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ABSTRACT

Recently there has been a surge of research on improving the com-
munication efficiency of distributed training. However, little work
has been done to systematically understand whether the network
is the bottleneck and to what extent.

In this paper, we take a first-principles approach to measure
and analyze the network performance of distributed training. As
expected, our measurement confirms that communication is the
component that blocks distributed training from linear scale-out.
However, contrary to the common belief, we find that the network
is running at low utilization and that if the network can be fully
utilized, distributed training can achieve a scaling factor of close to
one. Moreover, while many recent proposals on gradient compres-
sion advocate over 100X compression ratio, we show that under full
network utilization, there is no need for gradient compression in 100
Gbps network. On the other hand, a lower speed network like 10
Gbps requires only 2x-5x gradients compression ratio to achieve
almost linear scale-out. Compared to application-level techniques
like gradient compression, network-level optimizations do not re-
quire changes to applications and do not hurt the performance
of trained models. As such, we advocate that the real challenge
of distributed training is for the network community to develop
high-performance network transport to fully utilize the network
capacity and achieve linear scale-out.

CCS CONCEPTS

« Networks — Network measurement; - Computing method-
ologies — Machine learning.
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1 INTRODUCTION

Deep Learning is a fundamental building block of modern Internet
services, from personalized recommendation and language trans-
lation to content understanding and voice control. A Deep Neural
Network (DNN) model is first trained on a dataset to achieve high
accuracy or other evaluation metrics and then deployed to target
platforms to serve requests from end-users. We focus on training
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in this paper, which is critical to generate high-quality models for
deep learning applications.

DNN models are getting larger and deeper. The famous analysis
from OpenAl [1] shows that the amount of computing needed to
train the state-of-the-art model doubles every 3.4 months, while in
comparison, the number of transistors on a chip only doubles every
18 months even when Moore’s law is still effective. With the end of
Moore’s law, people have turned to specialized processors such as
GPUs [2] and TPUs [3] to scale up computation. Yet, compared to
the fast-growing demand of DNN models, the computing capability
provided by a single chip is still limited.

As a result, training large DNN models are inevitably getting
more and more distributed by scaling out. The dream for every scale-
out system is linear scalability. That is, given that the throughput
of a single device is T, the throughput of a system with n devices
should be nT. Let the throughput actually achieved by the system
with n devices be T,,. We define the scaling factor as

Tn
ling factor = —. 1
scaling factor T (1)

Linear scale-out requires the scaling factor to be 1 for any n.

Distributed training with data parallelism strategy includes mul-
tiple iterations. Each iteration can be divided into a computation
phase and a communication phase. In the computation phase, each
worker feeds a batch of data into the model, and performs a for-
ward pass and then a backward pass of the model, to compute the
gradients for learnable parameters. In the communication phase,
the workers exchange their gradients, and compute the average to
update the parameters via all-reduce operations.

It is a common belief that the network bandwidth is the bot-
tleneck that prevents distributed training from scaling linearly. In
particular, the computation phase is embarrassingly parallel, as each
worker processes its own batch independently. The throughput of
n workers is n times that of one worker for the computation phase,
and only the communication phase can slow down the training
process.

In response to this, there has been a surge of research from
machine learning and systems communities on improving the com-
munication efficiency of distributed training in recent years [4-15].
These works are primarily done at the application layer, assuming
that the network has done its best to maximize communication effi-
ciency. Yet, little work has focused on systematically understanding
whether the network is the bottleneck and to what extent.

In this paper, we take a first-principles approach to measure
and analyze the network performance of distributed training. We
perform a measurement study on the training throughput of several
representative DNN models on AWS. Our measurements show that
the system can achieve a scaling factor of only 60% with 64 workers
(eight servers with eight GPUs each) for VGG16. As expected, the
measurement confirms that communication is the component that
prevents distributed training from linear scale-out. However, con-
trary to the common belief, we find that the network bandwidth is
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not the bottleneck, because it is running at low utilization. While
the network provides up to 100 Gbps bandwidth for each server,
the communication phase uses no more than 32 Gbps for transfer-
ring gradients. We further confirm that the low network utilization
is not due to the CPU bottleneck. In fact, the CPU only runs at
14%-25% utilization in the communication phase.

