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Abstract

Availability of extensive genetics data across multiple individuals and populations is
driving the growing importance of graph based reference representations. Aligning
sequences to graphs is a fundamental operation on several types of sequence graphs
(variation graphs, assembly graphs, pan-genomes, etc.) and their biological applica-
tions. Though research on sequence to graph alignments is nascent, it can draw from
related work on pattern matching in hypertext. In this paper, we study sequence to
graph alignment problems under Hamming and edit distance models, and linear and
affine gap penalty functions, for multiple variants of the problem that allow changes
in query alone, graph alone, or in both. We prove that when changes are permitted
in graphs either standalone or in conjunction with changes in the query, the sequence
to graph alignment problem is NP-complete under both Hamming and edit distance
models for alphabets of size ≥ 2. For the case where only changes to the sequence are
permitted, we present an O(|V | + m|E|) time algorithm, where m denotes the query
size, and V and E denote the vertex and edge sets of the graph, respectively. Our
result is generalizable to both linear and affine gap penalty functions, and improves
upon the run-time complexity of existing algorithms.

Keywords: genomics, graph search, sequence alignment, approximate pattern match-
ing, computational complexity

1 Introduction

Aligning sequences to graphs is becoming increasingly important in the context of several
applications in computational biology, including variant calling (Nguyen et al., 2015; Dilthey
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et al., 2015; Eggertsson et al., 2017; Garrison et al., 2018), genome assembly (Antipov et al.,
2015; Wick et al., 2017; Garg et al., 2018), read error-correction (Zhang et al., 2019; Salmela
and Rivals, 2014; Wang et al., 2018; Limasset et al., 2019), RNA-seq data analysis (Beretta
et al., 2017; Kuosmanen et al., 2018), and more recently, antimicrobial resistance profil-
ing (Rowe and Winn, 2018). Much of this has been driven by the growing ease and ubiq-
uity of sequencing at personal, population, and environmental-scale, leading to significant
growth in availability of datasets. Graph based representations provide a natural mechanism
for compact representation of related sequences and variations among them. Some of the
most useful graph based data structures are de-Bruijn graphs (Pevzner et al., 2001; Iqbal
et al., 2012), variation graphs (Novak et al., 2017), string graphs (Myers, 2005), partial order
graphs (Lee et al., 2002) and Wheeler graphs (Gagie et al., 2017).

Decades of progress made towards designing provably good algorithms for the classic se-
quence to sequence alignment problems serves as the foundation for mapping tools currently
used in genomics, and similar efforts are necessary for sequence to graph alignment. To
address the growing list of biological applications that require aligning sequences to a graph,
several heuristics (Huang et al., 2013; Liu et al., 2016; Limasset et al., 2016; Heydari et al.,
2018; Garrison et al., 2018; Guo et al., 2018; Rakocevic et al., 2019) and a few provably
good algorithms (Sirén et al., 2014; Rautiainen and Marschall, 2017; Kavya et al., 2019)
have been developed in recent years. In addition, sequence to graph alignment has been
studied much earlier in the string literature through its counterpart, approximate pattern
matching to hypertext (Manber and Wu, 1992). Since then, important complexity results
and algorithms have been obtained for different variants of this problem (Amir et al., 2000;
Navarro, 2000; Thachuk, 2013).

Many versions of the classic sequence to sequence alignment problem were considered
in the literature, e.g., different alignment modes – local/global, scoring functions – lin-
ear/affine/arbitrary gap penalty, and so on (Navarro, 2001). The list further proliferates
when considering a graph-based reference. This is because the nature of the problem changes
depending on whether the input graphs are cyclic or acyclic (Navarro, 2000), and whether
edits are allowed in the graph, or query, or both (Amir et al., 2000). The alignment routine
to directed acyclic graphs (DAGs) is often referred to as partial order alignment (Lee et al.,
2002) in bioinformatics.

In this paper, we present new complexity results and improved algorithms for multiple
variants of the sequence to graph alignment problem. The proposed results hold for general
directed graphs, i.e., the graphs can contain cycles. Consider a query sequence of length m
and a directed graph G(V,E) with string-labeled vertices, over the alphabet Σ. We make
the following contributions:

• The problem variants that allow changes to the graph labels are known to be NP-
complete, via proofs by Amir et al. (2000) that assume |Σ| ≥ |V |. To date, tractability
of these problems remains unknown for the case of constant sized alphabets, which is
an important consideration when aligning DNA, RNA, or protein sequences to corre-
sponding graphs. We close this knowledge gap by proving that four variants of the
problem, characterized by changes to graph alone or both graph and query, under the

2



Hamming or edit distance models, remain NP-complete for |Σ| ≥ 2.

• Allowing changes to the query sequence alone makes the problem polynomially solvable.
For graphs with character-labeled vertices, we propose an algorithm that achieves
O(|V |+m|E|) time bound for both linear and affine gap penalty cases, superior to the
best existing algorithms (Table 1). An important attribute of the proposed algorithm is
that it achieves the same time and space complexity as required for the easier problem
of sequence alignment to DAGs (Lee et al., 2002), under both scoring models.

