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ABSTRACT

Decoding auditory stimulus from neural activity can enable neuro-
prosthetics and direct communication with the brain. Some recent
studies have shown successful speech decoding from intracranial
recording using deep learning models. However, scarcity of train-
ing data leads to low quality speech reconstruction which prevents a
complete brain-computer-interface (BCI) application. In this work,
we propose a transfer learning approach with a pre-trained GAN to
disentangle representation and generation layers for decoding. We
first pre-train a generator to produce spectrograms from a repre-
sentation space using a large corpus of natural speech data. With
a small amount of paired data containing the stimulus speech and
corresponding ECoG signals, we then transfer it to a bigger network
with an encoder attached before, which maps the neural signal to
the representation space. To further improve the network generaliza-
tion ability, we introduce a Gaussian prior distribution regularizer on
the latent representation during the transfer phase. With at most 150
training samples for each tested subject, we achieve a state-of-the-art
decoding performance. By visualizing the attention mask embedded
in the encoder, we observe brain dynamics that are consistent with
findings from previous studies investigating dynamics in the supe-
rior temporal gyrus (STG), pre-central gyrus (motor) and inferior
frontal gyrus (IFG). Our findings demonstrate a high reconstruction
accuracy using deep learning networks together with the potential to
elucidate interactions across different brain regions during a cogni-
tive task.

Index Terms— speech decoding, generative adversarial net-
works (GAN), transfer learning, electrocorticographic (ECoG),
superior temporal gyrus (STG)

1. INTRODUCTION

Our understanding of speech processing in human cortex has come
a long way in the past century. Specifically, the superior tempo-
ral gyrus (STG) cortex has been shown to play an important role
in speech recognition on a phonetic level [1–3]. One approach to
study the activity of different cortical regions during hearing is to re-
construct the speech stimuli from intracranial Electrocorticographic
(ECoG) recordings. In addition to finer scope study of the STG, bet-
ter understanding of the speech processing can help development of
better brain computer interface (BCI) systems to help patients with
neurological conditions that lead to loss of communication.

Towards this goal, linear models have been utilized to quantita-
tively demonstrate STG cortical representations [4]. Although the
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intelligibility of the recovered speech is limited, this approach pro-
vides a means to study how the STG area reacts to speech stimulus.
More recently, a WaveNet like deep network structure was adopted
to decode the stimulus speech from the ECoG recordings in the STG
area and have obtained significant improvement over the linear mod-
els [5].

In addition to stimulus speech decoding, deep learning mod-
els have been applied to ECoG signals for other applications. For
example, neural activity prediction in an animal model have been
attempted by using multi-scale deep neural networks [6, 7]. Long
short-term memory (LSTM) networks are also shown to be effective
in predicting human arm movement from brain activity [8]. In addi-
tion, recurrent neural networks (RNN) are used in decoding cortical
activity into articulatory movement during speech production [9].

Our goal in this work is to leverage deep learning models to de-
code intelligible audio stimuli from ECoG recordings of the cortical
regions including the STG area. One major challenge that limits
the success of deep learning methods is the scarcity of the training
data. In this study, we tackle this challenging problem with a net-
work structure containing an encoder followed by a generator (Sec.
2.1 and Fig. 1). The encoder performs feature extraction and maps
the ECoG signal to a representation space (Sec. 2.3). The generator
predicts realistic spectrograms from the representation space (Sec.
2.2). We choose to encourage an independent and identically dis-
tributed (i.i.d.) standard Gaussian distribution for the representation
vector to be able to pre-train the generator without prior knowledge
of the distribution of the encoder output. Additionally, this maxi-
mizes the capacity of the representation space in terms of entropy.

In order to address the shortage of ECoG and speech stimuli
pairs, we propose a training scheme which trains the generator using
a large corpus of natural speech data. Additionally, we introduce a
regularization term for the fine-tuning loss function that not only en-
courages the output of the encoder to follow the desired distribution,
but also helps the network increased generalization. By introducing
an attention mechanism in the encoder, we can reveal the activation
of different cortical regions during speech perception. Our results
(Sec. 3) show state-of-the-art decoding of English word stimuli from
cortical area including STG. Additionally, the visualization of the at-
tention mechanism (Sec. 3.3) reveals the dynamics of brain regions
that is consistent with prior neuroscientific findings. Although the
focus of this study is on stimulus speech decoding from recorded
ECoG signals, the proposed methods are general and can be of inter-
est in other applications with limited training data.

