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Abstract—Today’s high-performance computing (HPC) plat-
forms are still dominated by batch jobs. Accordingly, effective
batch job scheduling is crucial to obtain high system efficiency.
Existing HPC batch job schedulers typically leverage heuristic
priority functions to prioritize and schedule jobs. But, once
configured and deployed by the experts, such priority functions
can hardly adapt to the changes of job loads, optimization
goals, or system settings, potentially leading to degraded system
efficiency when changes occur. To address this fundamental issue,
we present RLScheduler, an automated HPC batch job scheduler
built on reinforcement learning. RLScheduler relies on minimal
manual interventions or expert knowledge, but can learn high-
quality scheduling policies via its own continuous ‘trial and er-
ror’. We introduce a new kernel-based neural network structure
and trajectory filtering mechanism in RLScheduler to improve
and stabilize the learning process. Through extensive evaluations,
we confirm that RLScheduler can learn high-quality scheduling
policies towards various workloads and various optimization
goals with relatively low computation cost. Moreover, we show
that the learned models perform stably even when applied to
unseen workloads, making them practical for production use.

I. INTRODUCTION

Today’s high-performance computing (HPC) platforms are

still dominated by batch jobs. On such a platform, jobs are

submitted to a centralized job scheduler via job scripts and

wait in a job queue until the scheduler allocates the requested

resources for them to execute. Once start, the jobs will run til

finish, or fail, or get killed, in a batch way [1].

A batch job scheduler is designed to schedule jobs to obtain

an optimization goal (or called metrics), such as maximizing

resource utilization, maximizing job throughput, or minimizing

job wait time, etc. Theoretically, batch job scheduling is NP-

Hard [2]. In practice, the HPC schedulers make scheduling

decisions via heuristic priority functions, which assign each

job a priority based on its attributes.

In the context of batch job scheduling, the priority functions

have been extensively studied [3–12]. In particular, some

functions rely on a single job attribute, such as submission

time (First Come First Server, FCFS) or job duration time

(Shortest Job First, SJF) [13]. Some compute priorities based

on multiple job attributes [10–12]. Recently, researchers pro-

posed to use advanced algorithms, such as utility functions [3]

or machine learning techniques [4], to build priority functions.

A more detailed description about these schedulers and their

priority functions can be found in Table III in §V.

However, no matter how a priority function is constructed

(e.g., via careful workload analysis or yearly experts expe-

riences), the forementioned schedulers share the same draw-

back: it is fixed and cannot automatically adapt to the vari-

ations in the target environment. On typical HPC platforms,

job workloads may shift month by month and the optimization

goals may also vary across time. For instance, when a cluster

is deployed initially, system administrators may set the goal

as high resource utilization and later change it to low average

waiting time for addressing user interests.

Manually tuning priority functions towards changing work-

loads or optimization goals is possible, but tedious and error-

prone even for the most experienced system administrators.

Alternatively, an automated strategy would be more attractive.

This motivates us to explore reinforcement learning (RL)

methods [14, 15] in batch job scheduling. Ideally, an RL-based

job scheduler will adapt to the varying job load as RL can

continuously learn from trial-and-error as the load varies; the

scheduler will also adapt to various optimization goals as RL

can automatically learn the ‘best’ policies for given rewards

without manual intervention.

However, in practice, several key questions need to be

answered before using RL in HPC batch job scheduling:

• Can RL yield high-quality scheduling policy that is

comparable to or even better than fine-tuned state-of-

the-art scheduling policies, across various workloads and

different optimization goals?

• Is the RL-based scheduling policy only usable to its

training workload or generally applicable to different

workloads? In another words, will an RL-based policy

still schedule jobs effectively on the new workloads that

it never sees before?

• What are the key factors that affect the learning efficiency

of RL-based job schedulers?

We address these questions in the design of RLScheduler,

a reinforcement learning based batch job scheduler. Through

extensive evaluations, we show that: first, with proper designs,

RLScheduler is capable of learning high quality scheduling

policy that is comparable to or even better than the state-

of-the-art schedulers, on various (both synthetic and real-

world) workloads or with vastly different optimization goals.