Linear gap penalty
Affine gap penalty

Edit distance Arbitrary costs
Amir et al. (2000) O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|)) -

Navarro (2000) O(m(|V |+ |E|)) - -

Antipov et al. (2015) O(m(|V | log(m|V |) + |E|)) O(m(|V | log(m|V |) + |E|)) -

Kavya et al. (2019) O(m|V ||E|) O(m|V ||E|) O(m|V ||E|)
Rautiainen and Marschall
(2017)

O(|V |+m|E|) O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|))

This work O(|V |+m|E|) O(|V |+m|E|) O(|V |+m|E|)

Table 1: Comparison of run-time complexity achieved by different algorithms for the sequence
to graph alignment problem when changes are allowed in the query sequence alone, using
different scoring models. In this table, m denotes the query length, and V,E denote the
vertex and edge sets in a graph with character-labeled vertices respectively.

The paper is organized as follows. We begin by defining the notations and definitions used
throughout the paper (Section 2). Proofs for the hardness results are provided in Section 3.
Later in Section 4, we present an improved algorithm for the polynomially solvable variant
of the problem. As part of it, we also argue that significant improvement in the runtime is
unlikely, and generalize the algorithm for other graph-based data structures typically used
in bioinformatics. Conclusions and open problems are listed in Section 5.

2 Preliminaries

Let Σ denote an alphabet, and x and y be two strings over Σ. We use x[i] to denote
the ith character of x, and |x| to denote its length. Let x[i, j] (1 ≤ i ≤ j ≤ |x|) denote
x[i]x[i + 1] . . . x[j], the substring of x beginning at the ith position and ending at the jth

position. Concatenation of x and y is denoted as xy. Let xk denote string x concatenated
with itself k times.

Definition 2.1. Sequence Graph: A sequence graph G(V,E, σ) is a directed graph with
vertices V and edges E. Function σ : V → Σ+ labels each vertex v ∈ V with string σ(v)
over the alphabet Σ.

Naturally, path p = vi, vi+1, . . . , vj inG(V,E, σ) spells the sequence σ(vi) σ(vi+1) . . . σ(vj).
The above definition of sequence graph generalizes various graph data structures typically
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Sequence II:   ACAC
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Input:
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Figure 1: Asymmetry w.r.t. the location of changes in sequence to graph alignment illus-
trated using Hamming distance. For sequence to sequence alignment (left), two substitutions
are required for a match, and can be made on either sequence. However, for sequence align-
ment to graph (right), two substitutions are required in the sequence, whereas just one is
sufficient if made in the graph.

used in genomics (further discussed later in Section 4.5). Given a query sequence q, we
seek its best matching path sequence in the graph. Alignment problems are formulated such
that distance between the computed path and the query sequence is minimized, subject to a
specified distance metric such as Hamming or edit distance. Typically, an alignment is scored
using either a linear or an affine gap penalty function. The cost of a gap is proportional to
its length, when using a linear gap penalty function. An affine gap penalty function imposes
an additional constant cost to initiate a gap.

3 Complexity Analysis

3.1 Asymmetry of Edit Locations

An alignment between two sequences also specifies possible changes to the sequences (e.g.
substitutions, insertions, deletions) to make them identical, with alignment distance specify-
ing the cumulative penalty for the changes. The changes can be individually applied either to
the first or the second sequence, or any combination thereof. Such a symmetry is no longer
valid when aligning sequences to graphs (Amir et al., 2000). This is because alignments
can occur along cyclic paths in the graph. If the label of a vertex in the graph is changed,
then an alignment path visiting that vertex k times reflects the same change at k different
positions in the alignment. On the other hand, a change in one position of the sequence
only reflects that change in the corresponding position in the alignment. As such, optimal
alignment scores vary depending on whether changes are permitted in just the sequence,
just the graph, or both (see Figure 1 for an illustration). This characteristic leads to three
different problems, with each potentially resulting in a different optimal distance.

Consider the sequence to graph alignment problem under the Hamming or edit distance
metrics. For each distance metric, there are three versions of the problem depending on
whether changes are allowed in query alone, graph alone, or both in the query and graph.
Consider the decision versions of these problems, which ask whether there exists an alignment
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with ≤ d modifications (substitutions or edits), as per the distance metric. Restricting
substitutions or edits to the query sequence alone admits polynomial time solutions (Amir
et al., 2000; Navarro, 2000; Rautiainen and Marschall, 2017). In the pioneering work of Amir
et al. (2000) in the domain of string to hypertext matching, it has been proved that the other
problem variants which permit changes to graph are NP-complete. The proofs provided in
their work assume an alphabet size ≥ |V |. To date, tractability of these problems remains
unknown for the case of constant sized alphabets (e.g., for DNA, RNA, or protein sequences).
In what follows, we close this gap by showing that the problems remain NP-complete for
any alphabet of size at least 2.