2. METHOD
2.1. Transfer-GAN: a generative network transfer learning
framework for spectrogram decoding

One of the main challenges in reconstructing the speech stimulus
from brain activity with deep neural networks is the limitation of
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pairs of ECoG and speech data. In our preliminary experiments,
we discovered that it is nearly impossible to directly learn the rela-
tion between the ECoG signal and the very complex speech struc-
ture from limited number of data pairs. On the other hand, there are
plenty of natural speech data that allows one to discriminate “fake”
from “real” speech. One naive solution is to use a GAN loss while
training a network to map the ECoG signal to the Speech signal.
However, this is still limited by the number of paired ECOG and
speech data. To circumvent this challenge, we propose the transfer-
GAN framework, an innovative transfer learning approach for gen-
erative network.

The transfer-GAN framework (Fig. 1) contains an encoder that
maps an ECoG signal to a representation space with a prescribed
distribution, followed by a generator that generates a spectrogram
from the representation vector (output of the encoder). Finally, the
spectrogram is converted to the sound waveform using another net-
work (vocoder). Both the generator and the vocoder can be pre-
trained using any large corpus of speech data. To encourage realist
spectrograms generation, a GAN loss is applied during generator
pre-training. Then, the encoder and the generator can be refined to-
gether using the paired data. This approach not only allows us to
efficiently exploit the prior information about real speech spectro-
grams and waveforms, but also prevents the mode collapse problem
often associated with small training data [10].

In the following, we will introduce the structure of the genera-
tor and the encoder, the transfer learning approach to fine-tune the
encoder and generator together, as well as the vocoder used to re-
construct waveforms.

ECoG recordings

Encoder Generator Vocoderz
<latexit sha1_base64="VLEo6VgUnu2TnOxoOkqsMPXvyTo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOqPjQI=</latexit>

representation
vector

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

Spectrogram

ŷ
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Fig. 1. Overview of the transfer-GAN framework.

2.2. Generator Network Structure

The limitation of the ECoG and speech training pairs is tackled by
using a generator network which is pre-trained on a larger corpus
dataset. The generator takes a representation vector z and generates
a spectrogram of a spoken word. The structure of the generator net-
work is shown in Fig. 2. Here, we introduce a structure inspired by
WaveNet [11] which has been shown to successfully generate wave-
forms. The efficiency of WaveNet is that it encodes the input with
multiple temporal scales. Convolutions with different dilation rates
allow filters to span small to large temporal duration without increas-
ing the number of parameters. We show that a similar structure is
also suitable for generating speech spectrograms.

First, the generator projects the input vector into temporal do-
main with a fully connected layer and reshaping. Then, several
WaveNet residual blocks follow the initial convolution layer. In each
block, signal is processed with a gated unit with certain temporal fil-
tering scale controlled by a dilation rate. The output of each gated
unit flows into two paths of 1×1 convolution with temporal filter
width of 1. One path is further fed into the next residual block with
another temporal scale and deeper feature extraction, while the other
path (skip convolution) contributes to the final spectrogram genera-
tion by adding the features to the sub-network.

Generator Pre-training. For pre-training the generator net-
work, we use random vectors ẑ with an i.i.d. standard Gaussian dis-
tribution as the input and try to predict real spectrograms. In addition
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Fig. 2. Overview of the generator network. Total K = 5 residual
blocks are used. The BN, DO, and 1 × 1 in the figure denote batch
normalization, dropout, and temporal convolution with filter width
1, respectively.

to common practice in training GAN networks, the sampling from
i.i.d. Gaussian distribution is used here since

• the posterior distribution of the encoder output is not known
ahead of time and a common output/input distribution should
be agreed for the encoder/generator to follow.

• Gaussian distribution has the largest entropy among all
sources with the same variance and hence maximizes the
representation capacity of the representation space [12].

We use a Wasserstein Generative Adversarial Network (wGAN)
[13] scheme to help with generator pre-training. The wGAN has
been proved to be a stable variation in GAN family and has shown
success for image and audio generation [13–17].

