a set M , along with a partial binary operation +: M ×
M ⇀ M , and a special zero element 0 ∈ M , such that (1) + is associative, i.e.,

(m1+m2)+m3 = m1+(m2+m3); and (2) 0 is an identity, i.e., m+0 = 0+m = m.

Here, = means either both sides are defined and equal, or both are undefined. We

identify a partial monoid with its support set M . If + is a total function, then we call

M a monoid. Let m1,m2,m3 ∈ M be arbitrary elements of the (partial) monoid in

the following. We call a (partial) monoid M commutative if + is commutative, i.e.,

m1 + m2 = m2 + m1. Similarly, a commutative monoid M is cancellative if + is

cancellative, i.e., if m1 +m2 = m1 +m3 is defined, then m2 = m3.

A separation algebra [5] is a cancellative, partial, commutative monoid.

2.2 Flows

Recursive properties of graphs naturally depend on non-local information; e.g. we cannot

express that a graph is acyclic directly as a conjunction of per-node invariants. Our
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foundational flow framework defines flow values at each node that capture non-local

graph properties, and enables local specification and reasoning about such properties.

Flow values are drawn from a flow domain, an algebraic structure which also specifies

the operations used to define a flow via recursive computations over the graph. Our

entire theory is parametric with the choice of a flow domain, whose components will be

explained and motivated in the rest of this section.

Definition 1 (Flow Domain). A flow domain (M,+, 0, E) consists of a commutative

cancellative (total) monoid (M,+, 0) and a set of edge functions E ⊆ M → M .

Example 1. The path-counting flow domain is (N,+, 0, {λid, λ0}), consisting of the

monoid of natural numbers under addition and the set of edge functions containing only

the identity function and the zero function. This can be used to define a flow where the

values at each node represent the number of paths to this node from a distinguished node

n. Path-counting provides enough information to express locally per node that e.g. (a)

all nodes are reachable from n (all path counts are non-zero), or (b) that the graph forms

a tree rooted at n (all path counts are exactly 1).

Example 2. We use (NN,∪, ∅, {λ0} ∪ {(λm. {max(m ∪ {p})}) | p∈N}) as flow do-

main for the PIP example (Figure 1). This consists of the monoid of multisets of natural

numbers under multiset union and two kinds of edge functions: λ0 and functions map-

ping a multiset m to the singleton multiset containing the maximum value between m

and a fixed value p (used to represent a node’s default priority). This can define a flow

which locally captures the appropriate current node priorities as the graph is modified.

Further definitions in this section assume a fixed flow domain (M,+, 0, E) and a

(potentially infinite) set of nodes N. For this section, we abstract heaps using directed

partial graphs; integration of our graph reasoning with direct proofs over program heaps

is explained in §3.

Definition 2 (Graph). A (partial) graph G = (N, e) consists of a finite set of nodes

N ⊆ N and a mapping from pairs of nodes to edge functions e : N ×N → E.

Flow Values and Flows. Flow values (taken from M ; the first element of a flow domain)

are used to capture sufficient information to express desired non-local properties of a

graph. In Example 1, flow values are non-negative integers; for the PIP (Example 2)

we instead use multisets of integers, representing relevant non-local information: the

priorities of nodes currently referencing a given node in the graph. Given such flow values,

a node’s correct priority can be defined locally per node in the graph. This definition

requires only the maximum value of these multisets, but as we will see shortly these

multisets enable local recomputation of a correct priority when the graph is changed.

For a graph G = (N, e) we express properties of G in terms of node-local conditions

that may depend on the nodes’ flow. A flow is a function fl : N → M assigning every

node a flow value and must be some fixpoint of the following flow equation:

∀n ∈ N. fl(n) = in(n) +
∑

n′∈N

fl(n′) ⊲ e(n′, n) (FlowEqn)
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Intuitively, one can think of the flow as being obtained by a fold computation over the

graph:4 the inflow in : N → M defines an initial flow at each node. This initial flow

is then updated recursively for each node n: the current flow value at its predecessor

nodes n′ is transferred to n via edge functions e(n′, n) : M → M . These flow values are

aggregated using the summation operation + of the flow domain to obtain an updated

flow of n; a flow for the graph is some fixpoint satisfying this equation at all nodes. 5

Definition 3 (Flow Graph). A flow graph H = (N, e,fl) is a graph (N, e) and function

fl : N → M such that there exists an inflow in : N → M satisfying FlowEqn(in, e,fl).

We let dom(H) = N , and sometimes identify H and dom(H) to ease notational

burden. For n ∈ H we write Hn for the singleton flow subgraph of H induced by n.

Edge Functions. In any flow graph, the flow value assigned to a node n by a flow

is propagated to its neighbours n′ (and transitively) according to the edge function

e(n, n′) labelling the edge (n, n′). The edge function maps the flow value at the source

node n to one propagated on this edge to the target node n′. Note that we require such

a labelling for all pairs consisting of a source node n inside the graph and a target

node n′ ∈ N (i.e., possibly outside the graph). The 0 flow value (the third element

of our flow domains) is used to represent no flow; the corresponding (constant) zero

function λ0 = (λm. 0) is used as edge function to model the absence of an edge in the

graph. A set of edge functions E from which this labelling is chosen can, other than

the requirement λ0 ∈ E, be chosen as desired. As we will see in §4.4, restrictions to

particular sets of edge functions E can be exploited to further strengthen our overall

technique. Edge functions can depend on the local state of the source node (as in the

following example); dependencies from elsewhere in the graph must be represented by

the node’s flow.

Example 3. Consider the graph in Figure 1 and the flow domain as in Example 2. We

choose the edge functions to be λ0 where no edge exists in the PIP structure, and other-

wise (λm. {max(m ∪ {d})}) where d is the default priority of the source of the edge.

For example, in Figure 1, e(r3, p2) = λ0 and e(r3, p1) = (λm. {max(m ∪ {0})}).
Since the flow value at r3 is {1, 2, 2}, the edge (r3, p1) propagates the value {2} to p1,

correctly representing the current priority of r3.

Flow Aggregation and Inflows. The flow value at a node is defined by those propagated

to it from each node in a graph via edge functions, along with an additional inflow value

explained here. Since multiple non-zero flow values can be propagated to a node, we

require an aggregation of these values via a binary + operator on flow values : the second

element of our flow domains. The edges from which the aggregated values originate

are unordered. Thus, we require + to be commutative and associative, making this

aggregation order-independent. The 0 flow value must act as a unit for +. For example,

in the path-counting flow domain + means addition on natural numbers, while for the

multisets employed for the PIP it means multiset union.

4 We note that flows are not generally defined in this manner as we consider any fixpoint of the

flow equation to be a flow. Nonetheless, the analogy helps to build an initial intuition.
5 We discuss questions regarding the existence and uniqueness of such fixpoints in §4.
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Each node in a flow graph has an inflow, modelling contributions to its flow value

which do not come from inside the graph. Inflows play two important roles: first, since

our graphs are partial, they model contributions from nodes outside of the graph. Second,

inflow can be artificially added as a means of specialising the computation of flow values

to characterise specific graph properties. For example, in the path-counting domain, we

give an inflow of 1 to the node from which we are counting paths, and 0 to all others.

