
Is Network the Botleneck of Distributed Training?

Zhen Zhang1, Chaokun Chang2, Haibin Lin2, Yida Wang2, Raman Arora1, Xin Jin1
1Johns Hopkins University, 2Amazon Web Services

ABSTRACT

Recently there has been a surge of research on improving the com-

munication eiciency of distributed training. However, little work

has been done to systematically understand whether the network

is the bottleneck and to what extent.

In this paper, we take a irst-principles approach to measure

and analyze the network performance of distributed training. As

expected, our measurement conirms that communication is the

component that blocks distributed training from linear scale-out.

However, contrary to the common belief, we ind that the network

is running at low utilization and that if the network can be fully

utilized, distributed training can achieve a scaling factor of close to

one. Moreover, while many recent proposals on gradient compres-

sion advocate over 100× compression ratio, we show that under full

network utilization, there is no need for gradient compression in 100

Gbps network. On the other hand, a lower speed network like 10

Gbps requires only 2×ś5× gradients compression ratio to achieve

almost linear scale-out. Compared to application-level techniques

like gradient compression, network-level optimizations do not re-

quire changes to applications and do not hurt the performance

of trained models. As such, we advocate that the real challenge

of distributed training is for the network community to develop

high-performance network transport to fully utilize the network

capacity and achieve linear scale-out.

CCS CONCEPTS

·Networks→Networkmeasurement; · Computingmethod-

ologies →Machine learning.

ACM Reference Format:

Zhen Zhang, Chaokun Chang, Haibin Lin, YidaWang, Raman Arora, Xin Jin.

2020. Is Network the Bottleneck of Distributed Training?. InWorkshop on

Network Meets AI & ML (NetAI’20), August 14, 2020, Virtual Event, NY, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3405671.3405810

1 INTRODUCTION

Deep Learning is a fundamental building block of modern Internet

services, from personalized recommendation and language trans-

lation to content understanding and voice control. A Deep Neural

Network (DNN) model is irst trained on a dataset to achieve high

accuracy or other evaluation metrics and then deployed to target

platforms to serve requests from end-users. We focus on training

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

NetAI’20, August 14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8043-0/20/08. . . $15.00
https://doi.org/10.1145/3405671.3405810

in this paper, which is critical to generate high-quality models for

deep learning applications.

DNN models are getting larger and deeper. The famous analysis

from OpenAI [1] shows that the amount of computing needed to

train the state-of-the-art model doubles every 3.4 months, while in

comparison, the number of transistors on a chip only doubles every

18 months even when Moore’s law is still efective. With the end of

Moore’s law, people have turned to specialized processors such as

GPUs [2] and TPUs [3] to scale up computation. Yet, compared to

the fast-growing demand of DNN models, the computing capability

provided by a single chip is still limited.

As a result, training large DNN models are inevitably getting

more andmore distributed by scaling out. The dream for every scale-

out system is linear scalability. That is, given that the throughput

of a single device is � , the throughput of a system with � devices

should be �� . Let the throughput actually achieved by the system

with � devices be �� . We deine the scaling factor as

scaling factor =
��

��
. (1)

Linear scale-out requires the scaling factor to be 1 for any �.

Distributed training with data parallelism strategy includes mul-

tiple iterations. Each iteration can be divided into a computation

phase and a communication phase. In the computation phase, each

worker feeds a batch of data into the model, and performs a for-

ward pass and then a backward pass of the model, to compute the

gradients for learnable parameters. In the communication phase,

the workers exchange their gradients, and compute the average to

update the parameters via all-reduce operations.

It is a common belief that the network bandwidth is the bot-

tleneck that prevents distributed training from scaling linearly. In

particular, the computation phase is embarrassingly parallel, as each

worker processes its own batch independently. The throughput of

� workers is � times that of one worker for the computation phase,

and only the communication phase can slow down the training

process.

In response to this, there has been a surge of research from

machine learning and systems communities on improving the com-

munication eiciency of distributed training in recent years [4ś15].

These works are primarily done at the application layer, assuming

that the network has done its best to maximize communication ei-

ciency. Yet, little work has focused on systematically understanding

whether the network is the bottleneck and to what extent.