3.2 Alignment using Hamming Distance

Theorem 3.1. The problem “Can we substitute a total of ≤ d characters in graph G and
query q such that q will have a matching path in G?” is NP-complete for |Σ| ≥ 2.

Proof. The problem is inNP . Given a solution, the set of substitutions can be used to obtain
the corrected graph and query. Next, we can leverage any polynomial time algorithm (Amir
et al., 2000; Navarro, 2000; Park and Kim, 1995) to verify if the corrected query matches a
path in the corrected graph.

To show that the problem is NP-hard, we perform a reduction using the directed Hamil-
tonian cycle problem. Suppose G′(V,E) is a directed graph in which we seek a Hamiltonian
cycle. Let n = |V |. We transform it into a sequence graph G(V,E, σ) over the alphabet
Σ = {α, β} by simply labeling each vertex v ∈ V with αn (Figure 2). Note that the graph
structure remains unchanged. Next, we construct query sequence q. Let token ti be the
sequence of n characters αn−i−1βαi. We choose query q to be the n2(2n+ 2) long sequence:
(t0t1 . . . tn−1)

2n+2. We claim that a Hamiltonian cycle exists in G′(V,E) if and only if q can
be matched after substituting a total of ≤ n characters in G(V,E, σ) and q.

Suppose there is a Hamiltonian cycle in G′(V,E). We can follow the corresponding loop
in G(V,E, σ) from the first character of any vertex label. To match each token in the query
q, we require one α→ β substitution per vertex. Thus, the query q matches G(V,E, σ) after
making exactly n substitutions in the graph.

Conversely, suppose the query q matches the graph G(V,E, σ) after making ≤ n substitu-
tions in the query and the graph. Consider the following substring qsub of q: t0t1 . . . tn−1t0t1.
Note that there are n+1 non-overlapping instances of qsub in q. Even if all the n substitutions
occur in the query, at least one instance of qsub must remain unchanged. As a result, qsub
must match to a path in the corrected G(V,E, σ).

Case 1: qsub starts matching from the first character of a vertex label. Note that the first
n tokens qsub[1, n] = t0, qsub[n + 1, 2n] = t1, . . ., qsub[n

2 − n + 1, n2] = tn−1 are all unique
followed by qsub[n

2+1, n2+n] = t0. Therefore, this requires a Hamiltonian cycle in G(V,E, σ).
Accordingly, there is a Hamiltonian cycle in G′(V,E).

Case 2: qsub starts somewhere other than the starting position within a vertex label. Let
qsub[k] (1 < k ≤ n) be the first character that matches at the beginning of the next vertex on
the path matching q. Similar to the previous case, the following n sequences qsub[k, n+k−1],
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Figure 2: Illustration of the two constructs used for reductions in proofs of Theorems 3.1
and 3.2. In both cases, we are able to argue that Hamiltonian cycle exists in G′(V,E) if
and only if the query sequence can be matched to the sequence graph using ≤ |V | substitu-
tions (Theorem 3.1) or ≤ |V | edits (Theorem 3.2).

qsub[n+ k, 2n+ k− 1], . . . , qsub[n
2− n+ k, n2 + k− 1] are unique due to the spacing between

β characters in qsub. Therefore, the matching path must yield a Hamiltonian cycle.

Corollary 3.1.1. The problem “Can we substitute ≤ d characters in graph G such that q
will have a matching path in G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used in the proof of Theorem 3.1 can be trivially extended to prove the
above claim. Alternatively, we can simplify the proof by using the query sequence q =
(t0t1 . . . tn−1)

2 since only one instance of the substring qsub in q is needed for the subsequent
arguments. This is because substitutions in the query sequence are not permitted.

Using the above two results, we conclude that Hamming-distance based decision formu-
lations of sequence to graph alignment problems are NP-complete when substitutions are
allowed in graph labels, for |Σ| ≥ 2. In fact, it can be easily shown that |Σ| ≥ 2 reflects a
tight bound. Using |Σ| = 1, all the problem instances can be decided in polynomial time
using straightforward application of standard graph algorithms.

3.3 Alignment using Edit Distance

We next show that edit distance based decision problems that permit changes in graph labels
areNP-complete if |Σ| ≥ 2. Similar to our previous claims, allowing edits in the graph makes
the sequence to graph alignment problem intractable. Proofs used for Hamming distance
do not apply here as edits also permit insertions and deletions. Length of vertex labels can
grow or shrink using insertion and deletion edits respectively.

