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Abstract: We study minimax estimation of two-dimensional totally posi-
tive distributions. Such distributions pertain to pairs of strongly positively
dependent random variables and appear frequently in statistics and proba-
bility. In particular, for distributions with β-Hölder smooth densities where
β ∈ (0, 2), we observe polynomially faster minimax rates of estimation
when, additionally, the total positivity condition is imposed. Moreover, we
demonstrate fast algorithms to compute the proposed estimators and cor-
roborate the theoretical rates of estimation by simulation studies.
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1. Introduction

For a set X =
∏d

i=1 Xi where each Xi is totally ordered,1 a function p : X → R
is called multivariate totally positive of order 2 (MTP2) [22, 24] if

p(x ∧ y)p(x ∨ y) ≥ p(x)p(y) , ∀x, y ∈ X , (1.1)

where ∧ and ∨ denote the coordinate-wise min and max operators respec-
tively. The MTP2 condition is also known as the FKG lattice condition because
of its central role in the FKG inequality [14]. It is sometimes referred to as

1A set X is totally ordered if it is equipped with a total order, that is, a binary relation
which is antisymmetric, transitive and connex. This work is only concerned with X ⊆ R
equipped with its natural order.
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log-supermodularity because of its similarity up to morphism to supermodular-
ity [18, 37]. Throughout, we say that a probability distribution is MTP2 if it
has an MTP2 density.

A variety of joint distributions are known to be MTP2, for example, order
statistics of i.i.d. variables, eigenvalues of Wishart matrices [24], and ferromag-
netic Ising models [28]. Furthermore, Gaussian and binary latent tree models
are signed MTP2, that is, there exists a sign change of each coordinate mak-
ing the distribution MTP2 [25, 27]. In particular, all these distributions exhibit
positive association, a marked feature of MTP2 distributions. As opposed to pos-
itive association, however, the MTP2 property is preserved after conditioning or
marginalization [24]. As a result of their frequent appearances, MTP2 distribu-
tions have long been studied in statistics and probability [24, 26, 2, 8, 44, 27, 38].

In this paper, we study minimax estimation of an MTP2 distribution in di-
mension two2 from i.i.d. observations. We mainly focus on distributions on the
square [0, 1]2 for which density functions exist. Since almost surely no four obser-
vations from such a distribution form a rectangle, the MTP2 constraint (1.1) is
inactive on the observations and consequently, the maximum likelihood estima-
tor over this class does not exist (see Lemma 14 and Remark 15 in Appendix A).
Therefore, we further assume that the distribution has a β-Hölder smooth den-
sity, a widely adopted assumption in nonparametric estimation [46].

Smooth MTP2 distributions have long been studied in the literature. Exam-
ples include, but are not limited to, (1) pairwise marginals of Gaussian latent
tree models [13], such as Brownian motion tree models and factor analysis mod-
els, (2) joint distributions of pairs of time points of a strong Markov process
on the real line with continuous paths [23], such as a diffusion process, and (3)
MTP2 transelliptical distributions, such as MTP2 multivariate t-distributions,
which are commonly used in finance [1].

Main contribution Our main results can be stated informally as follows.

Theorem 1 (Informal statement of minimax rates). Given N i.i.d. observa-
tions from a two-dimensional distribution with an MTP2 and β-Hölder smooth
density, the minimax rate of estimation in the squared Hellinger distance is (up
to a polylogarithmic factor)⎧⎪⎨

⎪⎩
N− 2β

2β+1 , if 0.5 ≤ β < 1,

N−2/3, if 1 ≤ β < 2,

N− 2β
2β+2 , if β ≥ 2.

It is well known that without the MTP2 assumption, the minimax rates for

the β-Hölder class in dimension d scale as N− 2β
2β+d up to a polylogarithmic

factor, under various comparable models and error metrics (see, for example,
[33]). Hence, our results show that for 0.5 ≤ β < 1, the minimax rate exhibits
a one-dimensional behavior thanks to the MTP2 constraint; for 1 ≤ β < 2,

2In dimension two, MTP2 is sometimes simply called TP2 for totally positive of order 2.
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the rate is polynomially faster than that without the MTP2 constraint and is
independent of the smoothness parameter β; for β > 2, however, the MTP2

constraint has no effect on the minimax rate (see Figure 1 for a visualization).
Note that results similar to what we obtain for MTP2 are expected to arise

when p is assumed to be smooth and log-concave. However, MTP2 only makes
assumptions on the behavior of the function along lattice directions. While this
is not directly comparable with log-concavity, it is, in essence, a weaker condition
in the sense that it imposes a less stringent structure on the density. Our results
indicate that when coupled with smoothness, MTP2 makes up for this deficiency
and leads to the same rates of convergence.

Our results for the regime 0 < β < 0.5 are unfortunately inconclusive, but
the upper bounds exhibit polynomial improvement in the rates when MTP2 is
assumed; see (3.8) below.

Fig 1. Visual comparison of the estimation rate for β-Hölder smooth MTP2 distributions
in Theorem 1, with estimation rates for β-Hölder smooth distributions (without the MTP2

constraint) in 1D and 2D, suppressing logarithmic factors.

As a stepping stone to this problem, we also consider the following discrete
version of MTP2. A distribution on the grid [n1]× [n2] is MTP2 if its probability
mass function (PMF) p, which is an n1 × n2 matrix, fulfills (1.1). Thus, MTP2

says that all the 2× 2 minors of p are non-negative:

pijpk� ≥ pi�pkj , for all 1 ≤ i < k ≤ n1, 1 ≤ j < � ≤ n2. (1.2)

We study estimation of the PMF p from N independent observations in this
discrete setup.

To obtain upper bounds for estimation of a discrete MTP2 distribution, we
employ a variant of the maximum likelihood estimator (MLE) defined in Sec-
tion 2.1. For estimating a smooth MTP2 density, we first discretize the space
[0, 1]2 and then apply the discrete MLE to obtain an estimator (defined in Sec-
tion 3.1) that achieves near-optimal upper bounds. Both estimators are compu-
tationally efficient, with the implementations discussed in more detail in Sec-
tion 4.

Related work There has been a recent surge of interest in the estimation
of MTP2 distributions. The special case of Gaussian MTP2 distributions has
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been studied by [44, 27] from the perspective of maximum likelihood estima-
tion and optimization. Maximum likelihood estimation of log-concave MTP2

distributions was also analyzed recently [39, 38]. However, no statistical rate
of estimation of MTP2 distributions is currently known. The present paper es-
tablishes the first minimax rates (up to logarithmic factors) of estimation of a
smooth MTP2 density.

More broadly, our work falls into the scope of nonparametric density estima-
tion which is a fundamental problem in nonparametric estimation. As such it
has received considerable attention over the years [20, 41, 49, 7, 43]. A central
paradigm in this literature is to assume smoothness of the underlying density
to be estimated. Such an assumption justifies a variety of statistical methods
ranging from kernel density estimation to series expansions. Another approach
to nonparametric estimation, and in particular to density estimation, is to use
shape constraints whereby the (local) smoothness assumption is dropped and
favored by a (global) synthetic constraint such as monotonicity [15, 36], con-
vexity [17, 42] and log-concavity [48, 11, 9, 40] (see [16] for a recent overview).
As explained above, the MTP2 constraint alone does not make the density es-
timation problem well-defined and it has been combined with another shape
constraint, namely log-concavity, in [38]. Instead, the present work combines
MTP2 with smoothness to obtain a faster statistical rate than with smoothness
alone, thus demonstrating compatibility of the local and the global approach.

As we have discussed above, MTP2 is also called log-supermodular. In the
recent paper [19], we studied estimation of supermodular matrices (also known
as anti-Monge matrices) under sub-Gaussian noise. We note that the proof
techniques used in [19] are the starting point for the proofs in this paper, but
are extended to the context density estimation. In a parallel work [12], the
authors study a related but slightly different model under Gaussian noise, and
their proof techniques could potentially be extended to yield rates similar to the
ones found in this paper.

Organization We present the main results of the paper: upper and lower
bounds for the discrete case in Section 2, followed by the continuous case in
Section 3. All proofs are postponed to Section 6. The implementation of our
estimators is discussed in Section 4. Our theoretical results are complemented
by numerical experiments on synthetic data in Section 5. Finally, Section 7
includes a conclusion of the paper and a discussion of questions left for future
research.

Notation For a positive integer n, let [n] = {1, 2, . . . , n}. For a finite set S,
we use |S| to denote its cardinality. For two sequences {an}∞n=1 and {bn}∞n=1

of real numbers, we write an � bn if there is a universal constant C > 0 such
that an ≤ Cbn for all n ≥ 1. The relation an � bn is defined analogously. We
use c and C (possibly with subscripts) to denote universal positive constants
that may change from line to line. Given a matrix M ∈ Rn1×n2 , we denote its
ith row by Mi,· and its jth column by M·,j . For an entrywise positive vector
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w ∈ Rn and a vector v ∈ Rn, we use the notation

‖v‖w :=
( n∑

i=1

wiv
2
i

)1/2
for the w-weighted �2 norm of the vector v. Similarly, for an entrywise positive
matrix b ∈ Rn1×n2 and a matrix a ∈ Rn1×n2 , we use ‖a‖b to denote the b-
weighted Frobenius norm of a. For a reference measure μ on a (continuous
or discrete) space X , and two distributions with probability density or mass
functions p and q respectively, we let

h(p, q) :=
(∫

X

(√
p(x)−

√
q(x)

)2
dμ(x)

)1/2
and

KL(p, q) :=

∫
X
p(x) log

p(x)

q(x)
dμ(x)

denote the Hellinger distance and the Kullback-Leibler (KL) divergence between
the two distributions respectively.

2. MTP2 distribution estimation on a grid

Let p∗ be a probability mass function (PMF) on the grid [n1]× [n2], where we
assume without loss of generality that n1 ≥ n2. In the case where n1 ≤ n2, our
results and proofs remain valid with the roles of n1 and n2 swapped. Suppose
that p∗ satisfies the MTP2 condition

p∗i,jp
∗
i+1,j+1 ≥ p∗i,j+1p

∗
i+1,j for all i ∈ [n1 − 1], j ∈ [n2 − 1]. (2.1)

Note that this is equivalent to condition (1.2) by a telescoping sum argument.
Suppose that we are given N i.i.d. observations {Zk}Nk=1 from the distribution

on [n1] × [n2] with PMF p∗, that is, each Zk = (i, j) with probability p∗i,j for
(i, j) ∈ [n1]×[n2]. Our goal is to estimate p∗. The number of observations at each
point (i, j) on the grid [n1]× [n2] is recorded in a matrix Y = (Yi,j)i∈[n1], j∈[n2],
defined by

Yi,j :=

N∑
k=1

1{Zk = (i, j)}. (2.2)

Then Y can be viewed as a multinomial random variable with distribution
denoted by Multi(N, p∗).

In addition, we define

p∗min := min
i∈[n1], j∈[n2]

p∗i,j and p∗max := max
i∈[n1], j∈[n2]

p∗i,j ,

and assume a mild lower bound on the sample size N ≥ 12 log(n1n2/δ)/p
∗
min.

Then Yi,j concentrates around its expectation as indicated by the next lemma.
In particular, we have sufficiently many observations per entry on the grid with
high probability.
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Lemma 2. For any δ ∈ (0, 1/2] and N ≥ 12 log(n1n2/δ)/p
∗
min, it holds with

probability at least 1− 2δ that

1

2
Np∗i,j ≤ Yi,j ≤

3

2
Np∗i,j

for all (i, j) ∈ [n1]× [n2].

Proof. Note that marginally Yi,j follows the binomial distribution Bin(N, p∗i,j).
Hence the result is an immediate consequence of Lemma 16 with q = p∗i,j/2,
together with a union bound over (i, j) ∈ [n1]× [n2].

2.1. Estimator

We begin by describing the MLE of the log-PMF θ∗ ∈ (−∞, 0]n1×n2 defined by
θ∗i,j := log p∗i,j . Owing to the fact that p∗ is a totally positive PMF, θ∗ satisfies
the following two constraints:∑

i∈[n1], j∈[n2]

eθ
∗
i,j = 1 , and Dθ∗D̃� ≥ 0 ,

where the symbol ≥ denotes entrywise inequality and the difference operators
D ∈ R(n1−1)×n1 , D̃ ∈ R(n2−1)×n2 are both of the form⎡

⎢⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
0 0 0 . . . −1 1

⎤
⎥⎥⎥⎦ . (2.3)

The log-likelihood of a candidate θ = log(p) ∈ (−∞, 0]n1×n2 is given by

log
N∏

k=1

pZk
= log

∏
i∈[n1], j∈[n2]

(pi,j)
Yi,j =

∑
i∈[n1], j∈[n2]

Yi,jθi,j = 〈Y, θ〉.

Hence the MLE is given by

θ̂MLE := argmax∑
i,j eθi,j=1

DθD̃�≥0

〈Y, θ〉. (2.4)

Instead of the MLE, we study a constrained variant which is both amenable
to analysis and efficiently computable.3 Lemma 2 implies that with probability
at least 1− 2δ, the true log-PMF θ∗ lies in the cube

C(Y ) :={
θ ∈ (−∞, 0]n1×n2 : log

2Yi,j

3N
≤ θi,j ≤ log

2Yi,j

N
for all i ∈ [n1], j ∈ [n2]

}
. (2.5)

3The MLE itself can also be efficiently computed; see Appendix B.2 and Section 5.
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This motivates the constrained optimization problem

θ̃ := argmax
DθD̃�≥0
θ∈C(Y )

1

N
〈Y, θ〉 −

∑
i∈[n1], j∈[n2]

eθi,j . (2.6)

Note that the objective is concave and there are O(n1n2) inequality constraints,
so the program can be solved efficiently. However, the constraint

∑
i,j e

θi,j = 1

is replaced by a penalty term, so it is not necessarily true that
∑

i,j e
θ̃i,j = 1.

Hence we define the estimator of interest θ̂ ∈ Rn1×n2 by normalizing θ̃:

θ̂i,j := θ̃i,j − log
∑

r∈[n1], s∈[n2]

eθ̃r,s for i ∈ [n1], j ∈ [n2]. (2.7)

It is clear then that θ̂ is a supermodular log-PMF. Finally, we define our esti-

mator p̂ = p̂(Y ) by p̂i,j := eθ̂i,j , which is therefore a properly defined MTP2

PMF.