Example 4. Let the edges in the graph in Figure 1 be labelled as described in Example 3.

If the inflow function in assigns the empty multiset to every node n and we let fl(n) be

the multiset labelling every node in the figure, then FlowEqn(in, e,fl) holds.

The flow equation (FlowEqn) defines the flow of a node n to be the aggregation of

flow values coming from other nodes n′ inside the graph (as given by the respective edge

function e(n′, n)) as well as the inflow in(n). Preserving solutions to this equation across

updates to the graph structure is a fundamental goal of our technique. The following

lemma (which relies on the fact that + is required to be cancellative) states that any

correct flow values uniquely determine appropriate inflow values:

Lemma 1. Given a flow graph (N, e,fl), there exists a unique inflow in such that

FlowEqn(in, e,fl).

We now turn to how solutions of the flow equation can be preserved or appropriately

updated under changes to the underlying graph.

Graph Updates and Cancellativity. Given a flow graph with known flow and inflow

values, suppose we remove an edge from n1 to n2 (replacing the edge function with

λ0). For the same inflow, such an update will potentially affect the flow at n2 and nodes

to which n2 (transitively) propagates flow. Starting from the simple case that n2 has

no outgoing edges, we need to recompute a suitable flow at n2. Knowing the old flow

value (say, m) and the contribution m′ = fl(n1) ⊲ e(n1, n2) previously provided along

the removed edge, we know that the correct new flow value is some m′′ such that

m′ +m′′ = m. This constraint has a unique solution (and thus, we can unambiguously

recompute a new flow value) exactly when the aggregation + is cancellative; we therefore

make cancellativity a requirement on the + of any flow domain.

Cancellativity intuitively enforces that the flow domain carries enough information

to enable adaptation to local updates (in particular, removal of edges6). Returning to the

PIP example, cancellativity requires us to carry multisets as flow values rather than only

the maximum priority value: + cannot be the maximum operation, as this would not be

cancellative. The resulting multisets (like the prio fields in the actual code) provide the

information necessary to recompute corrected priority values locally.

For example, in the PIP graph shown in Figure 1, removing the edge from p6 to

r4would not affect the current priority of r4 whereas if p7 had current priority 1 instead

of 2, then the current priority of r4 would have to decrease. In either case, recomputing

the flow value for r4 is simply a matter of subtraction (removing {2} from the multiset at

r4); cancellativity guarantees that our flow domains will always provide the information

6 As we will show in §2.3, an analogous problem for composition of flow graphs is also directly

solved by this choice to force aggregation to be cancellative.
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needed for this recomputation. Without this property, the recomputation of a flow value

for the target node n2 would, in general, entail recomputing the incoming flow values

from all remaining edges from scratch. Cancellativity is also crucial for Lemma 1 above,

forcing uniqueness of inflows, given known flow values in a flow graph. This allows us

to define natural but powerful notions of flow graph decomposition and recomposition.

2.3 Flow Graph Composition and Abstraction

Building towards the core of our reasoning technique, we now turn to the question

of decomposition and recomposition of flow graphs. Two flow graphs with disjoint

domains always compose to a graph, but this will be a flow graph only if their flows are

chosen consistently to admit a solution to the resulting flow equation (i.e. the flow graph

composition operator ⊙ defined below is partial).

Definition 4 (Flow Graph Algebra). The flow graph algebra (FG,⊙, H∅) for the flow

domain (M,+, 0, E) is defined by

FG := {(N, e,fl) | (N, e,fl) is a flow graph} , H∅ := (∅, e∅,fl∅),

(N1, e1,fl1)⊙ (N2, e2,fl2) :=

{

(N1 ⊎N2, e1 ⊎ e2,fl1 ⊎ fl2) if in FG

⊥ otherwise,

where e∅ and fl∅ are the edge functions and flow on the empty set of nodes N = ∅.

Intuitively, two flow graphs compose to a flow graph if their contributions to each

others’ flow (along edges from one to the other) are reflected in the corresponding inflow

of the other graph. For example, consider the subgraph from Figure 1 consisting of

the single node p7 (with 0 inflow). This will compose with the remainder of the graph

depicted only if this remainder subgraph has an inflow which, at node r4, includes at

least the multiset {2}, reflecting the propagated value from p7.

We use this intuition to extract an abstraction of flow graphs which we call flow

interfaces. Given a flow (sub)graph, its flow interface consists of the node-wise inflow

and outflow (the flow contributions its nodes make to all nodes outside of the graph,

defined below). It is thus an abstraction that hides the flow values and edges that are

wholly inside the flow graph. Flow graphs that have the same flow interface “look the

same” to the external graph, as the same values are propagated inwards and outwards.

Definition 5 (Flow Interface). For a given flow domain M , a flow interface is a pair

I = (in, out) where in : N → M and out : N \N → M for some N ⊆ N.

We write I.in, I.out for the two components of the interface I = (in, out). We will

again sometimes identify I and dom(I.in) to ease notational burden.

Given a flow graph H ∈ FG, we can compute its interface as follows. Recall that

Lemma 1 implies that any flow graph has a unique inflow. Thus, we can define an inflow

function that maps each flow graph H = (N, e,fl) to the unique inflow inf(H) : H →
M such that FlowEqn(inf(H), e,fl). Dually, we define the outflow of H as the function

outf(H) : N \ N → M defined by outf(H)(n) :=
∑

n′∈N fl(n′) ⊲ e(n′, n). The flow

interface of H , written int(H), is the pair (inf(H), outf(H)) consisting of its inflow
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and its outflow. Returning to the previous example, if H is the singleton subgraph

consisting of node p7 from Figure 1 with flow and edges as depicted, then int(H) =
(λn. ∅, λn. (n=r4 ? {2} : ∅)).

This abstraction, while simple, turns out to be powerful enough to build a separation

algebra over our flow graphs, allowing them to be decomposed, locally modified and

recomposed in ways yielding all the local reasoning benefits of separation logics. In

particular, for graph operations within a subgraph with a certain interface, we need to

prove: (a) that the modified subgraph is still a flow graph (by checking that the flow

equation still has a solution locally in the subgraph) and (b) that it satisfies the same

interface (in other words, the effect of the modification on the flow is contained within

the subgraph); the meta-level results for our technique then justify that we can recompose

the modified subgraph with any graph that the original could be composed with.

We define the corresponding flow interface algebra as follows:

Definition 6 (Flow Interface Algebra). For a given flow domain M , the flow interface

algebra over M is defined to be (FI,⊕, I∅), where:

FI := {I | I is a flow interface} , I∅ := int(H∅),

I1 ⊕ I2 :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

I I1 ∩ I2 = ∅

∧ ∀i �= j ∈ {1, 2} , n ∈ Ii. Ii.in(n) = I.in(n) + Ij .out(n)

∧ ∀n �∈ I. I.out(n) = I1.out(n) + I2.out(n)

⊥ otherwise.