Second, the model learned by RLScheduler works generally
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TABLE I: Description of job attributes.

Name Symbol Description

Job ID idt the id of job
User ID ut the user’s ID

Group ID gt the group’s ID
Executable Id appt ID of the job’s executable file
Submit Time st job submission time

Requested Processors nt the number of processors that a job requests.
Requested Time rt job’s runtime estimation (or upper bound) from users

Requested Memory mt the requested memory per processor

well even on job workloads that it never sees before, making

it sufficiently stable to be used in practice.

More importantly, this study identifies two key factors that

affect the performance of RL-based batch job scheduler: 1) the

neural network structure of the agent; and 2) the variance of

training datasets. To respond to these two factors, we propose a

kernel-based deep neural network (DNN [16]) and a trajectory

filtering mechanism in RLScheduler. We believe that these two

factors are general for other RL-based system-tuning problems

and our solutions would provide useful insights for them too.

In summary, this study makes three key contributions:

• We build RLScheduler, the first reinforcement learning

based batch job scheduler for HPC systems, to solve the

adaption issue of existing batch job schedulers.

• We identify two key factors that affect the performance

of reinforcement learning-based batch job scheduling and

introduce corresponding solutions: kernel-based neural

network and trajectory filtering mechanism to solve them.

• We conduct extensive evaluations to address the common

concerns about utilizing RL in batch job scheduling. The

results show the clear advantages of RLScheduler towards

various workloads and changing system metrics.

The remainder of this paper is organized as follows: In

§II we introduce the necessary background about HPC batch

job scheduling and deep reinforcement learning. In §III,

we discuss the challenges of applying deep reinforcement

learning in batch job scheduling. In §IV we present the

proposed RLScheduler and its key designs and optimizations.

We present the main results (i.e. the RLScheduler and its

performances) in §V, and compare with related work in §VI.

We conclude this paper and discuss the future work in §VII.

II. BACKGROUND

A. HPC Batch Job Scheduling

This work discusses the job scheduling problem on HPC

platforms, which offer homogeneous compute resources and

host independent batch jobs. We discuss its key aspects briefly.

1) Job Attributes: On HPC platforms, a job presents several

attributes, such as User ID, Group ID, Requested Processors,

and Submission Time. Table I summarizes some broadly seen

job attributes. A more complete list of job attributes can be

found in the Standard Workload Format (SWF) [17].

For the job schedulers using priority functions, selecting

effective job attributes and fine-tune their combinations is a

research topic, requesting manual efforts from domain experts

or extensive research [3, 7]. Comparatively, we build an RL-

based scheduler which simply takes all available job attributes

and learns the most effective features automatically.

2) Workloads: In the context of HPC batch job scheduling,

workload usually includes a number of batch jobs and the

timestamps addressing their submissions. A workload is typ-

ically characterized by the attributes of jobs and their arrival

patterns. Due to the high variability and randomness of real-

world workloads, it is hard to accurately model a workload.

Researchers often use representative statistical values to char-

acterize workloads, for example, the moments (e.g., mean,

variance) of job runtime, job size, job arrival interval [18, 19].

HPC workloads vary as new jobs submitted. But the varia-

tions may or may not change the workload characteristics. In

this work, we consider workloads changes are those significant

enough to vary the workload characteristics. For example, a

load changes from short jobs to long jobs, or from small-scale

jobs to large-scale jobs. As are expected, such changes can

impact the system performance significantly and request the

corresponding adaptions from job schedulers. We will describe

more details about workloads characteristics in §V.

3) Scheduling Goal: The performance of job schedulers is

measured by the optimization goals (or scheduling metrics).

Different metrics address different user expectations and lead

to different scheduler designs accordingly. No single metric is

considered as golden standard [19]. We summarize four widely

used metrics/goals below.

• Minimize the average waiting time (wait). It is the

average time interval (wj) between the submission and

the start of a job.

• Minimize the average response/turnaround time (resp).

