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bility. In particular, for distributions with S-Holder smooth densities where
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1. Introduction

For a set X = H?Zl X; where each X; is totally ordered,! a function p: X — R
is called multivariate totally positive of order 2 (MTPq) [22, 24] if

p(x Ay)p(zVy) > pl@)ply), Vz,yeX, (1.1)

where A and V denote the coordinate-wise min and max operators respec-
tively. The MTP5 condition is also known as the FKG lattice condition because
of its central role in the FKG inequality [14]. It is sometimes referred to as

1A set X is totally ordered if it is equipped with a total order, that is, a binary relation
which is antisymmetric, transitive and connex. This work is only concerned with X C R
equipped with its natural order.
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log-supermodularity because of its similarity up to morphism to supermodular-
ity [18, 37]. Throughout, we say that a probability distribution is MTPy if it
has an MTP, density.

A variety of joint distributions are known to be MTP5, for example, order
statistics of i.i.d. variables, eigenvalues of Wishart matrices [24], and ferromag-
netic Ising models [28]. Furthermore, Gaussian and binary latent tree models
are signed MTP5, that is, there exists a sign change of each coordinate mak-
ing the distribution MTP, [25, 27]. In particular, all these distributions exhibit
positive association, a marked feature of MTP distributions. As opposed to pos-
itive association, however, the MTP, property is preserved after conditioning or
marginalization [24]. As a result of their frequent appearances, MTPy distribu-
tions have long been studied in statistics and probability [24, 26, 2, 8, 44, 27, 38].

In this paper, we study minimax estimation of an MTP, distribution in di-
mension two? from i.i.d. observations. We mainly focus on distributions on the
square [0, 1] for which density functions exist. Since almost surely no four obser-
vations from such a distribution form a rectangle, the MTP constraint (1.1) is
inactive on the observations and consequently, the maximum likelihood estima-
tor over this class does not exist (see Lemma 14 and Remark 15 in Appendix A).
Therefore, we further assume that the distribution has a g-Holder smooth den-
sity, a widely adopted assumption in nonparametric estimation [46].

Smooth MTP, distributions have long been studied in the literature. Exam-
ples include, but are not limited to, (1) pairwise marginals of Gaussian latent
tree models [13], such as Brownian motion tree models and factor analysis mod-
els, (2) joint distributions of pairs of time points of a strong Markov process
on the real line with continuous paths [23], such as a diffusion process, and (3)
MTP5 transelliptical distributions, such as MTP, multivariate ¢-distributions,
which are commonly used in finance [1].

Main contribution Our main results can be stated informally as follows.

Theorem 1 (Informal statement of minimax rates). Given N i.i.d. observa-
tions from a two-dimensional distribution with an MTPs and [-Hélder smooth
density, the minimaz rate of estimation in the squared Hellinger distance is (up
to a polylogarithmic factor)

N7z, if 05<fB <1,
N—2/3 if 1<B<2,
N==%,  if B>

It is well known that without the MTP4, assumption, the minimax rates for
the [-Holder class in dimension d scale as N —%hta up to a polylogarithmic
factor, under various comparable models and error metrics (see, for example,
[33]). Hence, our results show that for 0.5 < 8 < 1, the minimax rate exhibits
a one-dimensional behavior thanks to the MTPy constraint; for 1 < g < 2,

2In dimension two, MTP5 is sometimes simply called TPy for totally positive of order 2.
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the rate is polynomially faster than that without the MTP, constraint and is
independent of the smoothness parameter 3; for 8 > 2, however, the MTP,
constraint has no effect on the minimax rate (see Figure 1 for a visualization).

Note that results similar to what we obtain for MTP, are expected to arise
when p is assumed to be smooth and log-concave. However, MTP5 only makes
assumptions on the behavior of the function along lattice directions. While this
is not directly comparable with log-concavity, it is, in essence, a weaker condition
in the sense that it imposes a less stringent structure on the density. Our results
indicate that when coupled with smoothness, MTPs makes up for this deficiency
and leads to the same rates of convergence.

Our results for the regime 0 < 8 < 0.5 are unfortunately inconclusive, but
the upper bounds exhibit polynomial improvement in the rates when MTP is
assumed; see (3.8) below.

Convergence rates
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Fic 1. Visual comparison of the estimation rate for B-Holder smooth MTPyo distributions
in Theorem 1, with estimation rates for 3-Holder smooth distributions (without the MTPq
constraint) in 1D and 2D, suppressing logarithmic factors.

As a stepping stone to this problem, we also consider the following discrete
version of MTP5. A distribution on the grid [n1] x [n2] is MTPs if its probability
mass function (PMF) p, which is an ny x ng matrix, fulfills (1.1). Thus, MTP,
says that all the 2 x 2 minors of p are non-negative:

DijDke = PitDkjs forall1<i<k<ng,1<j</l<ns. (1.2)

We study estimation of the PMF p from N independent observations in this
discrete setup.

To obtain upper bounds for estimation of a discrete MTP5 distribution, we
employ a variant of the maximum likelihood estimator (MLE) defined in Sec-
tion 2.1. For estimating a smooth MTP, density, we first discretize the space
[0,1]? and then apply the discrete MLE to obtain an estimator (defined in Sec-
tion 3.1) that achieves near-optimal upper bounds. Both estimators are compu-
tationally efficient, with the implementations discussed in more detail in Sec-
tion 4.

Related work There has been a recent surge of interest in the estimation
of MTP5 distributions. The special case of Gaussian MTP5 distributions has
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been studied by [44, 27] from the perspective of maximum likelihood estima-
tion and optimization. Maximum likelihood estimation of log-concave MTPsy
distributions was also analyzed recently [39, 38]. However, no statistical rate
of estimation of MTP5 distributions is currently known. The present paper es-
tablishes the first minimax rates (up to logarithmic factors) of estimation of a
smooth MTP5 density.

More broadly, our work falls into the scope of nonparametric density estima-
tion which is a fundamental problem in nonparametric estimation. As such it
has received considerable attention over the years [20, 41, 49, 7, 43]. A central
paradigm in this literature is to assume smoothness of the underlying density
to be estimated. Such an assumption justifies a variety of statistical methods
ranging from kernel density estimation to series expansions. Another approach
to nonparametric estimation, and in particular to density estimation, is to use
shape constraints whereby the (local) smoothness assumption is dropped and
favored by a (global) synthetic constraint such as monotonicity [15, 36], con-
vexity [17, 42] and log-concavity [48, 11, 9, 40] (see [16] for a recent overview).
As explained above, the MTP5y constraint alone does not make the density es-
timation problem well-defined and it has been combined with another shape
constraint, namely log-concavity, in [38]. Instead, the present work combines
MTP, with smoothness to obtain a faster statistical rate than with smoothness
alone, thus demonstrating compatibility of the local and the global approach.

As we have discussed above, MTP5 is also called log-supermodular. In the
recent paper [19], we studied estimation of supermodular matrices (also known
as anti-Monge matrices) under sub-Gaussian noise. We note that the proof
techniques used in [19] are the starting point for the proofs in this paper, but
are extended to the context density estimation. In a parallel work [12], the
authors study a related but slightly different model under Gaussian noise, and
their proof techniques could potentially be extended to yield rates similar to the
ones found in this paper.

Organization We present the main results of the paper: upper and lower
bounds for the discrete case in Section 2, followed by the continuous case in
Section 3. All proofs are postponed to Section 6. The implementation of our
estimators is discussed in Section 4. Our theoretical results are complemented
by numerical experiments on synthetic data in Section 5. Finally, Section 7
includes a conclusion of the paper and a discussion of questions left for future
research.

Notation For a positive integer n, let [n] = {1,2,...,n}. For a finite set S,
we use |S| to denote its cardinality. For two sequences {a,}2; and {b,}5%;
of real numbers, we write a,, < b, if there is a universal constant C' > 0 such
that a,, < Cb, for all n > 1. The relation a,, 2 b, is defined analogously. We
use ¢ and C (possibly with subscripts) to denote universal positive constants
that may change from line to line. Given a matrix M € R™*™2 we denote its

ith row by M;. and its jth column by M. ;. For an entrywise positive vector
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w € R™ and a vector v € R", we use the notation

n o\ 1/2
ol == (- win?)
i=1

for the w-weighted ¢ norm of the vector v. Similarly, for an entrywise positive
matrix b € R™*™2 and a matrix a € R™*"2, we use |lal|, to denote the b-
weighted Frobenius norm of a. For a reference measure p on a (continuous
or discrete) space X, and two distributions with probability density or mass
functions p and ¢ respectively, we let

h(p,q) == (/X (\/m- \/@)Qdu(x)) 2 and

p(z)
KLpva)i= [ pla)log 2 aula)
x q(x)
denote the Hellinger distance and the Kullback-Leibler (KL) divergence between
the two distributions respectively.

2. MTP, distribution estimation on a grid

Let p* be a probability mass function (PMF) on the grid [nq] x [ns], where we
assume without loss of generality that n; > no. In the case where ny < ng, our
results and proofs remain valid with the roles of n; and ns swapped. Suppose
that p* satisfies the MTP5 condition

PiPit1j41 2 Pij1Pis foralli€[ni —1],j€[n2—1]. (21)

Note that this is equivalent to condition (1.2) by a telescoping sum argument.

Suppose that we are given IV i.i.d. observations {Zk}fcvzl from the distribution
on [n1] x [ng] with PMF p*, that is, each Zj, = (i,7) with probability p; ; for
(1,7) € [n1] X [nz2]. Our goal is to estimate p*. The number of observations at each
point (7, j) on the grid [n1] x [n2] is recorded in a matrix Y = (Y j)ic[ni], je[na]s
defined by

N

Yo = HZy = (i)} (2:2)

k=1

Then Y can be viewed as a multinomial random variable with distribution
denoted by Multi(N, p*).
In addition, we define
.= min r.  and r o (= max C
Pmin = e gelna) Pmax = el setna)
and assume a mild lower bound on the sample size N > 12log(ning/0)/pl.-
Then Y; ; concentrates around its expectation as indicated by the next lemma.
In particular, we have sufficiently many observations per entry on the grid with
high probability.
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Lemma 2. For any § € (0,1/2] and N > 12log(nina/d)/pk;,, it holds with
probability at least 1 — 26 that

1. 3 .
5 bij < Yz‘,j < ini,j
for all (i,7) € [n1] X [na].

Proof. Note that marginally Y; ; follows the binomial distribution Bin(XV, p;j).
Hence the result is an immediate consequence of Lemma 16 with ¢ = p}; /2,
together with a union bound over (,5) € [n1] X [na].

2.1. Estimator

We begin by describing the MLE of the log-PMF 6* € (—o0,0]™*"2 defined by
07 ; :=logp; ;. Owing to the fact that p* is a totally positive PMF, 6" satisfies
the following two constraints:

Z e?ii =1, and DO*D' >0,
i€[n1], j€[n2]

where the symbol > denotes entrywise inequality and the difference operators
D e Rm=Uxm D e R(M2=1Dx"2 are both of the form

-1 1 0 ... 0 O
o -1 1 ... 0 0

(2.3)
0 o o0 ... -1 1

The log-likelihood of a candidate 6 = log(p) € (—o0, 0]"1*"2 is given by

N
log [[pz. =log  [] (@)= > Yibi;=(0).
k=1

i€[n1], j€[n2] i€[n1], j€[n2]
Hence the MLE is given by

OME .= argmax (Y,6). (2.4)
X eihi=1
DODT >0
Instead of the MLE, we study a constrained variant which is both amenable

to analysis and efficiently computable.? Lemma 2 implies that with probability
at least 1 — 29, the true log-PMF 6* lies in the cube

CY):=

2Yi 2Yi, . .
{9 € (—00,0]"*"2 : log 3]\}] <0;; <log TJ for all i € [n1],j € [Tlg]} (2.5)

3The MLE itself can also be efficiently computed; see Appendix B.2 and Section 5.
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This motivates the constrained optimization problem

~ 1

6 := argmax N<Y’ 0) — E i, (2.6)
DODT >0 ; ;
OGC(Y_) 746["1]776["2]

Note that the objective is concave and there are O(nins) inequality constraints,
so the program can be solved efficiently. However, the constraint ), ; efii =1

is replaced by a penalty term, so it is not necessarily true that E” elii = 1.
Hence we define the estimator of interest § € R™*"2 by normalizing 6:

0;;:=0; ; —log Z el forie [n1], J € [na]. (2.7)

ré[ni], s€[na)

It is clear then that 6 is a supermodular log-PMF. Finally, we define our esti-
mator p = p(Y) by p;; := €%, which is therefore a properly defined MTPs
PMF.