Theorem 3.2. The problem “Can we perform a total of ≤ d edits in graph G and query q
so that q will match in G?” is NP-complete for |Σ| ≥ 2.
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Proof. Clearly the problem is in NP . We again use the directed Hamiltonian cycle problem
for reduction. Given an instance G′(V,E) of the directed Hamiltonian cycle problem, we
design an instance G(V,E, σ) using Σ = {α, β}. Let n = |V |. Label each vertex v in V using
a sequence of 6n characters α2nβ2nα2n (Figure 2). Let token ti be a sequence of length 6n:
α2n βiαβ2n−1−i α2n. Using such tokens, we build a query sequence q of length 6n2(2n + 2)
as (t0t1 . . . tn−1)

2n+2. We claim that a Hamiltonian cycle exists in G′(V,E) if and only if we
can match the sequence q to the graph G(V,E, σ) using ≤ n total edits.

If there is a Hamiltonian cycle in G′(V,E), we can follow the same loop in G(V,E, σ) to
align q. The alignment requires one substitution per vertex. To prove the converse, suppose
query q matches graph G(V,E, σ) after making a total of ≤ n edits in q and G(V,E, σ).
Consider the substring qsub of q: t0t1 . . . tn−1t0. Note that there are n + 1 non-overlapping
instances of qsub in q, at least one of which must remain unchanged. Accordingly, the
substring qsub must match corrected G(V,E, σ).

For the token ti, let ki = βiαβ2n−1−i be its kernel sequence of length 2n. It follows that
ti = α2nkiα

2n. We show that a kernel must be matched entirely within a vertex in G(V,E, σ)
using the following two arguments. First, since any vertex label cannot shrink from length
6n to < 5n, a kernel cannot be matched to an entire vertex after the edits. It implies that a
kernel must match to ≤ 2 vertices. Second, if a kernel aligns across two vertices, (2n−1) β’s
must be required in place of α’s at the two vertex ends, thus requiring > n edits. Therefore,
a kernel can only be matched within a single vertex label. Finally, it is easy to observe
that any vertex label after ≤ n edits cannot be matched to more than one kernel. When
combining these arguments with the fact that all n consecutive kernels in qsub are unique,
we establish that the alignment path of qsub must follow a Hamiltonian cycle in G(V,E, σ).
Accordingly, there is a Hamiltonian cycle in G′(V,E).

Corollary 3.2.1. The problem “Can we perform ≤ d edits in graph G so that q will match
in G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used to prove Theorem 3.2 can be trivially extended to prove the above
claim.

It is straightforward to prove that other problem variants, e.g., with linear gap penalty
or affine gap penalty scoring functions are at least as hard as the edit-distance based formu-
lations. Therefore, the sequence to graph alignment problem remains NP-complete even on
constant sized alphabets for these classes of scoring functions also if changes are permitted
in the graph. Finally, we note that all the above problems remain equally hard even for
planar sequence graphs of max-degree 3, as is true for the Hamiltonian cycle problem (Plesn
et al., 1979).

4 Sequence-to-Graph Alignment with Edits in Sequence

The sequence to graph alignment problem is polynomially solvable when changes are allowed
in the query sequence alone (Amir et al., 2000; Navarro, 2000). Here, we improve upon the
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state-of-the-art by presenting an algorithm with O(|V | + m|E|) run-time. Our algorithm
matches the run-time complexity achieved previously by Rautiainen and Marschall (2017) for
edit distance, while improving that for linear and affine gap penalty functions. In addition, it
is simpler to implement because it only uses elementary queue data structures. A prototype
implementation of the algorithm is available at https://github.com/haowenz/SGA.

Edit distance is a special case of linear gap penalty when cost per unit length of the
gap is 1, and substitution penalty is also 1. We begin by presenting our algorithm for the
case of a linear gap penalty function, and later show its generalization to affine gap penalty
in Section 4.3. From hereon, we assume that the sequence graph G(V,E, σ) is a character
labeled graph, i.e., σ(v) ∈ Σ, v ∈ V . This assumption simplifies the description of the
algorithm. Note that it is straightforward to transform a graph from string-labeled form to
character-labeled form, and vice versa.

4.1 Alignment Graph

In the literature on the classic sequence to sequence alignment problem, the problem is either
formulated as a dynamic programming problem or an equivalent graph shortest-path problem
in an appropriately constructed edge-weighted edit graph or alignment graph (Myers, 1991).
However, formulating the sequence to graph alignment problem as a dynamic programming
recursion, while easy for DAGs through the use of topological ordering, is difficult for general
graphs due to the possibility of cycles. As it turns out, formulation as a shortest-path problem
in an alignment graph is still rather convenient, even for graphs with cycles (Amir et al.,
2000). The alignment graph, described below, is constructed using the given query sequence,
the sequence graph, and the scoring parameters.