Flow interface composition is well-defined because of cancellativity of the underlying

flow domain (it is also, exactly as flow graph composition, partial). We next show the

key result for this abstraction: the ability for two flow graphs to compose depends only

on their interfaces; flow interfaces implicitly define a congruence relation on flow graphs.

Lemma 2. int(H1) = I1 ∧ int(H2) = I2 ⇒ int(H1 ⊙H2) = I1 ⊕ I2.

Crucially, the following result shows that we can use our flow interfaces as an

abstraction directly compatible with existing separation logics.

Theorem 1. The flow interface algebra (FI,⊕, I∅) is a separation algebra.

This result forms the core of our reasoning technique; it enables us to make modifi-

cations within a chosen subgraph and, by proving preservation of its interface, know that

the result composes with any context exactly as the original did. Flow interfaces cap-

ture precisely the information relevant about a flow graph, with respect to composition

with other flow graphs. In Appendix B of the accompanying technical report (hereafter,

TR) [23] we provide additional examples of flow domains that demonstrate the range of

data structures and graph properties that can be expressed using flows, including a notion

of universal flow that in a sense provides a completeness result for the expressivity of

the framework. We now turn to constructing proofs atop these new reasoning principles.
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3 Proof Technique

This section shows how to integrate flow reasoning into a standard separation logic,

using the priority inheritance protocol (PIP) algorithm to illustrate our proof techniques.

Since flow graphs and flow interfaces form separation algebras, it is possible in

principle to define a separation logic (SL) using these notions as a custom semantic

model (indeed, this is the proof approach taken in [22]). By contrast, we integrate flow

interfaces with a standard separation logic without modifying its semantics. This has

the important technical advantage that our proof technique can be naturally integrated

with existing separation logics and verification tools supporting SL-style reasoning. We

consider a standard sequential SL in this section, but our technique can also be directly

integrated with a concurrent SL such as RGSep (as we show in §4.5) or frameworks such

as Iris [18] supporting (ghost) resources ranging over user-defined separation algebras.

3.1 Encoding Flow-based Proofs in SL

Proofs using our flow framework can employ a combination of specifications enforced

at the node level and in terms of the flow graphs and interfaces corresponding to larger

heap regions such as entire data structures (henceforth, composite graphs and composite

interfaces). At the node level, we write invariants that every node is intended to satisfy,

typically relating the node’s flow value to its local state (fields). For example, in the PIP,

we use node-local invariants to express that a node’s current priority is the maximum of

the node’s default priority and those in its current flow value. We typically express such

specifications in terms of singleton (flow) graphs, and their singleton interfaces.

Specification in terms of composite interfaces has several important purposes. One

is to define custom inflows: e.g. in the path-counting flow domain, specifying that the

inflow of a composite interface is 1 at some designated node r and 0 elsewhere enforces

in any underlying flow graph that each node n’s flow value will be the number of paths

from r to n.7 Composite interfaces can also be used to express that, in two states of

execution, a portion of the heap “looks the same” with respect to composition (it has the

same interface, and so can be composed with the same flow graphs), or to capture by

how much there is an observable difference in inflow or outflow; we employ this idea in

the PIP proof below.

We now define an assertion syntax convenient for capturing both node-level and

composite-level constraints, defined within an SL-style proof system. We assume an intu-

itionistic, garbage-collected SL [6] with standard syntax and semantics:8 see Appendix A

of the TR [23] for more details.

Node Predicates. The basic building block of our flow-based specifications is a node

predicate N(x,H), representing ownership of the fields of a single node x, as well as

7 Note that the analogous property cannot be captured at the node level; when considering

singleton interfaces per node in a tree rooted at r, every singleton interface has an inflow of 1.
8 As P ∗ φ ≡ P ∧ φ for pure formulas P in garbage-collected SLs, we use ∗ instead of ∧

throughout this paper.
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capturing its corresponding singleton flow graph H:

N(x,H) := ∃fs ,fl . x �→ fs ∗H = ({x} , (λy. edge(x, fs , y)), fl) ∗ γ(x, fs ,fl(x))

N is implicitly parameterised by fs , edge and γ; these are explained next and are typically

fixed across any given flow-based proof. The N predicate expresses that we have a heap

cell at location x containing fields fs (a list of field-name/value mappings).9 It also

says that H is a singleton flow graph with domain {x} with some flow fl , whose edge

functions are defined by a user-defined abstraction function edge(x, fs , y); this function

allows us to define edges in terms of x’s field values. Finally, the node, its fields, and

its flow in this flow graph satisfy the custom predicate γ, used to encode node-local

properties such as constraints in terms of the flow values of nodes.

Graph Predicates. The analogous predicate for composite graphs is Gr. It carries owner-

ship to the nodes making up a potentially unbounded graph, using iterated separating

conjunction over a set of nodes X as mentioned in §1:

Gr(X,H) := ∃H.∗
x∈X

N(x,H(x)) ∗ H =
⊙

x∈X

H(x)

Gr is also implicitly parameterised by fs , edge and γ. The existentially-quantified H is

a logical variable representing a function from nodes in X to corresponding singleton

flow graphs. Gr(X,H) describes a set of nodes X , such that each x ∈ X is an N (in

particular, it satisfies γ), whose singleton flow graphs compose back to H . As well as

carrying ownership of the underlying heap locations, Gr’s definition allows us to connect

a node-level view of the region X (each H(x)) with a composite-level view defined by

H , on which we can impose appropriate graph-level properties such as constraints on

the region’s inflow.

Lifting to Interfaces. Flow based proofs can often be expressed more elegantly and

abstractly using predicates in terms of node and composite-level interfaces rather than

flow graphs. To this end, we overload both our node and graph predicates with analogues

whose second parameter is a flow interface, defined as follows:

N(x, I) := ∃H. N(x,H) ∗ I = int(H)
Gr(X, I) := ∃H. Gr(x,H) ∗ I = int(H)

We will use these versions in the PIP proof below; interfaces capture all relevant proper-

ties for decomposition and composition of these flow graphs.

Flow Lemmas. We first illustrate our N and Gr predicates (which capture SL ownership

of heap regions and abstract these with flow interfaces) by identifying a number of

lemmas which are generically useful in flow-based proofs. Reasoning at the level of flow

interfaces is entirely in the pure world (mathematics independent of heap-ownership and

9 For simplicity, we assume that all fields of a flow graph node are to be handled by our flow-

based technique, and that their ownership (via �→ points-to predicates) is always carried around

together; lifting these restrictions would be straightforward.
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Gr(X1 ⊎X2, H) |= ∃H1, H2. Gr(X1, H1) ∗ Gr(X2, H2)

∗H1 ⊙H2 = H (DECOMP)

Gr(X1, H1) ∗ Gr(X2, H2) ∗H1 ⊙H2 �= ⊥ |= Gr(X1 ⊎X2, H1 ⊙H2) (COMP)

N(x,H) ≡ Gr({x} , H) (SING)

emp |= Gr(∅, H∅) (GREMP)

Gr(X1, H
′
1) ∗ Gr(X2, H2) ∗H = H1 ⊙H2 |= Gr(X1 ⊎X2, H

′
1 ⊙H2) (REPL)

∗ int(H1) = int(H ′
1) ∗ int(H) = int(H ′

1 ⊙H2)

Fig. 2: Some useful lemmas for proving entailments between flow-based specifications.

resources) with respect to the underlying SL reasoning; these lemmas are consequences

of our predicate definitions and the foundational flow framework definitions themselves.