2.2. Upper and lower bounds

We measure the performance of our estimator p̂ using the Hellinger distance
h(p∗, p̂). For any PMF p on the grid, define

L(p) :=
p1,1pn1,n2

pn1,1p1,n2

. (2.8)

The quantity log
(
L(p)

)
is a seminorm of the log-PMF θ = log(p) (see (6.17)),

which measures the complexity of θ. As a result, the following upper bound for
our estimator p̂ depends on log

(
L(p∗)

)
.

Theorem 3 (Upper bounds for estimation of discrete MTP2 distributions). Fix
δ ∈ (0, 1/4] and suppose that we are given N ≥ 12 log(n1n2/δ)/p

∗
min independent

observations from a distribution with an MTP2 PMF p∗ on the grid [n1]× [n2]
where n1 ≥ n2. Then the estimator p̂ defined above satisfies

h2(p∗, p̂) ≤ 1

2
KL(p∗, p̂) � n1 log(n1/δ)

N

+ (p∗max n1n2)
1/3
(
log
(
L(p∗)

)
+ 1

)2/3( log(n1/δ) log(n2)

N

)2/3
with probability at least 1− 4δ.

In particular, in the case where p∗max 
 1/(n1n2), the bound in Theorem 3
reduces to

h2(p∗, p̂) � n1

N
+

1

N2/3

up to logarithmic factors. The term 1
N2/3 results from the MTP2 shape con-

straint, while the term n1

N is present even if the PMF p∗ has constant rows.
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Technically, the two terms follow from a decomposition of the noise in the proof.
The following theorem shows that this upper bound is, in fact, optimal in the
minimax sense up to logarithmic factors.

Theorem 4 (Lower bounds for estimation of discrete MTP2 distributions). Let
Pp∗ denote the probability with respect to N independent observations from the
distribution with an MTP2 PMF p∗ on the grid n1 × n2. For n1 ≤ N ≤ n3

1n
3
2,

there exists a universal constant c > 0 such that

inf
p̃

sup
p∗ MTP2

Pp∗

{
h2(p∗, p̃) ≥ c

(n1

N
+

1

N2/3

)}
≥ 1

3
,

where the infimum is over all estimators p̃ measurable with respect to the obser-
vations. For N ≤ n1, we have the vacuous lower bound of constant order. For
N ≥ n3

1n
3
2, we have the lower bound of order n1n2

N , which is the trivial rate of
estimation.

Note that in the regime with an enormous sample size N ≥ n3
1n

3
2, the

lower bound n1n2

N is achieved by the empirical frequency matrix Y/N (see Ap-
pendix B.3), so there is no need to exploit the MTP2 constraint. In fact, it can
be seen from the proof of Theorem 3 in Section 6.1 that the estimator p̂ also
attains this rate up to logarithmic factors (see Remark 12), a behavior that can
be observed in the numerical experiments as well (see Figure 2a in Section 5).

While our upper and lower bounds match in terms of the sample size N
and dimensions (n1, n2), there are two potential improvements that can be
made. First, the assumption N ≥ 12 log(n1n2/δ)/p

∗
min in Theorem 3 is nec-

essary to guarantee that we have sufficient observations at each point on the
grid [n1]× [n2], so that the (box-constrained) MLE can be properly defined and
efficiently computed. There may exist other estimation procedures that apply in
the regime where the sample size is smaller. Second, the upper bound contains
the parameter p∗max which is not present in the lower bound. This is likely an
artifact of our proof of the upper bound and could potentially be mitigated.

3. Smooth MTP2 density estimation

We turn to estimation of a probability distribution with a smooth MTP2 density
ρ∗ on [0, 1]2 with respect to the Lebesgue measure. Recall that MTP2 requires
that for any x, y ∈ [0, 1]2,

ρ∗(x ∧ y)ρ∗(x ∨ y) ≥ ρ∗(x)ρ∗(y). (3.1)

In addition, we assume that ρ∗ is β-Hölder smooth, defined more precisely as
follows.

Definition 5. For β,R > 0, we define D(β,R) to be the set of probability
densities ρ on [0, 1]2 such that ρ is �β−1� times continuously differentiable with

|∂αρ(x)| ≤ R, for all |α| ≤ �β − 1�, x ∈ [0, 1]2, and (3.2)
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|∂αρ(x)− ∂αρ(y)| ≤ R ‖x− y‖β−�β−1�
2 ,

for all |α| = �β − 1�, x, y ∈ [0, 1]2. (3.3)

Moreover, for ρmin, ρmax > 0, we define D̃(β,R, ρmin, ρmax) to be the subset of
D(β,R) consisting of densities ρ such that

ρmin ≤ ρ(x) ≤ ρmax, for all x ∈ [0, 1]2. (3.4)

Equipped with the above definition, we assume that ρ∗ ∈ D̃(β,R, ρmin, ρmax).
Given N i.i.d. observations from the distribution with density ρ∗ where N > 0,
we aim to estimate the distribution.

3.1. Estimator

To define an estimator of ρ∗, we make use of both smoothness and the MTP2

assumption. Namely, smoothness allows us to discretize the space [0, 1]2 into
grid cells and group observations together in each cell, after which we are able
to employ the MTP2 shape constraint.

More precisely, for a positive integer n to be determined later, we consider
the equidistant discretization on [0, 1]2 with n subdivisions on each dimension,
that is, with grid cells

Si,j :=
[ i− 1

n
,
i

n

)
×
[j − 1

n
,
j

n

)
, i, j ∈ [n].

Denote by Y the (unnormalized) histogram estimator with grid (Si,j)
n
i,j=1 for a

sample {X1, . . . , XN}, that is,

Yi,j :=

N∑
k=1

1{Xk ∈ Si,j}. (3.5)

Moreover, we define

p∗i,j :=

∫
Si,j

ρ∗(x) dx. (3.6)

Since ρ∗ is MTP2, it is easily verified that the discrete density p∗ is MTP2 in
the sense of (2.1).

Given the matrix Y with entries specified by (3.5), we compute the estimator
p̂ = p̂(Y ) defined in Section 2.1, and define an estimator ρ̂ of the density ρ∗ by

ρ̂(x) := n2p̂i,j , for x ∈ Si,j , (3.7)

which is a piecewise constant estimator on the grid (Si,j)
n
i,j=1.

3.2. Upper and lower bounds

The performance of our estimator ρ̂ with respect to the Hellinger distance is
characterized by the following theorem.
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Theorem 6 (Upper bounds for estimation of smooth MTP2 distributions).
Suppose that we are given N independent observations from an MTP2 distribu-
tion with density ρ∗ ∈ D̃(β,R, ρmin, ρmax). With β̃ := β ∧ 1 and the choice

n =
⌊(R2N

ρmin

)1/(2β̃+1)

∧
( ρminN

log(ρminN)

)1/2⌋
,

we define the estimator ρ̂ as in (3.7). Moreover, suppose that N is larger than
a constant depending on β,R and ρmin. Then with probability at least 1−N−4,
the following holds. If β > 0.5, then

h2(ρ̂, ρ∗) � logN

N2β̃/(2β̃+1)
+

(logN)4/3

N2/3
,

and if 0 < β ≤ 0.5, then

h2(ρ̂, ρ∗) �
( logN

N

)β̃
+

(logN)4/3

N2/3
,

where the suppressed constants depend on the quantities β,R, ρmin and ρmax.

Note that the size of discretization n can be viewed as a tuning parameter in
smooth density estimation—the larger n is, the smaller bias and larger variance
the piecewise constant estimator has. As the proof of Theorem 6 suggests, the
above choice of n achieves the optimal bias-variance trade-off, thereby yielding
near-optimal upper bounds.

As in the discrete setting, each of the above upper bounds contains two
terms. The term involving β̃ in the exponent originates from the smoothness of

the density, while the term (logN)4/3

N2/3 is due to the MTP2 shape constraint.
More precise versions of the bounds in Theorem 6 are given in (6.27) and

(6.28) with explicit dependencies on ρmin, ρmax, and R. In particular, treating
these quantities as constants, the above bounds yield (up to logarithmic factors)
that

h2(ρ̂, ρ∗) �

⎧⎪⎪⎨
⎪⎪⎩

N−β , 0 < β < 0.5,

N− 2β
2β+1 , 0.5 ≤ β < 1,

N−2/3, β ≥ 1,

(3.8)

with high probability. These upper bounds are complemented by the following
lower bounds.

Theorem 7 (Lower bounds for estimation of smooth MTP2 distributions). Let
Pρ∗ denote the probability with respect to N independent observations from the
distribution with density ρ∗ ∈ D(β,R), for β > 0 and R ≥ 1. Then there exists
a universal constant c > 0 such that

inf
ρ̃

sup
ρ∗∈D(β,R)

Pρ∗
(
h2(ρ̃, ρ∗) ≥ cφβ(N)

)
≥ 1

3
,
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where the infimum is taken over all estimators ρ̃ measurable with respect to the
observations and

φβ(N) =

⎧⎪⎪⎨
⎪⎪⎩

N− 2β
2β+1 , if 0 < β < 1,

N−2/3, if 1 ≤ β < 2,

N− 2β
2β+2 , if β ≥ 2.

The lower bounds above match the upper bounds up to logarithmic factors
in the regime 0.5 ≤ β ≤ 2. For 0 < β < 0.5, the rate N−β coincides with the
rate obtained by the nonparametric Hölder-constrained estimator in dimension
one [6]. This slow rate is known to be suboptimal, as sieve estimators attain the
optimal rate N−2β/(2β+1). While we conjecture that up to log factors, the latter
should also be the optimal rate in our case, we leave the problem of finding the
optimal rate in this regime as an open question for future research. For β > 2,
the rate is the same as that for β-Hölder smooth density estimation without
the MTP2 assumption. Therefore, while the lower bound is interesting in our
setup, to obtain the upper bound, it suffices to use any existing rate-optimal
estimator.

Remark 8. The construction of the estimator ρ̂ depends both on the smoothness
parameter β and the Hölder constant R, and it does not match the lower bounds
in the case β > 2. Both of these shortcomings can be remedied by considering an
ensemble of estimators that include both our estimators ρ̂ for varying parameters
β̃ and R̃ over a discretization of the set of parameters, and, for example, regu-
lar kernel density estimators which are rate-optimal for Hölder smooth density
estimation. Over such an ensemble, either selection [32] or aggregation proce-
dures [21] can be used to achieve adaptive rates that match the lower bounds
up to logarithmic factors. Since the techniques are standard and yield no new
phenomenon, we do not pursue this direction in the current work.

4. Efficient algorithms

The optimization problem for finding the constrained MLE in (2.6) is a convex
problem with a polynomial number of constraints and can thus be solved in
polynomial time with a general purpose solver for convex problems such as SCS
[34, 35] or ECOS [10]. However, since the number of constraints is of the order
n1n2, solving the linear systems in each iteration step of these solvers can take
a long time without specialized solvers. We address this issue by employing a
proximal Newton method, whose main step consists in a projection onto the set
of constraints, which in turn can be solved by a variant of Dykstra’s algorithm,
as discussed in [19]. In this section, in order to emphasize the connection to
computing projections, we think about (2.6) as a minimization problem instead
of a maximization problem by changing the sign in front of the objective.

First, we derive the outer iteration of our algorithm as a proximal Newton
method. These methods are intended to solve nonlinear optimization problems
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by successively solving local quadratic approximations to the objective func-
tions. For a more thorough introduction to this class of methods, see [29]. Briefly,
for d ∈ N, to minimize a composite function of the form

min
θ∈Rd

f(θ), f(θ) = g(θ) + h(θ),

one starts with an initialization x(0) = x0 ∈ Rd and computes updates by
solving

ρ(k) = argmin
ρ̃∈Rd

[
∇g(θ(k−1))�(ρ̃− θ(k−1))

+
1

2
(ρ̃− θ(k−1))�∇2g(θ(k−1))(ρ̃− θ(k−1)) + h(ρ̃)

]
,

θ(k) = θ(k−1) + tk(η
(k) − θ(k−1)),

where tk is usually chosen by a line-search technique. In the case of (2.6), we set

g(θ) = − 1

N
〈Y, θ〉+

∑
i,j

eθi,j

h(θ) =

{
0, θ ∈ M∩ C(Y ),

+∞, θ /∈ M∩ C(Y ),

where C(Y ) corresponds to the box constraints defined in (2.5), and

M := {θ ∈ Rn1×n2 : DθD̃� ≥ 0}.

Further computation then shows that the Hessian ∇2g(θ) has the structure of
a diagonal operator, which makes the subproblem of computing ρ(k) equivalent
to finding a projection with respect to a weighted Frobenius norm. Namely,
computing the first and second derivatives yields

(∇g(θ))i1,i2 = − 1

N
Yi,j + exp(θi,j),

(∇2g(θ))(i1,i2),(j1,j2) =

{
exp(θi1,i2), (i1, i2) = (j1, j2),

0, otherwise.

Hence, writing

Λi1,i2 = exp(θ
(k)
i1,i2

), (4.1)

computing ρ(k) is equivalent to

ρ(k) = argmin
ρ̃∈M∩C(Y )

〈
− 1

N
Y + Λ, ρ̃

〉
+

1

2

∥∥∥ρ̃− θ(k−1)
∥∥∥2
Λ

= argmin
ρ̃∈M∩C(Y )

{
1

2

∥∥∥ρ̃− (θ(k−1) +
1

N
Y � Λ− 1

)∥∥∥2
Λ
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+
〈
θ(k−1),Λ− 1

N
Y
〉
− 1

2

∥∥∥Λ− 1

N
Y
∥∥∥2
1
Λ

}
= argmin

ρ̃∈M∩C(Y )

1

2

∥∥∥ρ̃− (θ(k−1) +
1

N
Y � Λ− 1

)∥∥∥2
Λ
, (4.2)

the projection of θ(k−1) + 1
N Y � Λ − 1 onto M ∩ C(Y ) with respect to the

Frobenius norm weighted by Λ.
Second, problem (4.2) can be efficiently solved by a variant of Dykstra’s

algorithm, as shown in [19]. The idea is to split up the projection onto M∩C(Y )
into the projection onto C(Y ) and the sets

Mi1,i2 =
{
θ ∈ Rn1×n2 :

∑
j1∈{0,1},j2∈{0,1}

(−1)j1+j2θi1+j1,i2+j2 ≥ 0
}

for i1 ∈ [n1 − 1], i2 ∈ [n2 − 1], where additional correction terms are applied to
the vectors to ensure convergence. The basic Dysktra algorithm for projecting
a vector y ∈ Rd onto a general collection of sets M1, . . . ,Mm is listed as
Algorithm 1.