The alignment graph is a weighted directed graph which is constructed such that each
valid alignment of the query sequence to the sequence graph corresponds to a path from
source vertex s to sink vertex t in the alignment graph, and vice versa (Figure 3). The
alignment cost is equal to the corresponding path distance from the source to the sink. Note
that the alignment graph is a multi-layer graph containing m ‘copies’ of the sequence graph,
one in each layer. A column of dummy vertices is required in addition to accommodate the
possibility of deleting a prefix of the query sequence. Edges that emanate from a vertex are
equivalent to the choices available while solving the alignment problem. A formal definition
of the alignment graph follows:

Definition 4.1. Alignment graph: Given a query sequence q, a sequence graph G(V,E, σ),
linear gap penalty parameters ∆del,∆ins, and a substitution cost parameter ∆sub, the corre-
sponding alignment graph is a weighted directed graph Ga(Va, Ea, ωa), where Va =

(
{1, . . . ,m}×
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Figure 3: An example to illustrate the construction of an alignment graph (right) from a given
sequence graph and a query sequence (left). Multiple colors are used to show weighted edges
of different categories in the alignment graph. The red, blue and green edges are weighted
as insertion, deletion and substitution costs respectively. Optimal alignment between the
query and the sequence graph is computed by finding the shortest path from source to sink
vertex in the alignment graph.

(V ∪ {δ})
)
∪ {s, t} is the vertex set, and ωa : Ea → R≥0 is the weight function defined as

ωa(x, y) =



∆i,v x = (i− 1, u), y = (i, v) 1 < i ≤ m & (u, v) ∈ E
∆ins x = (i, u), y = (i, v) 1 ≤ i ≤ m & (u, v) ∈ E
∆del x = (i− 1, v), y = (i, v) 1 < i ≤ m & v ∈ V ∪ {δ}

for source and sink vertices:

∆1,v x = s, y = (1, v) v ∈ V
∆del x = s, y = (1, δ)

0 x = (m, v), y = t v ∈ V ∪ {δ}

for dummy vertices:

∆i,v x = (i− 1, δ), y = (i, v) 1 < i ≤ m & v ∈ V

Edges (x, y) ∈ Ea are defined implicitly, as those pairs (x, y) for which ωa is defined above.
∆i,v = ∆sub if q[i] 6= σ(v), v ∈ V , and 0 otherwise. ∆sub denotes the cost of substituting q[i]
with σ(v).

Existing definitions of the alignment graph (Amir et al., 2000; Rautiainen and Marschall,
2017) did not incorporate dummy vertices, which are needed to account for the deletions
correctly. Using the alignment graph, we reformulate the problem of computing an optimal
alignment to that of finding the shortest path in the alignment graph. Even though the
alignment graph defined by Amir et al. (2000) has minor differences, proof in their work can
be easily adapted to state the following claim:
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Lemma 4.1 (Amir et al. (2000)). Shortest distance from the source vertex s to the sink
vertex t in the alignment graph Ga(Va, Ea, ωa) equals cost of optimal alignment between the
query q and the sequence graph G(V,E, σ).

One way of solving the above shortest path problem is to directly apply Dijkstra’s algo-
rithm (Amir et al., 2000; Antipov et al., 2015). However, it results in an O

(
m|V | log(m|V |)+

m|E|
)

time algorithm. We next show how to solve this problem in O(|V |+m|E|) time.

4.2 Proposed Algorithm

While searching for a shortest path from the source to the sink vertex, we compute the
shortest distances from the source to intermediate vertices Va\{s, t} in the alignment graph.
An edge from a vertex in layer i is either directed to a vertex in the same layer or to a vertex
in the next layer. As a result, the shortest distances to vertices in a layer can be computed
once the distances for the previous layer are known. This also makes it feasible to solve
for the layers 1 to m, one by one (Navarro, 2000). We use a two-stage strategy to achieve
linear O(|V | + |E|) run-time per layer. Before describing the details, we give an outline of
the algorithm and its two stages.

Any path from the source vertex to a vertex v in a layer must extend a path ending in
the previous layer using either a deletion or a substitution cost weighted edge. Afterwards, a
path that ends in the same layer but not at v can be further extended to v using the insertion
cost weighted edges if it results in the shortest path to the source. Roughly speaking, the
first stage executes the former task, while the second takes care of the latter. The two stages
together are invoked m times during the algorithm until the optimal distances are known
for the last layer (Algorithm 1). Input to the first stage InitializeDistance is an array of
the shortest distances of the vertices in previous layer sorted in non-decreasing order. This
stage computes the ‘tentative’ distances of all vertices in the current layer because it ignores
the insertion cost weighted edges during the computation. It outputs the sorted tentative
distances as an input to the second stage PropagateInsertion. The PropagateInsertion stage
returns the optimal distances of all vertices in the current layer while maintaining the sorted
order for a subsequent iteration.

The following are two important aspects of our algorithm. First, we are able to maintain
the sorted order of vertices by spending O(|V |) time per layer during the first stage (Lemma 4.2).
Secondly, we propagate insertion costs through the edges in O(|V |+ |E|) time per layer dur-
ing the second stage by eluding the need for standard priority queue implementations (Lem-
mas 4.3-4.5). Both of these features exploit characteristics specific to the alignment graphs.