2.2. Upper and lower bounds

We measure the performance of our estimator p using the Hellinger distance
h(p*,p). For any PMF p on the grid, define

P1,1Pnq,no
L(p) = thllfnune 2.8
( ) pnl,lpl,ng ( )

The quantity log (L(p)) is a seminorm of the log-PMF 6 = log(p) (see (6.17)),

which measures the complexity of 6. As a result, the following upper bound for
our estimator p depends on log (L(p*))

Theorem 3 (Upper bounds for estimation of discrete MTP5 distributions). Fiz
0 € (0,1/4] and suppose that we are given N > 12log(nina/d)/pk,, independent
observations from a distribution with an MTPy PMF p* on the grid [ni] X [na]
where ny1 > no. Then the estimator p defined above satisfies

h?(p*, p) < %KL(p*,p) < ”11#("1/5)

+ (P r1m2) ' (Tog (L(p)) +1)

2/3 (103;(”1/;5\)710%(”2) )2/3

with probability at least 1 — 49.

In particular, in the case where pf ., =< 1/(ninz), the bound in Theorem 3

reduces to 1
2/ % A < E
up to logarithmic factors. The term ﬁ results from the MTPs shape con-

straint, while the term I is present even if the PMF p* has constant rows.
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Technically, the two terms follow from a decomposition of the noise in the proof.
The following theorem shows that this upper bound is, in fact, optimal in the
minimax sense up to logarithmic factors.

Theorem 4 (Lower bounds for estimation of discrete MTPs distributions). Let
P, denote the probability with respect to N independent observations from the
distribution with an MTPy PMF p* on the grid ny x ny. For ny < N < nin3,
there exists a universal constant ¢ > 0 such that

. ~ n1 1 1
inf su IP*{h2 * >c<——|——)}>—,
5 o M'?Pg p (p p) = N N2/3 = 3
where the infimum is over all estimators p measurable with respect to the obser-
vations. For N < ny, we have the vacuous lower bound of constant order. For

N > nin3, we have the lower bound of order ™52, which is the trivial rate of
estimation.

Note that in the regime with an enormous sample size N > n3n3, the
lower bound 22 is achieved by the empirical frequency matrix Y/N (see Ap-
pendix B.3), so there is no need to exploit the MTPs constraint. In fact, it can
be seen from the proof of Theorem 3 in Section 6.1 that the estimator p also
attains this rate up to logarithmic factors (see Remark 12), a behavior that can
be observed in the numerical experiments as well (see Figure 2a in Section 5).

While our upper and lower bounds match in terms of the sample size N
and dimensions (ni,ng), there are two potential improvements that can be
made. First, the assumption N > 12log(ning/0)/pr;, in Theorem 3 is nec-
essary to guarantee that we have sufficient observations at each point on the
grid [n1] X [n2], so that the (box-constrained) MLE can be properly defined and
efficiently computed. There may exist other estimation procedures that apply in
the regime where the sample size is smaller. Second, the upper bound contains
the parameter py,., which is not present in the lower bound. This is likely an
artifact of our proof of the upper bound and could potentially be mitigated.

3. Smooth MTP, density estimation

We turn to estimation of a probability distribution with a smooth MTP5 density
p* on [0,1]? with respect to the Lebesgue measure. Recall that MTP5 requires
that for any z,y € [0,1]?,

p (@ Ay)p*(xVy) = p(z)p*(y). (3.1)

In addition, we assume that p* is S-Holder smooth, defined more precisely as
follows.

Definition 5. For §,R > 0, we define D(3,R) to be the set of probability
densities p on [0,1]% such that p is [3—1] times continuously differentiable with

|0%p(x)| < R, forall|a| < [B—1], 2 €[0,1]*, and (3.2)
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0%p(x) — 0%py)| < Rz — gl P71,
for all |a| = [B —1], z,y € [0,1]% (3.3)

Moreover, for pmin, Pmax > 0, we define b(ﬂ,R, Pmins Pmax) Lo be the subset of
D(B, R) consisting of densities p such that

Pmin < p(2) < pmax, for all x € [0,1]% (3.4)

Equipped with the above definition, we assume that p* € 15(5 , R, pmin, Pmax) -
Given N i.i.d. observations from the distribution with density p* where N > 0,
we aim to estimate the distribution.

3.1. FEstimator

To define an estimator of p*, we make use of both smoothness and the MTP,
assumption. Namely, smoothness allows us to discretize the space [0, 1]? into
grid cells and group observations together in each cell, after which we are able
to employ the MTP5 shape constraint.

More precisely, for a positive integer n to be determined later, we consider
the equidistant discretization on [0, 1]? with n subdivisions on each dimension,
that is, with grid cells

Si,j = |:Z ;1) X |:]77 l)v 7’?] € [’n’}
n n n n

Denote by Y the (unnormalized) histogram estimator with grid (S; ;);,—, for a
sample {X1,..., Xn}, that is,

N
)/i,j = Z l{Xk S S@j}. (35)
k=1

Moreover, we define
P :z/ p*(z)dx. (3.6)
Si,]‘
Since p* is MTPs, it is easily verified that the discrete density p* is MTP5 in
the sense of (2.1).
Given the matrix Y with entries specified by (3.5), we compute the estimator
p = p(Y) defined in Section 2.1, and define an estimator p of the density p* by

p(x) :=n?p;;, forxz €S, (3.7)

which is a piecewise constant estimator on the grid (S; ;)7;_;-

3.2. Upper and lower bounds

The performance of our estimator p with respect to the Hellinger distance is
characterized by the following theorem.
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Theorem 6 (Upper bounds for estimation of smooth MTPy distributions).
Suppose that we are given N independent observations from an MTPy distribu-
tion with density p* € D(B, R, Pmin; Pmax). With §:= 8 A1 and the choice

2 3 .
"= KR N>1/(2B+1) 4 (1ogp(I;:f:N))l/2J’

Pmin

we define the estimator p as in (3.7). Moreover, suppose that N is larger than
a constant depending on B, R and pmin. Then with probability at least 1 — N4,
the following holds. If B > 0.5, then

h2(ﬁ p*) < IOgN (1Og N)4/3
T N2/ (26+1) N2/3 7

and if 0 < f < 0.5, then

h(p,p") <

~

logN>B (log N)*/3
(%) + e

where the suppressed constants depend on the quantities B, R, pmin and pmax-

Note that the size of discretization n can be viewed as a tuning parameter in
smooth density estimation—the larger n is, the smaller bias and larger variance
the piecewise constant estimator has. As the proof of Theorem 6 suggests, the
above choice of n achieves the optimal bias-variance trade-off, thereby yielding
near-optimal upper bounds.

As in the discrete setting, each of the above upper bounds contains two

terms. The term involving 8 in the exponent originates from the smoothness of
the density, while the term (lolgv# is due to the MTP5 shape constraint.
More precise versions of the bounds in Theorem 6 are given in (6.27) and
(6.28) with explicit dependencies on pmin, Pmax, and R. In particular, treating
these quantities as constants, the above bounds yield (up to logarithmic factors)

that

N8, 0<pB<0.5,
h2(p,p*) S N-2551, 05<B <1, (3.8)
N3, B>1,

with high probability. These upper bounds are complemented by the following
lower bounds.

Theorem 7 (Lower bounds for estimation of smooth MTP5 distributions). Let
P,- denote the probability with respect to N independent observations from the
distribution with density p* € D(B, R), for >0 and R > 1. Then there exists
a ungversal constant ¢ > 0 such that

)

P preD(B,R)

W =

inf  sup P, (h*(p,p*) > chp(N)) >
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where the infimum is taken over all estimators p measurable with respect to the
observations and

N-#,  if0<f<1,
¢s(N)=q N72/3, fl1<p<2,
N-#E, ifg>2.

The lower bounds above match the upper bounds up to logarithmic factors
in the regime 0.5 < 8 < 2. For 0 < 3 < 0.5, the rate N=7 coincides with the
rate obtained by the nonparametric Hélder-constrained estimator in dimension
one [6]. This slow rate is known to be suboptimal, as sieve estimators attain the
optimal rate N—2/(26+1) While we conjecture that up to log factors, the latter
should also be the optimal rate in our case, we leave the problem of finding the
optimal rate in this regime as an open question for future research. For g > 2,
the rate is the same as that for §-Hdélder smooth density estimation without
the MTP, assumption. Therefore, while the lower bound is interesting in our
setup, to obtain the upper bound, it suffices to use any existing rate-optimal
estimator.

Remark 8. The construction of the estimator p depends both on the smoothness
parameter 3 and the Hélder constant R, and it does not match the lower bounds
in the case 8 > 2. Both of these shortcomings can be remedied by considering an
ensemble of estimators that include both our estimators p for varying parameters
B and R over a discretization of the set of parameters, and, for example, requ-
lar kernel density estimators which are rate-optimal for Hélder smooth density
estimation. Over such an ensemble, either selection [32] or aggregation proce-
dures [21] can be used to achieve adaptive rates that match the lower bounds
up to logarithmic factors. Since the techniques are standard and yield no new
phenomenon, we do not pursue this direction in the current work.

4. Efficient algorithms

The optimization problem for finding the constrained MLE in (2.6) is a convex
problem with a polynomial number of constraints and can thus be solved in
polynomial time with a general purpose solver for convex problems such as SCS
[34, 35] or ECOS [10]. However, since the number of constraints is of the order
ning, solving the linear systems in each iteration step of these solvers can take
a long time without specialized solvers. We address this issue by employing a
proximal Newton method, whose main step consists in a projection onto the set
of constraints, which in turn can be solved by a variant of Dykstra’s algorithm,
as discussed in [19]. In this section, in order to emphasize the connection to
computing projections, we think about (2.6) as a minimization problem instead
of a maximization problem by changing the sign in front of the objective.
First, we derive the outer iteration of our algorithm as a proximal Newton
method. These methods are intended to solve nonlinear optimization problems
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by successively solving local quadratic approximations to the objective func-
tions. For a more thorough introduction to this class of methods, see [29]. Briefly,
for d € N, to minimize a composite function of the form

min f(0), £(6) = 9(6) + h(6),

one starts with an initialization z(®) = z; € R? and computes updates by
solving

p®) = axgmin [Vg(0" )T (5~ 01
pERY

1, _ _ B ~
+ _(p — g(k 1)) v2g(9(k 1))( a(kfl)) h( )}’
9(”“) = 9(k 1) + tk(n(k) - 9(k 1)),

where . is usually chosen by a line-search technique. In the case of (2.6), we set

o(0) = — .0+ Yot

h(6) = {o, e MnCY),

+ 00, 0 ¢ MNCY),
where C(Y') corresponds to the box constraints defined in (2.5), and
M :={# e R"*" . DIDT > 0}.