In this paper, we take a irst-principles approach to measure

and analyze the network performance of distributed training. We

perform a measurement study on the training throughput of several

representative DNN models on AWS. Our measurements show that

the system can achieve a scaling factor of only 60% with 64 workers

(eight servers with eight GPUs each) for VGG16. As expected, the

measurement conirms that communication is the component that

prevents distributed training from linear scale-out. However, con-

trary to the common belief, we ind that the network bandwidth is

NetAI’20, August 14, 2020, Virtual Event, NY, USA Zhen, et al.

not the bottleneck, because it is running at low utilization. While

the network provides up to 100 Gbps bandwidth for each server,

the communication phase uses no more than 32 Gbps for transfer-

ring gradients. We further conirm that the low network utilization

is not due to the CPU bottleneck. In fact, the CPU only runs at

14%ś25% utilization in the communication phase.

Then the natural question is what if the network can run at 100%

utilization. We take a white-box approach to get timing informa-

tion of layer-wise computation in model training. Based on the

logging results, we perform a what-if analysis, in which we con-

trol the network bandwidth and assume full bandwidth utilization.

The results of the analysis show that with full network utiliza-

tion, distributed training can achieve a scaling factor of over 99%.

We further extend the what-if analysis with an application-layer

optimizationÐgradient compression. Based on further analysis, we

ind that a compression ratio ranging from 2× to 5× is good enough

for distributed training to achieve a scaling factor of close to 100%

in 10 Gbps network.

Compared to application-layer optimizations, we argue that

network-layer optimizations should be prioritized for speeding up

distributing training. First, network-layer optimizations are trans-

parent to the applications. They do not require any changes to the

applications or the training systems. Second, unlike lossy gradient

compression in the application layer, network-layer optimizations

do not hurt training convergence rate or model performance.

In conclusion, we make two major contributions. First, we per-

form a measurement study to systematically measure and analyze

the performance bottleneck of distributed training. Contrary to

the common belief, it unveils that the network speed is not the

problem, but the software implementation of the communication

phase is. Second, we perform a what-if analysis to evaluate the

beneits of high-performance network transport for distributed

training. It reveals that merely optimizing the network transport

can already increase the scaling factor to close to 100%, and that ad-

ditional application-layer optimizations are only required in lower

speed networks and we do not need aggressive optimizing strate-

gies claimed in past works [5, 16, 17]. As such, we advocate that

the real challenge is for the networking community to develop

high-performance network transport for distributed training to

fully utilize the network capacity and achieve linear scale-out.

Open-source. The code is open-source and available at

https://github.com/netx-repo/training-bottleneck.

2 PROFILING TRAINING PERFORMANCE

In this section, we describe an empirical study we performed to

measure and analyze the bottleneck in distributed training.

2.1 Proiling Setup

Training hardware. The experiments are conducted on Amazon

Web Services (AWS). We use Amazon EC2 p3dn.24xlarge instances

with 8 GPUs (NVIDIA Tesla V100), 96 vCPUs (2.5 GHz Intel Xeon

P-8175M processor), 768 GB main memory, 256 GB GPU memory

(32 GB for each GPU), and 100 Gbps network bandwidth. The 8

GPUs on each instance support NVLink for high-performance peer-

to-peer GPU communication. We vary the number of instances

8 GPUs 16 GPUs 32 GPUs 64 GPUs
0

20

40

60

80

100

S
ca

lin
g

fa
ct

or
(%

)

ResNet50 ResNet101 VGG16

Figure 1: Scaling factor vs. number of servers involved.

from 2 to 8 (i.e., from 16 GPUs to 64 GPUs) in the experiments to

evaluate the scaling factor.

Training software. We use Horovod [18] as the distributed train-

ing framework. Horovod is one of themost widely-used frameworks

for distributed training. It supports popular deep learning frame-

works such as TensorFlow [19], PyTorch [20] and MXNet [21]. It

uses the all-reduce strategy for distributed training, which per-

forms an all-reduce operation among all workers after each itera-

tion to compute the average of the gradients for parameter update.

Horovod uses a combination of NCCL and MPI as the underly-

ing layer to implement all-reduce. We use PyTorch as the training

framework for a single GPU, and use Horovod to scale it to multiple

GPUs. The software versions used in the experiments are Horovod

0.18.2, PyTorch 1.3.0, Torchvision 0.4.1, NCCL 2.4.8, cuDNN 6.6.0.64,

and Open MPI 4.0.2. Horovod, NCCL, and Open MPI use Linux

kernel TCP.