Then the natural question is what if the network can run at 100%
utilization. We take a white-box approach to get timing informa-
tion of layer-wise computation in model training. Based on the
logging results, we perform a what-if analysis, in which we con-
trol the network bandwidth and assume full bandwidth utilization.
The results of the analysis show that with full network utiliza-
tion, distributed training can achieve a scaling factor of over 99%.
We further extend the what-if analysis with an application-layer
optimization—gradient compression. Based on further analysis, we
find that a compression ratio ranging from 2X to 5x is good enough
for distributed training to achieve a scaling factor of close to 100%
in 10 Gbps network.

Compared to application-layer optimizations, we argue that
network-layer optimizations should be prioritized for speeding up
distributing training. First, network-layer optimizations are trans-
parent to the applications. They do not require any changes to the
applications or the training systems. Second, unlike lossy gradient
compression in the application layer, network-layer optimizations
do not hurt training convergence rate or model performance.

In conclusion, we make two major contributions. First, we per-
form a measurement study to systematically measure and analyze
the performance bottleneck of distributed training. Contrary to
the common belief, it unveils that the network speed is not the
problem, but the software implementation of the communication
phase is. Second, we perform a what-if analysis to evaluate the
benefits of high-performance network transport for distributed
training. It reveals that merely optimizing the network transport
can already increase the scaling factor to close to 100%, and that ad-
ditional application-layer optimizations are only required in lower
speed networks and we do not need aggressive optimizing strate-
gies claimed in past works [5, 16, 17]. As such, we advocate that
the real challenge is for the networking community to develop
high-performance network transport for distributed training to
fully utilize the network capacity and achieve linear scale-out.

Open-source. The code is open-source and available at
https://github.com/netx-repo/training-bottleneck.

2 PROFILING TRAINING PERFORMANCE

In this section, we describe an empirical study we performed to
measure and analyze the bottleneck in distributed training.

2.1 Profiling Setup

Training hardware. The experiments are conducted on Amazon
Web Services (AWS). We use Amazon EC2 p3dn.24xlarge instances
with 8 GPUs (NVIDIA Tesla V100), 96 vCPUs (2.5 GHz Intel Xeon
P-8175M processor), 768 GB main memory, 256 GB GPU memory
(32 GB for each GPU), and 100 Gbps network bandwidth. The 8
GPUs on each instance support NVLink for high-performance peer-
to-peer GPU communication. We vary the number of instances
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Figure 1: Scaling factor vs. number of servers involved.

from 2 to 8 (i.e., from 16 GPUs to 64 GPUs) in the experiments to
evaluate the scaling factor.

Training software. We use Horovod [18] as the distributed train-
ing framework. Horovod is one of the most widely-used frameworks
for distributed training. It supports popular deep learning frame-
works such as TensorFlow [19], PyTorch [20] and MXNet [21]. It
uses the all-reduce strategy for distributed training, which per-
forms an all-reduce operation among all workers after each itera-
tion to compute the average of the gradients for parameter update.
Horovod uses a combination of NCCL and MPI as the underly-
ing layer to implement all-reduce. We use PyTorch as the training
framework for a single GPU, and use Horovod to scale it to multiple
GPUs. The software versions used in the experiments are Horovod
0.18.2, PyTorch 1.3.0, Torchvision 0.4.1, NCCL 2.4.8, cuDNN 6.6.0.64,
and Open MPI 4.0.2. Horovod, NCCL, and Open MPI use Linux
kernel TCP.

Workloads. We use three models in the experiments, i.e.,
ResNet50 [22], ResNet101 [22] and VGG16 [23]. We choose these
models because they are widely used in computer vision and dis-
tributed training benchmarks. Also, they have representative char-
acteristics. Specifically, ResNet50, ResNet101, and VGG16 have
small, medium, , and large parameter sizes, respectively. The model
sizes are 97 MB for ResNet50, 170 MB for ResNet101, and 527 MB for
VGG16. Besides, VGG16 has a layer with 400MB parameters, while
parameters in ResNet series are distributed more evenly. ImageNet
dataset [24] is used for experiments, and we fixed the batch size to
32 for each worker involved in training.