The InitializeDistance stage We compute tentative distances for each vertex in the
current layer by using shortest distances computed for the previous layer (Algorithm 2).
Because all deletion and substitution cost weighted edges are directed from the previous
layer towards the current, this only requires a straightforward linear O(|V | + |E|) time
traversal (lines 2-8). In addition, we are required to maintain the current layer as per sorted
order of distances. Note that vertices in the previous layer are already available in sorted
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Algorithm 1: Algorithm for sequence to graph alignment

Result: The length of shortest path from s to t
1 PreviousLayer = [s];
2 s.distance = 0;
3 for i = 1 to m do /* Do the computation layer by layer */

4 CurrentLayer = [(i, v1), (i, v2), . . . , (i, vn), (i, k)];
5 x.distance =∞ ∀x ∈ CurrentLayer;
6 InitializeDistance(PreviousLayer,CurrentLayer);
7 PropagateInsertion(CurrentLayer);
8 PreviousLayer = CurrentLayer;

9 end
10 return Min(PreviousLayer.distance);

Algorithm 2: Algorithm to initialize and sort layer before insertion propagation

Result: A sorted layer CurrentLayer with distances initialized using
PreviousLayer

1 Function InitializeDistance(PreviousLayer, CurrentLayer)
2 foreach x ∈ PreviousLayer do
3 foreach y ∈ x.neighbor & y ∈ CurrentLayer do
4 if y.distance > x.distance + ωa(x, y) then
5 y.distance = x.distance+ ωa(x, y);
6 end

7 end

8 end
9 Sort(CurrentLayer);

order of their shortest distances from s. A vertex v in the previous layer can assign only three
possible distance values (v.distance, v.distance + ∆sub, or v.distance + ∆del) to a neighbor
in the current layer. By maintaining three separate lists for each of the three possibilities,
we can create the three lists in sorted order and merge them in O(|V |) time. The relative
order of vertices in the current layer can be easily determined in linear time by tracking the
positions of their distance values in the merged list. As a result, the current layer can be
obtained in sorted form in O(|V |) time and O(|V |) space, leading to the following claim.

Lemma 4.2. Time and space complexity of the sorting procedure in Algorithm 2 is O(|V |).

The PropagateInsertion Stage Note that the tentative distance computed for a ver-
tex is sub-optimal if its shortest path from the source vertex traverses any insertion cost
weighted edge in the current layer. One approach to compute optimal distance values is
to process vertices in their sorted distance order (minimum first) and update the neighbor
vertices, similar to Dijkstra’s algorithm. When processing vertex v, the distance of its neigh-
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Algorithm 3: Algorithm to propagate insertions in the same layer

Result: A sorted layer CurrentLayer with optimal distance values
1 Function PropagateInsertion(CurrentLayer)
2 x.resolved = false ∀x ∈ CurrentLayer;
3 Queue q1 = ∅, q2 = ∅;
4 q1.Enqueue(CurrentLayer);
5 CurrentLayer = [ ];
6 while q1 6= ∅ or q2 6= ∅ do
7 qmin = q1.Front() < q2.Front() ? q1 : q2;
8 x = qmin.Dequeue();
9 if x.resolved = false then

10 x.resolved = true;
11 CurrentLayer.Append(x);
12 foreach y ∈ x.neighbor & y.layer = x.layer do
13 if y.distance > x.distance + ∆ins then
14 y.distance = x.distance+ ∆ins;
15 q2.Enqueue(y);

16 end

17 end

18 end

19 end

bor should be adjusted such that it is no more than v.distance + ∆ins. Selecting vertices
with minimum scores can be achieved using a standard priority queue implementation (e.g.,
Fibonacci heap); however, it would require O(|E|+ |V | log |V |) time per layer. A key prop-
erty that can be leveraged here is that all edges being considered in this stage have uniform
weights (∆ins). Therefore, we propose a simpler and faster algorithm using two First-In-
First-Out queues (Algorithm 3). The first queue q1 is initialized with sorted vertices in the
current layer, and the second queue q2 is initialized as empty (line 4). The minimum distance
vertex is always dequeued from either of the two queues (line 8). As and when distance of a
vertex is updated by its neighbor, it is enqueued to q2 (line 15). Following lemmas establish
the correctness and an O(|E| + |V |) time bound for the PropagateInsertion stage in the
algorithm.

Lemma 4.3. In each iteration at line 8, Algorithm 3 dequeues a vertex with the minimum
overall distance in q1 and q2.