Further computation then shows that the Hessian V2g(6) has the structure of
a diagonal operator, which makes the subproblem of computing p(*) equivalent
to finding a projection with respect to a weighted Frobenius norm. Namely,
computing the first and second derivatives yields

1
(Vg(0))iriz = — 7Yij +exp(0i;),
exp(oh iz)v (i17i2) = (jl,jQ),
Vz 9 i1.4 g = ’
(VZ9(0)) 1,22, 32) {O, otherwise.

Hence, writing
Ny = exp(e(k)

il,i2)7

computing p'®) is equivalent to

1 1 2
(k) - i <_ _Y A ~> _“~_9(k_1)“
P argmin +A,p)+ P

PEMNC(Y) N 2 A

. 1~ p—1y) 1 2
= argmin —Hp— (9( +—Y®A—1>H
peEMAC(Y) {2 N A
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iyt T )

o1 ket 1 2
= argmin —Hp— (0( +=YoA- ]l)H , 4.2
FeMnC(Y) 2 N A (4.2)

the projection of 1) 4 %Y @A — 1 onto M NC(Y) with respect to the
Frobenius norm weighted by A.

Second, problem (4.2) can be efficiently solved by a variant of Dykstra’s
algorithm, as shown in [19]. The idea is to split up the projection onto MNC(Y)
into the projection onto C(Y') and the sets

M, i, = {9 c RMXn2 . Z (_1)j1+j29i1+j1,i2+j2 > 0}
J1€{0,1},52€{0,1}
for i; € [n1 — 1],i2 € [ng — 1], where additional correction terms are applied to
the vectors to ensure convergence. The basic Dysktra algorithm for projecting
a vector y € R? onto a general collection of sets My,..., M,, is listed as
Algorithm 1.

Algorithm 1 Dykstra algorithm
Input: y € R¢
Output: 6 =~ I\ (y)

function PROJECTDYKSTRA(y)

fori=1,...,m do
p; = 0g > Initialize residuals
end for
Om =y > Initialize iterates
while not converged do
fori=1,...,m do
0; < Ia, (O(i—2)%m+1 + Di) > Project shifted iterates
Pi < 0(i—2)%m+1 +Ppi — 0; > Compute new residual
end for
end while
return 60

end function

In our case, the projection onto M;, ;, with weight matrix A, written as
IIm;, ,, .0, has the following closed form solution. For iy € [ny —1],iz € [ng —1],
let A be given is in (4.1) and set

-1

wn= X 1

Ao
J1,j2€{0,1} t1+J1,82+72

Then, we have for ji, jo € {0,1} that

r

(HMil,i2 ,Ay)i1+j1,i2+j2 = Zii4j1,ia+j2 T
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(_1)j1+j2 "
max _Fil,iz E : (_1) ! 2Zi1+k1,i2+k27 0o,
k1€{0,1},k2€{0,1}

Ai1 +J1,i2+72
and for (I1,15) ¢ (i1 +{0,1}) x (is +{0,1}) that
(Ta, oy AV 1o = Z1y 1

Together with the closed form solution for projecting onto the box C(Y),

2Yi; 2Yi, i
Ziy ins Zii iz € log 3]\}_] ,log TQ
2Y;, 2Y;
ey (W)inia) = log %, Ziyip > log —]\17 2,
2Yi,.q Yi i
log 3]\}27 Zil,iz <10g 3]1\]7—2a

we end up with the iterative projection algorithm given in Algorithm 2, which
in turn leads to the proximal Newton method, Algorithm 3. Note that we did
not implement a line search but instead chose to directly update our iterates
with p(*)| which seems to not pose any problems in practice.

Algorithm 2 Fast projection onto M
function ProJECT(y, A, C(Y))
01y, n0eRm-Dx(2=D  pe gecR™*" s Initialize § and
residuals n, 0’
foriy =1,...,n1—1,io=1,...,n9 — 1 do

1
| (Zjl 240 1}(Ai1+j1¢2+j2)*1) > Initialize harmonic mean

of weights
end for
while not converged do
0" < Tleyy (0 +7') > Project onto C(Y) ...
n+—0+n -6, 066 > ...and store corresponding residual

fori;=1,...,n1—1,i5=1,...,no — 1 do > Project onto M by
projecting onto all M, ;, in turn
ﬁ < max {77i1,i2 - Fil,iz Zkl,kge{o,l}(_1)k1+k29i1+k177§2+k27O}
for j; € {0,1}, j2 € {0,1} do

9i1+j1,i2+j2 «— 0i1+j1,i2+j2 + (_1)j1+j2A;1}|-j1,i2+j2 (ﬁ - 771'1,1'2)
end for
Miyyin <7
end for
end while
return 6

end function
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Algorithm 3 Restricted ML solution via proximal Newton method
function RESTRICTEDMAXIMUMLIKELIHOOD(Y')

0+ Y/N
while not converged do
for il :1,...7711,7;2: 1,...,7’1,2 do
Ai, iy < exp(6; ;) > Update weight matrix
end for
y«<0+Y/NoA-1
0 + ProJECT(y, A,C(Y)) > perform Newton step
end while
return 6.

end function

Similarly, if instead of the box-constrained estimator (2.7), we are interested
in calculating the regular MLE over MTPs, (2.4), we can omit the projection
onto C(Y') in Algorithm 2.

In practice, convergence in Algorithm 2 can be checked by computing a mea-
sure of feasibility such as 0V max{—(D8D);; : i € [n1 —1],j € [ng — 1]} or
stopping when the distance between successive iterates becomes small. Simi-
larly, we stop the proximal Newton method, Algorithm 3, when two successive
iterates become very close to each other or the gain in the objective function is
very small.

Following these considerations, it is straightforward to compute the density
estimator (3.7) by computing a histogram of the samples in [0, 1]? and applying
Algorithm 3 to obtain p, which yields the piecewise constant approximation in
(3.7).

5. Numerical experiments

This section is devoted to simulations which corroborate our theoretical findings.
Further details on the underlying implementation can be found in Appendix C.

5.1. Experiments for the grid estimator

In this section, we set n = ny = ny for simplicity.
We consider the following family of ground truth probability mass functions:
Let n € N, set

7 (-D@-1

ei,j =1 + 10g(L> (n o 1)2 9 27.7 € [’}’L],
for L > 1 that can be varied and
i,
< opliy) i,j € [n). (5.1)

" Zi,j exp(6;,;)
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By construction, 6 is supermodular, so p* is MTPy, and log(L(p*)) = log(L).
We sample N i.i.d. observations {Zk},ivzl from p and form the matrix Y as
n (2.2). We consider three estimators for p*: the empirical frequency matrix
Y/N, the MLE given by (2.4), and the box-constrained estimator in (2.7). The
latter two estimators are computed by variants of Algorithm 3. Note that in
cases where some of the entries in the frequency matrix are zero, we cannot take
logarithms and thus report Y/N as the output of the box-constrained estimator,
while the unconstrained MLE can be calculated as in Section 4 above. For the
unconstrained MLE, we do observe numerical instabilities when the number of
observations is very low, eventually leading to underflows in the calculation.
This can be remedied by imposing mild lower bounds on the resulting density,
see Appendix C.2.
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Fic 2. Estimation of a density on a grid

In Figure 2, we plot the squared Hellinger distance hQ(p*, p) for the three
estimators in four setups, averaged over 20 independent replicates. More specif-
ically, we report the results of linearly regressing the logarithms of the distances
on the logarithms of the varying parameters over one or more manually se-
lected ranges, corresponding to an estimate of the polynomial dependence on
the parameter in question.
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In Figures 2a and 2b, we vary the sample size N and keep n = 16 fixed for
log(L(p*)) € {2,0.02}, respectively, while in Figures 2c and 2d, we vary the
grid size n and keep N = 10,000,000 fixed for log(L(p*)) € {0.2,0.02}, respec-
tively. We observe that all three estimators achieve an N~! asymptotic rate
in Figure 2a. Moreover, the box-constrained estimator (2.7) and the regular
MLE (2.4) show very similar performance: For small N, the probability for zero
entries in Y/N is high and thus Y/N is used instead of the box-constrained
estimator as explained in the above paragraph, which explains that its perfor-
mance coincides with that of the empirical frequency matrix in this regime,
while the MLE performs better because the dominant factor in this regime is
n/N. For an intermediate regime of N, the estimation performance of the MLE
and the box-constraint estimator is consistently better than that of Y/N, but
it is attenuated once the (log(L(p*))n/N)?/? rate becomes active, which can
be seen in Figure 2a. On the other hand, in Figure 2b, NV is not large enough
relative to log(L(p*)) to capture this regime. Finally, for very large values of N,
the performance of all three estimators coincides, which for the box-constraint
estimator matches the proof of the upper bound (up to logarithmic factors), see
Remark 12.

A similar behavior can be seen in Figures 2c and 2d, where the performance of
the frequency matrix scales with n2, while the regular MLE scales approximately
like n2/3 (regression coefficient of 0.72) for a larger value of log(L(p*)) and
like n (regression coefficient of 0.95) when log(L(p*)) is small. Note that the
performance of the box-constrained estimator is not plotted here since it mostly
coincides with that of the regular MLE.
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Fic 3. Runtimes for density on grid

To investigate the practical performance of the proposed algorithms, in Fig-
ures 3, we report the runtime averaged over 20 replicates on an AMD 3400G
desktop processor. Here, as well as in the previous examples, we stopped Al-
gorithm 2 when a relative change in ¢?-norm of less than 1075 was detected.
Similarly, Algorithm 3 was stopped at a relative accuracy of 10~°. In Figure 3a,
we observe that the conditioning of the problem improves with larger sample
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sizes N and deteriorates for small values of N, leading to a decay in runtime
of approximately N =152 up to N = 1,000, followed by a milder dependence of
N~915 for larger values of N. Note that the runtime for the boxed estimator is
only plotted for N > 10,000 because of the presence of zeros in the empirical
frequency matrix for smaller values of N.

In Figure 3b, we see that, as expected from a Dykstra-type algorithm, the
conditioning of the problem worsens with increasing n, necessitating more it-
erations and thus leading to an increase of runtime until convergence that is
larger than the cost of one iteration, which is of order n?. However, it is still
reasonably mild, scaling roughly like n33 for larger values of n. Overall, this
highlights the practicability of the proposed algorithm for problems of medium
size: Instances with n =~ 50 can be solved within four seconds, while problems
of size n = 160 take under two minutes. Moreover, adding the additional box
constraint (2.5) only slightly increases the runtime when n is large.

5.2. Experiments for continuous density estimation

We consider the multivariate Gaussian distribution P* = N(u*, X*) with pa-

rameters
« (05 o 0.2 0.1
F=Xo05)" ~lo1 02)°

conditioned on the event that Z € [0,1]? where Z ~ P*. In other words, we
consider the density

() = ————p(z T 2 )
p () Tous 70) dyl)( ), z€[0,1]7 (5.2)

where

~ 1 10
plx) = /003 exp <—? ((z1 — 0.5)* + (22 — 0.5)% — (z1 — 0.5)(z2 — 0.5))).

Note that on [0,1]?, p* € C* and that it is MTP5, which can be easily
checked by computing the mixed derivative 0102 of the log-density. Here, we
use it to evaluate the performance of the gridding strategy from Section 3.1 for
both an oracle choice of n, that is, exploiting the knowledge of the ground truth
to pick the best possible value of n from a given list, and a fixed scaling of n in
the cases 8 € {0.5,0.75,1.0}.