2.2 What is the current scaling factor?

The first step is to understand the current scaling factor that can
be achieved by an off-the-shelf distributed training framework like
Horovod. We use the throughput of a single GPU (i.e., the number
of images that can be processed by a GPU each second) as the base
throughput T. We vary the number of servers in the experiments.
For each case, we measure the total throughput that can be achieved
by the servers and compute the scaling factor based on Equation 1.
Figure 1 shows the scaling factor for each model under different
numbers of servers. Remember that we use p3dn.24xlarge instances,
each of which contains 8 GPUs. So the figure shows the scaling
factor from 8 GPUs to 64 GPUs. The results indicate that the scaling
factors for ResNet50, ResNet101 and VGG16 are 75.05%, 68.92%,
and 55.99% for 2 servers, 74.24%, 66.28% and 63.01% for 4 servers,
and 71.6%, 66.99% and 59.8% for 8 servers. ResNet50 achieves better
scaling factors than ResNet101 and VGG16 as it has a relatively
smaller model size to ease the communication burden. Nevertheless,
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Figure 3: Scaling factor change with bandwidth (ResNet50).

for all the three models, Horovod cannot achieve a scaling factor of
more than 76% on AWS.

These results confirm that the current off-the-shelf distributed
training framework like Horovod cannot achieve linear scaling but
with a significant gap.

2.3 Is computation the bottleneck?

Distributed training contains a computation component and a com-
munication component. To figure out why linear scaling cannot be
achieved, we start with the computation component. In the com-
putation component, each worker feeds a batch of labeled images
to the neural network model and computes the gradients locally. If
the computation time for a worker to finish its batch increases with
the number of workers, then the computation component would
be the bottleneck of distributed training.

Figure 2 shows the computation time (for the forward and back-
ward pass) for the three models with different number of workers.
The computation time keeps almost the same, regardless of the
number of workers. The time gap between single GPU and multiple
GPUs comes mainly from two factors. First, the runtime for the
backward pass in distributed training not only includes backward
operations but also the all-reduce operations since they are asyn-
chronous on GPU and overlapped. Whereas, for the single GPU
case, there is no all-reduce operation. Second, Horovod injects a
hook for each layer in the model during distributed training, which
does not exist in single GPU training. However, even considering
this computation time gap as an inevitable side effect, the scaling
factor should still be bounded around 90% instead of the measured
56%-75%, because the measured computation time increases at most
15% in distributed training. Thus, we argue computation time dif-
ference here is not a factor for distributed training not able to scale
linearly.

NetAl’20, August 14, 2020, Virtual Event, NY, USA

[0 ResNet50

I ResNet101

I VGG16

-
o
o

80
60
40
20

Bandwidth Utilization (%)

1Gbps  10Gbps 25Gbps 40Gbps 100Gbps

(a) Network (Recv) utilization.

[ ResNet50 I ResNet101 I VGG16

100

80
60
40
20

Bandwidth Utilization (%)

1Gbps  10Gbps 25Gbps 40Gbps 100Gbps
(b) Network (Send) utilization.

Figure 4: Network bandwidth utilization.

2.4 Is network the bottleneck?

Now we turn to the communication component. Since the com-
putation component takes the same amount of time regardless of
the number of servers, then the only possibility is that the com-
munication component is the bottleneck when the system scales
out. To see whether this is the case, we first measure the scaling
factor with different network bandwidths. As shown in Figure 3,
the scaling factor for ResNet50 does increase when the network
bandwidth increases. In the case of two servers, the scaling factor
grows from 13% to 68% when the bandwidth increases from 1 Gbps
to 10 Gbps. This is understandable as with higher bandwidth, it
takes less time for the workers to exchange the same amount of
data. The scaling factor is lower with more workers as they have
more data to exchange, based on the all-reduce algorithm.

However, contrary to the common belief that the network is too
slow to send the gradients, Figure 3 shows that the lines plateau
after 25 Gbps. This means the system can not benefit from a faster
network. To validate this, we measure the network utilization of the
servers by recording real time network throughput. Figure 4 indi-
cates that the servers do fully utilize the network at low bandwidth
(e.g., 1 Gbps), but they only use a small fraction of the bandwidth at
high bandwidth (e.g., 100 Gbps). This means merely adding band-
width to make the network faster is not useful for improving scaling
factor after a certain point.

One possibility for low utilization at high bandwidth is that the
CPU might be the bottleneck, as the experiments run Horovod over
TCP and it is known that running TCP at high speed like 100 Gbps
is CPU-intensive. However, the computation of distributed training
is mostly done by GPUs, and most GPU instances are equipped with
sufficient amount of CPUs (e.g., 96 vCPUs in a p3dn instance used
by our experiments). Figure 5 shows the CPU utilizations while
training three models on eight p3dn instances under five different
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network speeds. It confirms that the CPU utilization is low, and
thus CPU is not the bottleneck for saturating 100 Gbps network
bandwidth.