Workloads. We use three models in the experiments, i.e.,

ResNet50 [22], ResNet101 [22] and VGG16 [23]. We choose these

models because they are widely used in computer vision and dis-

tributed training benchmarks. Also, they have representative char-

acteristics. Speciically, ResNet50, ResNet101, and VGG16 have

small, medium, , and large parameter sizes, respectively. The model

sizes are 97 MB for ResNet50, 170 MB for ResNet101, and 527 MB for

VGG16. Besides, VGG16 has a layer with 400MB parameters, while

parameters in ResNet series are distributed more evenly. ImageNet

dataset [24] is used for experiments, and we ixed the batch size to

32 for each worker involved in training.

2.2 What is the current scaling factor?

The irst step is to understand the current scaling factor that can

be achieved by an of-the-shelf distributed training framework like

Horovod. We use the throughput of a single GPU (i.e., the number

of images that can be processed by a GPU each second) as the base

throughput � . We vary the number of servers in the experiments.

For each case, we measure the total throughput that can be achieved

by the servers and compute the scaling factor based on Equation 1.

Figure 1 shows the scaling factor for each model under diferent

numbers of servers. Remember that we use p3dn.24xlarge instances,

each of which contains 8 GPUs. So the igure shows the scaling

factor from 8 GPUs to 64 GPUs. The results indicate that the scaling

factors for ResNet50, ResNet101 and VGG16 are 75.05%, 68.92%,

and 55.99% for 2 servers, 74.24%, 66.28% and 63.01% for 4 servers,

and 71.6%, 66.99% and 59.8% for 8 servers. ResNet50 achieves better

scaling factors than ResNet101 and VGG16 as it has a relatively

smaller model size to ease the communication burden. Nevertheless,

Is Network the Botleneck of Distributed Training? NetAI’20, August 14, 2020, Virtual Event, NY, USA

ResNet50 ResNet101 VGG16
0

50

100

150

200

250

C
om

pu
ta

tio
n

tim
e

(m
s) 1 GPU

16 GPUs
32 GPUs
64 GPUs

Figure 2: Computation time vs. number of servers.

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

20

40

60

80

100

S
ca

lin
g

fa
ct

or
y

(%
)

2 x p3dn 4 x p3dn 8 x p3dn

Figure 3: Scaling factor change with bandwidth (ResNet50).

for all the three models, Horovod cannot achieve a scaling factor of

more than 76% on AWS.

These results conirm that the current of-the-shelf distributed

training framework like Horovod cannot achieve linear scaling but

with a signiicant gap.

2.3 Is computation the bottleneck?

Distributed training contains a computation component and a com-

munication component. To igure out why linear scaling cannot be

achieved, we start with the computation component. In the com-

putation component, each worker feeds a batch of labeled images

to the neural network model and computes the gradients locally. If

the computation time for a worker to inish its batch increases with

the number of workers, then the computation component would

be the bottleneck of distributed training.

Figure 2 shows the computation time (for the forward and back-

ward pass) for the three models with diferent number of workers.

The computation time keeps almost the same, regardless of the

number of workers. The time gap between single GPU and multiple

GPUs comes mainly from two factors. First, the runtime for the

backward pass in distributed training not only includes backward

operations but also the all-reduce operations since they are asyn-

chronous on GPU and overlapped. Whereas, for the single GPU

case, there is no all-reduce operation. Second, Horovod injects a

hook for each layer in the model during distributed training, which

does not exist in single GPU training. However, even considering

this computation time gap as an inevitable side efect, the scaling

factor should still be bounded around 90% instead of the measured

56%-75%, because the measured computation time increases at most

15% in distributed training. Thus, we argue computation time dif-

ference here is not a factor for distributed training not able to scale

linearly.

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

20

40

60

80

100

B
an

dw
id

th
 U

til
iz

at
io

n
(%

)

ResNet50 ResNet101 VGG16

(a) Network (Recv) utilization.

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

20

40

60

80

100

B
an

dw
id

th
 U

til
iz

at
io

n
(%

)

ResNet50 ResNet101 VGG16

(b) Network (Send) utilization.

Figure 4: Network bandwidth utilization.