It is the average time interval between the submission

time and the completion time of a job. This time is the

waiting time (wj) plus the job execution time (ej).

• Minimize the average bounded slowdown (bsld). Here,

slowdown means the ratio of job turnaround time over

its execution time ((wj + ej)/ej), which overemphasizes

short jobs with ej close to 0. The bounded slowdown

(max((wj + ej)/max(ej , 10), 1)) measures job slow-

down relative to given “interactive thresholds” (e.g., 10

seconds), which is considered more accurate.

• Maximize resource utilization (util), also called utiliza-

tion rate, represents the average percentage of compute

nodes allocated normalized by the entirety of nodes in

the system over a given period of time.



Previously, a scheduler is designed to optimize a fixed

metric. For example, Shortest Job First (SJF), Smallest Job

First, and F1—F4 in Carastan-Santos et al. [4] target lower-

ing average waiting time, increasing resource utilization, and

minimizing average bounded slowdown, respectively. In the

lifetime of a scheduler, when the system varies its scheduling

metric, the system administrator will tune the scheduling

policies manually. In this study, we leverage reinforcement

learning and let the learning algorithm adjust its scheduling

policies automatically for varying metrics.

4) Scheduling and Backfilling: HPC platforms may provi-

sion multiple job queues and schedule jobs in different queues

differently. Without loss of generality, batch jobs are usually

submitted to batch queues and scheduled by centralized job

schedulers with backfiling techniques enabled [6].

The process is straightforward. In batch queues, when a job

is selected, the system will seek for provisioning its requested

resources. If success, the resources will be allocated and the

job will start to run. Otherwise, the job will wait until its

request is satisfied [10]. In the mean time, backfilling can be

activated to search for the jobs whose resource allocations can

be satisfied now without affecting the planned execution for

the waiting job, to improve the efficiency of the system.

B. Reinforcement Learning

1) RL Concept: Reinforcement learning (RL) is a group

of machine learning techniques that enable agents to au-

tonomously learn in an interactive environment by trials and

errors [14, 15]. In this study, we leverage this autonomy to

build adaptive job schedulers for varying workloads and goals.
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Fig. 1: General framework of reinforcement learning.

Fig. 1 shows a general RL framework. At each step t,
the agent observes the corresponding state St, and takes an

action At. Consequently, the action will transfer the envi-

ronment state from St to St+1 and the agent will receive

the reward Rt+1. In most cases, the agent does not have a

prior knowledge on the environment state or the reward, and

attain them gradually in the training process. The target of

reinforcement learning is to maximize the expected cumulative

discounted reward collected from the environment. The agent

takes actions based on policies, each defined as a probability

of taking certain action at a given state. When the state space

is enormous, memorizing all states becomes infeasible. Deep

Neural Network (DNN) can be used to estimate the probability.

The reinforcement learning using DNN to model the policy is

called Deep Reinforcement Learning (DRL).

2) RL training methods: Reinforcement learning has a large

number of training methods, classified in different ways [20].

But, a key difference among them is the training strategies,

i.e., what the RL agent learns. The policy-based RL directly

learns the policy, which will output an action given a state;

and policy gradient method is a typical example of them [21].

The value-based RL learns proper value of each state, which

can indirectly output an action by guiding the agent to move

towards better state; and Q-learning method is a typical

example [22]. Between these two methods, policy gradient

is proven to have strong convergence guarantees [21] and

become our first choice. This is mostly due to the high variance

of batch job scheduling, which may lead to oscillations in

Q-learning. To alleviate the known performance issues of

policy gradient, we follow the Actor-Critic model [23] in

RLScheduler to combine both policy-based and value-based

learning for better training efficiency. We return to this in § IV.

III. DISCUSSION ON CHALLENGES

At first glance, scheduling batch jobs with a deep reinforce-

ment learning agent seems intuitive by repeating three simple

steps: 1) take the waiting jobs and idle compute resources of

the target HPC environment as the input for a deep neural

network (DNN); 2) use the DDN as the current scheduling

policy to select a ‘best‘ job as the action; 3) apply the action

back to the environment. The training process repeats the

three steps until the last job in the job sequence is scheduled,

which creates one sampled trajectory, and then computes the

reward based on a given metric. With sufficient trajectories

and their rewards, the policy gradient algorithm can be used

to update the policy (DNN) to maximize expected rewards of

these trajectories, indicating a better scheduling algorithm.