Examples of these lemmas are shown in Figure 2. (DECOMP) shows that we can

always decompose a valid flow graph into subgraphs which are themselves flow graphs.

Recomposition (COMP) is possible only if the subgraphs compose. These rules, as well

as (SING), and (GREMP) follow directly from the definition of Gr and standard SL prop-

erties of iterated separating conjunction. The final rule (REPL) is a direct consequence of

rules (COMP), (DECOMP) and the congruence relation on flow graphs induced by their

interfaces (cf. Lemma 2). Conceptually, it expresses that after decomposing any flow

graph into two parts H1 and H2, we can replace H1 with a new flow graph H ′
1 with the

same interface; when recomposing, the overall graph will be a flow graph with the same

overall interface.

Note the connection between rules (COMP)/(DECOMP) and the algebraic laws of

standard inductive predicates such as ls describing a segment of a linked list [2]. For

instance by combining the definition of Gr with these rules and (SING) we can prove the

following graph analogue of the rule to separate a list into the head node and the tail:

Gr(X ⊎ {y} , H) ≡ ∃Hy, H
′.N(y,Hy) ∗ Gr(X,H ′) ∗H = Hy ⊙H ′ ((UN)FOLD)

However, crucially (and unlike when using general inductive predicates [32]), this rule

is symmetrical for any node x in X; it works analogously for any desired order of

decomposition of the graph, and for any data structure specified using flows.

When working with our overloaded N and Gr predicates, similar steps to those

described by the above lemmas are useful. Given these overloaded predicates, we simply

apply the lemmas above to the existentially quantified flow-graphs in their definitions and

then lift the consequence of the lemma back to the interface level using the congruence

between our flow graph and interface composition notions (Lemma 2).

3.2 Proof of the PIP

We now have all the tools necessary to verify the priority inheritance protocol (PIP).

Figure 3 gives the full algorithm with flow-based specifications; we also include some

intermediate assertions to illustrate the reasoning steps for the acquire method, which
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1 // Let δ(m, q1, q2) := m \ (q1 ≥ 0 ? {q1} : ∅) ∪ (q2 ≥ 0 ? {q2} : ∅)
2

3 method update(n: Ref, from: Int, to: Int)

4 requires N(n, In) ∗ Gr(X \ {n} , I ′) ∗ I = I ′n ⊕ I ′ ∗ ϕ(I) ∗ n ∈ X

5 requires I ′n = ({n ֌ δ(In.in(n), from, to)} , In.out) ∗ from �= to

6 ensures Gr(X, I)
7 {

8 n.prios := n.prios \ {from}

9 if (to >= 0) {

10 n.prios := n.prios ∪ {to}

11 }

12 from := n.curr_prio

13 n.curr_prio := max(n.prios ∪ {n.def_prio})

14 to := n.curr_prio

15

16 if (from != to && n.next != null) {

17 update(n.next, from, to)

18 }

19 }

20

21 method acquire(p: Ref, r: Ref)

22 requires Gr(X, I) ∗ ϕ(I) ∗ p ∈ X ∗ r ∈ X ∗ p �= r

23 ensures Gr(X, I)
24 {

25

{

∃Ir, Ip, I1. N(r, Ir) ∗ N(p, Ip) ∗ Gr(X \ {r, p} , I1) ∗ I = Ir ⊕ Ip ⊕ I1 ∗ ϕ(I)
}

26 if (r.next == null) {

27 r.next := p;

28 // Let qr = r.curr_prio

29

{

∃Ir, I
′
r, Ip, I1. N(r, I

′
r) ∗ N(p, Ip) ∗ Gr(X \ {r, p} , I1) ∗ I = Ir ⊕ Ip ⊕ I1

∗ I ′r = (Ir.in, {p ֌ {qr}}) ∗ Ir.out = λ0 ∗ · · ·

}

30 |=

{

∃Ip, I
′
p, I2. N(p, Ip) ∗ Gr(X \ {p} , I2) ∗ I = I

′
p ⊕ I2

∗ I ′p = ({p ֌ δ(Ip.in(p),−1, qr)} , Ip.out) ∗ · · ·

}

31 update(p, -1, r.curr_prio)

32

{

Gr(X, I)
}

33 } else {

34 p.next := r; update(r, -1, p.curr_prio)

35 }

36 }

37

38 method release(p: Ref, r: Ref)

39 requires Gr(X, I) ∗ ϕ(I) ∗ p ∈ X ∗ r ∈ X ∗ p �= r

40 ensures Gr(X, I)
41 { r.next := null; update(p, r.curr_prio, -1) }

Fig. 3: Full PIP code and specifications, with proof sketch for acquire. The comments

and coloured annotations (lines 29 to 32) are used to highlight steps in the proof, and are

explained in detail in the text.
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we explain in more detail below. 10 We instantiate our framework in order to capture the

PIP invariants as follows:

fs :=
{

next : y, curr_prio : q, def_prio : q0, prios : Q
}

edge(x, fs , z) :=

{

(λm. max(m ∪ {q0})) if z = y �= null

λ0 otherwise

γ(x, fs ,m) := q0 ≥ 0 ∗ (∀q′ ∈ Q. q′ ≥ 0) ∗ m = Q ∗ q =
{

max(Q ∪ {q0})
}

ϕ(I) := I = (λ0, λ0)

Each node has the four fields listed in fs . fs also defines variables such as y to denote

field values that are used in the definitions of edge and γ; these variables are bound to the

heap by N. edge abstracts the heap into a flow graph by letting each node have an edge

to its next successor labelled by a function that passes to it the maximum incoming

priority or the node’s default priority: whichever is larger. With this definition, one can

see that the flow of every node will be the multiset containing exactly the priorities of

its predecessors. The node-local invariant γ says that all priorities are non-negative, the

flow m of each node is stored in the prios field, and its current priority is the maximum

of its default and incoming priorities. Finally, the constraint ϕ on the global interface

expresses that the graph is closed – it has no inflow or outflow.

Flows Specifications for the PIP. Our specifications of acquire and release guarantee

that if we start with a valid flow graph (closed, according to ϕ), we are guaranteed to

return a valid flow graph with the same interface (i.e. the graph remains closed). For

clarity of the exposition, we focus here on how we prove that being a flow graph that

satisfies the PIP invariant is preserved (as is the composite flow graph’s interface).

Extending this specification to one which proves, e.g., that acquire adds the expected

edge is straightforward (see Appendix C of the TR [23]). 11

The specification for update is somewhat subtle, and exploits the full flexibility

of flow interfaces as a specification medium. The preconditions of update describe an

update to the graph which is not yet completed. There are three complementary aspects

to this specification. Firstly, (as for acquire and release), node-local invariants (γ)

hold for all nodes in the graph (enforced via N and Gr predicates). Secondly, we employ

flow interfaces to express a decomposition of the original top-level interface I into

compatible (primed) sub-interfaces. The key to understanding this specification is that

I ′n is in some sense a fake interface; it does not abstract the current state of the heap node

n. Instead, I ′n expresses the way in which the node n’s current inflow hasn’t yet been

accounted for in the heap: that if n could adjust its inflow according to the propagated

priority change without changing its outflow, then it would compose back with the rest of

the graph, and restore the graph’s overall interface. The shorthand δ defines the required

change to n’s inflow.