2.4 Is network the bottleneck?

Now we turn to the communication component. Since the com-

putation component takes the same amount of time regardless of

the number of servers, then the only possibility is that the com-

munication component is the bottleneck when the system scales

out. To see whether this is the case, we irst measure the scaling

factor with diferent network bandwidths. As shown in Figure 3,

the scaling factor for ResNet50 does increase when the network

bandwidth increases. In the case of two servers, the scaling factor

grows from 13% to 68% when the bandwidth increases from 1 Gbps

to 10 Gbps. This is understandable as with higher bandwidth, it

takes less time for the workers to exchange the same amount of

data. The scaling factor is lower with more workers as they have

more data to exchange, based on the all-reduce algorithm.

However, contrary to the common belief that the network is too

slow to send the gradients, Figure 3 shows that the lines plateau

after 25 Gbps. This means the system can not beneit from a faster

network. To validate this, we measure the network utilization of the

servers by recording real time network throughput. Figure 4 indi-

cates that the servers do fully utilize the network at low bandwidth

(e.g., 1 Gbps), but they only use a small fraction of the bandwidth at

high bandwidth (e.g., 100 Gbps). This means merely adding band-

width to make the network faster is not useful for improving scaling

factor after a certain point.

One possibility for low utilization at high bandwidth is that the

CPU might be the bottleneck, as the experiments run Horovod over

TCP and it is known that running TCP at high speed like 100 Gbps

is CPU-intensive. However, the computation of distributed training

is mostly done by GPUs, and most GPU instances are equipped with

suicient amount of CPUs (e.g., 96 vCPUs in a p3dn instance used

by our experiments). Figure 5 shows the CPU utilizations while

training three models on eight p3dn instances under ive diferent

NetAI’20, August 14, 2020, Virtual Event, NY, USA Zhen, et al.

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

10

20

30

40

50

C
P

U
 U

til
iz

at
io

n
(%

) ResNet50
ResNet101
VGG16

Figure 5: CPU utilization.

network speeds. It conirms that the CPU utilization is low, and

thus CPU is not the bottleneck for saturating 100 Gbps network

bandwidth.

In conclusion, the measurement conirms that the communica-

tion component is the bottleneck. But contrary to the common

belief, it is not because the network is too slow to send data. The

root cause is the poor implementation of the network transport that

cannot fully utilize the available bandwidth for the communication

component.

3 WHAT-IF ANALYSIS

Given the low network utilization, a natural question is what if

the network can be fully utilized. In this section, we perform a

what-if analysis to evaluate the scaling factor under full network

utilization. Given the promise of many proposals on application-

layer optimizations, we also use what-if analysis to show what

additional improvements these proposals can bring if the network

is fully utilized.

3.1 What if network can be fully utilized?

Weirst perform awhat-if analysis to see what scaling factors can be

achieved if the network is fully utilized. To do the what-if analysis,

we need detailed logging information irst, then perform simulation

based on the timing logs.We take thewhite-box approach to directly

add logging code to training scripts to retrieve detailed timing

information for what-if analysis. Speciically, we add hooks for

parameters in the model to get the gradient-computation-done time

for diferent layers of the model.

For the simulation, we have two processes, backward process and

all-reduce process. Two processes communicate through a message

queue. The backward process simulates the backward computa-

tion which is based on the timing log of gradient-computation-done.

The backward process does not request all-reduce process right after

backward computation done for a certain layer. Instead, it bufers

gradients of several layers for all-reduce. We use a heuristic bufer-

ing strategy, which refers to Horovod fusion bufer [18]. Speciically,

the backward process has a timeout window of 5 ms and a gradi-

ents bufer size of 64 MB for batching gradients for the all-reduce

operations. Once the timeout criterion or bufer size limit is satis-

ied, it notiies the all-reduce process for all-reduce operation. The

all-reduce process uses Reduce-scatter with Allgather procedures to

complete all-reduce operation. The transition time is computed as

(2� (� − 1)/�)/�� , where � is the number of workers/GPUs in-

volved, � is the size for all-reduce and �� is the network bandwidth.

The cost of vector additions is estimated as (� − 1) ×������ (�/�),

where������ (�) is the function for estimating the time of element-

wise adding of two vectors in the size � . To fairly estimate the

vector addition time cost, we irst empirically evaluate time cost of

vector-add with various vector sizes on V100 GPU, and then use

linear interpolation to get ������ (�).