First, in Figure 4a, with a varying number of i.i.d. observations {Z;}Y_;
from P*, we plot the squared Hellinger distance h?(p, p*) for the estimator in
(3.7), where n is picked from 10 logarithmically spaced values between n = 4
and n = 200 according to which yields the smallest Hellinger distance, and for
a similarly defined estimator where p is replaced by the empirical frequency
matrix Y/N. We observe that the empirical frequency matrix achieves a rate
of about N~1/2, corresponding to the rate for general Holder functions in 2D
with 8 = 1, while the MTP, MLE comes close to the predicted N~2/3 rate that
corresponds to the 8 € [1,2) range (regression coefficient of 0.62).
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Fic 4. Performance of continuous density estimation

Second, to investigate the effect of different S5, in Figure 4b, we use a fixed
scaling n = CN'/(8+1D_ Note that we cannot expect to observe the rates in
Theorem 6 when considering the distance hQ(ﬁ, p*) in this setup since p* is C'*°-
smooth. Denoting by p the piecewise constant approximation to p* (see (6.23)
below), this is due to the fact that the bias term h?(p, p*) could dominate the
overall error hQ(ﬁ, p*). Hence, we only plot the Hellinger distance corresponding
to the variance part hQ(ﬁ, p). For computational reasons, C' is chosen for each
B so that for N = 108, we have n = 200. Due to the similarities between the
regular MLE and its box-constrained version observed in the previous section, all
calculations were performed using the regular MLE, (2.4), resulting in slightly
faster computations.

Performing linear regression on the doubly logarithmic plot for large values
of N, we observe rates of 0.53, 0.58, and 0.62 for 8 = 0.5,0.75, 1.0, respectively.
These are close to 0.5, 0.6, and 2/3, respectively, as predicted by Theorem 6.
Additionally, we present heat maps of the density p* (Figure 5a), as well as an
approximation via the frequncy matrix Y/N (Figure 5b) and the MLE (Fig-
ure 5¢) for N = 10,000 and n = 16. The visual smoothing effect of the MLE is
quite obvious in this case.

6. Proofs

The proofs of our results are provided in this section. We first prove the upper
bounds Theorems 3 and 6 in the discrete and smooth cases respectively, and
then the lower bounds Theorems 4 and 7. In the proofs, we make use of the
well-known relation [32, Lemma 7.23] that for PMFs p and ¢ on X' = [n;] X [nag]
or [0,1]?,

2h*(p,q) < KL(p,q) < 2(2 + log (rmnea;c ]q)g;)) h*(p, q). (6.1)
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Ground truth, pdf of N(u*,2*) | Z€[0, 1]

0

16
0.8 1.4

12
0.6 1.0

08
0.4

06

04
0.2

02
0.0

0.0 0.2 0.4 0.6 0.8 1.0

(a) Ground truth p*

Empirical frequencies on grid,
n=16, N=10000 MLE over grid,

n=16, N=10000
0.6 1.0

]

: : 16
: : ] 1.4
’ 1.2
, i : - 1.0
. ' 0.8
} ' 0.6
L. ’ . ] 04
} 02

“0.0 0.2 0.4 06 08 1.0 0.0

0.2 0.4 0.6 0.8 1.0

0.4
0.2
0.0
0.0

(b) Approximation via frequencies

Y/N (¢) Approximation via MLE p

Fic 5. Visual comparison of continuous density estimation

6.1. Proof of Theorem 3
6.1.1. Setup of the proof: quadratic approximation

Let us define € := % — p*. Denote by A; the event of probability 1 — 2§ that
the bounds in Lemma 2 hold. On this event, 6* lies in the cube C(Y") defined in
(2.5), so we have

1 i} 6 1 *
~0 —Z 7> S0 -1,
which is equivalent to
(0", 0" —0) + > " —1<(e,0 - 6%). (6.2)
i3
In addition, the definition of C(Y') yields that |6; ; — 07 ;| <log2 — log 2 < 1.1
for all , 5.

By a quadratic Taylor approximation of €Y, it holds for z < 0 and |y—z| < 1.1
that

4 e (y—a)+e(y—x)?/d<e¥ <et +e(y—x)+2e%(y — )%
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Applying this approximation to the exponential terms of the left-hand side of
(6.2), we obtain

. % 1 * A *
(p*,0 +Zew+zew g = 00) + 7 D e (0 —07,)°
i

SRS S
4,J
< (50" —0)+ Y e+ Y il — 07 +2) (b —6;,)7 — 1,
i, i, i,
or equivalently,

ﬁprwe;) (p*, 0" — +Ze~—1<22pu i —0i5)% (63)
i,

The rest of the proof hinges on this quadratic approximation. Particularly, it
follows from (6.2) and (6.3) that

1 v " 5 "
1 Zpi,j(ei,j - gi,j)Q < (e, 0 —067). (6.4)
%,

The main task in the sequel is to bound the right-hand side of (6.4). The strategy
builds upon a spectral decomposition technique from the paper [19] on Monge
matrix estimation.

6.1.2. Spectral decomposition of the difference operator

Recall the difference operator D defined in (2.3) and D defined analogously

for dimension my. Throughout the proof, whenever we introduce notation in

dimension 1, the analogous one in dimension ns is denoted by the same symbol

with a tilde. We will decompose the noise ¢ in (6.4) according to a spectral

decomposition of D, so let us recall some basic facts about the matrix D.
Denote the singular value decomposition of D by

D= UEWT7 U e ]R(nl—l)x(nl—l)’ Y e ]R(nl—l)xnl, W e Rnl X1

where we order the non-zero singular values of D in ¥ in ascending magnitude,
so that the last column of W spans the null-space of D. In addition, we write
W = [wl e wm] . Let us define a set of double indices

J = {(Z,T) € [n1] x [ng] 1 lr < k:} U ( [ny] x {ng}) U ({nl} X [ng]), (6.5)

and set J¢ = ([n1] % [ng]) \ J.
We introduce a projection operator II : R™*"2 — R™*"2_ defined as the
projection onto the linear span of {wzw;— : (4,7) € J¢} that is orthogonal with
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respect to the inner product

1
<A, B>1/p* = Z TAi,jBi,j'
N Y

In particular, there exists an orthonormal basis {V(¢7) € R™*"2 . (I,r) €
[n1] x [n2]} of R™*"2 with respect to the inner product (.,.);/,~ such that

mA) = > veIy®) Ay, and
(I,r)eJe

(I-myA) = > vEIVED A) ..
(I,ryeJ

To characterize these projection operators further, we introduce the following
notation. Let ® and @ denote entrywise multiplication and division respectively
between matrices. With a slight abuse of notation, we use /p* and 1/p* to
denote the entrywise square root and the entrywise inverse of p* respectively.
Let A and A~! be the scaling operators from R™ *"2 to itself, defined by

AA)=A®p", AeR™r ™,
AN A) =Aop, AeRM*™,

respectively. Let £ be the linear operator from RIV"! (indexed by (I,7) € J¢) to
R™*72 defined by

LB)= Y Bywd!, BeR
(Lr)yeJe

and denote by £ the transpose of £ with respect to the standard inner products
in the corresponding spaces. In other words, we have

(LT (A, = (ww,, A), (I,r)€Je AcRM*", (6.6)

The linear operators IT and A can be viewed as nins X ning matrices, while
the linear operator £ can be seen as an ning x |J¢| matrix. Moreover, we have
the following lemma whose proof is deferred to Section 6.1.6.

Lemma 9. The smallest eigenvalue of the operator LT AL satisfies that
1
/\min(ﬁTAilﬁ) Z .

*
pmax

Moreover, 11 can be written as
M=LLTATIL) LA (6.7)
To control (¢, — *) on the right-hand side of (6.4), we decompose it as
(,0 — 0*) = ((I = TI)(g),0 — %) + (I(€), 0 — 6%). (6.8)

Before proceeding to bound these two terms separately, we state two lemmas
whose proofs are deferred to Sections 6.1.7 and 6.1.8, respectively.
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Lemma 10. The image of the projection 11 is included in the image of the map
A DTAD.

Lemma 11. For any (i, j) € [n1] X [n2], we have that

> SPEUA0E, S T log(na).
(I,r)ede

6.1.8. Bounding the first term in (6.8)

By Holder’s inequality,

(I —10)(e),6 — 6%) = (I ~1)(c) @ V™, (6 — 67) © V™ )
<A =T ()1 160 = 67|+ (6.9)
Now we focus on the quantity ||(/ —II)(¢)|1/p+. By the definition of IT and

the orthogonality condition that (V&) V)Y = 0 for any (I,r) # (I',r'), we
obtain that

I =mEI = | X v wen, e,

2

(e /et
= 2 (V9% < | max (VO €)yp)?. (6.10)
(LryeJ

Note that we can write
1
<‘/(l”’ﬂ)7 6>1/p* = <NV(l’T) (%) p*, N€>
Recall that Y has the multinomial distribution Multi(V, p*), and Ne =Y — Np*

is the deviation of Y from its mean. Therefore, Lemma 18 yields that on an event
As of probability 1 — 4,

(l,r) H *
e (VD¢ (oo, |5 Np*) log(|71/9)
+((l,mr?é(JHN )1og(|J|/5). (6.11)

To bound the two norms above, we note that by orthogonality of the V()
with respect to (.,.)1/p,
1

v
- 6.12
e TN (6.12)

Izvererl,, =l

In addition, it holds that

1 1
H ~ oy o)
N

<H7 (lr
~ N

p*

F:HN\/—
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V(l,"")

1 1 1 1
S T P S s
VNP I N Np* No/Prin /N log(n1/6) (613)
where we used (6.12) and that N > 12log(n1ns/d)/pk;, by assumption. Further,
we can control the cardinality of J by

ng
ny < |J| <niny and |J| = Z 1< n1—|—n2—1—|—ZLk/7‘j < 2n;+klog(ns).
I,r)eJ r=1
(6.14)
Combining (6.9), (6.10), (6.11), (6.12), (6.13) and (6.14), we see that on the
event A,

(I —T1)(e),0 — 6%)
<116 = 7l /1 + klog(na) ( log%/m % )

< i . nq log(ny/0) + klog(ni/d) log(nsg)

6.1.4. Bounding the second term in (6.8)

By Lemma 10, the image of II is included in the image of the adjoint map
A+ DTAD. Since A+ DT (D) ADTD is the orthogonal projection onto this
image, we thus have
(I1(),0 — 6*) = (DT(DT)'TI(e) D' D, 6 — 6%)
= (DN T1I(e) DY, D(6 — 6*)DT)
< ||(D")T1I(e)DT|| _ || D(6 — 0*)DT |, (6.15)
by Holder’s inequality.

We first consider the term || (DN TII(e) DY HOO By the formula (6.7) for IT and
the singular value decomposition of D, it holds that

(DNTI(e)DT = > 'S U, U (wa] 1(e))

(I,ryede

> SO wd, L(LTATIL)TILTAT (6))
(I,r)ede

S oSS UL AT L(LTAT L) T LT (w6,
(I,r)ede

By (6.6) and the orthogonality of the vectors {w;};e[n,) and {0, },¢[n,], We have
that £ (wyw,) = e if (I,r) € J¢ and zero otherwise, where e(") denotes
the coordinate vector in RI¥“l with a one in the (I,7) th component and zero in
all others. Hence, if we define a(9) € RV for (i, ) € [n1 — 1] x [n2 — 1] by

(al™)),, = 2;;2;} Us1Uj r,
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then for (7,7) € [n1 — 1] X [n2 — 1], we obtain

(ONTIEDT) = 3 (@), (A LLTATIL) e
2
(I,ryede

_ (%A‘lﬁ(ﬁTA_lﬁ)_la(i’j)7Ne>.