In general (except when n’s next field is null, or n’s flow value is unchanged), it

is not even possible for n’s fields to be updated to satisfy I ′n; by updating n’s inflow,

10 In specifications, we implicitly quantify at the top level over free variables such as I . λ0 denotes

an identically zero function on an unconstrained domain.
11 We also omit acquire’s precondition that p.next == null for brevity.
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we will necessarily update its outflow. However, we can then construct a corresponding

“fake” interface for the next node in the graph, reflecting the update yet to be accounted

for, and establishing the precondition for the recursive call to update.

The third specification aspect is the connection between heap-level nodes and in-

terfaces. The N(n, In) predicate connects n with a different interface; In is the actual

current abstraction of n’s state. Conceptually, the key property which is broken at this

point is this connection between the interface-level specification and the heap at node n,

reflected by the decomposition in the specification between X \ {n} and {n}.

We note that the same specification ideas and proof style can be easily adapted to

other data structure implementations with an update-notify style, including well-known

designs such as Subject-Observer patterns, or the Composite pattern [27].

Proof Outline. To illustrate the application of flows reasoning to our PIP specification

ideas more clearly, we examine in detail the first if-branch in the proof of acquire. Our

intermediate proof steps are shown as purple annotations surrounded by braces. The first

step, as shown in the first line inside the method body, is to apply ((UN)FOLD) twice (on

the flow graphs represented by these predicates) and peel off N predicates for each of r

and p. The update to r’s next field (line 27) causes the correct singleton interface of r to

change to I ′r: its outflow (previously none, since the next field was null) now propagates

flow to p. We summarise this state in the assertion on line 29 (we omit e.g. repetition

of properties from the function’s precondition, focusing on the flow-related steps of

the argument). We now rewrite this state; using the definition of interface composition

(Definition 6) we deduce that although I ′r and Ip do not compose (since the former has

outflow that the latter does not account for as inflow), the alternative “fake” interface

I ′p for p (which artificially accounts for the missing inflow) would do so (cf. line 30).

Essentially, we show Ir ⊕ Ip = I ′r ⊕ I ′p, that the interface of {r, p} would be unchanged

if p could somehow have interface I ′p. Now by setting I2 = I ′r ⊕ I1 and using algebraic

properties of interfaces, we assemble the precondition expected by update. After the

call, update’s postcondition gives us the desired postcondition.

We focused here on the details of acquire’s proof, but very similar manipulations

are required for reasoning about the recursive call in update’s implementation.12 The

main difference there is that if the if-condition wrapping the recursive call is false then

either the last-modified node has no successor (and so there is no outstanding inflow

change needed), or we have from= to which implies that the “fake” interface is actually

the same as the currently correct one.

Despite the property proved for the PIP example being a rather delicate recursive in-

variant over the (potentially cyclic) graph, the power of our framework enables extremely

succinct specifications for the example, and proofs which require the application of rela-

tively few generic lemmas. The integration with standard separation logic reasoning, and

the complementary separation algebras provided by flow interfaces allow decomposition

and recomposition to be simple proof steps. For this proof, we integrated with standard

sequential separation logic, but in the next section we will show that compatibility with

concurrent SL techniques is similarly straightforward.

12 We provide further proof outlines in Appendix C of the TR [23].
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mh −∞ 3 5 9 10 12 ∞

fh 2 6 1 7 ft

Fig. 4: A potential state of the Harris list with explicit memory management. fnext

pointers are shown with dashed edges, marked nodes are shaded gray, and null pointers

are omitted for clarity.

4 Advanced Flow Reasoning and the Harris List

This section introduces some advanced foundational flow framework theory and demon-

strates its use in the proof of the Harris list. We note that [22] presented a proof of this

data structure in the original flow framework. The proof given here shows that the new

framework eliminates the need for the customized concurrent separation logic defined

in [22]. We start with a recap of Harris’ algorithm adapted from [22].

4.1 The Harris List Algorithm

The power of flow-based reasoning is exhibited in the proof of overlaid data structures

such as the Harris list, a concurrent non-blocking linked list algorithm [12]. This algo-

rithm implements a set data structure as a sorted list, and uses atomic compare-and-swap

(CAS) operations to allow a high degree of parallelism. As with the sequential linked

list, Harris’ algorithm inserts a new key k into the list by finding nodes k1, k2 such that

k1 < k < k2, setting k to point to k2, and using a CAS to change k1 to point to k only

if it was still pointing to k2. However, a similar approach fails for the delete operation.

If we had consecutive nodes k1, k2, k3 and we wanted to delete k2 from the list (say by

setting k1 to point to k3), there is no way to ensure with one CAS that k2 and k3 are also

still adjacent (another thread could have inserted/deleted in between them).

Harris’ solution is a two step deletion: first atomically mark k2 as deleted (by setting

a mark bit on its successor field) and then later remove it from the list using a single

CAS. After a node is marked, no thread can insert or delete to its right, hence a thread

that wanted to insert k′ to the right of k2 would first remove k2 from the list and then

insert k′ as the successor of k1.

In a non-garbage-collected environment, unlinked nodes cannot be immediately freed

as suspended threads might continue to hold a reference to them. A common solution

is to maintain a second “free list” to which marked nodes are added before they are

unlinked from the main list (this is the so-called drain technique). These nodes are then

labelled with a timestamp, which is used by a maintenance thread to free them when it is

safe to do so. This leads to the kind of data structure shown in Figure 4, where each node

has two pointer fields: a next field for the main list and an fnext field for the free list

(the list from fh to ft via dashed edges). Threads that have been suspended while holding
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Fig. 5: Examples of graphs that motivate effective acyclicity. All graphs use the path-

counting flow domain, the flow is displayed inside each node, and the inflow is displayed

as curved arrows to the top-left of nodes. (a) shows a graph and inflow that has no

solution to (FlowEqn); (b) has many solutions. (c) shows a modification that preserves

the interface of the modified nodes, yet goes from a graph that has a unique flow to one

that has many solutions to (FlowEqn).

a reference to a node that was added to the free list can simply continue traversing the

next pointers to find their way back to the unmarked nodes of the main list.

Even for seemingly simple properties such as that the Harris list is memory safe and

not leaking memory, the proof will rely on the following non-trivial invariants:

(a) The data structure consists of two (potentially overlapping) lists: a list on next

edges beginning at mh and one on fnext edges beginning at fh .

(b) The two lists are null terminated and next edges from nodes in the free list point to

nodes in the free list or main list.

(c) All nodes in the free list are marked.

(d) ft is an element in the free list (due to concurrency, it’s not always the tail).

Challenges. To prove that Harris’ algorithm maintains the invariants listed above we

must tackle a number of challenges. First, we must construct flow domains that allow us

to describe overlaid data structures, such as the overlapping main and free lists (§4.2).