To get the scaling factor for a certain bandwidth and number

of workers, we start backward process and all-reduce process at the

same time for simulation. For each data batch, we denote the time

for all-reduce process to complete as ����� , and denote the time

for backward computation ����� , thus we can get the overhead for

all-reduce operation as �����ℎ��� = ����� − ����� . Then, we can use

processing time of a batch data on single GPU, �����ℎ , to get the

simulated scaling factor: ���� = �����ℎ/(�����ℎ + �����ℎ���).

Figure 6 shows the scaling factors of the three models under

diferent network speeds assuming the network is fully utilized,

and compares them with the scaling factors actually achieved by

Horovod. We can see that under low network speeds (i.e., 1 Gbps

and 10 Gbps), the two lines are very close. This conirms the results

in Figure 4 that the network is fully utilized under low speeds, and

also validates the correctness of the what-if simulator. Under high

network speeds (i.e., after 25 Gbps), the two lines begin to diverge

signiicantly. While the system can theoretically achieve close to

100% scaling factor under 100 Gbps for ResNet50, ResNet101 and

VGG16, in practice it only achieves 75%, 67% and 60%, respectively.

We also use the what-if analysis to evaluate the scaling factors

under diferent numbers of workers assuming that the network

is fully utilized. The results are shown in Figure 7. Again, we see

all of three models can achieve close to 100% scaling factors when

the network is fully utilized even for 64 GPUs. Overall, the what-if

analysis conirms that distributed training can beneit from high

network bandwidth, moreover the scaling factor can be improved

to near 100% if the network is fully utilized.

3.2 How useful are application-layer
optimizations?

In this section our analysis targets a well-studied application-level

optimization techniqueÐgradient compression. We keep other sim-

ulation steps the same as we do in ğ3.1, but divide the time cost of

gradients transmission by the compression ratio we choose. We use

this setup for the simplicity. As one would imagine, the compres-

sion could possibly reduce the vector-add cost (e.g. half-precision

vector-add, top-k percent gradients for all-reduce) to further boost

the simulated scaling factor. But as shown in Figure 8, the simpliied

simulation is good enough to justify the claim we want to make,

which is we probably would not need that high compression ratio

as advocated in past works [5, 17, 25]. The compression ratio 10× is

large enough for models like VGG16 to get scaling factor near 100%

in 10 Gbps network, which is commonly available at cloud platform

like AWS, GCloud and Azure. As a comparison, the results in 100

Gbps are also reported to indicate that compression is not that useful

in high-speed networks, which is the typical network coniguration

for high-end GPU servers like aws-p3dn. In conclusion, gradient

compression techniques are useful in low-speed networks, but it is

not necessary to have a large compression ratio in contemporary

network environments.

Is Network the Botleneck of Distributed Training? NetAI’20, August 14, 2020, Virtual Event, NY, USA

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

25

50

75

100

S
ca

lin
g

fa
ct

or
 (%

)

8 x p3dn (measured)
8 x p3dn (simulated)

(a) ResNet50.

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

25

50

75

100

S
ca

lin
g

fa
ct

or
 (%

)

8 x p3dn (measured)
8 x p3dn (simulated)

(b) ResNet101.

1Gbps 10Gbps 25Gbps 40Gbps 100Gbps
0

25

50

75

100

S
ca

lin
g

fa
ct

or
 (%

)

8 x p3dn (measured)
8 x p3dn (simulated)

(c) VGG16.

Figure 6: Simulated scaling factor vs measured scaling factor in diferent bandwidth.

16 GPUs 32 GPUs 64 GPUs
0

20

40

60

80

100

S
ca

lin
g

fa
ct

or
(%

)

ResNet50 ResNet101 VGG16

Figure 7: Simulated scaling factor under 100 Gbps network.

Red parts denote the gap to simulated results.

1X 2X 5X 10X 50X 100X
0

25

50

75

100

S
ca

lin
g

fa
ct

or
 (%

)

ResNet50 ResNet101 VGG16

(a) Compression in 10Gbps network.

1X 2X 5X 10X 50X 100X
0

25

50

75

100

S
ca

lin
g

fa
ct

or
 (%

)

ResNet50 ResNet101 VGG16

(b) Compression in 100Gbps network.

Figure 8: Simulated scaling factor under diferent compres-

sion ratio.