Proof. The queue q1 always maintains its non-decreasing sorted order at the beginning of
each loop iteration (line 6) in Algorithm 3 as we never enqueue new elements into q1. We
prove by contradiction that q2 also maintains the order. Maintaining this invariant would
immediately imply the above claim. Let i be the first iteration where q2 lost the order.
Clearly i > 1. Because i is the first such iteration, new vertices (say y1, y2, . . . , yk) must
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have been enqueued to q2 in the previous iteration (line 15), and the vertex (say x) which
caused these additions must have been dequeued (line 8). Note that the distance of all the
new vertices, the yi’s, equals x.distance + ∆ins. Therefore, the vertex prior to y1 (say ypre)
must have a distance higher than y1. However, this leads to a contradiction because if we
consider the iteration when ypre was enqueued to q2, the distance of the vertex that caused
addition of ypre could not be higher than the distance of the vertex x.

Lemma 4.4. Once a vertex is dequeued in Algorithm 3, its computed distance equals the
shortest distance from the source vertex.

Proof. Lemma 4.3 establishes that Algorithm 3 processes all vertices that belong to the
current layer in sorted order. Therefore, it mimics the choices made by Dijkstra’s algo-
rithm (Cormen et al., 2009).

Lemma 4.5. Algorithm 3 uses O(|V | + |E|) time and O(|V |) space to compute shortest
distances in a layer.

Proof. Each vertex in the current layer enqueues its updated neighbor vertices into q2 at most
once. Note that distance of a vertex can be updated at most once, therefore the maximum
number of enqueue operations into q2 is |V |. In addition, enqueue operations are never
performed in q1. Accordingly, the number of outer loop iterations (line 6) is bounded by
O(|V |). The inner loop (line 12) is executed at most once per vertex, therefore the amortized
run-time of the inner loop is O(|V |+ |E|).

The above claims yield an O(m(|V |+|E|)) time algorithm for aligning the query sequence
to sequence graph. Assuming a constant alphabet, we can further tighten the bound to
O(|V |+m|E|) by using a simple preprocessing step suggested in Rautiainen and Marschall
(2017). This step transforms the sequence graph by merging all vertices with 0 in-degree into
≤ |Σ| vertices. As a result, the preprocessing ensures that the count of vertices in the new
graph is no more than |E| + |Σ| without affecting the correctness. Summary of the above
claims is presented as a following theorem:

Theorem 4.6. Algorithm 1 computes the optimal cost of aligning a query sequence of length
m to graph G(V,E, σ) in O(|V | + m|E|) time and O(|V |) space using a linear gap penalty
cost function.

Traceback O(|V |) space is required using the proposed algorithm if just the optimal align-
ment score is desired. This is because we are able to process the alignment graph row by
row. However, an additional traceback stage is required to compute base-to-base alignments.
As is typical for the classic sequence to sequence alignment, we need to save intermediate
values or decisions to recover the alignment path. A naive solution to this problem requires
O(m|V |) space by storing the distances corresponding to all m layers in memory. It turns out
that the classic linear time algorithms (Hirschberg, 1975) do not apply for directed graphs.
However, an algorithm that uses sub-quadratic space can be designed using ‘checkpoint-and-
recalculate’ strategy (Grice et al., 1997; Rautiainen and Marschall, 2017), where we only save
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Figure 4: The above figure shows how to extend the construction of an alignment graph
for sequence to graph alignment from linear gap penalty (Figure 3) to affine gap penalty.
The alignment graph now contains three sub-graphs separated by the gray dashed lines.
The deletion and insertion weighted edges in the alignment graph for linear gap penalty
are shifted to deletion sub-graph and insertion sub-graph, respectively. Their weights are
also changed to the gap extension penalty. Besides, more edges are added to connect the
sub-graphs with each other. To keep the figure legible, we only use the highlighted vertices
as an example to illustrate the edges required to initiate or end any gap. The weight of
magenta colored edges is the sum of gap open penalty and gap extension penalty, the weight
of orange colored edges is the gap open penalty, and the weight of the black colored edges is
0.

every
√
mth layer, resulting in an O(

√
m|V |) space algorithm without incurring additional

an asymptotic cost in time. Space requirement can be further reduced, but at the cost of
increased time complexity (Grice et al., 1997).

4.3 Generalization to Affine Gap Penalty

In the dynamic programming algorithm for sequence to sequence alignment, affine gap
penalty functions are typically supported by using three scoring matrices instead of just
one (Gotoh, 1982). Similarly, the alignment graph can be extended to contain three sub-
graphs with substitution, deletion, and insertion cost weighted edges respectively (Rautiainen
and Marschall, 2017). The edge weights are adjusted for the affine gap penalty model such
that cost for opening a gap is incurred whenever a path leaves the match sub-graph to either
the insertion or the deletion sub-graph (Figure 4). Lemma 4.1 continues to hold true for the
alignment graph built for sequence to graph alignment using affine gap penalty.

Our previous two stage algorithm using InitilizeDistance and PropagateInsertion stages
can be extended to a five stage algorithm for solving the shortest path problem in the new
alignment graph. The alignment graph is still processed one level at a time such that there
are m iterations in total. The five stages leverage the InitilizeDistance-based procedure four
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times, and PropagateInsertion procedure once in each iteration. At a particular level in an
iteration, we refer to vertices in the match, deletion, and insertion sub-graphs as match,
deletion, and insertion layers, respectively.