Second, the flow-based proofs we have seen so far work by showing that the interface of

some modified region is unchanged. However, if we consider a program that allocates

and inserts a new node into a data structure (like the insert method of Harris), then the

interface cannot be the same since the domain has changed (it has increased by the

newly allocated node). We must thus have a means to reason about preservation of flows

by modifications that allocate new nodes (§4.3). The third issue is that in some flow

domains, there exist graphs G and inflows in for which no solutions to the flow equation

(FlowEqn) exist. For instance, consider the path-counting flow domain and the graph

in Figure 5(a). Since we would need to use the path-counting flow in the proof of the

Harris list to encode its structural invariants, this presents a challenge (§4.4).

We will next see how to overcome these three challenges in turn, and then apply

those solution to the proof of the Harris list in §4.5.
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4.2 Product Flows for Reasoning about Overlays

An important fact about flows is that any flow of a graph over a product of two flow

domains is the product of the flows on each flow domain component.

Lemma 3. Given two flow domains (M1,+1, 01, E1) and (M2,+2, 02, E2), the product

domain (M1 ×M2,+, (01, 02), E) is a flow domain, where + and E are the pointwise

liftings of (+1,+2) and (E1, E2), respectively, to the domain M1 ×M2.

This lemma greatly simplifies reasoning about overlaid graph structures; we will use

the product of two path-counting flows to describe a structure consisting of two overlaid

lists that make up the Harris list.

4.3 Contextual Extensions and the Replacement Theorem

In general, when modifying a flow graph H to another flow graph H ′, requiring that H ′

satisfies precisely the same interface int(H) can be too strong a condition as it does not

permit allocating new nodes. Instead, we want to allow int(H ′) to differ from int(H)
in that the new interface could have a larger domain, as long as the edges from the new

nodes do not change the outflow of the modified region.

Definition 7. An interface I = (in, out) is contextually extended by I ′ = (in ′, out ′),
written I � I ′, if and only if the following conditions all hold:

(1) dom(in) ⊆ dom(in ′),
(2) ∀n ∈ dom(in). in(n) = in ′(n), and

(3) ∀n′ �∈ dom(in ′). out(n′) = out ′(n′).

The following theorem states that contextual extension preserves composability and

is itself preserved under interface composition.

Theorem 2 (Replacement Theorem). If I = I1 ⊕ I2, and I1 � I ′1 are all valid

interfaces such that I ′1 ∩ I2 = ∅ and ∀n ∈ I ′1 \ I1. I2.out(n) = 0, then there exists a

valid I ′ = I ′1 ⊕ I2 such that I � I ′.

In terms of our flow predicates, this theorem gives rise to the following adaptation of

the (REPL) rule:

Gr(X ′
1, H

′
1) ∗ Gr(X2, H2) ∗H = H1 ⊙H2 ∗ int(H1) � int(H ′

1)

|= ∃H ′. Gr(X ′
1 ⊎X2, H

′) ∗H ′ = H ′
1 ⊙H2 ∗ int(H) � int(H ′) (REPL+)

The rule (REPL+) is derived from the Replacement Theorem by instantiating with

I = int(H), I1 = int(H1), I2 = int(H2) and I ′1 = int(H ′
1). We know I1 � I ′1;

H = H1 ⊙H2 tells us (by Lemma 2) that I = I1 ⊕ I2, and Gr(X ′
1, H

′
1) ∗ Gr(X2, H2)

gives us I ′1 ∩ I2 = ∅. The final condition of the Replacement Theorem is to prove that

there is no outflow from X2 to any newly allocated node in X ′
1. While we can use

additional ghost state to prove such constraints in our proofs, if we assume that the

memory allocator only allocates fresh addresses and restrict the abstraction function

edge to only propagate flow along an edge (n, n′) if n has a (non-ghost) field with a

reference to n′ then this condition is always true. For simplicity, and to keep the focus of

this paper on the flow reasoning, we make this assumption in the Harris list proof.
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4.4 Existence and Uniqueness of Flows

We typically express global properties of a graph G = (N, e) by fixing a global inflow

in : N → M and then constraining the flow of each node in N using node-local

conditions. However, as we discussed at the beginning of this section, there is no general

guarantee that a flow exists or is unique for a given in and G. The remainder of this

section presents two complementary conditions under which we can prove that our flow

fixpoint equation always has a unique solution. To this end, we say that a flow domain

(M,+, 0, E) has unique flows if for every graph (N, e) over this flow domain and inflow

in : N → M , there exists a unique fl that satisfies the flow equation FlowEqn(in, e,fl).
But first, we briefly recall some more monoid theory.

We say M is positive if m1 +m2 = 0 implies that m1 = m2 = 0. For a positive

monoid M , we can define a partial order ≤ on its elements as m1 ≤ m2 if and only if

∃m3. m1 +m3 = m2. This definition implies that every m ∈ M satisfies 0 ≤ m.

For e, e′ : M → M , we write e + e′ for the function that maps m ∈ M to e(m) +
e′(m). We lift this construction to a set of functions E and write it as

∑

e∈E e.

Definition 8. A function e : M → M is called an endomorphism on M if for every

m1,m2 ∈ M , e(m1 +m2) = e(m1) + e(m2). We denote the set of all endomorphisms

on M by End(M).

Note that for cancellative M , e(0) = 0 for every endomorphism e ∈ End(M).
Note further that e + e′ ∈ End(M) for any e, e′ ∈ End(M). Similarly, for finite sets

E ⊆ End(M),
∑

e∈E e ∈ End(M). We say that a set of endomorphisms E ⊆ End(M)
is closed if for every e, e′ ∈ E, e ◦ e′ ∈ E and e+ e′ ∈ E.

Nilpotent Cycles. Let (M,+, 0, E) be a flow domain where every edge function e ∈ E

is an endomorphism on M . In this case, we can show that the flow of a node n is the

sum of the flow as computed along each path in the graph that ends at n. Suppose we

additionally know that the edge functions are defined such that their composition along

any cycle in the graph eventually becomes the identically zero function. We then need

only consider finitely many paths to compute the flow of a node, which means the flow

equation has a unique solution.

Definition 9. A closed set of endomorphisms E ⊆ End(M) is called nilpotent if there

exists p > 1 such that ep ≡ 0 for every e ∈ E.

Example 5. The flow domain (N2,+, (0, 0), {(λ(x, y). (0, c · x)) | c ∈ N}) contains

nilpotent edge functions that shift the first component of the flow to the second (with

a scaling factor). This domain can be used to express the property that every node in a

graph is reachable from the root via a single edge (by requiring the flow of every node to

be (0, 1) under the inflow (λn. (n = r ? (1, 0) : (0, 0)))).

Before we prove that nilpotent endomorphisms lead to unique flows, we present a

useful notion when dealing with endomorphic flow domains.