Wasserstein Generative Adversarial Network. wGAN [13]
uses the Wasserstein distance (w-distance) to measure the distance
between real and generated data distributions. Compared with the
Jensen–Shannon (JS) distance used in previous GAN structure, w-
distance is continuous and differentiable with respect to the distri-
butions. Although the computation of such distances is not trivial, a
critic network is used in wGAN to estimate the w-distance.

During training, generator learns to produce “fake” spectro-
grams that look like the “real” spectrograms, ŷ, from input vector
ẑ by minimizing the estimated w-distance provided by the critic
network. The critic network C(y, ŷ) takes “real” spectrograms
randomly sampled from the training data, y, and the “fake” spec-
trograms ŷ as inputs and learns to update the measured w-distance
between y and ŷ. The generator and critic network are trained al-
ternatively. In our experiments, we use ResNet [18] as our critic
network and set the input vector dimension to 64.

2.3. Encoder Network Structure

The encoder in our framework serves as a feature extractor that maps
the ECoG signals to a representation vector z. We use a ResNet [18]
as the backbone of the encoder. Fig. 3 demonstrates the structure of
the encoder. In the beginning layers, only temporal filtering along
the signal from each electrode is used because the ECoG signal has
less correlations between electrodes than across time. Along with the
last temporal residual block, an attention gated unit is applied that
allows the network to focus only on more significant electrodes at
each time step. This not only helps to improve the network accuracy
by ignoring the uninformative electrodes with low signal-to-noise
ratio (SNR), but also provides a way to analyze the dynamics of
each cortical area. We discovered that the evolution of the visualized
attention mask over time follows prior neuroscientific findings of the
brain dynamics (see Sec. 3.3).

After extracting temporal features for several layers, the later
parts of the encoder further extract spatiotemporal features with
residual blocks using 3D convolution. At the output layer, instead of
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embedding to latent vector z directly, we use the “reparameterization
trick” [19] to encourage the generated vector z to follow the desired
i.i.d. Gaussian distribution as the input to the pre-trained generator.
This also regularizes the encoder during fine-tuning, which in turn
results in better generalization with small amount of training data.
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Fig. 3. Overview of the encoder network. Initial convolution layers
only performs temporal filtering within each channel (corresponding
to signal from one electrode). Attention mechanism helps with the
feature extraction and interpretability of the results.

2.4. Fine-tuning the Encoder and the Generator Together

In our transfer-GAN framework, once the generator is pre-trained,
we then transfer it to the overall network by fine-tuning it together
with the encoder. To encourage the output distribution of the en-
coder to follow an i.i.d. standard Gaussian distribution, we want to
minimize the Kullback–Leibler (KL) divergence between the two
distributions. Let x denote a segment of ECoG signal input to the
encoder. Following the “reparameterization trick” introduced in
the variational auto-encoder (VAE) [19], the output of encoder uses
two separate fully connected layers to estimate mean, µ(x) ∈ Rd,
and variance, σ(x) ∈ Rd, vectors. The representation vector z is
then constructed to follow a Gaussian distribution N (µ(x),Σ(x))
(where Σ(x) = diag

(
σ2(x)

)
) by rescaling an i.i.d. standard Gaus-

sian random vector (i.e. z = µ(x) +σ(x) ◦n, where n ∼ N(0, I)).
KL divergence between encoder output distribution p(z) and

generator input distribution p(ẑ) during pre-training is

KL (p (z) ‖p (ẑ)) = KL (N (µ (x) ,Σ (x)) ‖N (0, I))

=
1

2

d∑
i=1

(µ2
i (x) + σ2

i (x)− log σ2
i (x)− 1)

(1)

To jointly train the encoder and refine the generator, we minimize a
loss function that is a weighted sum of the mean squared error (MSE)
between reconstructed ŷ(x) and the ground truth spectrogram y and
the KL divergence term:

loss = MSE (y, ŷ(x)) + λKL (p (z) ‖p (ẑ)) (2)

where λ is a hyper-parameter and is set to 0.1 in our experiment.
2.5. Reconstruction of Audible Waveform

To transform the predicted spectrogram back to an acoustic wave-
form, we adapt a WaveNet vocoder model [11] to reconstruct wave-
forms of good quality. The WaveNet vocoder takes spectrogram as
its input and learns the mapping between the spectrogram and the
corresponding speech waveform. We pre-train the vocoder on large
corpus datasets. Once the encoder and generator are fine-tuned, we
then fine-tune the vocoder separately with pairs of the stimuli wave-
forms and the corresponding predicted spectrograms in the training
set.