In conclusion, the measurement confirms that the communica-
tion component is the bottleneck. But contrary to the common
belief, it is not because the network is too slow to send data. The
root cause is the poor implementation of the network transport that
cannot fully utilize the available bandwidth for the communication
component.

3 WHAT-IF ANALYSIS

Given the low network utilization, a natural question is what if
the network can be fully utilized. In this section, we perform a
what-if analysis to evaluate the scaling factor under full network
utilization. Given the promise of many proposals on application-
layer optimizations, we also use what-if analysis to show what
additional improvements these proposals can bring if the network
is fully utilized.

3.1 What if network can be fully utilized?

We first perform a what-if analysis to see what scaling factors can be
achieved if the network is fully utilized. To do the what-if analysis,
we need detailed logging information first, then perform simulation
based on the timing logs. We take the white-box approach to directly
add logging code to training scripts to retrieve detailed timing
information for what-if analysis. Specifically, we add hooks for
parameters in the model to get the gradient-computation-done time
for different layers of the model.

For the simulation, we have two processes, backward process and
all-reduce process. Two processes communicate through a message
queue. The backward process simulates the backward computa-
tion which is based on the timing log of gradient-computation-done.
The backward process does not request all-reduce process right after
backward computation done for a certain layer. Instead, it buffers
gradients of several layers for all-reduce. We use a heuristic buffer-
ing strategy, which refers to Horovod fusion buffer [18]. Specifically,
the backward process has a timeout window of 5 ms and a gradi-
ents buffer size of 64 MB for batching gradients for the all-reduce
operations. Once the timeout criterion or buffer size limit is satis-
fied, it notifies the all-reduce process for all-reduce operation. The
all-reduce process uses Reduce-scatter with Allgather procedures to
complete all-reduce operation. The transition time is computed as
(2S(N —1)/N)/bw, where N is the number of workers/GPUs in-
volved, S is the size for all-reduce and bw is the network bandwidth.
The cost of vector additions is estimated as (N — 1) X AddEst(S/N),
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where AddEst(x) is the function for estimating the time of element-
wise adding of two vectors in the size x. To fairly estimate the
vector addition time cost, we first empirically evaluate time cost of
vector-add with various vector sizes on V100 GPU, and then use
linear interpolation to get AddEst(x).

To get the scaling factor for a certain bandwidth and number
of workers, we start backward process and all-reduce process at the
same time for simulation. For each data batch, we denote the time
for all-reduce process to complete as tsync, and denote the time
for backward computation tp,., thus we can get the overhead for
all-reduce operation as tyyerhead = tsync — tpack- Then, we can use
processing time of a batch data on single GPU, fp,scp, to get the
simulated scaling factor: fsim = tparch/ (tbatch + toverhead)-

Figure 6 shows the scaling factors of the three models under
different network speeds assuming the network is fully utilized,
and compares them with the scaling factors actually achieved by
Horovod. We can see that under low network speeds (i.e., 1 Gbps
and 10 Gbps), the two lines are very close. This confirms the results
in Figure 4 that the network is fully utilized under low speeds, and
also validates the correctness of the what-if simulator. Under high
network speeds (i.e., after 25 Gbps), the two lines begin to diverge
significantly. While the system can theoretically achieve close to
100% scaling factor under 100 Gbps for ResNet50, ResNet101 and
VGG16, in practice it only achieves 75%, 67% and 60%, respectively.

We also use the what-if analysis to evaluate the scaling factors
under different numbers of workers assuming that the network
is fully utilized. The results are shown in Figure 7. Again, we see
all of three models can achieve close to 100% scaling factors when
the network is fully utilized even for 64 GPUs. Overall, the what-if
analysis confirms that distributed training can benefit from high
network bandwidth, moreover the scaling factor can be improved
to near 100% if the network is fully utilized.

3.2 How useful are application-layer
optimizations?

In this section our analysis targets a well-studied application-level
optimization technique—gradient compression. We keep other sim-
ulation steps the same as we do in §3.1, but divide the time cost of
gradients transmission by the compression ratio we choose. We use
this setup for the simplicity. As one would imagine, the compres-
sion could possibly reduce the vector-add cost (e.g. half-precision
vector-add, top-k percent gradients for all-reduce) to further boost
the simulated scaling factor. But as shown in Figure 8, the simplified
simulation is good enough to justify the claim we want to make,
which is we probably would not need that high compression ratio
as advocated in past works [5, 17, 25]. The compression ratio 10X is
large enough for models like VGG16 to get scaling factor near 100%
in 10 Gbps network, which is commonly available at cloud platform
like AWS, GCloud and Azure. As a comparison, the results in 100
Gbps are also reported to indicate that compression is not that useful
in high-speed networks, which is the typical network configuration
for high-end GPU servers like aws-p3dn. In conclusion, gradient
compression techniques are useful in low-speed networks, but it is
not necessary to have a large compression ratio in contemporary
network environments.
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Figure 8: Simulated scaling factor under different compres-
sion ratio.