Although the process is standard for all policy gradient

RL, the techniques used in each step is specific to the target

problem and can affect the training efficiency and the agent

correctness significantly. In this study, we address two key

challenges in the RL-based batch job scheduling problem.

1) RL Network Architecture: In Fig. 2, we show how an

DNN-based RL agent makes scheduling decisions: it takes

the waiting jobs and their features (e.g., a1→m) as input

vector and outputs a probability distribution of each job being

scheduled next. The job with the highest probability (job8
in this example) should be the selected job. One key issue

here, however, is the job orders in the waiting queue could

change easily. As ‘step 1’ shown in the figure, job8 may hold

a different position in the queue next time, for example, from

the second to the third. But, the RL’s DNN should still select

job8 as the best even its placement is different.

In general, there are two ways to achieve this. One way

is to consider the job orders in queue as the translation or

deformation of the inputs and learn these deformation by

feeding the DNN with more training data. The other option

is to make the DNN insensitive to job orders, and assign a

job with the same probability regardless its orders in the job

queue. The former approach looks intuitive. Nevertheless, it

usually requests much more training data, takes longer time









or running job finishes, SchedGym will query the scheduler

and act based on the returned action. When the available

resources are insufficient to host the scheduled job, SchedGym

can backfill possible jobs whose executions will not impact the

jobs under scheduling. The actual runtime of a job is retrieved

from the SWF job traces. Since we target homogeneous HPC

in this study, we assume the runtime will not change. Note that,

the accurate runtime will not be available to the schedulers,

instead, only the requested runtime is available to schedulers.

V. EVALUATION

A. Evaluation Setup

We implement RLScheduler based on the Proximal Policy

Optimization (PPO) algorithm from OpenAI Spinning Up [30]

using Tensorflow [31].

The training in RLScheduler works in epoch. In each epoch,

it samples multiple trajectories from the environment. Each

trajectories includes a series of interactions between the agent

and the environment. The collected rewards will be used to

update the agent. In RLScheduler, we take 100 trajectories

in each epoch and each trajectory contains the scheduling

decisions of 256 continuous jobs. In-between epoch, RLSched-

uler runs 80 iterations to update its policy network and value

network separately. The learning rate is 10−3. More hyper-

parameters can be found in the source code1 [32].

We list the job traces used in the evaluations in Table II,

and categorize them into two groups. The first group addresses

the real-world traces from SWF archive [17]. The second

group addresses the synthetic traces generated based on a

widely used workload model proposed in [18]. We used

different parameters in the model and generated two traces

with different characteristics. As the sizes of these job traces

are largely different, we leveraged the first 10K jobs from them

in our evaluations.

TABLE II: List of job traces

Name Date size it(sec) rt(sec) nt

SDSC-SP2 1998 128 1055 6687 11
HPC2N 2002 240 538 17024 6

PIK-IPLEX 2009 2560 140 30889 12
ANL Intrepid 2009 163840 301 5176 5063

Lublin-1 - 256 771 4862 22
Lublin-2 - 256 460 1695 39

The key characteristics of these traces are also shown

in the table, including the total number of processors in

the cluster (size), average job arrival interval (it), average

requested runtime (rt), and average requested processors (nt).

In summary, the job traces are quite diverse in the presented

characteristics.