Algorithm 1 Dykstra algorithm

Input: y ∈ Rd

Output: θ ≈ ΠM(y)
function ProjectDykstra(y)

for i = 1, . . . ,m do
pi = 0d � Initialize residuals

end for
θm = y � Initialize iterates
while not converged do

for i = 1, . . . ,m do
θi ← ΠMi(θ(i−2)%m+1 + pi) � Project shifted iterates
pi ← θ(i−2)%m+1 + pi − θi � Compute new residual

end for
end while
return θ

end function

In our case, the projection onto Mi1,i2 with weight matrix Λ, written as
ΠMi1,i2 ,Λ

, has the following closed form solution. For i1 ∈ [n1− 1], i2 ∈ [n2− 1],
let Λ be given is in (4.1) and set

Γi1,i2 =

⎛
⎝ ∑

j1,j2∈{0,1}

1

Λi1+j1,i2+j2

⎞
⎠−1

.

Then, we have for j1, j2 ∈ {0, 1} that

(ΠMi1,i2 ,Λ
y)i1+j1,i2+j2 = Zi1+j1,i2+j2+
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(−1)j1+j2

Λi1+j1,i2+j2

max

⎧⎨
⎩−Γi1,i2

∑
k1∈{0,1},k2∈{0,1}

(−1)k1+k2Zi1+k1,i2+k2 , 0

⎫⎬
⎭ ,

and for (l1, l2) /∈ (i1 + {0, 1})× (i2 + {0, 1}) that

(ΠMi1,i2 ,Λ
y)l1,l2 = Zl1,l2 .

Together with the closed form solution for projecting onto the box C(Y ),

(ΠC(Y )(y)i1,i2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Zi1,i2 , Zi1,i2 ∈
[
log

2Yi,j

3N
, log

2Yi1,i2

N

]

log
2Yi1,i2

N
, Zi1,i2 > log

2Yi1,i2

N
,

log
2Yi1,i2

3N
, Zi1,i2 < log

2Yi1,i2

3N
,

we end up with the iterative projection algorithm given in Algorithm 2, which
in turn leads to the proximal Newton method, Algorithm 3. Note that we did
not implement a line search but instead chose to directly update our iterates
with ρ(k), which seems to not pose any problems in practice.

Algorithm 2 Fast projection onto M
function Project(y,Λ, C(Y ))

θ ← y, η ← 0 ∈ R(n1−1)×(n2−1), η′ ← 0 ∈ Rn1×n2 � Initialize θ and
residuals η, η′

for i1 = 1, . . . , n1 − 1, i2 = 1, . . . , n2 − 1 do

Γi1,i2 ←
(∑

j1,j2∈{0,1}(Λi1+j1,i2+j2)
−1
)−1

� Initialize harmonic mean

of weights
end for
while not converged do

θ′ ← ΠC(Y )(θ + η′) � Project onto C(Y ) . . .
η′ ← θ + η′ − θ′, θ ← θ′ � . . . and store corresponding residual
for i1 = 1, . . . , n1 − 1, i2 = 1, . . . , n2 − 1 do � Project onto M by

projecting onto all Mi1,i2 in turn

η̃ ← max
{
ηi1,i2 − Γi1,i2

∑
k1,k2∈{0,1}(−1)k1+k2θi1+k1,i2+k2 , 0

}
for j1 ∈ {0, 1}, j2 ∈ {0, 1} do

θi1+j1,i2+j2 ← θi1+j1,i2+j2 + (−1)j1+j2Λ−1
i1+j1,i2+j2

(η̃ − ηi1,i2)
end for
ηi1,i2 ← η̃

end for
end while
return θ

end function
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Algorithm 3 Restricted ML solution via proximal Newton method

function RestrictedMaximumLikelihood(Y )
θ ← Y/N
while not converged do

for i1 = 1, . . . , n1, i2 = 1, . . . , n2 do
Λi1,i2 ← exp(θi,j) � Update weight matrix

end for
y ← θ + Y/N � Λ− 1
θ ← Project(y,Λ, C(Y )) � perform Newton step

end while
return θ.

end function

Similarly, if instead of the box-constrained estimator (2.7), we are interested
in calculating the regular MLE over MTP2, (2.4), we can omit the projection
onto C(Y ) in Algorithm 2.

In practice, convergence in Algorithm 2 can be checked by computing a mea-
sure of feasibility such as 0 ∨ max{−(DθD̃)i,j : i ∈ [n1 − 1], j ∈ [n2 − 1]} or
stopping when the distance between successive iterates becomes small. Simi-
larly, we stop the proximal Newton method, Algorithm 3, when two successive
iterates become very close to each other or the gain in the objective function is
very small.

Following these considerations, it is straightforward to compute the density
estimator (3.7) by computing a histogram of the samples in [0, 1]2 and applying
Algorithm 3 to obtain p̂, which yields the piecewise constant approximation in
(3.7).

5. Numerical experiments

This section is devoted to simulations which corroborate our theoretical findings.
Further details on the underlying implementation can be found in Appendix C.

5.1. Experiments for the grid estimator

In this section, we set n = n1 = n2 for simplicity.
We consider the following family of ground truth probability mass functions:

Let n ∈ N, set

θ̃i,j = 1 + log(L)
(i− 1)(j − 1)

(n− 1)2
, i, j ∈ [n],

for L > 1 that can be varied and

p∗i,j =
exp(θ̃i,j)∑
i,j exp(θ̃i,j)

, i, j ∈ [n]. (5.1)
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By construction, θ̃ is supermodular, so p∗ is MTP2, and log(L(p∗)) = log(L).
We sample N i.i.d. observations {Zk}Nk=1 from p and form the matrix Y as
in (2.2). We consider three estimators for p∗: the empirical frequency matrix
Y/N , the MLE given by (2.4), and the box-constrained estimator in (2.7). The
latter two estimators are computed by variants of Algorithm 3. Note that in
cases where some of the entries in the frequency matrix are zero, we cannot take
logarithms and thus report Y/N as the output of the box-constrained estimator,
while the unconstrained MLE can be calculated as in Section 4 above. For the
unconstrained MLE, we do observe numerical instabilities when the number of
observations is very low, eventually leading to underflows in the calculation.
This can be remedied by imposing mild lower bounds on the resulting density,
see Appendix C.2.

Fig 2. Estimation of a density on a grid

In Figure 2, we plot the squared Hellinger distance h2(p∗, p̂) for the three
estimators in four setups, averaged over 20 independent replicates. More specif-
ically, we report the results of linearly regressing the logarithms of the distances
on the logarithms of the varying parameters over one or more manually se-
lected ranges, corresponding to an estimate of the polynomial dependence on
the parameter in question.
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In Figures 2a and 2b, we vary the sample size N and keep n = 16 fixed for
log(L(p∗)) ∈ {2, 0.02}, respectively, while in Figures 2c and 2d, we vary the
grid size n and keep N = 10,000,000 fixed for log(L(p∗)) ∈ {0.2, 0.02}, respec-
tively. We observe that all three estimators achieve an N−1 asymptotic rate
in Figure 2a. Moreover, the box-constrained estimator (2.7) and the regular
MLE (2.4) show very similar performance: For small N , the probability for zero
entries in Y/N is high and thus Y/N is used instead of the box-constrained
estimator as explained in the above paragraph, which explains that its perfor-
mance coincides with that of the empirical frequency matrix in this regime,
while the MLE performs better because the dominant factor in this regime is
n/N . For an intermediate regime of N , the estimation performance of the MLE
and the box-constraint estimator is consistently better than that of Y/N , but
it is attenuated once the (log(L(p∗))n/N)2/3 rate becomes active, which can
be seen in Figure 2a. On the other hand, in Figure 2b, N is not large enough
relative to log(L(p∗)) to capture this regime. Finally, for very large values of N ,
the performance of all three estimators coincides, which for the box-constraint
estimator matches the proof of the upper bound (up to logarithmic factors), see
Remark 12.

A similar behavior can be seen in Figures 2c and 2d, where the performance of
the frequency matrix scales with n2, while the regular MLE scales approximately
like n2/3 (regression coefficient of 0.72) for a larger value of log(L(p∗)) and
like n (regression coefficient of 0.95) when log(L(p∗)) is small. Note that the
performance of the box-constrained estimator is not plotted here since it mostly
coincides with that of the regular MLE.

Fig 3. Runtimes for density on grid

To investigate the practical performance of the proposed algorithms, in Fig-
ures 3, we report the runtime averaged over 20 replicates on an AMD 3400G
desktop processor. Here, as well as in the previous examples, we stopped Al-
gorithm 2 when a relative change in �2-norm of less than 10−6 was detected.
Similarly, Algorithm 3 was stopped at a relative accuracy of 10−5. In Figure 3a,
we observe that the conditioning of the problem improves with larger sample
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sizes N and deteriorates for small values of N , leading to a decay in runtime
of approximately N−1.52 up to N ≈ 1, 000, followed by a milder dependence of
N−0.15 for larger values of N . Note that the runtime for the boxed estimator is
only plotted for N ≥ 10, 000 because of the presence of zeros in the empirical
frequency matrix for smaller values of N .

In Figure 3b, we see that, as expected from a Dykstra-type algorithm, the
conditioning of the problem worsens with increasing n, necessitating more it-
erations and thus leading to an increase of runtime until convergence that is
larger than the cost of one iteration, which is of order n2. However, it is still
reasonably mild, scaling roughly like n3.3 for larger values of n. Overall, this
highlights the practicability of the proposed algorithm for problems of medium
size: Instances with n ≈ 50 can be solved within four seconds, while problems
of size n = 160 take under two minutes. Moreover, adding the additional box
constraint (2.5) only slightly increases the runtime when n is large.

5.2. Experiments for continuous density estimation

We consider the multivariate Gaussian distribution P ∗ = N(μ∗,Σ∗) with pa-
rameters

μ∗ =

(
0.5
0.5

)
, Σ∗ =

(
0.2 0.1
0.1 0.2

)
,

conditioned on the event that Z ∈ [0, 1]2 where Z ∼ P ∗. In other words, we
consider the density

ρ∗(x) =
1∫

[0,1]2
ρ̃(y) dy

ρ̃(x), x ∈ [0, 1]2, (5.2)

where

ρ̃(x) =
1

2π
√
0.03

exp

(
−10

3

(
(x1 − 0.5)2 + (x2 − 0.5)2 − (x1 − 0.5)(x2 − 0.5)

))
.

Note that on [0, 1]2, ρ∗ ∈ C∞ and that it is MTP2, which can be easily
checked by computing the mixed derivative ∂1∂2 of the log-density. Here, we
use it to evaluate the performance of the gridding strategy from Section 3.1 for
both an oracle choice of n, that is, exploiting the knowledge of the ground truth
to pick the best possible value of n from a given list, and a fixed scaling of n in
the cases β ∈ {0.5, 0.75, 1.0}.

First, in Figure 4a, with a varying number of i.i.d. observations {Zk}Nk=1

from P ∗, we plot the squared Hellinger distance h2(ρ̂, ρ∗) for the estimator in
(3.7), where n is picked from 10 logarithmically spaced values between n = 4
and n = 200 according to which yields the smallest Hellinger distance, and for
a similarly defined estimator where p̂ is replaced by the empirical frequency
matrix Y/N . We observe that the empirical frequency matrix achieves a rate
of about N−1/2, corresponding to the rate for general Hölder functions in 2D
with β = 1, while the MTP2 MLE comes close to the predicted N−2/3 rate that
corresponds to the β ∈ [1, 2) range (regression coefficient of 0.62).
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Fig 4. Performance of continuous density estimation

Second, to investigate the effect of different β, in Figure 4b, we use a fixed
scaling n = CN1/(2β+1). Note that we cannot expect to observe the rates in
Theorem 6 when considering the distance h2(ρ̂, ρ∗) in this setup since ρ∗ is C∞-
smooth. Denoting by ρ̄ the piecewise constant approximation to ρ∗ (see (6.23)
below), this is due to the fact that the bias term h2(ρ̄, ρ∗) could dominate the
overall error h2(ρ̂, ρ∗). Hence, we only plot the Hellinger distance corresponding
to the variance part h2(ρ̂, ρ̄). For computational reasons, C is chosen for each
β so that for N = 108, we have n = 200. Due to the similarities between the
regular MLE and its box-constrained version observed in the previous section, all
calculations were performed using the regular MLE, (2.4), resulting in slightly
faster computations.

Performing linear regression on the doubly logarithmic plot for large values
of N , we observe rates of 0.53, 0.58, and 0.62 for β = 0.5, 0.75, 1.0, respectively.
These are close to 0.5, 0.6, and 2/3, respectively, as predicted by Theorem 6.
Additionally, we present heat maps of the density ρ∗ (Figure 5a), as well as an
approximation via the frequncy matrix Y/N (Figure 5b) and the MLE (Fig-
ure 5c) for N = 10,000 and n = 16. The visual smoothing effect of the MLE is
quite obvious in this case.