=:B(%:3)

As before, Lemma 18 yields that on an event A3 of probability 1 — 4,
- .
|oNTIEDY| < (max||BE . ) viog(mi /3]
+ (maxHB(”)H >log ny/9).

We proceed to bound [|[B%) | n, and || B39 ||,. First,

T 1 2
B(M)H = _HAfl TA-I) =16
H o = WIATELTAT L |
1

= (@ CINT(LTATIL) LT ATIAAT L(LTATI L) a8

%H(KTA—lﬁ)—l/Qa(i,j) 2

2
p*max .7
< Pnax )3
by Lemma 9. Then, by definition,
, n
Ha(ld Z El l22 2U2 Uj2r ~ 1k‘ 2 log(ng),
(I,ryede

where the inequality is due to Lemma 11. As for ||B(%7)|,,, we proceed as in
(6.13) to obtain

1B o <
/N *

m|n

* log(ns)
B(1 7) DPmax172
I I S \/ Nklog(n,/d)

where we used again that by assumption, N > 12log(ninz/d)/pk;,. Combining
the above bounds yields that on the event As,

(DY T TI() DY \/P?‘nax“lw 10%\([’;1/5) log(nz). (6.16)

Next, we turn to the quantity HD(@— 9*)DT ||1 Note that for any 6 such that
DODT >0, it holds

ni—1lns—1

IDODT |y = > > (DODT);,

=1 j=1
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n1—1 TL2—1

= (601501 — Oigry —bijpn)
=1 j=1

= 91,1 + onl,ng - em,l - 017"2'

Therefore, we obtain

—07,., = og]M =log (L(p")). (6.17)

1,ngy * *

| D6* DT||1:9;1+9 —6*
pnl,lpl,nz

ni,n2 ni, 1

Furthermore, recall that on the event Aj;, both 6* and @ lie in the set C(Y)
defined in (2.5). Hence

IDOD ||y = 01,1 4 Oy g — Ony1t — O,

2Y1 1 2Y, n 2Y,. 1 2Y1 .,
<1 lo Lz ] Lo Jog —222
By Ty 3N %3N
_ 2Y1,1 2Yn1,n2 2YTL1,1 2Y1,’IL2
= log SN + log 3N log N log + 4log(3)

S eil + 0:1,7},2 0:,1 1 01,77.2 + 410g(3)
=log (L(p*)) + 4log(3).
We conclude that on the event A,
| D@ —0*)DT||, <|IDODT |1 + |DO*DT )1 < 2log (L(p*)) + 4log(3). (6.18)

It then follows from (6.15), (6.16), and (6.18) that on the event A; N Asj,

(I(e),6 — 0%) < \/ Pnax 1712 10%\(7’;1/ 9)log(n2) (1og (L(p")) + 1).

6.1.5. Finishing the proof of Theorem 3

Combining the bounds on the two terms of (6.8) and applying (6.4), we obtain
that on the event A; N As N A3 of probability at least 1 — 49,

2 h o ny log(ny/6) + klog(ny/d)log(nz)
p* o~ ||0 - 9 ”P* N

+ (1og (L(p")) + 1) \/p:‘"axnl”Q log(n1/9) log(na) (6.19)

Nk
Finally, by the definitions of § and 6 in (2.6) and (2.7), it holds that

ZP logA .
= Zpi,j i,j - Az}j)
,J
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= ZP;J’ (07— éi,j) + log Z P
%, %,

<G8 )+ e -
,J

<2(| — 0%, (6.20)

where the first inequality holds because logz < z — 1 and the second holds
thanks to (6.3). Therefore, we conclude from (6.19) and (6.20) that

< malog(ni/6) + klog(ny /0)log(ns)
~ N

+ <log (L(p*)> + 1) \/p*maxn1n2 108;\([7]:1/5) log(nz) '

KL(p*, p)

Balancing out the terms that depend on k yields the optimal choice

k= (tom () 1) (i)

which leads to

« - o~ n1log(ny/d)
KL(p*,p) S — N
n (pfnaxmnz)l/?’(log (L") + 1>2/3<log(n1/(]5\)710g(n2)>2/3'

Since the KL divergence dominates the Hellinger distance by the first inequality
n (6.1), this completes the proof.

Remark 12. It is not hard to see that, if we choose the set J in (6.5) instead
to be the entire grid [n1] X [ng], then the same argument yields the rate
. nins log(ny /0)
h2 b < - axr
(",p) ¥
which matches the rate of the empirical frequency matriz in Lemma 20 up to a
logarithmic factor. In fact, the numerical experiments in Section 5, in particular

Figure 2a, suggest that the performance of p exactly matches that of the empirical
frequency matriz in this regime.

6.1.6. Proof of Lemma 9

Let B € RIY*I with ||B||2 = 1. Since £B is a sum of matrices that are orthonor-
mal with respect to the standard inner product, weighted by the entries of B,
it holds that ||[£B]|z = 1. Hence,

BTLTALB> min GTA'G = Ain(A™) = ——
Gl Glla=1 Pmax

which yields the first claim.
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For the second claim, recall that I1A is defined to be the orthogonal projection
of A onto the image of £ with respect to the inner product (:,-)1/,-. Thus

A = £B where B € R/Y°I minimizes

ILB — A3 ),. = (LB— A AN (LB - A)).

The first-order optimality condition then gives the desired formula for II.

6.1.7. Proof of Lemma 10

The image of the map A — DT AD is the orthogonal complement of the kernel
of A~ DADT, which can be characterized as follows.

The matrices X, U and W in the singular value decomposition D = ULSW T
are known [45] to be

Iy
Sii=2sin | — )|, i —1], 21
, sin <2n1) i€ [ng—1] (6.21)
Uy =) Zsin (22 e -1 (6.22)
] T ny ny ) yJ 1 9 .
2 (i —1/2
\/—coS(M), jelm -1, el
ny ny

and W'L,j =

Fix a matrix A for which DADT = 0. Then we have SWTAWET = 0, so
the matrix W T AW has all entries equal to zero except on its last row and last
column. Consequently, it holds that

ny ’IL271
_ T AT T — o T A T T AT
A=WW" ' AWW ' = g wiw; Ay, W, + g Wiy Wy, AW
i=1 j=1

Hence, the orthogonal complement of the kernel of A — DADT is spanned by
the matrices {w;w, : (I,7) € [n1 — 1] x [na — 1]}. By the definition of II as the
projection onto the span of {w;w] : (i,j) € J¢}, its image is contained in the
kernel of A +— DADT.

6.1.8. Proof of Lemma 11

This result can be easily obtained from the proof of Lemma 10 of [19], but we
provide a complete proof for the reader’s convenience.
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We start with the first bound in the lemma. Without loss of generality, assume
that ny is odd, so n; — 1 is even. Note that because of the symmetry

Sm<7T_ZJ> —sin<w>, t=1,...,n1 —1,
nq n

ni—1
2

it is enough to consideri =1, ..., . We make use of the following inequalities

to control the sin terms involved:

[sin(z)] < 1, for all z € R;
sin(x) < x, for z € [0, 00);
2 1
sin(z) > —z > —x, for z € |0, z].
m 2 2

Plugging in the entries of ¥ and U as stated in (6.21) and (6.22), respectively,

yields
N2 N2
4sin (%) sin (%)

—25—2772 772 __
E : El,l Er,rUi,lUj,r -

2 2
(I,ryege (I,r)yeJe 16ming sin (%) sin (%)

< 1 nin3
< Loy o

(I,r)ede

na 1 ni 1
Smmd |5 D

r=1 I=[k/r]

no ni nz

1 1 1 1

5”1”22 2 Z 2 +n1n22r—2[k/r]2

r=1 I=[k/r]+1 r=1

ng k n2

1r 1 1

SnanZT—?E +n1n22ﬁ —|—n1n2 Z 7“—2

r=1 r=1 r=k+1

nin9 ni1n9 nin9 nin9
< I < 1
< M2 log(ny) + A2 4 T2 < T2 jo ()
where we have twice used the bound Z:C:kH T% < % for any k > 1.

6.2. Proof of Theorem 6

With the notation introduced in Section 3.1, we define the piecewise constant
density

pla) =yl =n* [ pla)de, weSiigell (029
S.

()

By the triangle inequality for the Hellinger distance, we can estimate

h?(p, p*) < 20%(p, p) + 20°(p, p*), (6.24)
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and we proceed to bound the two quantities on the right-hand side of (6.24).
For the first term on the right-hand side of (6.24), we have

[, (Vi@ Vo) aa
3 (17~ )

1,j=
= h*(p,p").

h*(p, p)

By assumption (3.4) and definition (3.6), we have that pZ. > pmin/n®. Hence
if N > M, then the results for the estimator p in Theorem 3 lead to

Pmin

(5.0) 5 B 4 )9 (g (£(p)) + 1) (BB

with probability at least 1 — 46. Moreover, recall definition (2.8) and note that

2
p;k < pﬂl% and L(p*) < pmax.
n

2
Pmin

It then follows that

h2(ﬁ,ﬁ) < "1%(”/5) + (pmax)l/:%(log (@) N 1>2/3(wf/3.
(6.25)

To bound the second term on the right-hand side of (6.24), note that by the
mean value theorem for integrals and the continuity of p*, for all 4, j € [n], there
exist (;; such that

Pmin

plx) =n? /S vp*(y) dy = p*(Gij)-

Note that for any a,b > 0, it holds that

|a — ]
|\/5—¢5|§W.

Moreover, assumptions (3.2) and (3.3) imply that
p* (@) = p* ()] < Rlle =y, 2,y €017,

where we recall 3 = 8 A 1. Combining the above facts, we obtain

h*(p, p*) = z”: /S , (\/P*(x) - \/P*(Ci,j)>2dx

4,j=1

IN

lelin igz:l _/Sw (p*(iv) - p*(@w)z dz
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. 2R2 .
dlam i5) ﬁ n=28,

)

(6.26)

pmm Pmin

i] 1
Plugging inequalities (6.25) and (6.26) into (6.24), we conclude that for N >
12n2 log(n? /)

)

Pmin
R log(n/d)
h2 x) < 1208\1/0)
(6,P") S —
2
1/3 Pmax 2/3 IOg(n/(s) log(n) 2/3 R —23
+ (pmax) (log (pmm ) * 1) ( N ) + Pmin n

with probability 1 — 44. Setting

R2N\ 1/(28+1) Pmin N 1/2
= Gm) M o)
24log(F535~)

Pmin

then leads to the bound

log(RN/§) R?/(2A+1)
pl/(2ﬁ+1) N2B/(28+1)

min

+ (pmax) ' (Tog (Z::) v 1)2/3 (log(RN/f\)[log(RN))m, (6.27)

h?(p, p*) S

log2ﬁ+1(—R )] Tl—l, and

Pmind

for 3> 0.5 and N 2 [ 2513

min

(5, p)  [Poin OB/ 2
o N

+ (o) (Tog (22 4 g”%W)m P [lopggmé

(6.28)

Pmin Pmin

for 0 < 8 < 0.5, where the hidden constants depend on 3. Choosing § = 1/(4N%)
completes the proof.

6.3. Proof of Theorem 4

We prove the theorem by treating the two terms n, /N and 1/N 2/3 geparately.

6.3.1. The first term nq /N

Without loss of generality, we assume that 8 divides n;. Let dy denote the Ham-
ming distance between two binary vectors. By the Gilbert-Varshamov bound
(see, for example, [32, Lemma 4.10]), there exists a set {w™}}  of points in
{0,1}"* such that
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o dH(O,w(k)) = TL1/4,
o dy(w® w®) > n, /8 for all distinct k, £ € [M], and
e log(M) > ny/30.