To evaluate RLScheduler, we compare with existing priority

function-based schedulers, including several heuristic sched-

ulers and a state-of-the-art learning-based scheduler. Table III

1https://github.com/DIR-LAB/deep-batch-scheduler

TABLE III: List of schedulers

Name priority function

FCFS score(t) = st
SJF score(t) = rt

WFP3 score(t) = −(wt/rt)3 ∗ nt

UNICEP score(t) = −wt/(log2(nt) ∗ rt)

F1 score(t) = log10(rt) ∗ nt + 870 ∗ log10(st)

reports the priority functions used in these schedulers. Here,

FCFS schedules jobs in the same order as they were submitted

(i.e., using st). SJF schedules jobs based on how long the job

will run (i.e., using rt). WFP3 and UNICEP [3] belong to the

scheduler family that combines multiple factors. More specif-

ically, they favor jobs that have shorter runtime, request fewer

resources, and experience longer waiting time, representing the

expert knowledge in tweaking the priority functions. Scheduler

F1 is the best scheduler selected from [4]. It was built on brute

force simulation and non-linear regression, and represents the

state-of-the-art batch job scheduler for the goal of minimizing

average bounded slowdown.

In the following subsections, we report the evaluation results

of RLScheduler under various scenarios. The results mainly

address the following questions about RLScheduler:

• Whether the new designs (kernel-based neural network

and trajectory filtering mechanism) improve the training

performance of RLScheduler?

• How well are RLScheduler’s training and performance

towards: different HPC workloads, different scheduling

metrics, or even combined scheduling metrics?

• Will a scheduling policy that RLScheduler learns still be

applicable to an unseen, new workload?

• What is the computational overhead of RLScheduler?

B. RLScheduler Design Evaluations

This section examines the key designs of RLScheduler. In

particular, we measure the performance improvement of the

kernel-based neural network and trajectory filtering mecha-

nism during RLScheduler training.

TABLE IV: The network configurations of different policy

network designs, including our design (RLScheduler)

Name Layers Size of each layer

MLP v1 3 128, 128, 128
MLP v2 3 32, 16, 8
MLP v3 5 32, 32, 32, 32, 32

LeNet [33] 6 2x(conv2d, maxpooling2d), dense

RLScheduler 3 32, 16, 8

1) Kernel-based Neural Network Performance: To measure

kernel-based neural network, we compared the training effi-

ciency of RLScheduler using different policy neural networks,

including convolution neural network (CNN) and multiple

layer perceptron (MLP) networks. We selected them because







TABLE VII: Performance comparisons of one RL-learned model (RL-X) being applied to other job traces (Y).

Trace Best Heuristic Sched Worst Heuristic Sched RL-Lublin-1 RL-SDSC-SP2 RL-HPC2N RL-Lublin-2

Scheduling without Backfilling

Lublin-1 258.37 (F1) 22274.74 (UNICEP) 254.67 482.62 283.00 334.73
SDSC-SP2 1232.06 (F1) 3000.88 (WFP3) 1543.40 466.44 1016.83 1329.41

HPC2N 118.01 (F1) 660.77 (UNICEP) 169.91 300.43 186.42 236.00
Lublin-2 698.34 (F1) 11265.3 (UNICEP) 665.49 805.16 648.52 724.51

ANL Intrepid 8.39 (F1) 35.11 (FCFS) 9.91 9.61 8.93 9.75

Scheduling with Backfilling

Lublin-1 73.31 (SJF) 307.23 (UNICEP) 58.64 93.16 54.65 64.45
SDSC-SP2 548.01 (UNICEP) 2167.84 (SJF) 1364.43 397.82 746.65 1192.97

HPC2N 71.95 (F1) 175.12 (UNICEP) 115.93 128.73 115.79 144.54
Lublin-2 91.99 (SJF) 379.59 (UNICEP) 172.15 183.98 139.80 118.79

ANL Intrepid 2.73 (F1) 4.12 (UNICEP) 3.63 4.56 3.99 3.58

system utilization on the same job trace (0.478). This again

motivates the need of RLScheduler, which can be adaptive

towards different metrics. Second, for this new optimization

goal, RLScheduler still performs either comparably well to

the best or is the best among the presented schedulers, show-

ing its advantage over heuristic schedulers. Third, compared

to bounded slowdown, system utilization is the more stable

metrics. For some cases (e.g., HPC2N with backfilling), the

performance differences among different schedulers are small.