6. Proofs

The proofs of our results are provided in this section. We first prove the upper
bounds Theorems 3 and 6 in the discrete and smooth cases respectively, and
then the lower bounds Theorems 4 and 7. In the proofs, we make use of the
well-known relation [32, Lemma 7.23] that for PMFs p and q on X = [n1]× [n2]
or [0, 1]2,

2 h2(p, q) ≤ KL(p, q) ≤ 2
(
2 + log

(
max
x∈X

p(x)

q(x)

))
h2(p, q). (6.1)
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Fig 5. Visual comparison of continuous density estimation

6.1. Proof of Theorem 3

6.1.1. Setup of the proof: quadratic approximation

Let us define ε := Y
N − p∗. Denote by A1 the event of probability 1 − 2δ that

the bounds in Lemma 2 hold. On this event, θ∗ lies in the cube C(Y ) defined in
(2.5), so we have

1

N
〈Y, θ̃〉 −

∑
i,j

eθ̃i,j ≥ 1

N
〈Y, θ∗〉 − 1,

which is equivalent to

〈p∗, θ∗ − θ̃〉+
∑
i,j

eθ̃i,j − 1 ≤ 〈ε, θ̃ − θ∗〉. (6.2)

In addition, the definition of C(Y ) yields that |θ̃i,j − θ∗i,j | ≤ log 2 − log 2
3 < 1.1

for all i, j.
By a quadratic Taylor approximation of ey, it holds for x ≤ 0 and |y−x| ≤ 1.1

that

ex + ex(y − x) + ex(y − x)2/4 ≤ ey ≤ ex + ex(y − x) + 2 ex(y − x)2.
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Applying this approximation to the exponential terms of the left-hand side of
(6.2), we obtain

〈p∗, θ∗ − θ̃〉+
∑
i,j

eθ
∗
i,j +

∑
i,j

eθ
∗
i,j (θ̃i,j − θ∗i,j) +

1

4

∑
i,j

eθ
∗
i,j (θ̃i,j − θ∗i,j)

2 − 1

≤ 〈p∗, θ∗ − θ̃〉+
∑
i,j

eθ̃i,j − 1

≤ 〈p∗, θ∗ − θ̃〉+
∑
i,j

eθ
∗
i,j +

∑
i,j

eθ
∗
i,j (θ̃i,j − θ∗i,j) + 2

∑
i,j

eθ
∗
i,j (θ̃i,j − θ∗i,j)

2 − 1,

or equivalently,

1

4

∑
i,j

p∗i,j(θ̃i,j −θ∗i,j)
2 ≤ 〈p∗, θ∗− θ̃〉+

∑
i,j

eθ̃i,j −1 ≤ 2
∑
i,j

p∗i,j(θ̃i,j −θ∗i,j)
2. (6.3)

The rest of the proof hinges on this quadratic approximation. Particularly, it
follows from (6.2) and (6.3) that

1

4

∑
i,j

p∗i,j(θ̃i,j − θ∗i,j)
2 ≤ 〈ε, θ̃ − θ∗〉. (6.4)

The main task in the sequel is to bound the right-hand side of (6.4). The strategy
builds upon a spectral decomposition technique from the paper [19] on Monge
matrix estimation.

6.1.2. Spectral decomposition of the difference operator

Recall the difference operator D defined in (2.3) and D̃ defined analogously
for dimension n2. Throughout the proof, whenever we introduce notation in
dimension n1, the analogous one in dimension n2 is denoted by the same symbol
with a tilde. We will decompose the noise ε in (6.4) according to a spectral
decomposition of D, so let us recall some basic facts about the matrix D.

Denote the singular value decomposition of D by

D = UΣW�, U ∈ R(n1−1)×(n1−1), Σ ∈ R(n1−1)×n1 , W ∈ Rn1×n1

where we order the non-zero singular values of D in Σ in ascending magnitude,
so that the last column of W spans the null-space of D. In addition, we write
W =

[
w1 · · · wn1

]
. Let us define a set of double indices

J :=
{
(l, r) ∈ [n1]× [n2] : lr ≤ k

}
∪
(
[n1]× {n2}

)
∪
(
{n1} × [n2]

)
, (6.5)

and set Jc = ([n1]× [n2]) \ J .
We introduce a projection operator Π : Rn1×n2 → Rn1×n2 , defined as the

projection onto the linear span of {wiw̃
�
j : (i, j) ∈ Jc} that is orthogonal with
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respect to the inner product

〈A,B〉1/p∗ :=
∑
i,j

1

p∗i,j
Ai,jBi,j .

In particular, there exists an orthonormal basis {V (l,r) ∈ Rn1×n2 : (l, r) ∈
[n1]× [n2]} of Rn1×n2 with respect to the inner product 〈., .〉1/p∗ such that

Π(A) =
∑

(l,r)∈Jc

V (l,r)〈V (l,r), A〉1/p∗ and

(I −Π)(A) =
∑

(l,r)∈J

V (l,r)〈V (l,r), A〉1/p∗ .

To characterize these projection operators further, we introduce the following
notation. Let � and � denote entrywise multiplication and division respectively
between matrices. With a slight abuse of notation, we use

√
p∗ and 1/p∗ to

denote the entrywise square root and the entrywise inverse of p∗ respectively.
Let Λ and Λ−1 be the scaling operators from Rn1×n2 to itself, defined by

Λ(A) = A⊗ p∗, A ∈ Rn1×n2 ,

Λ−1(A) = A� p∗, A ∈ Rn1×n2 ,

respectively. Let L be the linear operator from R|Jc| (indexed by (l, r) ∈ Jc) to
Rn1×n2 , defined by

L(B) =
∑

(l,r)∈Jc

Bl,rwlw̃
�
r , B ∈ R|Jc|,

and denote by L� the transpose of L with respect to the standard inner products
in the corresponding spaces. In other words, we have

(L�(A))l,r = 〈wlw̃
�
r , A〉, (l, r) ∈ Jc, A ∈ Rn1×n2 . (6.6)

The linear operators Π and Λ can be viewed as n1n2 × n1n2 matrices, while
the linear operator L can be seen as an n1n2 × |Jc| matrix. Moreover, we have
the following lemma whose proof is deferred to Section 6.1.6.

Lemma 9. The smallest eigenvalue of the operator L�Λ−1L satisfies that

λmin(L�Λ−1L) ≥ 1

p∗max

.

Moreover, Π can be written as

Π = L(L�Λ−1L)−1L�Λ−1. (6.7)

To control 〈ε, θ̃ − θ∗〉 on the right-hand side of (6.4), we decompose it as

〈ε, θ̃ − θ∗〉 = 〈(I −Π)(ε), θ̃ − θ∗〉+ 〈Π(ε), θ̃ − θ∗〉. (6.8)

Before proceeding to bound these two terms separately, we state two lemmas
whose proofs are deferred to Sections 6.1.7 and 6.1.8, respectively.
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Lemma 10. The image of the projection Π is included in the image of the map
A �→ D�AD̃.

Lemma 11. For any (i, j) ∈ [n1]× [n2], we have that∑
(l,r)∈Jc

Σ−2
l,l Σ̃

−2
r,rU

2
i,lŨ

2
j,r � n1n2

k
log(n2).

6.1.3. Bounding the first term in (6.8)

By Hölder’s inequality,

〈(I −Π)(ε), θ̃ − θ∗〉 =
〈
(I −Π)(ε)�

√
p∗, (θ̃ − θ∗)�

√
p∗
〉

≤ ‖(I −Π)(ε)‖1/p∗‖θ̃ − θ∗‖p∗ . (6.9)

Now we focus on the quantity ‖(I − Π)(ε)‖1/p∗ . By the definition of Π and

the orthogonality condition that 〈V (l,r), V (l′,r′)〉 = 0 for any (l, r) �= (l′, r′), we
obtain that

‖(I −Π)(ε)‖21/p∗ =
∥∥∥ ∑

(l,r)∈J

V (l,r)〈V (l,r), ε〉1/p∗

∥∥∥2
1/p∗

=
∑

(l,r)∈J

〈V (l,r), ε〉21/p∗ ≤ |J | max
(l,r)∈J

(〈V (l,r), ε〉1/p∗)2. (6.10)

Note that we can write

〈V (l,r), ε〉1/p∗ =
〈 1
N

V (l,r) � p∗, Nε
〉
.

Recall that Y has the multinomial distribution Multi(N, p∗), and Nε = Y −Np∗

is the deviation of Y from its mean. Therefore, Lemma 18 yields that on an event
A2 of probability 1− δ,

max
(l,r)∈J

|〈V (l,r), ε〉1/p∗ | �
(

max
(l,r)∈J

∥∥∥ 1

N
V (l,r) � p∗

∥∥∥
Np∗

)√
log(|J |/δ)

+
(

max
(l,r)∈J

∥∥∥ 1

N
V (l,r) � p∗

∥∥∥
∞

)
log(|J |/δ). (6.11)

To bound the two norms above, we note that by orthogonality of the V (l,r)

with respect to 〈., .〉1/p∗ ,∥∥∥ 1

N
V (l,r) � p∗

∥∥∥2
Np∗

=
∥∥∥ 1√

N
V (l,r)

∥∥∥2
1/p∗

=
1

N
. (6.12)

In addition, it holds that∥∥∥ 1

N
V (l,r)

∥∥∥
∞

≤
∥∥∥ 1

N
V (l,r)

∥∥∥
F
=
∥∥∥ 1

N
√
N

V (l,r) �
√
p∗
∥∥∥
Np∗
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≤ 1√
Np∗min

∥∥∥ 1

N
V (l,r)

∥∥∥
Np∗

=
1

N
√
p∗min

≤ 1√
N log(n1/δ)

, (6.13)

where we used (6.12) and that N ≥ 12 log(n1n2/δ)/p
∗
min by assumption. Further,

we can control the cardinality of J by

n1 ≤ |J | ≤ n1n2 and |J | =
∑

(l,r)∈J

1 ≤ n1+n2−1+

n2∑
r=1

�k/r� ≤ 2n1+k log(n2).

(6.14)
Combining (6.9), (6.10), (6.11), (6.12), (6.13) and (6.14), we see that on the

event A2,

〈(I −Π)(ε), θ̃ − θ∗〉

� ‖θ̃ − θ∗‖p∗
√

n1 + k log(n2)
(√ log(n1/δ)

N
+

log(n1/δ)√
N log(n1/δ)

)

� ‖θ̃ − θ∗‖p∗

√
n1 log(n1/δ) + k log(n1/δ) log(n2)

N
.

6.1.4. Bounding the second term in (6.8)

By Lemma 10, the image of Π is included in the image of the adjoint map
A �→ D�AD̃. Since A �→ D�(D�)†AD̃†D̃ is the orthogonal projection onto this
image, we thus have

〈Π(ε), θ̃ − θ∗〉 = 〈D�(D�)†Π(ε)D̃†D̃, θ̃ − θ∗〉
= 〈(D†)�Π(ε)D̃†, D(θ̃ − θ∗)D̃�〉
≤
∥∥(D†)�Π(ε)D̃†∥∥

∞
∥∥D(θ̃ − θ∗)D̃�∥∥

1
(6.15)

by Hölder’s inequality.
We first consider the term

∥∥(D†)�Π(ε)D̃†∥∥
∞. By the formula (6.7) for Π and

the singular value decomposition of D, it holds that

(D†)�Π(ε)D̃† =
∑

(l,r)∈Jc

Σ−1
l,l Σ

−1
r,rU·,lŨ

�
·,r〈wlw̃

�
r ,Π(ε)〉

=
∑

(l,r)∈Jc

Σ−1
l,l Σ

−1
r,rU·,lŨ

�
·,r〈wlw̃

�
r ,L(L�Λ−1L)−1L�Λ−1(ε)〉

=
∑

(l,r)∈Jc

Σ−1
l,l Σ

−1
r,rU·,lŨ

�
·,r〈Λ−1L(L�Λ−1L)−1L�(wlw̃

�
r ), ε〉.

By (6.6) and the orthogonality of the vectors {wl}l∈[n1] and {w̃r}r∈[n2], we have

that L�(wlw̃
�
r ) = e(l,r) if (l, r) ∈ Jc and zero otherwise, where e(l,r) denotes

the coordinate vector in R|Jc| with a one in the (l, r) th component and zero in
all others. Hence, if we define a(i,j) ∈ R|Jc| for (i, j) ∈ [n1 − 1]× [n2 − 1] by

(a(i,j))l,r := Σ−1
l,l Σ

−1
r,rUi,lŨj,r,
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then for (i, j) ∈ [n1 − 1]× [n2 − 1], we obtain(
(D†)�Π(ε)D̃†

)
i,j

=
∑

(l,r)∈Jc

(a(i,j))l,r〈Λ−1L(L�Λ−1L)−1e(l,r), ε〉

= 〈 1
N

Λ−1L(L�Λ−1L)−1a(i,j)︸ ︷︷ ︸
=:B(i,j)

, Nε〉.

As before, Lemma 18 yields that on an event A3 of probability 1− δ,∥∥∥(D†)�Π(ε)D̃†
∥∥∥
∞

�
(
max
i,j

∥∥B(i,j)
∥∥
Np∗

)√
log(n1/δ)

+
(
max
i,j

∥∥B(i,j)
∥∥
∞

)
log(n1/δ).

We proceed to bound ‖B(i,j)‖Np∗ and ‖B(i,j)‖∞. First,∥∥∥B(i,j)
∥∥∥2
Np∗

=
1

N

∥∥∥Λ−1L(L�Λ−1L)−1a(i,j)
∥∥∥2
p∗

=
1

N
(a(i,j))�(L�Λ−1L)−1L�Λ−1ΛΛ−1L(L�Λ−1L)−1a(i,j)

=
1

N

∥∥∥(L�Λ−1L)−1/2a(i,j)
∥∥∥2
2

≤ p∗max

N
‖a(i,j)‖22

by Lemma 9. Then, by definition,∥∥a(i,j)∥∥2
2
=

∑
(l,r)∈Jc

Σ−2
l,l Σ̃

−2
r,rU

2
i,lŨ

2
j,r � n1n2

k
log(n2),

where the inequality is due to Lemma 11. As for ‖B(i,j)‖∞, we proceed as in
(6.13) to obtain

‖B(i,j)‖∞ ≤ 1√
Np∗min

‖B(i,j)‖Np∗ �
√

p∗maxn1n2 log(n2)

Nk log(n1/δ)
,

where we used again that by assumption, N ≥ 12 log(n1n2/δ)/p
∗
min. Combining

the above bounds yields that on the event A3,

∥∥(D†)�Π(ε)D̃†∥∥
∞ �

√
p∗maxn1n2 log(n1/δ) log(n2)

Nk
. (6.16)

Next, we turn to the quantity
∥∥D(θ̃−θ∗)D̃�∥∥

1
. Note that for any θ such that

DθD̃� ≥ 0, it holds

‖DθD̃�‖1 =

n1−1∑
i=1

n2−1∑
j=1

(DθD̃�)i,j
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=

n1−1∑
i=1

n2−1∑
j=1

(θi,j + θi+1,j+1 − θi+1,j − θi,j+1)

= θ1,1 + θn1,n2 − θn1,1 − θ1,n2 .

Therefore, we obtain

‖Dθ∗D̃�‖1 = θ∗1,1+θ∗n1,n2
−θ∗n1,1−θ∗1,n2

= log
p∗1,1p

∗
n1,n2

p∗n1,1
p∗1,n2

= log
(
L(p∗)

)
. (6.17)

Furthermore, recall that on the event A1, both θ∗ and θ̃ lie in the set C(Y )
defined in (2.5). Hence

‖Dθ̃D̃�‖1 = θ̃1,1 + θ̃n1,n2 − θ̃n1,1 − θ̃1,n2

≤ log
2Y1,1

N
+ log

2Yn1,n2

N
− log

2Yn1,1

3N
− log

2Y1,n2

3N

= log
2Y1,1

3N
+ log

2Yn1,n2

3N
− log

2Yn1,1

N
− log

2Y1,n2

N
+ 4 log(3)

≤ θ∗1,1 + θ∗n1,n2
− θ∗n1,1 − θ∗1,n2

+ 4 log(3)

= log
(
L(p∗)

)
+ 4 log(3).