For § € [0,1] and each k € [M], let us define a density p® on [n;] x [ns] by

k) _ 4(1 + 5w£k))

pi,j - (4+ (5)711712 for (%J) € [nl] X [77“2]

Note that each p(¥) is indeed a density because > wgk) = ny/4 and thus

( 1+(5w 4 (k)
;pivﬂ Z4+5n1n2 iyo 4+6 Zw N

Also, each p®) is totally positive because it has constant rows and therefore

(k) (k) (k) (k)
PiiPiv1j+1 = Pij+1Pit1,5-

Furthermore, since § € [0, 1], we see that m < pgkj) < 5n1n2 The rela-
tion (6.1) yields

KL(p™,p) < 5h?(p™), pl®). (6.29)

Note that pg? can only take two possible values T 5;1n1n2 or ¢ 415;)'; 51)M, SO

2 J—
( /p;kj) _ /pl(,? ) is either O or 4((4;';4‘;:22. Therefore, we have
2 4(V1T+0—1)2
h2(p*) Oy — ®) _ O = gy (w® 2T 2
(", p") ' Z ( Pi; p173> H(w™, W) (44 6)m
i€[na1], j€[n2]
(6.30)

Together with the condition n;/8 < dy(w®,w®) < ny for k # £, rela-
tions (6.29) and (6.30) yield

2 2
®) 0y s V1+0-1)7 0 0y < 20(V1+6-1)°
W@, p) ato)  nd KL, P < tro)

(6.31)
Additionally, since the KL divergence tensorizes, if we let p®~ denote the dis-
tribution of N independent observations sampled according to the density p on
[n1] X [n2], then

20(v/1+6—1)2
N——k 7
(4+9)

For a sufﬁciently small positive constant ¢i, we choose 6 € [0,1] so that

Nzo(“(iié) D® = ¢iny < 0.11log(M). We can apply [46, Theorem 2.5] together

with (6.31) and (6.32) to obtain that

KL (p™)EN, (p)*N) = N KL(p™,p(?) < . (6.32)

. ny
inf sup P {h2 , >c —} > 0.1.
D p M”?P (em)®" #.p7) °N
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6.3.2. The second term 1/N?/3

We turn to the second term in the lower bound. Consider positive integers
k1 < nq and ks < ng such that 4 divides kikq, and k; divides n; for i = 1,2,
without loss of generality. If k; does not divide n;, with minor revision, the proof
works on a sub-grid [n}] x [n}] where k; divides n; and n,;/2 < n, < n,;. Thus
we make these mild assumptions to ease the notation.

The strategy of proving the lower bound is based on constructing an appropri-
ate packing of supermodular log-densities, which correspond to totally positive
densities. By the Gilbert-Varshamov bound [32, Lemma 4.10] again, we obtain
a set {7(W}M of matrices in {0, 1}%1**2 guch that

o dy(0,7)) = kiko/4,
o dy(7, 7MY > k1Ko /8 for all distinct £,r € [M], and
e log(M) > kik2/30.

For each 7¥), we need to carefully define a log-density ) € R™*"2 that
is supermodular and amenable to distance calculation. To that end, we have
the following construction which simplifies computation later. For ¢ € [n1] and
J € [na], define u; = [ik1/n1] € [k1] and v; := [jka/n2| € [ka]. Moreover, for

any ¢ € [0,1/6] and (4, 7) € [n1] x [n2], we define 0y, ., € [0,36] C [0,1/2] so that

P\iks ™ Fiks Pk, ) P

ksz) —exp(1). (6.33)

To see why Sui’vj is properly defined in the range [d,30], first note that the

quantity 5,“71)]. is larger for smaller u;v; € [k1k2]. Hence it suffices to check that
there exists 0" € [, 3d] such that
5/

kle) —exp(0) = exp (1 +

This follows from that for = € [0,1/6],
exp(z) — exp(0) < exp(l + z) — exp(1) < exp(3z) — exp(0).

) —exp(1).

XP ( ksz

With rff)v , chosen earlier and Suhq}j defined in (6.33), we consider the quantity

~ V5 Ous s
GO o W o D 6.34
J kiko +Tui7vj kiko ’ ( )

and further define the log-density
© ._ 50 5(0)
HZ-J- = Gi’j — log Z exp (Hm-)

s€[n1], t€[na]

_ U;Uj (0) 5ui,v]- _1 (usvt () 5usﬂ)t) 6.35
k1ko +Tui’vj k1ko 8 Z XP k1ko +Tu5,vt k1ko ' ( ' )

s€[n1], t€[na]

=N
%)

VRS

(

Finally, the density p(©) is defined by pi? = exp(f
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The normalization factor 91 in (6.35) guarantees that _, . exp(ﬁ( )) =1, s0

p® is indeed a density. Moreover, crucial to our computatlon later, the normal-
ization factor in fact does not depend on £ € [M] thanks to the definition of
Ou;,w; in (6.33); namely,

_ UsVt £) 6u5,vt
- ()
Z exp k1 ko +Tus,vt k1ko

s€[n1], t€[n2]

> e (i)

s€[n1], t€[ns)

) 1) Lo
Fo [ ) G
) e :Tﬁ?vt:l}"[exp(Hkl&kz)_e}

S e (e
e (i) -

s€[n1], t€[na2]
where the last equality follows from that dy (0, 7(9)) = k;ko/4 and the definitions

> ( 1k>
of us and ;.

s€[n1], t€[nz2]

_ Next, we check that 6 is supermodular, so that p(*) is totally positive. Since
0 € R™1*"2 defined in (6.34) is equal to ) plus a common constant on each

entry, it suffices to check that 9“) —1—914_1 g1 HZ(ZJ_H 95_‘;_1 4 = 0. There are two

cases:
1. If uy = w41 or v; = w41, then we have, respectively, either éf? =
91(?1 7 9(,@])4-1 = 0%_)1 41 Or 0(@ = Hl(ej)_H, 055_)1 j= 91(?1 j+1- In both cases,

the difference above is 0.
2. Otherwise, we have u;y1 = u; + 1 and vj41 = v; + 1. Then it holds

56 | 5(6) (0) 5(0)
ei,j + 97,+1 g+l 91 g+l 91+1,j
ugwy A+ (w4 1) (v + 1) —ug(v; +1) — (u; 4 1)v;
o kiko
l) ¢ l N 4 < 4 N
Té‘t?'uy 6“17”] + T151)+1 UJ+16ut+1v“a+1 Téz?”wrl(sum“ﬁ—l 7'75111’1;] 5“7+17”J
k1ko
S I
~ kiko kiky —

since gui’vj <35 <1/2.
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Having verified that each 8() is a supermodular log-density, we proceed to
study h?(0®,9()) for distinct £,r € [M]. Since the normalization term 9 does
not depend on the index ¢, definition (6.35) yields
Sui V4 1

M 2
kiko — 2

|0(£) o 01(,77)| — |T(€) _ 7—(7') |

1,7 Ui,V Ui,V
By the definition of the Hellinger distance, it holds that
2
200 (r)y _ (€) (r)
h (P( )7]1( )) = Z ( Pij =\ Pij )
i€[n1], j€[n2]

= Z (exp(9§?/2) - eXP(QE,Tj)/Q))Q

i€[n1], j€[n2]

2
= Z pyj) (1 — exp ((Hfrj) - 91(?)/2)) .

i€[n1], j€[n2]
Using the approximation x2/2 < (1 — e%)? < 222 for |z| < 1/4, we obtain

1 r 2 r 2
g 2 =) <@ p) <g ST Pl -6)"

i€[n1], j€[n2] i€[n1], j€[n2]

DN | =

Furthermore, it is easily seen from (6.35) that |9§€) - 9§2,| < 1.5, so that 1/5 <

pgfj)/py,)f < 5 for any (7,7), (¢, j) € [n1] X [n2]. As a result, we obtain

pfij) < % and thus

_1
5ning —

1 112 5 2
00 — M7 < h2(p®, pM) < 9@ —oM|° (6.36
G 00— 0 <R ) < P00 g0 (650)
In addition, it follows from (6.1) that
KL, pt) < 1102, p). (6.:37)

It remains to study [|§) — 0(")||3. To this end, we obtain from (6.35) that

T 817 2
ORNC/ET D DGR ()

i€[n1],j€[ns2] i€[n1],5€[n2]
nin2 . (p) (r))2 Szzw
= Z ki k (Tuﬂf _Tuﬂ)) k2k2'
welki],o€lka] 12 1h2

Since 8., € [6,36], we have the bounds

3*ning )2 .
k3k3 Z (7—1(51)) - T’LS,,’Q))) S Hg(@) - 9( )Hg
12 uelki]welke]
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95%n1ny (0) _ ()2
< k3k3 Z (Tu,v - Tu,v) :
™2 uelk],velks]

By the construction of the packing {T(Z)}ge[M],

kiks < Z (7_(@1)} _ T(r))2 _ dH(T(e)’T(r)) < kyko.

8 u€lk1],v€ k2] , 7

Therefore, combining the above bounds yields that

52TL1’/7,2 9527711”2
<109 — )2 < 12
8k3k3 — I Iz < k2k2

This together with (6.36) implies that

52 ) 4562
< K2 (p® p <
320k2k% = (™)

< e (6.38)

To complete the proof, we may choose § = ¢; (&]\];3)1/2 € 10,1/6] for a suffi-
ciently small constant ¢; > 0, provided that k3k3 < N. Then the bounds (6.38)
and (6.37) combined imply that

KL ((p(k))®Na (P(Z))®N) = N KL(p®, p'") < cakiky < 0.1log(M).

Thus, we can apply [46, Theorem 2.5] together with the lower bound in (6.38)
to see that

k1ka
inf sup P ®N{h2 b.p*) > e } > 0.1,
P p* MTPs (e7) ( ) N
where we continue to use the notation éz’,j = logpi,; and 67 ; = logp; ;.
31.3

Note that kjks needs to be chosen so that § = cl(%)l/2 < 1/6. Hence if
N < n3n3, then we choose kjky =< N'/3 to obtain the lower bound of order
N=2/3 1t N = n‘i’n%, then we choose k1 = n1 and ks = no to obtain the lower
bound of order ™z2.

6.4. Proof of Theorem 7

We first set up the proof for smooth densities, and then prove the theorem for
each regime of 5.

6.4.1. Differential characterization and setup

We begin by stating a short lemma that yields a condition for total positivity
in terms of the derivatives of a density.
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Lemma 13. A function f € C%([0,1]?) fulfills

fw,2) + f(5,9) > f@,2) + fw,y), forall0<e<w<1,0<y<z<1
(6.39)

if and only if
O Oaf(x,y) >0, forall z,y €0,1]. (6.40)

Moreover, if p > 0 is a probability density in C*([0,1]?), then p is totally positive
if and only if log p fulfills (6.40), if and only if

1 1
————01p(z,y)02p(x,y) + ——0102p(x,y) >0, for all xz,y € [0,1].
PCAE 1p(2,y)0ap(,y) ek 2p(2,y) f y €[0,1]
(6.41)

Proof. The first claim follows easily from the fundamental theorem of calculus
and the continuity of f. To obtain the second claim, note that because p is
bounded away from zero, we can take logarithms, and the MTP5 condition (3.1)
is equivalent to (6.39) with f = logp. Computing the derivative of logp by
applying the chain rule finally yields the condition (6.41). O

To prove Theorem 7, we distinguish three cases, 5 <1, 8>2,and 1 < § < 2.
In the first case where 8 < 1, it suffices to consider densities that only depend
on one variable, which fulfill the MTP5 constraint automatically, leading to the
rate N—26/(26+1) for the estimation of a one-dimensional Holder function. On
the other hand, in the case 8 > 2, we appeal to two-dimensional constructions in
density estimation. The MTP5 condition is a second-order constraint and hence
can be satisfied by a carefully chosen set of Holder functions for 8 > 2, leading
to the rate N—28/(28+2) Finally, in the remaining regime 1 < 8 < 2, we in fact
use the construction for 3 = 2, yielding the rate N—2/3.