4 DISCUSSION AND FUTUREWORK

Rationale behind the indings. At irst glance, our indings may

be surprising, indicating that the scaling factor can be close to 100%

if the network is fully utilized. These indings, however, are quite

reasonable because of two important factors. First, the network

runs at high speed. Under 100 Gbps, it only takes 7.8 ms, 13.6 ms

and 42.2 ms to transmit all parameters of ResNet50, ResNet101 and

VGG16, respectively. Second, there is a signiicant overlapping be-

tween computation and communication. The all-reduce for the last

layer can start as soon as the backward process has computed the

gradients of the last layer, without waiting for the entire backward

process to inish. This overlap is critical. In conclusion, combining

the eicient communication and the overlapping of computation

and communication, the scaling factor can achieve near 100%.

Generality of the results. One essential question is how general

are the results. The results are based on three models (ResNet50,

ResNet101 and VGG16), one particular device (NVIDIA V100), and

one training strategy (all-reduce). As part of our future work, we

plan to expand the measurement and analysis to more models

(e.g., RNN-like sequence models and BERT), more devices (diferent

GPUs and other specialized processors), and more training strate-

gies (e.g., parameter server and asynchronous training). While the

actual numbers might difer, we expect that the conclusion would

stay the same. i.e., because of high-speed networks and the intrinsic

overlap between computation and communication, increasing the

network utilization would result in almost linear scaling.

Trade-ofof application-layer optimizations.Thewhat-if anal-

ysis indicates that gradient compression in the application layer

only provides meaningful improvements at low network band-

widths. We argue that it is not particularly useful for distributed

training on the cloud or an on-premises cluster equipped with GPUs

or TPUs. Those machines are typically connected with high-speed

networks to fully utilize the processors. It does not make sense to

build a cluster for distributed training with expensive specialized

processors but a cheap, slow network.

The proper metric for scaling. We use throughput to compute

the scaling factor. Another proper metric is to use the convergence

time, i.e., the time to train a model to reach a certain accuracy

threshold. Ideally, with � servers, the convergence time should be

cut by � times (i.e., 100% scaling factor). This metric might be the

most important metric cared by researchers and developers. We

emphasize that network-layer optimizations provide consistent

performance on both metrics, as it reduces the time to inish one

iteration without changing the number of iterations needed to reach

a certain accuracy. Also, network optimizations are orthogonal to

other techniques to accelerate the training process [26]. Gradient

compression, on the other hand, loses gradient information due to

NetAI’20, August 14, 2020, Virtual Event, NY, USA Zhen, et al.

lossy compression, and can prolong the convergence time, hurt the

accuracy, and even end up not being able to converge.

What-if analysis for other approaches. Besides gradient com-

pression, there are other application-layer and system-layer op-

timizations. For example, ByteScheduler [4] orders the gradient

transmission of diferent layers to better overlap with forward com-

putation; and SwitchML [6] uses a programmable switch to aggre-

gate gradients and reduce the communication size. These proposals

all suggest signiicant reduction on the training time. However, they

are all compared to an of-the-shelf distributed training framework

like Horovod, which has a poor network transport implementation.

It would be interesting to apply the what-if analysis to evaluate

what additional improvements they can provide if the network can

be highly utilized.

High-performance network transport for distributed train-

ing. There is always an arms race between compute and network.

When compute is improved, network becomes the bottleneck. Our

indings indicate that for today’s distributed training systems, the

network speed is not a problem, but the network transport im-

plementation for the communication component is. Compared to

application-layer optimizations, e.g. gradient compression, network-

layer optimizations do not trade training time of against model

accuracy, and should be the irst-order optimizations. As such,

our results are a call for the network community to develop high-

performance network transport to fully utilize modern high-speed

networks and to achieve linear scale-out. Recently, AWS has pro-

vided Elastic Fabric Adapter (EFA) as an eicient network interface

to bypass OS kernel for high-performance communication [27], and

achieved some encouraging scalability results by carefully tuning

the training process [28]. Developing high-performance network

transport with kernel-bypass technologies in the context of dis-

tributed training is an interesting direction of future work.

Acknowledgments.We thank the anonymous reviewers for their

valuable feedback. This work is supported in part by NSF grants

CRII-1755646, CNS-1813487 and CCF-1918757, and an AWS Ma-

chine Learning Research Award. RA would like to acknowledge

support from NSF under the BIGDATA awards IIS-1546482 and

IIS-1838139, and NSF CAREER award IIS-1943251.