We conclude that on the event A1,∥∥D(θ̃ − θ∗)D̃�∥∥
1
≤ ‖Dθ̃D̃�‖1 + ‖Dθ∗D̃�‖1 ≤ 2 log

(
L(p∗)

)
+ 4 log(3). (6.18)

It then follows from (6.15), (6.16), and (6.18) that on the event A1 ∩ A3,

〈Π(ε), θ̃ − θ∗〉 �
√

p∗maxn1n2 log(n1/δ) log(n2)

Nk

(
log
(
L(p∗)

)
+ 1

)
.

6.1.5. Finishing the proof of Theorem 3

Combining the bounds on the two terms of (6.8) and applying (6.4), we obtain
that on the event A1 ∩ A2 ∩ A3 of probability at least 1− 4δ,

‖θ̃ − θ∗‖2p∗ � ‖θ̃ − θ∗‖p∗

√
n1 log(n1/δ) + k log(n1/δ) log(n2)

N

+
(
log
(
L(p∗)

)
+ 1
)√p∗maxn1n2 log(n1/δ) log(n2)

Nk
. (6.19)

Finally, by the definitions of θ̃ and θ̂ in (2.6) and (2.7), it holds that

KL(p∗, p̂) =
∑
i,j

p∗i,j log
p∗i,j
p̂i,j

=
∑
i,j

p∗i,j
(
θ∗i,j − θ̂i,j

)
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=
∑
i,j

p∗i,j
(
θ∗i,j − θ̃i,j

)
+ log

∑
i,j

eθ̃i,j

≤ 〈p∗, θ∗ − θ̃〉+
∑
i,j

eθ̃i,j − 1

≤ 2‖θ̃ − θ∗‖2p∗ , (6.20)

where the first inequality holds because log x ≤ x − 1 and the second holds
thanks to (6.3). Therefore, we conclude from (6.19) and (6.20) that

KL(p∗, p̂) � n1 log(n1/δ) + k log(n1/δ) log(n2)

N

+
(
log
(
L(p∗)

)
+ 1
)√p∗maxn1n2 log(n1/δ) log(n2)

Nk
.

Balancing out the terms that depend on k yields the optimal choice

k =
(
log
(
L(p∗)

)
+ 1
)2/3( p∗maxn1n2N

log(n2) log(n1/δ)

)1/3
,

which leads to

KL(p∗, p̂) � n1 log(n1/δ)

N

+ (p∗maxn1n2)
1/3
(
log
(
L(p∗)

)
+ 1
)2/3( log(n1/δ) log(n2)

N

)2/3
.

Since the KL divergence dominates the Hellinger distance by the first inequality
in (6.1), this completes the proof.

Remark 12. It is not hard to see that, if we choose the set J in (6.5) instead
to be the entire grid [n1]× [n2], then the same argument yields the rate

h2(p∗, p̂) � n1n2 log(n1/δ)

N
,

which matches the rate of the empirical frequency matrix in Lemma 20 up to a
logarithmic factor. In fact, the numerical experiments in Section 5, in particular
Figure 2a, suggest that the performance of p̂ exactly matches that of the empirical
frequency matrix in this regime.

6.1.6. Proof of Lemma 9

Let B ∈ R|Jc| with ‖B‖2 = 1. Since LB is a sum of matrices that are orthonor-
mal with respect to the standard inner product, weighted by the entries of B,
it holds that ‖LB‖2 = 1. Hence,

B�L�Λ−1LB ≥ min
G:‖G‖2=1

G�Λ−1G = λmin(Λ
−1) =

1

p∗max

,

which yields the first claim.
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For the second claim, recall that ΠA is defined to be the orthogonal projection
of A onto the image of L with respect to the inner product 〈·, ·〉1/p∗ . Thus

ΠA = LB where B ∈ R|Jc| minimizes

‖LB −A‖21/p∗ = 〈LB −A,Λ−1(LB −A)〉.

The first-order optimality condition then gives the desired formula for Π.

6.1.7. Proof of Lemma 10

The image of the map A �→ D�AD̃ is the orthogonal complement of the kernel
of A �→ DAD̃�, which can be characterized as follows.

The matrices Σ, U and W in the singular value decomposition D = UΣW�

are known [45] to be

Σi,i = 2

∣∣∣∣sin
(

πi

2n1

)∣∣∣∣ , i ∈ [n1 − 1], (6.21)

Ui,j =

√
2

n1
sin

(
πij

n1

)
, i, j ∈ [n1 − 1], (6.22)

and Wi,j =

⎧⎪⎪⎨
⎪⎪⎩
√

2

n1
cos

(
πj(i− 1/2)

n1

)
, j ∈ [n1 − 1], i ∈ [n1]

1√
n1

, j = n1.

Fix a matrix A for which DAD̃� = 0. Then we have ΣW�AW̃ Σ̃� = 0, so
the matrix W�AW̃ has all entries equal to zero except on its last row and last
column. Consequently, it holds that

A = WW�AW̃W̃� =

n1∑
i=1

wiw
�
i Aw̃n2w̃

�
n2

+

n2−1∑
j=1

wn1w
�
n1
Aw̃jw̃

�
j .

Hence, the orthogonal complement of the kernel of A �→ DAD̃� is spanned by
the matrices {wlw̃

�
r : (l, r) ∈ [n1 − 1]× [n2 − 1]}. By the definition of Π as the

projection onto the span of {wiw̃
�
j : (i, j) ∈ Jc}, its image is contained in the

kernel of A �→ DAD̃�.

6.1.8. Proof of Lemma 11

This result can be easily obtained from the proof of Lemma 10 of [19], but we
provide a complete proof for the reader’s convenience.
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We start with the first bound in the lemma. Without loss of generality, assume
that n1 is odd, so n1 − 1 is even. Note that because of the symmetry

sin

(
πij

n1

)
= sin

(
πj(n1 − i)

n1

)
, i = 1, . . . , n1 − 1,

it is enough to consider i = 1, . . . , n1−1
2 . We make use of the following inequalities

to control the sin terms involved:

| sin(x)| ≤ 1, for all x ∈ R;

sin(x) ≤ x, for x ∈ [0,∞);

sin(x) ≥ 2

π
x ≥ 1

2
x, for x ∈ [0,

π

2
].

Plugging in the entries of Σ and U as stated in (6.21) and (6.22), respectively,
yields

∑
(l,r)∈Jc

Σ−2
l,l Σ̃

−2
r,rU

2
i,lŨ

2
j,r =

∑
(l,r)∈Jc

4 sin
(

πil
n1

)2
sin
(

πjr
n2

)2
16n1n2 sin

(
πl
2n1

)2
sin
(

πr
2n2

)2
� 1

n1n2

∑
(l,r)∈Jc

n2
1n

2
2

l2r2

� n1n2

n2∑
r=1

⎛
⎝ 1

r2

n1∑
l=�k/r�

1

l2

⎞
⎠

� n1n2

n2∑
r=1

⎛
⎝ 1

r2

n1∑
l=�k/r�+1

1

l2

⎞
⎠+ n1n2

n2∑
r=1

1

r2
1

�k/r�2

� n1n2

n2∑
r=1

1

r2
r

k
+ n1n2

k∑
r=1

1

k2
+ n1n2

n2∑
r=k+1

1

r2

� n1n2

k
log(n2) +

n1n2

k
+

n1n2

k
� n1n2

k
log(n2),

where we have twice used the bound
∑∞

r=k+1
1
r2 ≤ 1

k for any k ≥ 1.

6.2. Proof of Theorem 6

With the notation introduced in Section 3.1, we define the piecewise constant
density

ρ̄(x) := n2p∗i,j = n2

∫
Si,j

ρ∗(x) dx, x ∈ Si,j , i, j ∈ [n]. (6.23)

By the triangle inequality for the Hellinger distance, we can estimate

h2(ρ̂, ρ∗) ≤ 2 h2(ρ̂, ρ̄) + 2 h2(ρ̄, ρ∗), (6.24)
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and we proceed to bound the two quantities on the right-hand side of (6.24).
For the first term on the right-hand side of (6.24), we have

h2(ρ̂, ρ̄) =

∫
[0,1]2

(√
ρ̂(x)−

√
ρ̄(x)

)2
dx

=

n∑
i,j=1

1

n2

(√
n2p̂i,j −

√
n2p∗i,j

)2
= h2(p̂, p∗).

By assumption (3.4) and definition (3.6), we have that p∗min ≥ ρmin/n
2. Hence

if N ≥ 12n2 log(n2/δ)
ρmin

, then the results for the estimator p̂ in Theorem 3 lead to

h2(ρ̂, ρ̄) � n log(n/δ)

N
+ (p∗max n

2)1/3
(
log
(
L(p∗)

)
+ 1

)2/3( log(n/δ) log(n)
N

)2/3
with probability at least 1− 4δ. Moreover, recall definition (2.8) and note that

p∗i ≤ ρmax

n2
and L(p∗) ≤ ρ2max

ρ2min

.

It then follows that

h2(ρ̂, ρ̄) � n log(n/δ)

N
+ (ρmax)

1/3
(
log
(ρmax

ρmin

)
+ 1

)2/3( log(n/δ) log(n)
N

)2/3
.

(6.25)
To bound the second term on the right-hand side of (6.24), note that by the

mean value theorem for integrals and the continuity of ρ∗, for all i, j ∈ [n], there
exist ζi,j such that

ρ̄(x) = n2

∫
Si,j

ρ∗(y) dy = ρ∗(ζi,j).

Note that for any a, b > 0, it holds that

∣∣√a−
√
b
∣∣ ≤ |a− b|

√
a ∨

√
b
.

Moreover, assumptions (3.2) and (3.3) imply that

|ρ∗(x)− ρ∗(y)| ≤ R‖x− y‖β̃2 , x, y ∈ [0, 1]2,

where we recall β̃ = β ∧ 1. Combining the above facts, we obtain

h2(ρ̄, ρ∗) =
n∑

i,j=1

∫
Si,j

(√
ρ∗(x)−

√
ρ∗(ζi,j)

)2
dx

≤ 1

ρmin

n∑
i,j=1

∫
Si,j

(
ρ∗(x)− ρ∗(ζi,j)

)2
dx
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≤ R2

ρmin

n∑
i,j=1

∫
Si,j

diam(Si,j)
2β̃ =

2R2

ρmin
n−2β̃ . (6.26)

Plugging inequalities (6.25) and (6.26) into (6.24), we conclude that for N ≥
12n2 log(n2/δ)

ρmin
,

h2(ρ̂, ρ∗) � n log(n/δ)

N

+ (ρmax)
1/3
(
log
(ρmax

ρmin

)
+ 1

)2/3( log(n/δ) log(n)
N

)2/3
+

R2

ρmin
n−2β̃

with probability 1− 4δ. Setting

n =
⌊(R2N

ρmin

)1/(2β̃+1)

∧
( ρminN

24 log(ρminN
12δ )

)1/2⌋
then leads to the bound

h2(ρ̂, ρ∗) � log(RN/δ)

ρ
1/(2β̃+1)
min

R2/(2β̃+1)

N2β̃/(2β̃+1)

+ (ρmax)
1/3
(
log
(ρmax

ρmin

)
+ 1
)2/3( log(RN/δ) log(RN)

N

)2/3
, (6.27)

for β > 0.5 and N �
[

R4

ρ2β̃+3
min

log2β̃+1( R
ρminδ

)
] 1

2β̃−1 , and

h2(ρ̂, ρ∗) �
[ρmin log(N/δ)

N

]1/2
+ (ρmax)

1/3
(
log
(ρmax

ρmin

)
+ 1

)2/3( log(N/δ) log(N)

N

)2/3
+

R2

ρmin

[ log(N/δ)

ρminN

]β̃
,

(6.28)

for 0 < β ≤ 0.5, where the hidden constants depend on β. Choosing δ = 1/(4N4)
completes the proof.

6.3. Proof of Theorem 4

We prove the theorem by treating the two terms n1/N and 1/N2/3 separately.

6.3.1. The first term n1/N

Without loss of generality, we assume that 8 divides n1. Let dH denote the Ham-
ming distance between two binary vectors. By the Gilbert-Varshamov bound
(see, for example, [32, Lemma 4.10]), there exists a set {w(k)}Mk=1 of points in
{0, 1}n1 such that
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• dH(0, w
(k)) = n1/4,

• dH(w
(k), w(�)) ≥ n1/8 for all distinct k, � ∈ [M ], and

• log(M) ≥ n1/30.

For δ ∈ [0, 1] and each k ∈ [M ], let us define a density p(k) on [n1]× [n2] by

p
(k)
i,j =

4(1 + δw
(k)
i )

(4 + δ)n1n2
for (i, j) ∈ [n1]× [n2].

Note that each p(k) is indeed a density because
∑

i w
(k)
i = n1/4 and thus

∑
i,j

p
(k)
i,j =

∑
i,j

4(1 + δw
(k)
i )

(4 + δ)n1n2
=

4

4 + δ
+

4δ

(4 + δ)n1

∑
i

w
(k)
i = 1.

Also, each p(k) is totally positive because it has constant rows and therefore

p
(k)
i,j p

(k)
i+1,j+1 = p

(k)
i,j+1p

(k)
i+1,j .

Furthermore, since δ ∈ [0, 1], we see that 4
5n1n2

≤ p
(k)
i,j ≤ 8

5n1n2
. The rela-

tion (6.1) yields

KL(p(k), p(�)) ≤ 5 h2(p(k), p(�)). (6.29)

Note that p
(k)
i,j can only take two possible values 4

(4+δ)n1n2
or 4(1+δ)

(4+δ)n1n2
, so(√

p
(k)
i,j −

√
p
(�)
i,j

)2
is either 0 or 4(

√
1+δ−1)2

(4+δ)n1n2
. Therefore, we have

h2(p(k), p(�)) =
∑

i∈[n1], j∈[n2]

(√
p
(k)
i,j −

√
p
(�)
i,j

)2
= dH(w

(k), w(�))
4(
√
1 + δ − 1)2

(4 + δ)n1
.