Definition 10. The capacity of a flow graph G = (N, e) is cap(G) : N ×N → (M →
M), defined inductively as cap(G) := cap|G|(G), where cap0(G)(n, n′) := δn=n′ and

capi+1(G)(n, n′) := δn=n′ +
∑

n′′∈G

capi(G)(n, n′′) ◦ e(n′′, n′).
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For a flow graph H = (N, e,fl), we write cap(H)(n, n′) = cap((N, e))(n, n′)
for the capacity of the underlying graph. Intuitively, cap(G)(n, n′) is the function that

summarizes how flow is routed from any source node n in G to any other node n′,

including those outside of G.

We can now show that if all edges of a flow graph are labelled with edges from a

nilpotent set of endomorphisms, then the flow equation has a unique solution:

Lemma 4. If (M,+, 0, E) is a flow domain such that M is a positive monoid and E is

a nilpotent set of endomorphisms, then this flow domain has unique flows.

Effectively Acyclic Flow Graphs. There are some flow domains that compute flows

useful in practice, but which do not guarantee either existence or uniqueness of fixpoints

a priori for all graphs. For example, the path-counting flow from Example 1 is one where

for certain graphs, there exist no solutions to the flow equation (see Figure 5(a)), and for

others, there can exist more than one (in Figure 5(b), the nodes marked with x can have

any path count, as long as they both have the same value).

In such cases, we explore how to restrict the class of graphs we use in our flow-based

proofs such that each graph has a unique fixpoint; the difficulty is that this restriction must

be respected for composition of our graphs. Here, we study the class of flow domains

(M,+, 0, E) such that M is a positive monoid and E is a set of reduced endomorphisms

(defined below). In such domains we can decompose the flow computations into the

various paths in the graph, and achieve unique fixpoints by restricting the kinds of cycles

graphs can have.

Definition 11. A flow graph H = (N, e,fl) is effectively acyclic (EA) if for every 1 ≤ k

and n1, . . . , nk ∈ N ,

fl(n1) ⊲ e(n1, n2) · · · e(nk−1, nk) ⊲ e(nk, n1) = 0.

The simplest example of an effectively acyclic graph is one where the edges with

non-zero edge functions form an acyclic graph. However, our semantic condition is

weaker: for example, when reasoning about two overlaid acyclic lists whose union

happens to form a cycle, a product of two path-counting domains will satisfy effective

acyclicity because the composition of different types of edges results in the zero function.

Lemma 5. Let (M,+, 0, E) be a flow domain such that M is a positive monoid and

E is a closed set of endomorphisms. Given a graph (N, e) over this flow domain and

inflow in : N → M , if there exists a flow graph H = (N, e,fl) that is effectively acyclic,

then fl is unique.

While the restriction to effectively acyclic flow graphs guarantees us that the flow is

the unique fixpoint of the flow equation, it is not easy to show that modifications to the

graph preserve EA while reasoning locally. Even modifying a subgraph to another with

the same flow interface (which we know guarantees that it will compose with any context)

can inadvertently create a cycle in the larger composite graph. For instance, consider

Figure 5(c), that shows a modification to nodes {n3, n4} (the boxed blue region). The

interface of this region is ({n3 ֌ 1, n4 ֌ 1} , {n5 ֌ 1, n2 ֌ 1}), and so swapping
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the edges of n3 and n4 preserves this interface. However, the resulting graph, despite

composing with the context to form a valid flow graph, is not EA (in this case, it has

multiple solutions to the flow equation). This shows that flow interfaces are not powerful

enough to preserve effective acyclicity. For a special class of endomorphisms, we show

that a local property of the modified subgraph can be checked, which implies that the

modified composite graph continues to be EA.

Definition 12. A closed set of endomorphisms E ⊆ End(M) is called reduced if e◦e ≡
λ0 implies e ≡ λ0 for every e ∈ E.

Note that if E is reduced, then no e ∈ E can be nilpotent. In that sense, this class of

instantiations is complementary to the nilpotent class.

Example 6. Examples of flow domains that fall into this class include positive semirings

of reduced rings (with the additive monoid of the semiring being the aggregation monoid

of the flow domain and E being any set of functions that multiply their argument with

a constant flow value). Note that any direct product of integral rings is a reduced ring.

Hence, products of the path counting flow domain are a special case.

For reduced endomorphisms, it suffices to check that a modification preserves the

flow routed between every pair of source and sink node in order to ensure that it does

not create any new cycles in any composite graph.

Definition 13. A flow graph H ′ is a subflow-preserving extension of H , for which we

write H �s H
′, if the following conditions all hold:

(1) int(H) � int(H ′)
(2) ∀n ∈ H,n′ �∈ H ′,m. m ≤ inf(H)(n) ⇒ m⊲cap(H)(n, n′) = m⊲cap(H ′)(n, n′)
(3) ∀n ∈ H ′ \H,n′ �∈ H ′,m. m ≤ inf(H ′)(n) ⇒ m ⊲ cap(H ′)(n, n′) = 0

This pairwise check, apart from requiring the interface of the modified region to be

unchanged, also permits allocating new nodes as long as no flow is routed via the new

nodes (condition (3)). We now show that it is sufficient to check that a modification is a

subflow-preserving extension to guarantee composition back to an effectively-acyclic

composite graph:

Theorem 3. Let (M,+, 0, E) be a flow domain such that M is a positive monoid and E

is a reduced set of endomorphisms. If H = H1 ⊙H2 and H1 �s H
′
1 are all effectively

acyclic flow graphs such that H ′
1 ∩H2 = ∅ and ∀n ∈ H ′

1 \H1. outf(H2)(n) = 0, then

there exists an effectively acyclic flow graph H ′ = H ′
1 ⊙H2 such that H �s H

′.

We define effectively acyclic versions of our flow graph predicates, Na(x,H) and

Gra(X,H), that additionally constrain H to be effectively acyclic. The above theorem

yields the following variant of the (REPL) rule for EA graphs:

Gra(X
′
1, H

′
1) ∗ Gra(X2, H2) ∗H = H1 ⊙H2 ∗H1 �s H

′
1

|= ∃H ′. Gra(X
′
1 ⊎X2, H

′) ∗H ′ = H ′
1 ⊙H2 ∗H �s H

′ (REPLEA)

Local Reasoning for Global Graph Properties 329



4.5 Proof of the Harris List

We use the techniques seen in this section in the proof of the Harris list. As the data

structure consists of two potentially overlapping lists, we use Lemma 3 to construct a

product flow domain of two path-counting flows: one tracks the path count from the

head of the main list, and one from the head of the free list. We also work under the

effectively acyclic restriction (i.e. we use the Na and Gra predicates), both in order to

obtain the desired interpretation of the flow as well as to ensure existence of flows in this

flow domain.