REFERENCES
[1] łAI and Compute.ž https://openai.com/blog/ai-and-compute/.
[2] łGPUs Power Five of World’s Top Seven Supercomputers.ž https:

//www.hpcwire.com/2018/06/25/gpus-power-ive-of-worlds-top-seven-
supercomputers/.

[3] łCloud TPU.ž https://cloud.google.com/tpu/.
[4] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo, łA generic

communication scheduler for distributed dnn training acceleration,ž in ACM
SOSP, 2019.

[5] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, łDeep gradient compression:
Reducing the communication bandwidth for distributed training,ž arXiv preprint
arXiv:1712.01887, 2017.

[6] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,
M. Moshref, D. R. Ports, and P. Richtárik, łScaling distributed machine learning
with in-network aggregation,ž arXiv preprint arXiv:1903.06701, 2019.

[7] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, łTerngrad: Ternary
gradients to reduce communication in distributed deep learning,ž in NeurIPS,
2017.

[8] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger,
P. B. Gibbons, and M. Zaharia, łPipedream: generalized pipeline parallelism for
dnn training,ž in ACM SOSP, 2019.

[9] A. F. Aji and K. Heaield, łSparse communication for distributed gradient descent,ž
in Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2017.

[10] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic, łQsgd: Randomized quantiza-
tion for communication-optimal stochastic gradient descent,ž arXiv preprint
arXiv:1610.02132, 2016.

[11] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan,
łAdacomp: Adaptive residual gradient compression for data-parallel distributed
training,ž in Thirty-Second AAAI Conference on Artiicial Intelligence, 2018.

[12] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
łFederated learning: Strategies for improving communication eiciency,ž arXiv
preprint arXiv:1610.05492, 2016.

[13] J. Wangni, J. Wang, J. Liu, and T. Zhang, łGradient sparsiication for
communication-eicient distributed optimization,ž in Advances in Neural In-
formation Processing Systems, 2018.

[14] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright, łAtomo:
Communication-eicient learning via atomic sparsiication,ž in Advances in Neu-
ral Information Processing Systems, 2018.

[15] N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, and R. Arora, łCommunication-eicient
distributed SGD with sketching,ž in Advances in Neural Information Processing
Systems, 2019.

[16] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, ł1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns,ž in Fifteenth
Annual Conference of the International Speech Communication Association, 2014.

[17] H. Lim, D. G. Andersen, and M. Kaminsky, ł3lc: Lightweight and efective traic
compression for distributed machine learning,ž arXiv preprint arXiv:1802.07389,
2018.

[18] A. Sergeev and M. Del Balso, łHorovod: fast and easy distributed deep learning
in tensorlow,ž arXiv preprint arXiv:1802.05799, 2018.

[19] łTensorFlow.ž https://www.tensorlow.org/.
[20] łPyTorch.ž https://pytorch.org/.
[21] łMXNet.ž https://mxnet.apache.org/.
[22] K. He, X. Zhang, S. Ren, and J. Sun, łDeep residual learning for image recognition,ž

in IEEE CVPR, 2016.
[23] K. Simonyan and A. Zisserman, łVery deep convolutional networks for large-scale

image recognition,ž arXiv preprint arXiv:1409.1556, 2014.
[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, łImagenet: A large-scale

hierarchical image database,ž in IEEE CVPR, 2009.
[25] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, łDistributed learning

with compressed gradient diferences,ž arXiv preprint arXiv:1901.09269, 2019.
[26] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, łImagenet training in

minutes,ž in Proceedings of the 47th International Conference on Parallel Processing,
2018.

[27] łOptimizing deep learning on P3 and P3dn with EFA.ž https://aws.amazon.com/
blogs/compute/optimizing-deep-learning-on-p3-and-p3dn-with-efa/.

[28] łAmazon Web Services achieves fastest training times for BERT and Mask R-
CNN.ž https://aws.amazon.com/blogs/machine-learning/amazon-web-services-
achieves-fastest-training-times-for-bert-and-mask-r-cnn/.

	Abstract
	1 Introduction
	2 Profiling Training Performance
	2.1 Profiling Setup
	2.2 What is the current scaling factor?
	2.3 Is computation the bottleneck?
	2.4 Is network the bottleneck?

	3 What-If Analysis
	3.1 What if network can be fully utilized?
	3.2 How useful are application-layer optimizations?

	4 Discussion and Future Work
	References