(6.30)

Together with the condition n1/8 ≤ dH(w
(k), w(�)) ≤ n1 for k �= �, rela-

tions (6.29) and (6.30) yield

h2(p(k), p(�)) ≥ (
√
1 + δ − 1)2

2(4 + δ)
and KL(p(k), p(�)) ≤ 20(

√
1 + δ − 1)2

(4 + δ)
.

(6.31)
Additionally, since the KL divergence tensorizes, if we let p⊗N denote the dis-
tribution of N independent observations sampled according to the density p on
[n1]× [n2], then

KL
(
(p(k))⊗N , (p(�))⊗N

)
= N KL(p(k), p(�)) ≤ N

20(
√
1 + δ − 1)2

(4 + δ)
. (6.32)

For a sufficiently small positive constant c1, we choose δ ∈ [0, 1] so that

N 20(
√
1+δ−1)2

(4+δ) = c1n1 ≤ 0.1 log(M). We can apply [46, Theorem 2.5] together

with (6.31) and (6.32) to obtain that

inf
p̂

sup
p∗ MTP2

P(p∗)⊗N

{
h2(p̂, p∗) ≥ c2

n1

N

}
≥ 0.1.
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6.3.2. The second term 1/N2/3

We turn to the second term in the lower bound. Consider positive integers
k1 ≤ n1 and k2 ≤ n2 such that 4 divides k1k2, and ki divides ni for i = 1, 2,
without loss of generality. If ki does not divide ni, with minor revision, the proof
works on a sub-grid [n′

1] × [n′
2] where ki divides n′

i and ni/2 ≤ n′
i ≤ ni. Thus

we make these mild assumptions to ease the notation.
The strategy of proving the lower bound is based on constructing an appropri-

ate packing of supermodular log-densities, which correspond to totally positive
densities. By the Gilbert-Varshamov bound [32, Lemma 4.10] again, we obtain
a set {τ (�)}M�=1 of matrices in {0, 1}k1×k2 such that

• dH(0, τ
(�)) = k1k2/4,

• dH(τ
(�), τ (r)) ≥ k1k2/8 for all distinct �, r ∈ [M ], and

• log(M) ≥ k1k2/30.

For each τ (�), we need to carefully define a log-density θ(�) ∈ Rn1×n2 that
is supermodular and amenable to distance calculation. To that end, we have
the following construction which simplifies computation later. For i ∈ [n1] and
j ∈ [n2], define ui := �ik1/n1� ∈ [k1] and vj := �jk2/n2� ∈ [k2]. Moreover, for

any δ ∈ [0, 1/6] and (i, j) ∈ [n1]× [n2], we define δ̃ui,vj ∈ [δ, 3δ] ⊂ [0, 1/2] so that

exp
( uivj
k1k2

+
δ̃ui,vj

k1k2

)
− exp

( uivj
k1k2

)
= exp

(
1 +

δ

k1k2

)
− exp(1). (6.33)

To see why δ̃ui,vj is properly defined in the range [δ, 3δ], first note that the

quantity δ̃ui,vj is larger for smaller uivj ∈ [k1k2]. Hence it suffices to check that
there exists δ′ ∈ [δ, 3δ] such that

exp
( δ′

k1k2

)
− exp(0) = exp

(
1 +

δ

k1k2

)
− exp(1).

This follows from that for x ∈ [0, 1/6],

exp(x)− exp(0) ≤ exp(1 + x)− exp(1) ≤ exp(3x)− exp(0).

With τ
(�)
ui,vj chosen earlier and δ̃ui,vj defined in (6.33), we consider the quantity

θ̃
(�)
i,j :=

uivj
k1k2

+ τ (�)ui,vj

δ̃ui,vj

k1k2
, (6.34)

and further define the log-density

θ
(�)
i,j := θ̃

(�)
i,j − log

∑
s∈[n1], t∈[n2]

exp
(
θ̃
(�)
i,j

)

=
uivj
k1k2

+ τ (�)ui,vj

δ̃ui,vj

k1k2
− log

∑
s∈[n1], t∈[n2]

exp
(usvt
k1k2

+ τ (�)us,vt

δ̃us,vt

k1k2

)
︸ ︷︷ ︸

=:N

. (6.35)

Finally, the density p(�) is defined by p
(�)
i,j := exp(θ

(�)
i,j ).
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The normalization factor N in (6.35) guarantees that
∑

i,j exp(θ
(�)
i,j ) = 1, so

p(�) is indeed a density. Moreover, crucial to our computation later, the normal-
ization factor in fact does not depend on � ∈ [M ] thanks to the definition of
δ̃ui,vj in (6.33); namely,

N =
∑

s∈[n1], t∈[n2]

exp
(usvt
k1k2

+ τ (�)us,vt

δ̃us,vt

k1k2

)

=
∑

s∈[n1], t∈[n2]

exp
(usvt
k1k2

)

+
∑

(s,t): τ
(�)
us,vt=1

[
exp

(usvt
k1k2

+
δ̃us,vt

k1k2

)
− exp

(usvt
k1k2

)]

=
∑

s∈[n1], t∈[n2]

exp
(usvt
k1k2

)
+
∣∣∣{(s, t) : τ (�)us,vt = 1

}∣∣∣ · [ exp(1 + δ

k1k2

)
− e
]

=
∑

s∈[n1], t∈[n2]

exp
(usvt
k1k2

)
+

n1n2

4

[
exp

(
1 +

δ

k1k2

)
− e
]

where the last equality follows from that dH(0, τ
(�)) = k1k2/4 and the definitions

of us and vt.

Next, we check that θ(�) is supermodular, so that p(�) is totally positive. Since
θ̃(�) ∈ Rn1×n2 defined in (6.34) is equal to θ(�) plus a common constant on each

entry, it suffices to check that θ̃
(�)
i,j + θ̃

(�)
i+1,j+1− θ̃

(�)
i,j+1− θ̃

(�)
i+1,j ≥ 0. There are two

cases:

1. If ui = ui+1 or vj = vj+1, then we have, respectively, either θ̃
(�)
i,j =

θ̃
(�)
i+1,j , θ̃

(�)
i,j+1 = θ̃

(�)
i+1,j+1 or θ̃

(�)
i,j = θ̃

(�)
i,j+1, θ̃

(�)
i+1,j = θ̃

(�)
i+1,j+1. In both cases,

the difference above is 0.
2. Otherwise, we have ui+1 = ui + 1 and vj+1 = vj + 1. Then it holds

θ̃
(�)
i,j + θ̃

(�)
i+1,j+1 − θ̃

(�)
i,j+1 − θ̃

(�)
i+1,j

=
uivj + (ui + 1)(vj + 1)− ui(vj + 1)− (ui + 1)vj

k1k2

+
τ
(�)
ui,vj δ̃ui,vj + τ

(�)
ui+1,vj+1 δ̃ui+1,vj+1 − τ

(�)
ui,vj+1 δ̃ui,vj+1 − τ

(�)
ui+1,vj δ̃ui+1,vj

k1k2

≥ 1

k1k2
− 6δ

k1k2
≥ 0,

since δ̃ui,vj ≤ 3δ ≤ 1/2.
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Having verified that each θ(�) is a supermodular log-density, we proceed to
study h2(θ(�), θ(r)) for distinct �, r ∈ [M ]. Since the normalization term N does
not depend on the index �, definition (6.35) yields

|θ(�)i,j − θ
(r)
i,j | =

∣∣τ (�)ui,vj − τ (r)ui,vj

∣∣ δ̃ui,vj

k1k2
≤ 1

2
.

By the definition of the Hellinger distance, it holds that

h2(p(�), p(r)) =
∑

i∈[n1], j∈[n2]

(√
p
(�)
i,j −

√
p
(r)
i,j

)2

=
∑

i∈[n1], j∈[n2]

(
exp(θ

(�)
i,j /2)− exp(θ

(r)
i,j /2)

)2

=
∑

i∈[n1], j∈[n2]

p
(�)
i,j

(
1− exp

(
(θ

(r)
i,j − θ

(�)
i,j )/2

))2
.

Using the approximation x2/2 ≤ (1− ex)2 ≤ 2x2 for |x| ≤ 1/4, we obtain

1

8

∑
i∈[n1], j∈[n2]

p
(�)
i,j

(
θ
(r)
i,j −θ

(�)
i,j

)2 ≤ h2(p(�), p(r)) ≤ 1

2

∑
i∈[n1], j∈[n2]

p
(�)
i,j

(
θ
(r)
i,j −θ

(�)
i,j

)2
.

Furthermore, it is easily seen from (6.35) that |θ(�)i,j − θ
(�)
i,′j′ | ≤ 1.5, so that 1/5 ≤

p
(�)
i,j /p

(�)
i,′j′ ≤ 5 for any (i, j), (i′, j′) ∈ [n1]× [n2]. As a result, we obtain 1

5n1n2
≤

p
(�)
i,j ≤ 5

n1n2
and thus

1

40n1n2

∥∥θ(�) − θ(r)
∥∥2
2
≤ h2(p(�), p(r)) ≤ 5

2n1n2

∥∥θ(�) − θ(r)
∥∥2
2
. (6.36)

In addition, it follows from (6.1) that

KL(p(�), p(r)) ≤ 11 h2(p(�), p(r)). (6.37)

It remains to study ‖θ(�) − θ(r)‖22. To this end, we obtain from (6.35) that

∑
i∈[n1],j∈[n2]

(θ
(�)
i,j − θ

(r)
i,j )

2 =
∑

i∈[n1],j∈[n2]

(
τ (�)ui,vj − τ (r)ui,vj

)2( δ̃ui,vj

k1k2

)2

=
∑

u∈[k1],v∈[k2]

n1n2

k1k2

(
τ (�)u,v − τ (r)u,v

)2 δ̃2u,v
k21k

2
2

.

Since δ̃u,v ∈ [δ, 3δ], we have the bounds

δ2n1n2

k31k
3
2

∑
u∈[k1],v∈[k2]

(
τ (�)u,v − τ (r)u,v

)2 ≤ ‖θ(�) − θ(r)‖22
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≤ 9δ2n1n2

k31k
3
2

∑
u∈[k1],v∈[k2]

(
τ (�)u,v − τ (r)u,v

)2
.

By the construction of the packing {τ (�)}�∈[M ],

k1k2
8

≤
∑

u∈[k1],v∈[k2]

(
τ (�)u,v − τ (r)u,v

)2
= dH(τ

(�), τ (r)) ≤ k1k2.

Therefore, combining the above bounds yields that

δ2n1n2

8k21k
2
2

≤ ‖θ(�) − θ(r)‖22 ≤ 9δ2n1n2

k21k
2
2

.

This together with (6.36) implies that

δ2

320k21k
2
2

≤ h2(p(�), p(r)) ≤ 45δ2

2k21k
2
2

. (6.38)

To complete the proof, we may choose δ = c1
(k3

1k
3
2

N

)1/2 ∈ [0, 1/6] for a suffi-
ciently small constant c1 > 0, provided that k31k

3
2 � N . Then the bounds (6.38)

and (6.37) combined imply that

KL
(
(p(k))⊗N , (p(�))⊗N

)
= N KL(p(�), p(r)) ≤ c2k1k2 ≤ 0.1 log(M).

Thus, we can apply [46, Theorem 2.5] together with the lower bound in (6.38)
to see that

inf
p̂

sup
p∗ MTP2

P(p∗)⊗N

{
h2(p̂, p∗) ≥ c2

k1k2
N

}
≥ 0.1,

where we continue to use the notation θ̂i,j = log p̂i,j and θ∗i,j = log p∗i,j .

Note that k1k2 needs to be chosen so that δ = c1
(k3

1k
3
2

N

)1/2 ≤ 1/6. Hence if

N � n3
1n

3
2, then we choose k1k2 
 N1/3 to obtain the lower bound of order

N−2/3. If N � n3
1n

3
2, then we choose k1 = n1 and k2 = n2 to obtain the lower

bound of order n1n2

N .

6.4. Proof of Theorem 7

We first set up the proof for smooth densities, and then prove the theorem for
each regime of β.

6.4.1. Differential characterization and setup

We begin by stating a short lemma that yields a condition for total positivity
in terms of the derivatives of a density.
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Lemma 13. A function f ∈ C2([0, 1]2) fulfills

f(w, z) + f(x, y) ≥ f(x, z) + f(w, y), for all 0 ≤ x ≤ w ≤ 1, 0 ≤ y ≤ z ≤ 1
(6.39)

if and only if

∂1∂2f(x, y) ≥ 0, for all x, y ∈ [0, 1]. (6.40)

Moreover, if ρ > 0 is a probability density in C2([0, 1]2), then ρ is totally positive
if and only if log ρ fulfills (6.40), if and only if

− 1

ρ(x, y)2
∂1ρ(x, y)∂2ρ(x, y) +

1

ρ(x, y)
∂1∂2ρ(x, y) ≥ 0, for all x, y ∈ [0, 1].

(6.41)

Proof. The first claim follows easily from the fundamental theorem of calculus
and the continuity of f . To obtain the second claim, note that because ρ is
bounded away from zero, we can take logarithms, and the MTP2 condition (3.1)
is equivalent to (6.39) with f = log ρ. Computing the derivative of log ρ by
applying the chain rule finally yields the condition (6.41).

To prove Theorem 7, we distinguish three cases, β ≤ 1, β ≥ 2, and 1 < β < 2.
In the first case where β ≤ 1, it suffices to consider densities that only depend
on one variable, which fulfill the MTP2 constraint automatically, leading to the
rate N−2β/(2β+1) for the estimation of a one-dimensional Hölder function. On
the other hand, in the case β ≥ 2, we appeal to two-dimensional constructions in
density estimation. The MTP2 condition is a second-order constraint and hence
can be satisfied by a carefully chosen set of Hölder functions for β ≥ 2, leading
to the rate N−2β/(2β+2). Finally, in the remaining regime 1 ≤ β ≤ 2, we in fact
use the construction for β = 2, yielding the rate N−2/3.

6.4.2. Case β ≤ 1

For β ≤ 1, we apply an argument based on Fano’s inequality, [46, Theorem 2.5].
The following construction is standard in proving lower bounds for nonparamet-
ric estimation; see [46, Section 2.6], for example.