However, this does not suggest that system utilization is not

important for job schedulers designs. The small change in

the system utilization may lead to big difference in terms of

the overall cost of the cluster. These results conclude that,

RLScheduler can adapt to different optimization goals with

good performance (refer to Appendix section for results of

other two scheduling metrics).

E. RLScheduler Stabilization

One major concern about learning a batch job scheduler

from trial-and-error on a job trace is whether the learned model

would be too specific to the given job trace and can not handle

even small shifts in the workloads.

This section addresses the RLScheduler stability concern. In

particular, we experimented on applying the learned RL model

(RL-X) from job trace (X) onto other job traces (Y) and see

how it would perform. Note that, these job traces have distinct

characteristics as listed in Table II. Hence, the evaluations

result will show whether RLScheduler is sufficiently stable

for production use.

Table VII presents the results, in which the best result for

each case is marked bold. Similar to the previous performance

evaluations, for each pair of RL-X model and job trace Y,

we conducted the scheduling on 10 randomly sampled job

sequences and reported their average. We only report the best

and worst results of the heuristic schedulers (i.e., FCFS, SJF,

WFP3, UNICEP, F1) due to the space limitation. Also, we

only reported the result under the scheduling metrics average

bounded slowdown. Other metrics show similar results.

From these results, we observed that, a learned RL-X

model, regardless of which job trace it was trained based on,

can be safely applied to other job traces Y, without making

catastrophic scheduling decisions. Although the performance

will be degraded comparing with RL-X on X, its degradation is

actually controlled: it will be no worse than using an inappro-

priate heuristic scheduler. Such a low-bound or stabilization

makes RLScheduler practical in production systems.

F. RLScheduler with Fairness

In previous evaluations, we show RLScheduler adapts well

to each individual scheduling metric. But, in production

system, it may require to consider multiple metrics at the

same time, such as minimizing job slowdown and maximizing

resource utilization together, or minimizing job slowdown and

keeping fairness among users together. The fixed heuristic

scheduling algorithms are clumsy to handle this. However,

RLScheduler can still work via configuring its reward func-

tions. We take fairness as an example to demonstrate it.

Fairness among users is a conjugated metrics, and can be

applied upon other metrics to build per-user goals. Let’s take

‘per-user average job slowdown’ as an example. It means the

scheduler needs to consider not only the average slowdown of

all jobs, but also the average slowdown of each user’s jobs.

To optimize it, we should not starve one user nor slowdown

all jobs for strictly enforcing the fairness.

To integrate fairness into RLScheduler, we change the

reward function (r) from ‘average job slowdown of all jobs’

to an aggregated value of ‘average job slowdowns of each

user’. The aggregator determines the way the scheduler would

enforce the fairness. For example, we can use Maximal as the

aggregator, which means RLScheduler will focus on the user

with maximal average job slowdown and learn to prioritize the

user to minimize the overall maximal. In this way, it strives

to enhance fairness and reduce the average job slowdown at

the same time.

1) Evaluation Results: Due to the space limit, we only

report the results of ‘bounded job slowdown with fairness’ as

an example to show the performance of RLScheduler. Because

among our job traces, only SDSC-SP2 and HPC2N contain

user information, we show the results of these two traces. We

used Maximal as the aggregator and conducted the evaluations

in the same way as the previous ones (scheduled 10 randomly

picked job sequences with 1024 jobs).



TABLE VIII: Results of scheduling different job traces to-

wards bounded job slowdown with Maximal Fairness.

Trace FCFS WFP3 UNICEP SJF F1 RL

Scheduling without Backfilling

SDSC-SP2 7257 14858 12234 12185 8260 4116

HPC2N 2058 5107 5145 1255 1310 1147

Scheduling with Backfilling

SDSC-SP2 7356 8464 3840 10121 7799 2712

HPC2N 1502 2125 2081 1491 583 519

The results in Table VIII show that RLScheduler performs

the best in both job traces after considering fairness. From

these two traces, we observe that RLScheduler performs re-

markably better than the best heuristic scheduler in SDSC-SP2

trace and only slightly better in HPC2N trace. The main reason

of this difference is that, in HPC2N trace, jobs submitted from

different users are highly unbalanced. For instance, one user

(u17) submitted around 40K jobs while the average number of

jobs per-user is only 700. So, in a period of time, it is often

that only one user or small number of users are submitting

job, hence less impacted by the fairness.