4 DISCUSSION AND FUTURE WORK

Rationale behind the findings. At first glance, our findings may
be surprising, indicating that the scaling factor can be close to 100%
if the network is fully utilized. These findings, however, are quite

reasonable because of two important factors. First, the network
runs at high speed. Under 100 Gbps, it only takes 7.8 ms, 13.6 ms
and 42.2 ms to transmit all parameters of ResNet50, ResNet101 and
VGG16, respectively. Second, there is a significant overlapping be-
tween computation and communication. The all-reduce for the last
layer can start as soon as the backward process has computed the
gradients of the last layer, without waiting for the entire backward
process to finish. This overlap is critical. In conclusion, combining
the efficient communication and the overlapping of computation
and communication, the scaling factor can achieve near 100%.

Generality of the results. One essential question is how general
are the results. The results are based on three models (ResNet50,
ResNet101 and VGG16), one particular device (NVIDIA V100), and
one training strategy (all-reduce). As part of our future work, we
plan to expand the measurement and analysis to more models
(e.g., RNN-like sequence models and BERT), more devices (different
GPUs and other specialized processors), and more training strate-
gies (e.g., parameter server and asynchronous training). While the
actual numbers might differ, we expect that the conclusion would
stay the same. i.e., because of high-speed networks and the intrinsic
overlap between computation and communication, increasing the
network utilization would result in almost linear scaling.

Trade-off of application-layer optimizations. The what-if anal-
ysis indicates that gradient compression in the application layer
only provides meaningful improvements at low network band-
widths. We argue that it is not particularly useful for distributed
training on the cloud or an on-premises cluster equipped with GPUs
or TPUs. Those machines are typically connected with high-speed
networks to fully utilize the processors. It does not make sense to
build a cluster for distributed training with expensive specialized
processors but a cheap, slow network.

The proper metric for scaling. We use throughput to compute
the scaling factor. Another proper metric is to use the convergence
time, i.e., the time to train a model to reach a certain accuracy
threshold. Ideally, with n servers, the convergence time should be
cut by n times (i.e., 100% scaling factor). This metric might be the
most important metric cared by researchers and developers. We
emphasize that network-layer optimizations provide consistent
performance on both metrics, as it reduces the time to finish one
iteration without changing the number of iterations needed to reach
a certain accuracy. Also, network optimizations are orthogonal to
other techniques to accelerate the training process [26]. Gradient
compression, on the other hand, loses gradient information due to
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lossy compression, and can prolong the convergence time, hurt the
accuracy, and even end up not being able to converge.

What-if analysis for other approaches. Besides gradient com-
pression, there are other application-layer and system-layer op-
timizations. For example, ByteScheduler [4] orders the gradient
transmission of different layers to better overlap with forward com-
putation; and SwitchML [6] uses a programmable switch to aggre-
gate gradients and reduce the communication size. These proposals
all suggest significant reduction on the training time. However, they
are all compared to an off-the-shelf distributed training framework
like Horovod, which has a poor network transport implementation.
It would be interesting to apply the what-if analysis to evaluate
what additional improvements they can provide if the network can
be highly utilized.

High-performance network transport for distributed train-
ing. There is always an arms race between compute and network.
When compute is improved, network becomes the bottleneck. Our
findings indicate that for today’s distributed training systems, the
network speed is not a problem, but the network transport im-
plementation for the communication component is. Compared to
application-layer optimizations, e.g. gradient compression, network-
layer optimizations do not trade training time off against model
accuracy, and should be the first-order optimizations. As such,
our results are a call for the network community to develop high-
performance network transport to fully utilize modern high-speed
networks and to achieve linear scale-out. Recently, AWS has pro-
vided Elastic Fabric Adapter (EFA) as an efficient network interface
to bypass OS kernel for high-performance communication [27], and
achieved some encouraging scalability results by carefully tuning
the training process [28]. Developing high-performance network
transport with kernel-bypass technologies in the context of dis-
tributed training is an interesting direction of future work.
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