Fix a nonzero function g ∈ C∞(R) supported in [0, 1] such that
∫
R
g(x) dx =

0 and g is 1/2-Lipschitz. Let k ∈ N and assume without loss of generality that it
is divisible by 4. Denote by xj , j = 1, . . . , k, the left endpoints of an equidistant
subdivision of the interval [0, 1], that is,

xj =
j − 1

k
, j = 1, . . . , k,

leading to the subdivision

Sj = (xj , 0) + [0,
1

k
]× [0, 1], j = 1, . . . , k,
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of the square [0, 1]2. With this, define the functions gj ∈ C∞([0, 1]2) as

gj(x, y) =
1

kβ
g(k(x− xj)), (x, y) ∈ [0, 1]2, j = 1, . . . , k.

Note that each gj is supported in Sj . Moreover, we have gj ∈ D(β, 1/2) for
β ≤ 1: for (x, y), (x′, y′) ∈ Sj , by the 1/2-Lipschitzness of g,

|gj(x, y)− gj(x
′, y′)| = 1

kβ
|g(k(x− xj))− g(k(x′ − xj))|

≤ 1

2kβ
|k(x− x′)| ≤ 1

2kβ
|k(x− x′)|β =

1

2
|x− x′|β .

For (x, y) ∈ Sj and (x′, y′) ∈ Sj′ in the case j �= j′, we obtain the same estimate
by applying the above to segments of the line connecting the two points. This
also shows that ‖gj‖∞ ≤ 1/2 as we can take (x, y) at the boundary of Sj so
that gj(x, y) = 0.

By the Gilbert-Varshamov bound [32, Lemma 4.10], there is a set {τ (�)}M�=1

with τ (�) ∈ {0, 1}k such that

• dH(0, τ
(�)) = k/4,

• dH(τ
(�), τ (r)) ≥ k/8 for all distinct �, r ∈ [M ], and

• log(M) ≥ k/30.

For each � ∈ [M ], set

ρ(�)(x, y) = 1 +

k∑
j=1

τ
(�)
j gj(x, y).

As ‖gj‖∞ ≤ 1/2 for each j, all ρ(�) are bounded within [1/2, 3/2]. Since g
is mean-zero, ρ(�) is a density. We also have that ρ(�) ∈ D(β, 1/2) by definition
because gj ∈ D(β, 1/2). Moreover, checking condition (6.41) in Lemma 13 yields
that all densities are MTP2, since they only depend on x.

To check the conditions of [46, Theorem 2.5], we first apply (6.1) to obtain
that

KL(ρ(�), ρ(r)) � h2(ρ(�), ρ(r)), �, k ∈ [M ],

since all densities are bounded from above and below. Next, the boundedness
of the densities and the mean value theorem together imply that

h2(ρ(�), ρ(r)) 

∫
[0,1]2

(ρ(�)(z)− ρ(r)(z))2 dz = ‖ρ(�) − ρ(r)‖L2([0,1]2),

which can be estimated as

‖ρ(�) − ρ(r)‖L2([0,1]2) =

k∑
j=1

∫
Sj

(
ρ(�)(z)− ρ(r)(z)

)2
dz

=
∑

j:τ
(�)
j �=τ

(r)
j

∫
Sj

(gj(z))
2 dz
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=
1

k2β+1

∑
j:τ

(�)
j �=τ

(r)
j

∫ 1

0

(g(x))2 dx


 dH(τ
(�), τ (r))k−2β−1 
 k−2β ,

where the hidden constants only depend on the choice of g, which can be made
absolute.

That means on the one hand that

KL((ρ(�))⊗N , (ρ(r))⊗N ) � Nk−2β ,

and on the other hand that

h2(ρ(�), ρ(r)) � k−2β .

Thus, if we pick
k = C�N1/(2β+1)�

for a sufficiently large constant C > 0, we can ensure that

KL((ρ(�))⊗N , (ρ(r))⊗N ) ≤ 0.1 log(M),

and we conclude by [46, Theorem 2.5] that

inf
ρ̃

sup
ρ∗∈D(β,R)

P(P∗)⊗N

(
h2(ρ̃, ρ∗) ≥ c2N

−2β
2β+1

)
≥ 1

3
,

for a constant c2 > 0.

6.4.3. Case β ≥ 2

For β ≥ 2, we need to construct hypotheses that depend on both variables x
and y. Let k ∈ N to be determined later, and without loss of generality, assume
that k is divisible by 4. Fix a non-zero, non-negative function f ∈ C∞(R) with
support in [0, 1], and set

g(x, y) = f(x)f(y).

Moreover, for i, j ∈ [k], define wi,j as the corners of an equidistant partition of
[0, 1]2 denoted by Si,j , that is,

wi,j =
( i− 1

k
,
j − 1

k

)�
and Si,j = wi,j +

[
0,

1

k

]2
, i, j ∈ [k].

In addition, we let

gi,j(z) =
1

kβ
g(k(z − wi,j)), z ∈ [0, 1]2,
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which is supported in Si,j . Note that for any r ∈ N and α ∈ {1, 2}r, we have

∂αgi,j(z) =
kr

kβ
∂αg(k(z − wi,j)).

Since g ∈ C∞(R2), it is easily verified that by definition, gj ∈ D(β,C1) for some
constant C1 > 0 that only depends on g.

By the Gilbert-Varshamov bound [32, Lemma 4.10], there is a set {τ (�)}M�=1

such that τ (�) ∈ {0, 1}k×k and

• dH(0, τ
(�)) = k2/4,

• dH(τ
(�), τ (r)) ≥ k2/8 for all distinct �, r ∈ [M ], and

• log(M) ≥ k2/30.

Next, we associate a density to each τ (�) such that we can control the pair-
wise distances between these densities. Similar to the proof of Theorem 4, we
claim that there exists a useful choice of scaling constants that ensures that the
normalization factor of the log-densities stays the same among all �.

For a fixed δ ∈ [0, 1], we claim that there exists a constant C3 such that for
every (i, j) ∈ [k]2, there exists δ̃i,j ∈ [δ, C3δ] with∫

Si,j

[
exp

(
z1z2 + δ̃i,jgi,j(z)

)
− exp (z1z2)

]
dz︸ ︷︷ ︸

=:hi,j(δ̃i,j)

=

∫
S1,1

(exp (1 + δg1,1(z))− e) dz︸ ︷︷ ︸
=:H

. (6.42)

To see why this is true, denote the left-hand side of (6.42) by hi,j(δ̃i,j) and the

right-hand side by H as above. Observe that hi,j(δ̃i,j) is a continuous function of

δ̃i,j as a consequence of the bounded convergence theorem. Hence, the interme-
diate value theorem allows us to conclude (6.42) if we can show that hi,j(δ) ≤ H
and hi,j(C3δ) ≥ H. The first inequality hi,j(δ) ≤ H follows from the fact that

exp
(
z1z2 + δ̃i,jgi,j(z)

)
− exp(z1z2) ≤ exp

(
1 + δ̃i,jgi,j(z)

)
− exp(1)

and changing the limits of the integral. The second inequality hi,j(C3δ) ≥ H
follows from the following estimates. For hi,j(C3δ), we have by the fundamental
theorem of calculus and the fact that exp(t) ≥ 1 for t ≥ 0, that

hi,j(C3δ) =

∫
Si,j

∫ z1z2+C3δgi,j(z)

z1z2

exp(t) dt dz

≥
∫
Si,j

∫ C3δgi,j(z)

0

exp(t) dt dz

=

∫
S1,1

∫ C3δg1,1(z)

0

exp(t) dt dz
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≥ C3δ

∫
S1,1

g1,1(z) dz.

On the other hand, for H, we similarly have

H =

∫
S1,1

∫ δg1,1(z)

0

exp(1 + t) dt dz

= e

∫
S1,1

∫ δg1,1(z)

0

exp(t) dt dz

≤ δe sup
z∈S1,1

exp(δg1,1(z))

∫
S1,1

g1,1(z) dz

≤ e sup
z∈S1,1

exp(g1,1(z))

∫
S1,1

g1,1(z) dz.

By definition, it holds that ‖g1,1‖∞ ≤ ‖g‖∞. Therefore, with the above estimates
combined, we see that if C3 ≥ e·exp(‖g‖∞), then hi,j(C3δ) ≥ H, and thus (6.42)
is proved.

For each τ (�), let us define

η̃(�)(z) := z1z2 +
∑

i,j∈[k]

τ
(�)
i,j δ̃i,jgi,j(z),

which after normalization leads to the log-densities

η(�)(z) := η̃(�)(z)− log

∫
[0,1]2

exp(η̃(�)(w)) dw︸ ︷︷ ︸
=:N

,

and the densities ρ(�)(z) := exp(η(�)(z)).

As in the proof of Theorem 4, N does not depend on �, since by the fact that
gi,j is supported on Si,j , then (6.42) and that dH(0, τ

(�)) = k2/4, we have

N =

∫
[0,1]2

exp

(
z1z2 +

∑
i,j∈[k]

τ
(�)
i,j δ̃i,jgi,j(z)

)
dz

=
∑

i,j∈[k]

∫
Si,j

exp

(
z1z2 + τ

(�)
i,j δ̃i,jgi,j(z)

)
dz

=
∑

i,j∈[k]

∫
Si,j

exp (z1z2) dz

+
∑

(i,j):τ
(�)
i,j =1

[∫
Si,j

exp
(
z1z2 + δ̃i,jgi,j(z)

)
dz −

∫
Si,j

exp (z1z2) dz

]

=

∫
[0,1]2

exp (z1z2) dz + dH(0, τ
(�))

∫
S1,1

(exp (1 + δg1,1(z))− e) dz
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=

∫
[0,1]2

exp (z1z2) dz +
k2

4

∫
S1,1

(exp (1 + δg1,1(z))− e) dz

=

∫
[0,1]2

exp (z1z2) dz +
1

4

∫
[0,1]2

(
exp

(
1 +

δ

kβ
g(z)

)
− e

)
dz. (6.43)

Additionally, from the last line (6.43) of the above calculation, we can also
conclude that N can be bounded from above and below by positive constants
independent from k.

Moreover, for all � and z ∈ [0, 1]2, it holds that

∂1∂2η
(�)(z) = ∂1∂2η̃

(�)(z)

= 1 +
∑

i,j∈[k]

τ
(�)
i,j δ̃i,j∂1∂2gi,j(z)

= 1 +
∑

i,j∈[k]

τ
(�)
i,j δ̃i,j

k2

kβ
∂1∂2g(k(z − wi,j))

≥ 1− C3δ
k2

kβ
sup
z

|∂1∂2g(z)|,

which, in view of β ≥ 2, can be made positive if δ is chosen to be a sufficiently
small constant. Lemma 13 then implies that all ρ(�) are MTP2 densities.

In addition, for any r ∈ N and α ∈ {1, 2}r, we have by definition

∂αρ(�)(z) = ρ(�)(z) · ∂αη(�)(z)

= exp

(
z1z2 +

∑
i,j∈[k]

τ
(�)
i,j δ̃i,jgi,j(z)− logN

)

·
(
∂α(z1z2) +

∑
i,j∈[k]

τ
(�)
i,j δ̃i,j∂

αgi,j(z)

)
.

Since N is bounded from above and below by positive constants, the first factor
(that is, ρ(�)(z)) is bounded from above and below. Also, we have that gi,j ∈
D(β,C1) and δ̃i,j ≤ C3δ, so it is easily seen that if δ is chosen to be a sufficiently
small constant, then ρ(�) ∈ D(β, 1) by definition.

Finally, we bound KL(ρ(�), ρ(r)) and h(ρ(�), ρ(r)). We have seen above that
ρ(�) can be bounded from above and below, that is, C−1

4 ≤ ρ(�) ≤ C4 for a
constant C4 > 0. Moreover, we can choose C4 so that −C4 ≤ η(�) ≤ C4. For the
Hellinger distance, we write

h2(ρ(�), ρ(r)) =

∫
[0,1]2

(√
ρ(�)(z)−

√
ρ(r)(z)

)2

dz

=

∫
[0,1]2

(
exp(η(�)(z)/2)− exp(η(r)(z)/2)

)2
dz

=

∫
[0,1]2

ρ(�)(z)
(
1− exp(η(r)(z)/2− η(�)(z)/2)

)2
dz.
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By the Taylor expansion, we can obtain a quadratic control of the exponential
term of the form

x2 ≤ (1− exp(x))2 ≤ C5x
2, x ∈ [−C4, C4],

where C5 > 0. This allows us to bound

1

4C4

∫
[0,1]2

(η̃(�)(z)− η̃(r)(z))2 dz ≤ h2(ρ(�), ρ(r))

≤ C5C4

4

∫
[0,1]2

(η̃(�)(z)− η̃(r)(z))2 dz.

Taking into account (6.1), it remains to bound the L2 distance between η̃(�) and
η̃(r). Using again that the support of gi,j is in Si,j , we have∫

[0,1]2
(η̃(�)(z)− η̃(r)(z))2 dz =

∫
[0,1]2

( ∑
i,j∈[k]

(τ
(�)
i,j − τ

(r)
i,j )δ̃i,jgi,j(z)

)2

dz

=
∑

i,j∈[k]

(τ
(�)
i,j − τ

(r)
i,j )

2δ̃2i,j

∫
Si,j

gi,j(z)
2 dz

≤
∑

i,j∈[k]

(τ
(�)
i,j − τ

(r)
i,j )

2C2
3δ

2

∫
S1,1

g1,1(z)
2 dz

= dH(τ
(�), τ (r))C2

3δ
2 1

k2β+2

∫
[0,1]2

g(z)2 dz

≤ C2
3δ

2

k2β

∫
[0,1]2

g(z)2 dz,

where we changed the limits of integration by substitution and used the bound
dH(τ

(�), τ (r)) ≤ k2. Similarly, we can derive a lower bound of the same order,
using that δ̃i,j ≥ δ and dH(τ

(�), τ (r)) ≥ k2/4. In conclusion, there exists a
constant C6 > 0 such that

1

C6

δ2

k2β
≤ h2(ρ(�), ρ(r)) ≤ C6

δ2

k2β
.

To finish, we note that for the KL condition of [46, Theorem 2.5] to hold, we
need

KL((ρ(�))⊗N , (ρ(r))⊗N ) = N KL(ρ(�), ρ(r))

≤ C7N h2(ρ(�), ρ(r)) ≤ NC6C7
δ2

k2β
≤ 0.1 log(M),

which, in view of the bound log(M) ≥ k2/30, can be fulfilled by choosing δ to be

a sufficiently small constant and k =
⌈
N

1
2β+2

⌉
. This then leads to a separation

of the hypotheses of

h(ρ(�), ρ(r)) ≥ c8N
−2β
2β+2 ,
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so [46, Theorem 2.5] yields

inf
ρ̃

sup
ρ∗∈D(β,R)

P(P∗)⊗N

(
h2(ρ̃, ρ∗) ≥ c8N

−2β
2β+2

)
≥ 1

3
.