In addition, RLScheduler can also work with quota-based

fairness. In this case, RLScheduler’s scheduling decisions that

are violating user’ quota will be masked illegal and ignored

similarly to the case of insufficient resources.

G. RLScheduler Computational Cost

We finally discuss the computational cost of RLScheduler.

There are mainly two computational parts in using RLSched-

uler: 1) train the model to learn the scheduling policy; 2)

inference a learned model to generate a scheduling decision.

TABLE IX: Computation cost of RLScheduler on CPU node

Name Time Cost

SJF sorts 128 jobs and picks one 0.71ms
RLScheduler DNN makes a decision 0.30ms

RLScheduler DNN training (one epoch) 123s
Converge on Lublin-1 1.1h

We timed both computations on our evaluation platform

(Intel Xeon Silver 4109T CPU and 32GB DDR4 DRAM)

and presented the results in Table IX. In summary, the trained

RLScheduler DNN can make a decision for 128 pending jobs

in 0.3ms, compared to SJF sorting the same 128 jobs in

0.7ms 2. The decision making of RLScheduler is comparably

fast. In addition, such a time cost will not grow even when

more jobs are pending in the system as more jobs will first be

cut-off to MAX_OBSV_SIZE (i.e., 128).

During RLScheduler training, one epoch takes around 123
seconds and it typically takes less than 100 epochs to converge.

Specifically, it took 1.1h to converge our training on Lublin-

1 job trace. The computation will be much faster on GPU.

2both implementations are based on python and can be improved

But we consider this cost is acceptable as the training is only

needed when the workload changes significantly or the metrics

changes. Both of them typically will not happen hourly.

VI. RELATED WORK

In HPC, batch job scheduling is a long-standing topic that

draws lots of attentions in HPC community [3–9, 35]. In sum-

mary, researchers take various approaches and develop various

scheduling policies, ranging from simple and classic policies

(e.g., First Come First Served (FCFS) and Shortest Job First

(SJF)) to complex policies (WFP3 and UNICEF) [3], from

linear programming [9, 36] to non-linear algorithms [37, 38]

and even neural networks [7, 8]. Being different from this

group of works, RLScheduler is built on deep reinforcement

learning and is designed to be automated to the variations on

both job loads and optimization goals.

Recently, reinforcement learning has also been studied and

leveraged in various system optimization tasks. Examples

include resource scheduling and task provisioning, such as

DeepRM [34, 39], Decima [28], and RRL [40]; resource

configuration tuning [41–43]; file system tuning [44] and per-

formance prediction [45, 46]. Although these studies leveraged

reinforcement learning methods as RLScheduler does, they

are not solving the automated batch job scheduling problem,

hence miss the key training improvement and stabilization

mechanisms proposed in RLScheduler.

F1 and several priority functions from [4] are considered as

the state-of-the-art HPC batch job scheduler. These schedulers

were built via non-linear regressing a large number of samples

generated from brute force simulations. Compared with it,

RLScheduler takes an unsupervised learning approach (rein-

forcement learning) and is accordingly automated and agile

to different training loads and optimization goals and attains

better performance in more cases.

VII. CONCLUSION AND FUTURE PLAN

This study presents RLScheduler, a deep reinforcement

learning-based job scheduler. RLScheduler learns to schedule

HPC batch jobs via its ‘trail and error’ and is capable to learn

high-quality scheduling policies for varying workloads and

optimization goals. To prove the concept, we conducted ex-

tensive evaluations and confirmed that, RLScheduler performs

well across different workloads and different optimization

goals with high stability and reasonably low computation cost.

Realizing RLScheduler is our first step. In the near future,

we plan to study more on multiple metrics optimization and

integrate it into real HPC cluster management tools such as

Slurm. Moreover, we expect to apply the knowledge and

experience we learn from this to other complex HPC settings.
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