We instantiate the framework using the following definitions of parameters:

fs := {key : k, next : y, fnext : z}

edge(x, fs , v) := (v = null ? λ0 : (v = y ∧ y �= z ? λ(1,0)

: (v �= y ∧ y = z ? λ(0,1) : (v = y ∧ y = z ? λid : λ0))))

γ(x, fs , I) := (I.in(x) ∈ {(1, 0), (0, 1), (1, 1)}) ∗ (I.in(x) �= (1, 0) ⇒ M(y))

∗ (x = ft ⇒ I.in(x) = (_, 1)) ∗ (¬M(y) ⇒ z = null)

ϕ(I) := I = (λ0[mh ֌ (1, 0)][fh ֌ (0, 1)], λ0)

Here, edge encodes the edge functions needed to compute the product of two path

counting flows, the first component tracks path-counts from mh on next edges and the

second tracks path-counts from fh on fnext edges 13. The node-local invariant γ says:

the flow is one of {(1, 0), (0, 1), (1, 1)} (meaning that the node is on one of the two lists,

invariant (a)); if the flow is not (1, 0) (the node is not only on the main list, i.e. it is

on the free list) then the node is marked (indicated by M(y), invariant (c)); and if the

node is ft then it must be on the free list (invariant (d)). The constraint on the global

interface, ϕ, says that the inflow picks out mh and fh as the roots of the lists, and there

is no outgoing flow (thus, all non-null edges must stay within the graph, invariant (b)).

Since the Harris list is a concurrent algortihm, we perform the proof in rely-guarantee

separation logic (RGSep) [41]. Like in §3, we do not need to modify the semantics of

RGSep in any way; our flow-based predicates can be defined and reasoning using our

lemmas can be performed in the logic out-of-the-box. For space reasons, the full proof

can be found in Appendix D of the TR [23].

5 Related Work

As mentioned in §1, the most closely related work is the flow framework developed by

some of the authors in [22]. We here present a simplified and generalized meta theory of

flows that makes the approach much more broadly applicable. There were a number of

limitations of the prior framework that prevented its application to more general classes

of examples.

First, [22] required flow domains to form a semiring; the analogue of edge functions

are restricted to multiplication with a constant which must come from the same flow

13 We use the shorthands λ(1,0) := (λ(m1,m2). (m1, 0)) and λ(0,1) := (λ(m1,m2). (0,m2)),
and denote an anonymous existentially-quantified variable by _.
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value set. This restriction made it complex to encode many graph properties of interest.

For example, one could not easily encode the PIP flow, or a simple flow that counts the

number of incoming edges to each node. Our foundational flow framework decouples

the algebraic structure defining how flow is aggregated from the algebraic structure of

the edge functions. In this way, we obtain a more general framework that applies to many

more examples, and with simpler flow domains.

Second, in [22], a flow graph did not uniquely determine its inflow (cf. Lemma 1).

Correspondingly, [22]’s notion of interface included an equivalence class of inflows (all

those that induce the same flow values). Since, in [22], the interface also determines

which modifications are permitted by the framework, [22] could only handle modifica-

tions that preserve the inflow equivalence class. For example, this prevents one from

reasoning locally about the removal of a single edge from a graph in certain cases (in

particular, like release does in the PIP). Our foundational flow framework solves

this problem by requiring that the aggregation operation on flow values is cancellative,

guaranteeing unique inflows.

Cancellativity is fundamentally incompatible with [22], which requires the flow

domain to form an ω-CPO in order to guarantee the existence of unique flows. For

example, in a graph with two nodes n and n′ with identity edges between them and

all other edges zero (in [22], edges labelled with 1 and 0), if we have in(n) = 0
and in(n) = m for some non-zero m, a solution to the flow equation must satisfy

fl(n) = m+ fl(n). [22] forces such solutions to exist, ruling out cancellativity. To solve

this problem, we present a new theory which can optionally guarantee unique flows

when desired and show that requiring cancellativity does not limit expressivity.

Next, the proofs of programs shown in [22] depend on a bespoke program logic. This

logic requires new reasoning primitives that are not supported by the logics implemented

in existing SL-based verification tools. Our general proof technique eliminates the need

for a dedicated program logic and can be implemented on top of standard separation log-

ics and existing SL-based tools. Finally, the underlying separation algebra of the original

framework makes it hard to use equational reasoning, which is a critical prerequisite for

enabling proof automation.

An abundance of SL variants provide complementary mechanisms for modular

reasoning about programs (e.g. [18, 36, 38]). Most are parameterized by the underlying

separation algebra; our flow-based reasoning technique easily integrates with these

existing logics.

The most common approach to reason about irregular graph structures in SL is to

use iterated separating conjunction [30, 44] and describe the graph as a set of nodes each

of which satisfies some local invariant. This approach has the advantage of being able to

naturally describe general graphs. However, it is hard to express non-local properties that

involve some form of fixpoint computation over the graph structure. One approach is to

abstract the program state as a mathematical graph using iterated separating conjunction

and then express non-local invariants in terms of the abstract graph rather than the

underlying program state [14, 35, 38]. However, a proof that a modification to the state

maintains a global invariant of the abstract graph must then often revert back to non-local

and manual reasoning, involving complex inductive arguments about paths, transitive

closure, and so on. Our technique also exploits iterated separating conjunction for the
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underlying heap ownership, with the key benefit that flow interfaces exactly capture the

necessary conditions on a modified subgraph in order to compose with any context and

preserve desired non-local invariants.

In recent work, Wang et al. present a Coq-mechanised proof of graph algorithms in

C, based on a substantial library of graph-related lemmas, both for mathematical and

heap-based graphs [42]. They prove rich functional properties, integrated with the VST

tool. In contrast to our work, a substantial suite of lemmas and background properties are

necessary, since these specialise to particular properties such as reachability. We believe

that our foundational flow framework could be used to simplify framing lemmas in a

way which remains parameteric with the property in question.

Proofs of a number of graph algorithms have been mechanized in various verification

tools and proof assistants, including Tarjan’s SCC algorithm [8], union-find [7], Kruskal’s

minimum spanning tree algorithm [13], and network flow algorithms [25]. These proofs

generally involve non-local reasoning arguments about mathematical graphs.

An alternative approach to using SL-style reasoning is to commit to global reasoning

but remain within decidable logics to enable automation [16, 21, 24, 28, 43]. However,

such logics are restricted to certain classes of graphs and certain types of properties.

For instance, reasoning about reachability in unbounded graphs with two successors

per node is undecidable [15]. Recent work by Ter-Gabrielyan et al. [40] shows how

to deal with modular framing of pairwise reachability specifications in an imperative

setting. Their framing notion has parallels to our notion of interface composition, but

allows subgraphs to change the paths visible to their context. The work is specific to

a reachability relation, and cannot express the rich variety of custom graph properties

available in our technique.

Dynamic frames [19] (e.g. implemented in Dafny [26]), can be used to explicitly

reason about framing of heap information in a first-order logic. However, by itself, this

theory does not enable modular reasoning about global graph properties. We believe that

the flow framework could in principle be adapted to the dynamic frames setting.

6 Conclusions and Future Work

We have presented the foundational flow framework, enabling local modular reasoning

about recursively-defined properties over general graphs. The core reasoning technique

has been designed to make minimal mathematical requirements, providing great flexi-

bility in terms of potential instantiations and applications. We identified key classes of

these instantiations for which we can provide existence and uniqueness guarantees for

the fixpoint properties our technique addresses and demonstrate our proof technique on

several challenging examples. As future work, we plan to automate flow-based proofs

in our new framework using existing tools that support SL-style reasoning such as

Viper [29] and GRASShopper [34].
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