6.4.2. Case <1

For 5 < 1, we apply an argument based on Fano’s inequality, [46, Theorem 2.5].
The following construction is standard in proving lower bounds for nonparamet-
ric estimation; see [46, Section 2.6], for example.

Fix a nonzero function g € C*°(RR) supported in [0, 1] such that [ g(x)dz =
0 and g is 1/2-Lipschitz. Let k € N and assume without loss of generality that it
is divisible by 4. Denote by z;, j = 1,...,k, the left endpoints of an equidistant
subdivision of the interval [0, 1], that is,

leading to the subdivision

1
Sj :(zj30)+[07E] x[0,1], j=1,...,k,



Estimation of totally positive distributions 2637

of the square [0,1]%. With this, define the functions g; € C*°([0,1]?) as

gi(e,9) = 150(k(a — ;). (9) €017, =1,k

Note that each g; is supported in S;. Moreover, we have g; € D(8,1/2) for
B < 1:for (z,y),(z',y’) € S;, by the 1/2-Lipschitzness of g,

193Ce,) — 950", 9")| = 5l(h(z — 7)) — g(k(a' — )]
1
2%

For (z,y) € S; and (2',y’) € S; in the case j # j', we obtain the same estimate
by applying the above to segments of the line connecting the two points. This
also shows that [|g;[lc < 1/2 as we can take (z,y) at the boundary of S; so
that g;(z,y) = 0.

By the Gilbert-Varshamov bound [32, Lemma 4.10], there is a set {7(©}}
with 78 € {0,1}* such that

o dy(0,7Y) =k/4,
o dy(7, 7MY > /8 for all distinct ¢,r € [M], and
e log(M) > k/30.

For each ¢ € [M], set

1 1
< gralk@ =) < g5 lk@ o) = Sle - o).

k
pO(z,y) =1+ ZTJ@gj (z,y).
j=1

As [|gjlloe < 1/2 for each j, all p) are bounded within [1/2,3/2]. Since g
is mean-zero, p'¥) is a density. We also have that p(©) € D(3,1/2) by definition
because g; € D(5,1/2). Moreover, checking condition (6.41) in Lemma 13 yields
that all densities are MTP5, since they only depend on .

To check the conditions of [46, Theorem 2.5], we first apply (6.1) to obtain
that

KL(p®, p™) S (0, p1), £,k € [M],

since all densities are bounded from above and below. Next, the boundedness
of the densities and the mean value theorem together imply that

W2 (o, p) = /[ P = E) =10 = o,

which can be estimated as

2
169 = o liaoney = 3 [ (09 =p(2))
1

- > (RIS

- (0) (r)
JiTy 7'57'].
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1 1
~ k2641 § : / (9(x))* dz
j"T(é);éT(T) 0
I J

= dy (0, 72 < 726

where the hidden constants only depend on the choice of g, which can be made
absolute.
That means on the one hand that

KL((p")®N, (p)2N) < NE27,
and on the other hand that

h?(p), p)) 2 k=20

Thus, if we pick
k= C(Nl/(2ﬁ+1)1

for a sufficiently large constant C' > 0, we can ensure that
KL((p“)2N, (p'7)®N) < 0.110g(M),

and we conclude by [46, Theorem 2.5] that

— 1
inf  sup P(peyen (h2(ﬁ, p*) > cQszfl) > -
P p~eD(B,R) 3

for a constant co > 0.

6.4.3. Case § > 2

For 8 > 2, we need to construct hypotheses that depend on both variables x
and y. Let k£ € N to be determined later, and without loss of generality, assume
that k is divisible by 4. Fix a non-zero, non-negative function f € C*°(RR) with
support in [0, 1], and set

g(z,y) = f(x)f(y).

Moreover, for 4, j € [k], define w; ; as the corners of an equidistant partition of
[0,1]? denoted by S; ;, that is,

1 i INT 112
wi’j:<zk‘ ’jT) and SiJ—:wi,jJr[O,ﬂ, i,j € [K].

In addition, we let

9s(2) = 5ok —wig)), = €[00,
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which is supported in S; ;. Note that for any » € N and a € {1,2}", we have

r

k (o3
7507 9(k(z —wi;)).
Since g € C*°(IR?), it is easily verified that by definition, g; € D(3, C1) for some
constant C7 > 0 that only depends on g.

By the Gilbert-Varshamov bound [32, Lemma 4.10], there is a set {7()}},
such that 7 € {0, 1}*** and

o dy(0, 7)) = k2 /4,
o dy(7, 7MY > k2/8 for all distinct ¢,r € [M], and
e log(M) > k?/30.

0%gi,j(z) =

Next, we associate a density to each 7(Y) such that we can control the pair-
wise distances between these densities. Similar to the proof of Theorem 4, we
claim that there exists a useful choice of scaling constants that ensures that the
normalization factor of the log-densities stays the same among all /.

For a fixed § € [0,1], we claim that there exists a constant Cs such that for
every (i,7) € [k]?, there exists 8; ; € [J, C38] with

/ [QXP <Z12’2 + gwg”(z)) —exp (z122)| dz
S:

=:hi,;(5i,;)

= /S (exp (14 0g1,1(2)) —e)dz. (6.42)

=:H

To see why this is true, denote the left-hand side of (6.42) by h; ;(d; ;) and the
right-hand side by H as above. Observe that h; ; (5”) is a continuous function of
Si, ; as a consequence of the bounded convergence theorem. Hence, the interme-
diate value theorem allows us to conclude (6.42) if we can show that h; ;(6) < H

and h; j(C30) > H. The first inequality h; ;(6) < H follows from the fact that
exp (2’12’2 + Swg”(z)> —exp(z122) < exp (1 + &Jg”(z)) —exp(1)

and changing the limits of the integral. The second inequality h; ;(C30) > H
follows from the following estimates. For h; ;(C30), we have by the fundamental
theorem of calculus and the fact that exp(t) > 1 for ¢ > 0, that

z122+C30g4,5(2)
hi ;(Csd) = / / exp(t)dtdz
Si;Jz

122

). C369i,i(z)
> / / exp(t)dtdz
Si,j 0

Cgéglyl(z)
= / exp(t) dtdz
5171 0
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Z 035 9171(2) dz.
S11

On the other hand, for H, we similarly have

dg1,1(2)
H= / / exp(l+t)dtdz
S1,1 40

091,1(2)
=e / / exp(t) dt dz
Sl,l 0

< e sup exp(591,1(2))/ g1,1(2)dz
S1,1

z€S1,1

<e sup exp(gm(z))/ g1.1(2) dz.
S1,1

z€81,1

By definition, it holds that ||g1.1|lcc < ||¢|lco- Therefore, with the above estimates

combined, we see that if C5 > e-exp(||g||«), then h; ;(C30) > H, and thus (6.42)
is proved.
For each 79, let us define

"7(2)( =z122 + Z di, jgz,j
i,5€[k]

which after normalization leads to the log-densities

79(2) = 7O (2) — log / exp(9 (w)) duw,

[0,1]2

=N
and the densities p(¥(z2) := exp(n®(2)).
As in the proof of Theorem 4, 91 does not depend on /£, since by the fact that
gi.j is supported on S; ;, then (6.42) and that dy(0, 7)) = k?/4, we have

N = exp <z122 + Gii( ) dz
- > w601

1,jE[k]
— Z / exp <2’12’2 + 7' 5 5595 (2 )> dz
©,j€[k]
= Z / exp 2122 dz
i,j€[k]
+ Z [/ exp <2122 + S”g”(z)> dz —/ exp (2122) dz]
(i) (/z) 1 i.j i.j

/ exp (z122) dz 4 dn(0,79) / (exp (14 dg1.1(2)) —e)dz
[0,1]2 S11
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2

k
= / exp (z122) dz + — (exp (14 6g1,1(2)) —e)dz
(0,1)2 4 Js, .

1
= / exp (z122) dz + —/ exp |1+ ig(z) —e| dz. (6.43)
[071]2 4 [071]2 kﬁ

Additionally, from the last line (6.43) of the above calculation, we can also
conclude that 91 can be bounded from above and below by positive constants
independent from k.

Moreover, for all £ and z € [0, 1]?, it holds that

01021 (2) = 010271 (2)
=1+ Z Ti(?&,jalé‘zgivj(z)

i,5€[k]

=1+ ) )by kﬁalam (2 = wi ;)
i,j€[k]
k2
>1- C35k—5 sup |01029(2)|,

which, in view of 8 > 2, can be made positive if § is chosen to be a sufficiently
small constant. Lemma 13 then implies that all p(e) are MTP, densities.
In addition, for any r € N and « € {1,2}", we have by definition

0°p“(2) = p(2) - 009 (2)
(2122 + Z ng log‘ﬁ)

i,j€[k]

. <8a(2122) + Z Ti(?gi,jao‘gi,j(z)).

i,j€[k]

Since 91 is bounded from above and below by positive constants, the first factor
(that is, p¥)(2)) is bounded from above and below. Also, we have that g; ; €
D(B,C1) and 5” < (34, so it is easily seen that if  is chosen to be a sufficiently
small constant, then p(*) € D(ﬁ ) by definition.

Finally, we bound KL(p®, p() and h(p®, p(")). We have seen above that
p'¥ can be bounded from above and below, that is, C; ' < p(f) < Oy for a
constant Cy > 0. Moreover, we can choose Cy so that —Cy < 77 ) < C4. For the
Hellinger distance, we write

h2(p®, o) / (\/p(e) \/p(r)(z)>2 dz

:/[o,uz (expn®2)/2) — exp(n (2)/2))

= [ 270 (e -0 06) de
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By the Taylor expansion, we can obtain a quadratic control of the exponential
term of the form

22 < (1- exp(:zc))2 < Cyaz?, z€ [—C4, C4,

where C5 > 0. This allows us to bound

1

4Cy 1]2(77(4)(2) — i (2)2dz < W2 (O, p)

CsC - _(r
< S 00) -i ) e
[0,1]

Taking into account (6.1), it remains to bound the L? distance between /() and
7("). Using again that the support of gij is in S; j, we have

2
/[O 06 i @) e = /[ 1]2( S 0 =i bis(e)) s

i,j€[k]
4 r s
= Z (Ti(,j) _Tz’(,j))Q(siz,j/ gi,j(z)Q dz
ij€lk] S
< > (9 _Ti(g))QCB?(SQ/ g11(2)?dz
S11

i,j€[k]

1
— du(+O 242 / 24
H(T y T ) 3 L28+2 [0,1]2 g(Z) z

03?52 / 9
< g(2)"dz,
k20 Jiop2

where we changed the limits of integration by substitution and used the bound
dn (T(é), T(T))~ < k2. Similarly, we can derive a lower bound of the same order,

using that &;; > § and dp(7®,7(") > k2/4. In conclusion, there exists a
constant Cg > 0 such that

L0 o 0
ngTﬁSh(p ") < Cs

To finish, we note that for the KL condition of [46, Theorem 2.5] to hold, we
need

KL, (o)) = N KL(p. o)

52
k28

52
< CIN R (Y, p") < NCoCrp55 < 0.1log(M),

which, in view of the bound log(M) > k?/30, can be fulfilled by choosing § to be

a sufficiently small constant and k = [N ﬁ] This then leads to a separation
of the hypotheses of

h(p®, ") > esNF2,
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so [46, Theorem 2.5] yields

inf sup  Prpojon (h(5,07) = sNT ) >
P p*€D(B,R)

Wl

6.4.4. Case 1 < <2

For 1 < 8 < 2, note that D(2, R) C D(f, R), so the above construction in the
case 8 = 2 still remains valid, which we can use to conclude

inf  sup Ppejen (h2(/37p*) > QN‘%) >

P p*eD(B,R)

which finishes the proof.