3. EXPERIMENTAL RESULTS

3.1. Dataset Acquisition and Preprocessing

We collected datasets of three different electrode density and cover-
age: A higher density dataset (HD) with 2 subjects and 4 mm inner-

electrode spacing; A lower density dataset (LD) with 12 subjects
and 10 mm spacing; A hybrid density dataset (HB) with 2 subjects
and overall 10 mm spacing with particular regions inserted by 5 mm
spacing sub-grid electrodes. The STG region is sampled for all sub-
jects, and other cortical regions (including Broca’s area and motor
cortex) are also sampled in LD and HB data. Fig. 4 illustrates grid
placement examples for the three datasets. HD data was based on
previously published data [20], other HB and LD data was acquired
at NYU Langone working with patients undergoing treatment for
refractory Epilepsy who gave written consent to participate in the
study. The study protocol was approved by the NYU Langone Med-
ical Center Committee on Human Research. During the task, all sub-
jects were instructed to listen to speech audio of 50 different English
words/pseudo-words recorded by a native English female speaker.
The 50 words are repeated 2-4 times depending on the dataset. One
subject in the HD dataset passively listened to each word while all
other subjects are required to reproduce each word after listening.

The ground truth speech spectrograms were generated from
waveforms by applying a 32 band-pass filter bank. Filters with
bandwidth of of 1/12 octave and center frequencies spaced logarith-
mically from 180-7000 Hz were used. The spectrograms are then
down-sampled 125 Hz in time [21]. ECoG signals were prepro-
cessed with high gamma band-pass filter (70-150 Hz). The envelope
of the filtered signal was then extracted by a Hilbert Huang trans-
form and downsampled to 125 Hz to match the sampling rate of the
spectrogram. Silent period of 250ms before each stimuli is used as
reference . We normalize the signal from each electrode by the mean
and standard deviation of the reference period.

Fig. 4. Examples of electrode grid of HD, LD and HB datasets.
Electrodes within the cropped regions are included in the input to
the network. For HD dataset, this covers mostly the STG area. For
LD and HB datasets, the motor and Broca’s areas are also covered.
In all cases, the input covers a 8×8 grid. Some subjects have missing
or bad electrodes in the area chosen. For simplicity, we assumed the
signals are all zero in those locations.

3.2. Stimuli Reconstruction

The generator has 5 residual blocks with dilation rate of {1, 2, 4, 8,
16} and filter size 2 to cover 62 ms temporal perceptive field. The
encoder network covers 51 ms temporal field. Adam optimizer [22]
is used to fit models with hyper-parameters as following: generator
pre-training (lr = 10−4, β1 = 0, β2 = 0.9), encoder-generator
fine-tuning (lr = 10−3, β1 = 0.9, β2 = 0.999), vocoder pre-
training (lr = 10−3, β1 = 0.9, β2 = 0.999), and vocoder fine-
tuning (lr = 10−4, β1 = 0.9, β2 = 0.999). We use a corpus of
spoken English words from the Shtooka project [23] to pre-train the
generator. It contains 4876 individual words pronounced by a female
speaker. For pre-training the vocoder, a combination of dataset is
used. It includes Shtooka project [23] and LJ speech dataset [24],
which contains 24 hours speech waveforms of English sentences in
female voice.

During fine-tuning, we separate the dataset into testing and train-
ing sets. For each subject, 50 unique words are used for testing, and
the rest of the samples (each word appeared 1 to 3 times depending
on the subject) are used for training. An individual model is trained
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Fig. 5. The averaged evolution of the attention mask for a subject with the hybrid grid. The color in each electrode indicates the value of the
attention mask, following the color bar. The white square shows the 8×8 grid used in the experiment. Similar dynamic is also observed in
the other HB subject.

and tested for each subject. For reconstructing the stimuli, only the
perception period ECoG signal is used, which begins at the stimu-
lus onset and runs up to 419 ms -791 ms. During fine-tuning, for
data augmentation purpose, we randomly pick a sliding window of
768ms from a combination of the perception period and the corre-
sponding silent period for each sampled word. As shown in Fig. 4,
signals from a 8×8 grid are used as the input.