6.4.4. Case 1 < β < 2

For 1 < β < 2, note that D(2, R) ⊆ D(β,R), so the above construction in the
case β = 2 still remains valid, which we can use to conclude

inf
ρ̃

sup
ρ∗∈D(β,R)

P(P∗)⊗N

(
h2(ρ̃, ρ∗) ≥ c2N

− 2
3

)
≥ 1

3
,

which finishes the proof.

7. Conclusion and discussion

In this work, we studied minimax estimation of discrete and continuous two-
dimensional totally positive distributions. In particular, for estimation of β-
Hölder smooth distributions, we established the minimax rates of estimation in
the squared Hellinger distance up to polylogarithmic factors, for any β ≥ 0.5.
In addition, we proposed and implemented efficient algorithms to compute our
estimators. The numerical experiments supported our theoretical findings.

Several questions are left open for future research. First, for β ∈ (0, 0.5),
the upper bound for our estimator does not match the minimax lower bound.
Moreover, our bounds do not capture the optimal dependency on the pointwise
infimum or supremum of the ground-truth density. These are possibly artifacts
of our estimation procedure or proofs. Second, we studied a variant of the MLE
with an extra box constraint. While this box-constrained MLE has almost the
same computational cost and empirical performance as the original MLE, it is
theoretically more desirable to establish the same guarantees for the original
MLE. Third, it is of significant interest to study estimation of totally positive
distributions in general dimensions. However, our current proof techniques do
not generalize to higher dimensions straightforwardly, and we leave this to future
research.

Appendix A: Nonexistence of MLE under MTP2 constraint alone

In this section, we show that without further regularity assumptions on the
underlying densities, the MLE under the MTP2 constraint does not exist.

Lemma 14. Let ρ∗ be an MTP2 density on [0, 1]2 with respect to the Lebesgue
measure. Let X1, . . . , XN be N i.i.d. observations from the corresponding prob-
ability distribution. Then, the optimization problem

max
N∑
i=1

log ρ(Xi) s.t. ρ is an MTP2 density w.r.t. the Lebesgue measure
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is almost surely unbounded. Consequently, the MLE under the MTP2 constraint
does not exist.

Proof. Denote by Pρ∗ the probability distribution corresponding to ρ∗ and by
P⊗N

ρ∗ the probability distribution of N i.i.d. observations from Pρ∗ . Let

A = {(Xi)1 �= (Xj)1 for all i �= j}.

Then,

P⊗N
ρ∗ (A) = 1−P⊗N

ρ∗

( ⋃
i,j∈[N ], i �=j

{(Xi)1 = (Xj)1}
)

≥ 1−
∑

i,j∈[N ], i �=j

∫
[0,1]4

1{x1 = x2}ρ∗(x1, y1)ρ
∗(x2, y2)dx1 dx2 dy1 dy2

(A.1)

= 1, (A.2)

where the second line (A.1) follows from the sub-additivity of the probability
measure and the definition of A, and the third line (A.2) follows from the fact
that the integrand in (A.1) is only non-zero on a lower dimensional subset
of [0, 1]4 and hence is zero almost everywhere with respect to the Lebesgue
measure.

Similarly, if B = {Xi /∈ {0, 1} for all i}, then (P ∗)⊗N (B) = 1.
For the rest of the proof, assume that the event A ∩ B occurred. Because of

the definitions of A and B, and the fact that N is finite, the minimum distance
between the first coordinates is positive, as is the minimum distance to any of
the interval boundaries, that is,

ε0 =
(

min
i,j∈[N ], i �=j

|(Xi)1 − (Xj)1|
)
∧
(
min
i∈[N ]

(Xi)1

)
∧
(
min
i∈[N ]

(
1− (Xi)1

))
> 0.

Let f ∈ C∞(R) be a non-negative bump function supported in [−1, 1] such that∫
R
f(x)dx = 1 and f(0) = f0 > 0. For 0 < ε < ε0/2, set

ρε(x, y) =
1

N

N∑
i=1

1

ε
f

(
x− (Xi)1

ε

)
.

Then, ∫
[0,1]2

ρε(x, y) dx dy =

∫
[0,1]

1

N

N∑
i=1

1

ε
f

(
x− (Xi)1

ε

)
dx

=
1

N

N∑
i=1

∫
R

f(ξ) dξ = 1,

so ρε is again a probability distribution on [0, 1]2. Moreover, because ρε does
not depend on y, by Lemma 13, ρε is MTP2.
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Finally, for the log-likelihood, we obtain

N∑
i=1

log(ρε(Xi)) =

N∑
i=1

log

⎛
⎝ 1

N

N∑
j=1

1

ε
f

(
(Xi)1 − (Xj)1

ε

)⎞⎠
=

N∑
i=1

log

(
f0
ε

)
(A.3)

= N log

(
f0
ε

)
→ ∞, for ε → 0,

where (A.3) follows because by the definition of A and of ρε, the individual
bumps centered at the observations Xi do not intersect. Combined, by choosing
ε arbitrarily small, we can obtain an arbitrarily large log-likelihood. In turn, the
MLE does not exist.

Remark 15. Even if the MLE is not defined, there could potentially exist a dif-
ferent estimator over the whole class of MTP2 with good estimation properties.
However, the estimation problem over the whole MTP2 class bears other signs
of ill-posedness: Since ⋃

β∈(0,1)

D(β,R) ⊆ {ρ : ρ is MTP2},

the lower bound in Theorem 7 suggests that no estimator ρ̂ can attain a polyno-
mial estimation rate of

h2(ρ̂, ρ∗) � N−α,

for any α > 0 over the whole MTP2 class. While this does not explicitly exclude
possibly slower rates of convergence such as log(N)−1, this still serves to show
that the estimation problem without further regularity assumptions is ill-posed
in the sense of not admitting polynomially fast rates.

Appendix B: Existing results

We state and prove some results that are known or follow easily from existing
ones.

B.1. Concentration of multinomial random variables

The following is a standard tail bound for a binomial random variable.

Lemma 16. Suppose that Y has the binomial distribution Bin(N, x), where N
is a positive integer and x ∈ (0, 1). Then for y ∈ [0, 1], we have |Y −Nx| ≤ Ny

with probability at least 1− 2 exp
(
−N y2

2(x+y)

)
.

Proof. This follows immediately from Lemma 6 of [31] by taking r = (x−y)∨0
and s = (x+ y) ∧ 1.
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Next, we present a lemma that follows from Bernstein’s inequality. Recall
that for a vector a ∈ Rm and an entrywise positive vector b ∈ Rm, we denote
the b-weighted �2-norm of a by ‖a‖b = (

∑m
i=1 bia

2
i )

1/2.

Lemma 17. Suppose that Y is a random vector in Rm having the multinomial
distribution Multi(N, p), where N is a positive integer and p = (p1, . . . , pm)� is
a vector in (0, 1)m with

∑m
i=1 pi = 1. Then, for any vector a ∈ Rm,

P
{∣∣〈Y −Np, a〉

∣∣ ≥ t
}
≤ 2 exp

( −3t2

6N‖a‖2p + 4‖a‖∞t

)
.

Proof. Let I1, . . . , IN be i.i.d. Multi(1, p) random variables. That is, we have
Ij = i with probability pi for each i ∈ [m] and j ∈ [N ]. Then we have Yi =∑N

j=1 1{Ij = i}, and thus

〈Y −Np, a〉 =
m∑
i=1

(Yi −Npi)ai =

m∑
i=1

( N∑
j=1

1{Ij = i} −Npi

)
ai

=

N∑
j=1

m∑
i=1

(1{Ij = i} − pi)ai =

N∑
j=1

(
aIj −

m∑
i=1

piai

)
=

N∑
j=1

(
aIj −E[aIj ]

)
.

Since this is a sum of i.i.d. zero-mean random variables with absolute values
bounded by 2‖a‖∞, Bernstein’s inequality (Theorem 2.8.4 of [47]) implies that

P
{∣∣〈Y −Np, a〉

∣∣ ≥ t
}
≤ 2 exp

( −t2/2

σ2 + 2‖a‖∞t/3

)
,

where σ2 = NE(aIj −E[aIj ])
2 ≤ NE[a2Ij ] = N

∑m
i=1 pia

2
i = N‖a‖2p.

The following lemma is concerned with projections of a multinomial random
vector.

Lemma 18. Suppose that Y is a random vector in Rm having the multinomial
distribution Multi(N, p), where N is a positive integer and p = (p1, . . . , pm)� is
a vector in (0, 1)m with

∑m
i=1 pi = 1. Given vectors v1, . . . , v� ∈ Rm, for any

δ ∈ (0, 1], it holds with probability at least 1− δ that

max
j∈[�]

∣∣〈Y −Np, vj〉
∣∣ � (max

j∈[�]
‖vj‖p

)√
N log(�/δ) +

(
max
j∈[�]

‖vj‖∞
)
log(�/δ).

Proof. The result follows from Lemma 17 and a union bound, with the choice
of t equal to a constant times the right-hand side of the above inequality.

B.2. MLE for MTP2 distributions on a grid

Given the observation Y defined by (2.2), it is well known that the MLE (2.4)
can be equivalently defined using the following convex program, which can be
solved efficiently:

θ̂MLE := argmax
DθD̃≥0

1

N
〈Y, θ〉 −

∑
i,j

eθi,j . (B.1)
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Lemma 19. The two definitions (2.4) and (B.1) of the MLE θ̂ = θ̂MLE are
equivalent.

Proof. It suffices to verify that θ̂ given by program (B.1) always satisfies that∑
i,j e

θ̂i,j = 1. Suppose this is not the case, and define θ̃ ∈ Rn1×n2 by θ̃i,j =

θ̂i,j − log
∑

k,� e
θ̂k,� so that

∑
i,j e

θ̃i,j = 1. Then we have

1

N
〈Y, θ̃〉 −

∑
i,j

eθ̃i,j =
1

N
〈Y, θ̂〉 − 1

N

(∑
i,j

Yi,j

)
log
∑
i,j

eθ̂i,j − 1

>
1

N
〈Y, θ̂〉 −

∑
i,j

eθ̂i,j ,

since
∑

i,j Yi,j = N and log(x) + 1 < x for any x �= 1. However, this gives a
contradiction.

B.3. Rate of convergence of the empirical frequency matrix

Let us consider the empirical frequency matrix Y/N in the discrete setting,
where Y is defined by (2.2). Without leveraging the MTP2 constraint, it achieves
the following trivial rate of estimation.

Lemma 20. In the setting of Section 2, the empirical frequency matrix Y/N
satisfies

E
[
h2(p∗, Y/N)

]
≤ n1n2

N
.

Proof. For any i ∈ [n1] and j ∈ [n2], we have Yi,j ∼ Bin(N, p∗i,j) marginally.
Thus we have

E
[
h2(p∗, Y/N)

]
=

n1∑
i=1

n2∑
j=1

E
(√

p∗i,j −
√

Yi,j/N
)2

=

n1∑
i=1

n2∑
j=1

E
( p∗i,j − Yi,j/N√

p∗i,j +
√
Yi,j/N

)2

≤
n1∑
i=1

n2∑
j=1

E
(p∗i,j − Yi,j/N)2

p∗i,j

=

n1∑
i=1

n2∑
j=1

p∗i,j(1− p∗i,j)

p∗i,jN
≤ n1n2

N
.

Appendix C: Further details on numerical experiments

C.1. Implementation details

All simulations are run with Julia 1.4.1 [5], where, besides the standard li-
brary, we use the libraries Cubature (version 1.5.1), Distributions [30, 4] (ver-
sion 0.23.2), StatsBase (version 0.33.0), PyPlot (version 2.9.0), and GLM [3]
(version 1.3.9).
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Algorithm 2 is stopped at a relative distance in the Frobenius norm between
two consecutive iterates of less than 10−6 or 400,000 iterations, whichever comes
first. Similarly, Algorithm 3 is stopped at a relative distance of 10−5 or 100 it-
erations. The distribution p∗ in is sampled as a multinomial distribution via
the Distributions package, while the distribution corresponding to the density
ρ∗ in is sampled via rejection sampling from the corresponding Gaussian dis-
tribution. For the calculation of Hellinger distances in the continuous case, we
use numerical integration with the Cubature package.

For the calculation of the oracle estimator in Figure 4a, we computed the
corresponding estimators for n ∈ {4, 7, 10, 15, 23, 36, 55, 84, 130, 201} and picked
the n achieving the best squared Hellinger distance to the ground truth in each
case.

C.2. Numerical instability of the MLE for small values of N

As observed in Section 5, for small values ofN , Algorithm 3 can become unstable
and values in the iterate θ can underflow due to a large number of zeros in the
empirical frequency matrix. To illustrate this, we perform the same experiment
as in Figure 2a with N = 100, which leads to a large error for the unconstrained
MLE, which we plot in Figure 6.

Fig 6. Instability for small sample sizes in the Hellinger distance for varying N and
log(L(p∗)) = 2

However, this behavior can be remedied by introducing an additional con-
straint of

θ ∈ C̃ := {θ : exp(θi,j) ≥ ε, i, j ∈ [n1]× [n2]}. (C.1)

in the calculation of the MLE, where ε is small. For example, in this experiment,
we specify ε = e−30. This leads to the estimator

θ̃lb := argmax
DθD̃�≥0

θ∈C̃

1

N
〈Y, θ〉 −

∑
i∈[n1], j∈[n2]

eθi,j ,
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θ̂lbi,j := θ̃lbi,j − log
∑

r∈[n1], s∈[n2]

eθ̃
lb
r,s for i ∈ [n1], j ∈ [n2].

The constraint (C.1) can be incorporated into Algorithm 2 in the same way as
the constraint θ ∈ C(Y ) by iterative projection of each component θi,j onto the
corresponding interval [log(ε),∞). As can be seen in Figure 6, this modifica-
tion (“lower-bounded MLE”) is sufficient to overcome the problem of numerical
instability when facing a small sample size.
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Probabilités de Saint-Flour XXXIII - 2003. Number no. 1896 in Ecole d’Eté
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