1
37

7. Conclusion and discussion

In this work, we studied minimax estimation of discrete and continuous two-
dimensional totally positive distributions. In particular, for estimation of [-
Holder smooth distributions, we established the minimax rates of estimation in
the squared Hellinger distance up to polylogarithmic factors, for any 5 > 0.5.
In addition, we proposed and implemented efficient algorithms to compute our
estimators. The numerical experiments supported our theoretical findings.

Several questions are left open for future research. First, for f € (0,0.5),
the upper bound for our estimator does not match the minimax lower bound.
Moreover, our bounds do not capture the optimal dependency on the pointwise
infimum or supremum of the ground-truth density. These are possibly artifacts
of our estimation procedure or proofs. Second, we studied a variant of the MLE
with an extra box constraint. While this box-constrained MLE has almost the
same computational cost and empirical performance as the original MLE, it is
theoretically more desirable to establish the same guarantees for the original
MLE. Third, it is of significant interest to study estimation of totally positive
distributions in general dimensions. However, our current proof techniques do
not generalize to higher dimensions straightforwardly, and we leave this to future
research.

Appendix A: Nonexistence of MLE under MTP; constraint alone
In this section, we show that without further regularity assumptions on the
underlying densities, the MLE under the MTP5 constraint does not exist.

Lemma 14. Let p* be an MTPy density on [0, 1]? with respect to the Lebesque
measure. Let X1,...,Xn be N i.i.d. observations from the corresponding prob-
ability distribution. Then, the optimization problem

N
maleog p(X;) s.t. pis an MTPy density w.r.t. the Lebesgue measure
i=1
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s almost surely unbounded. Consequently, the MLE under the MTPy constraint
does not erist.

Proof. Denote by IP,- the probability distribution corresponding to p* and by
]P;@*N the probability distribution of N i.i.d. observations from IP,«. Let

.A = {(Xz)l 7é (Xj)l for all 4 7& j}

Then,
PN =1-PEN( ) (X = (X))
i,JE[N], i#]
>1- > / Wy = 2za}p™ (21, y1)p" (22, y2)day dza dy) dys
ije[N], iz 70 1
(A1)
—1, (A.2)

where the second line (A.1) follows from the sub-additivity of the probability
measure and the definition of A, and the third line (A.2) follows from the fact
that the integrand in (A.1) is only non-zero on a lower dimensional subset
of [0,1]* and hence is zero almost everywhere with respect to the Lebesgue
measure.

Similarly, if B = {X; ¢ {0,1} for all i}, then (P*)®N(B) = 1.

For the rest of the proof, assume that the event A N B occurred. Because of
the definitions of A and B, and the fact that IV is finite, the minimum distance
between the first coordinates is positive, as is the minimum distance to any of
the interval boundaries, that is,

0= ( min  |(Xi)1 — (Xj)1|) A ( min (Xi)l) A ( min (1 — (Xi)l)) > 0.

i,5E[N], i#j i€[N] i€[N]

Let f € C*°(IR) be a non-negative bump function supported in [—1, 1] such that
Jg f(x)dz =1 and f(0) = fo > 0. For 0 < € < /2, set

1 L1 X-)
Then,
1 N1, [z~ (Xi)
(2, y) de dy = N (/2 g
/[071]2p(xy)xy /[o,l]N;6f< ; )m
1 N
P RIGLaas

SO p. is again a probability distribution on [0, 1]2. Moreover, because p, does
not depend on y, by Lemma 13, p. is MTP5.
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Finally, for the log-likelihood, we obtain

B élog @) (A3)
:N10g<§)—>oo7 for € — 0,

where (A.3) follows because by the definition of A and of p., the individual
bumps centered at the observations X; do not intersect. Combined, by choosing
€ arbitrarily small, we can obtain an arbitrarily large log-likelihood. In turn, the
MLE does not exist. O

Remark 15. FEven if the MLE is not defined, there could potentially exist a dif-
ferent estimator over the whole class of MTPo with good estimation properties.
However, the estimation problem over the whole MTPy class bears other signs
of ill-posedness: Since

U D(B,R) C{p:p is MTP,},
Be(0,1)
the lower bound in Theorem 7 suggests that no estimator p can attain a polyno-

mial estimation rate of
h?(p,p") S N°°,

for any a > 0 over the whole MTPs class. While this does not explicitly exclude
possibly slower rates of convergence such as log(N)~t, this still serves to show
that the estimation problem without further regularity assumptions is ill-posed
in the sense of not admitting polynomially fast rates.

Appendix B: Existing results

We state and prove some results that are known or follow easily from existing
ones.

B.1. Concentration of multinomial random variables

The following is a standard tail bound for a binomial random variable.

Lemma 16. Suppose that Y has the binomial distribution Bin(N,x), where N
is a positive integer and x € (0,1). Then for y € [0,1], we have |Y — Nz| < Ny

with probability at least 1 — 2 exp ( - Nm>

Proof. This follows immediately from Lemma 6 of [31] by taking r = (x —y) V0
and s = (x +y) AL O
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Next, we present a lemma that follows from Bernstein’s inequality. Recall
that for a vector a € R™ and an entrywise positive vector b € R™, we denote
the b-weighted fo-norm of a by |lall, = (337, bia?)'/2.

Lemma 17. Suppose that 'Y is a random vector in R™ having the multinomial

distribution Multi(N, p), where N is a positive integer and p = (p1,...,pm) ' is
a vector in (0,1)™ with Y .~ p; = 1. Then, for any vector a € R™,

—3t?
IP{ (Y — Np,a) 2t}§2exp( )
| | 6Nall3 + 4llalloot
Proof. Let Iy,...,In be iid. Multi(1,p) random variables. That is, we have
I; = i with probability p; for each i € [m] and j € [N]. Then we have ¥; =
Z;V:l 1{I; =i}, and thus

. i=1 Nz:1 j=1 N
=YY= -pa=) (a fZM) S (ar, - Efay,)).

Jj=11i=1 j=1 j=1

Since this is a sum of i.i.d. zero-mean random variables with absolute values
bounded by 2||a]|oo, Bernstein’s inequality (Theorem 2.8.4 of [47]) implies that

—t2/2 )

P{IY — M) > ) < 200 (/2 ),
K p.a)| >t < 2exp o2 1 3l ol /3
where 0% = NE(a;, — Elaz,])? < NIE[LL%J_] = NY." pia; = Nlal2. O

The following lemma is concerned with projections of a multinomial random
vector.

Lemma 18. Suppose that Y is a random vector in R™ having the multinomial
distribution Multi(N, p), where N is a positive integer and p = (p1,...,pm) ' is
a vector in (0,1)™ with Y i~ p; = 1. Given vectors vi,...,ve € R™, for any
0 € (0,1], it holds with probability at least 1 — § that

Y — Np,v;)| < ; Nlog(l/6 oo ) log(£/6).
ma [V — Np, )| < (max gl ) VN 108(078) + (mx e ) low(£/6)

Proof. The result follows from Lemma 17 and a union bound, with the choice
of t equal to a constant times the right-hand side of the above inequality. [

B.2. MLE for MTP, distributions on a grid

Given the observation Y defined by (2.2), it is well known that the MLE (2.4)
can be equivalently defined using the following convex program, which can be
solved efficiently:

GMLE . *argmax Z Oii, (B.1)
popzo N
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Lemma 19. The two definitions (2.4) and (B.1) of the MLE 6 = M'E qre
equivalent.

Proof It suffices to verify that 0 given by program (B.1) always satisfies that
Zm e%i = 1. Suppose this is not the case, and define § € R %2 by 9” =

0 —log >, y et 5o that Do 9.5 = 1. Then we have

since », ;Y ; = N and log(z) + 1 < z for any = # 1. However, this gives a
contradiction. O

B.3. Rate of convergence of the empirical frequency matrix

Let us consider the empirical frequency matrix Y/N in the discrete setting,
where Y is defined by (2.2). Without leveraging the MTP; constraint, it achieves
the following trivial rate of estimation.

Lemma 20. In the setting of Section 2, the empirical frequency matriz Y/N
satisfies
ning
E[h*(p*,Y/N)] < :
[P0 Y/N)] < —
Proof. For any i € [n1] and j € [ng], we have Y;; ~ Bin(N,p; ;) marginally.
Thus we have

ni no
E[h*(p*, Y/N)] = ZZE(\/EJ VY ,]/N)

=1 j=1

-3 s
i=1 j=1 pi;t/Yii/N
= (P /N)?

S N A i, 7.7
;; Pi;

:iipz,] pz,_] < 7’7/177/2.
i=1 j=1 pla] - N 0

Appendix C: Further details on numerical experiments
C.1. Implementation details

All simulations are run with Julia 1.4.1 [5], where, besides the standard li-
brary, we use the libraries Cubature (version 1.5.1), Distributions [30, 4] (ver-
sion 0.23.2), StatsBase (version 0.33.0), PyPlot (version 2.9.0), and GLM [3]
(version 1.3.9).
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Algorithm 2 is stopped at a relative distance in the Frobenius norm between
two consecutive iterates of less than 10~ or 400,000 iterations, whichever comes
first. Similarly, Algorithm 3 is stopped at a relative distance of 107> or 100 it-
erations. The distribution p* in is sampled as a multinomial distribution via
the Distributions package, while the distribution corresponding to the density
p* in is sampled via rejection sampling from the corresponding Gaussian dis-
tribution. For the calculation of Hellinger distances in the continuous case, we
use numerical integration with the Cubature package.

For the calculation of the oracle estimator in Figure 4a, we computed the
corresponding estimators for n € {4,7,10, 15, 23, 36, 55, 84,130, 201} and picked
the n achieving the best squared Hellinger distance to the ground truth in each
case.

C.2. Numerical instability of the MLE for small values of N

As observed in Section 5, for small values of N, Algorithm 3 can become unstable
and values in the iterate # can underflow due to a large number of zeros in the
empirical frequency matrix. To illustrate this, we perform the same experiment
as in Figure 2a with N = 100, which leads to a large error for the unconstrained
MLE, which we plot in Figure 6.

Hellinger distance
n =16, log(L(p *)) = 2, varying N

1014 4
—8— empirical frequencies
MLE
10t 4 —— lower-bounded MLE
108 4
*
Q
§ 10°
&
<
102 4
*—
o %
T T

Fic 6. Instability for small sample sizes in the Hellinger distance for wvarying N and
log(L(p*)) = 2

However, this behavior can be remedied by introducing an additional con-
straint of

0cC:={0:exp(0i;)>¢, i,j€[n]x[na}. (C.1)

in the calculation of the MLE, where € is small. For example, in this experiment,
we specify e = e730. This leads to the estimator

. 1
0" := argmax —(Y,6) — Z i,

T
DoD " >0 i€[n1], j€n2]
0ec
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O =Oy—log > e foriefmlje ool
r€[n1], s€[nz]

The constraint (C.1) can be incorporated into Algorithm 2 in the same way as
the constraint § € C(Y") by iterative projection of each component §; ; onto the
corresponding interval [log(e),00). As can be seen in Figure 6, this modifica-
tion (“lower-bounded MLE") is sufficient to overcome the problem of numerical
instability when facing a small sample size.
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