We compare our transfer-GAN framework with a spectrogram
based WaveNet (SpecWaveNet) [5], which has shown good re-
construction and outperformed linear models and residual network
based approaches. To allow for a fair comparison, the number of
parameters for the encoder and generator is the same as that of
SpecWaveNet. We also compared with the linear regression model
decoding accuracy reported by Pasley et al [4]. Table 1 compares the
averaged mean squared error (MSE) and correlation coefficient (CC)
on our dataset. The transfer-GAN has better performance by a large
margin on all three datasets in terms of both MSE and CC metrics.
Fig. 6 compares samples of reconstructed spectrograms on the test-
ing set of HD and HB datasets for transfer-GAN and SpecWaveNet
methods. The results show our proposed approach captures spectro-
gram dynamics more accurately. The consonants (short segment of
high frequency components in the figures) are important for intelli-
gible reconstruction but they can be easily overlooked by decoding
models due to their low energy. Our method provides better con-
sonant reconstruction compared to the SpecWaveNet. Some audio
examples of the decoded waveforms are provided here1.

MSE (±sd) / CC (±sd)
transfer-GAN SpecWaveNet linear model

HD 0.58(0.09) / 0.69(0.05) 0.68(0.08) / 0.61(0.05) - / 0.41(0.03)
HB 0.53(0.03) / 0.72(0.01) 0.64(0.01) / 0.66(0.02) - / -
LD 0.73(0.14) / 0.60(0.04) 0.79(0.15) / 0.54(0.05) - / 0.3(0.05)

Table 1. Quantitative comparison of transfer-GAN (proposed),
SpecWaveNet [5], and linear model [4] in MSE (lower is better) and
CC (higher is better) on test data. “-” refers to number not reported.

3.3. Attention Mask Visualization

The attention mask generated in the encoder for each input ECoG
signal helps the network to focus on electrodes with useful informa-
tion at each time step. Additionally, it provides a way to visualize the
brain signal dynamics of different cortical areas at different times.
As an example, we visualize the dynamics of the mask for one sub-
ject of HB. The hybrid grid provides both satisfying resolution on
STG area and large span over other perisylvian cortical areas related
to language. Fig. 5 shows the averaged evolution of the attention
mask for all the test samples.

By observing the attention mask as in Fig. 5, we notice that
STG, Broca’s area and motor cortices are attended sequentially. Ac-
cessory auditory cortex in the STG is consistently attended during

1https://wp.nyu.edu/videolab/ecog demo/
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Fig. 6. Decoding results on each one of HD and HB testing set. GT
and SW denote ground truth and SpecWaveNet, respectively.

the perception period. Another observation is that the attention in
Broca’s area increases shortly after auditory cortex is initially acti-
vated. This suggests that Broca’s area is active during speech per-
ception and is likely involved in sequencing articulatory information
prior to speech articulation [25]. Moreover, motor cortex is active
during the stimuli perception and prior to speech production. Sim-
ilar phenomenon has been observed in the literature [26]. In order
to confirm that the observation on motor area activation is related to
perception rather than early articulatory preparation, further study is
required. The fact that the attention mask generated by the learnt
network matches with recent findings in the neuroscientific litera-
ture [25, 26] of cortical dynamics is reassuring. It also suggests that
such a deep learning architecture with an embedded attention mask
can potentially help elucidate the functions of cortical regions during
different cognitive tasks.

4. CONCLUSION

In this study, we developed a framework for stimulus speech de-
coding from human cortex ECoG recordings. We proposed a new
framework containing an encoder to extract features from and map
the ECoG signals to a representation space. The generator in our
framework is pre-trained to predict realistic spectrograms from the
representation space. This approach allows us to tackle the challenge
of limited training data and achieve state-of-the-art reconstruction
from cortical areas including STG. Additionally, the attention mech-
anism introduced in the encoder allows for better generalization of
the network and interpretation of the results for neuroscientific dis-
coveries.

In future work we aim to use the developed techniques to study
speech processing in human cortex in finer details. For instance,
dynamics of speech perception, understanding and production can
be studied by developing not only stimulus speech decoder, but also
semantic word decoder and response speech decoder. Our developed
framework might also be useful for other medical applications where
limitations in training data hinder the use of deep learning.
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