In each iteration, we have the following five stages: 1) begin by initializing optimal dis-
tances of vertices in the deletion layer by using distances of vertices in the above match and
deletion layers, 2) initialize distances of vertices in the current match layer using distances of
vertices in the current deletion layer and the above match layer, 3) the distances of vertices
in the current match layer are then utilized to initialize the current insertion layer, 4) resolve
distances in the current insertion layer by using the insertion propagation algorithm (Algo-
rithm 3), and 5) the distances of vertices in the current insertion layer are used to make a
final update to the current match layer. It can be easily shown that distances of all vertices
at the current level are now optimal.

The properties that were leveraged to design faster algorithm for linear gap penalty
functions continue to hold in the new alignment graph. In particular, the sorting still requires
linear time during the InitializeDistance stage, and insertion propagation is still executed over
uniformly weighted edges in the insertion sub-graph. As a result, the two-stage algorithm
can be extended to operate using affine gap penalty function in the same asymptotic time
and space as with the linear gap penalty function.

4.4 Lower Bounds

It is natural to wonder whether there exist faster algorithms for solving the sequence to
graph alignment problem. As noted by Rautiainen and Marschall (2017), the sequence to
sequence alignment problem is a special case of the sequence to graph alignment problem
because a sequence can be represented as a directed chain graph with character labels. As
a result, existence of either O(m1−ε|E|) or O(m|E|1−ε), ε > 0 time algorithm for solving the
sequence to graph alignment problem (for both acyclic or cyclic graphs) is unlikely because
it would also yield a strongly sub-quadratic algorithm for solving the sequence to sequence
alignment problem, further contradicting SETH (Backurs and Indyk, 2015). Notably, Equi
et al. (2019) prove that exact and approximate matching to graphs are equally hard problems
under SETH. An implication of this result is that the sequence to graph alignment is unlikely
to have a faster ‘banded alignment’ solution (Myers, 1986), for the problem variant where
count of edits allowed is an input parameter.

4.5 Generalization to Commonly Used Graphs

A sequence graph with character labeled vertices provides a good abstraction for solving
the alignment problem on various types of graphs used in bioinformatics. Commonly used
graphs can be converted into an equivalent sequence graph. In the context of solving the
alignment problem, equivalence implies that any sequence (i.e., concatenation of vertex labels
in a path) in the first graph exists if and only if it exists in the second graph.
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Figure 5: An example to illustrate the conversion of an edge labeled graph into the corre-
sponding vertex labeled graph.

Directed graphs with labeled vertices Splicing graphs (Heber et al., 2002), partial
order graphs (Lee et al., 2002), or variation graphs (Paten et al., 2017) with labeled vertices
and directed edges are equivalent to our definition of the sequence graphs. A vertex with a
string label can be split into a chain of character labeled vertices to execute our algorithm.

Directed graphs with labeled edges An alternative representation used for graphs is
to put labels on edges instead of vertices (Dilthey et al., 2015). The following two ways
can be used to convert an edge labeled graph G(V,E) into an equivalent vertex labeled
graph G′(V ′, E ′). The first approach is to represent each edge in G as a vertex in G′. The
out-neighbors of a vertex in G′ are defined by the immediately reachable edges from its
corresponding edge in G. Here |V ′| = |E|, but |E ′| = O(|E|2), though it is much more
manageable in practice as |E ′| = O(|E| ∗ dmax) where dmax is the maximum out-degree of
a vertex in G. The second approach allows conversion while restricting the graph size to
within a small constant factor of the original graph. We split each edge into a pair of edges
with a new vertex in the middle, where the new vertex holds the label (Figure 5). The two
end points are left unlabeled or empty. In this case, |V ′| = |E| + |V |, and |E ′| = 2|E|. A
minor challenge that remains to be addressed is how to handle the empty labels (denoted
as ε). Our previously proposed sequence to graph alignment algorithm assumes non-empty
labels in the graph. However, the alignment graph and the algorithm can be easily adapted
to handle ε-labeled vertices using the following modifications. While defining the alignment
graph, the cost of insertion weighted edges between vertices (i, u) and (i, v) (1 ≤ i ≤ m) is
modified to 0 if σ(v) = ε, and the substitution cost ∆i,v is set to ∞ whenever σ(v) = ε. The
PropagateInsertion stage of the algorithm can be adjusted to handle the 0-weighted edges
without affecting the time and space complexity of the algorithm.

Regular expressions Alignment of sequences against regular expressions is useful to lo-
cate specific patterns (e.g., repeats, activation sites) in public databases, or text mining.
In this context, we seek a minimum-cost set of edits that converts a sequence to match a
regular expression. Myers and Miller (1989) discuss how to convert a regular expression R
into an ε-labeled non-deterministic automaton whose size, measured in vertices or edges is
linear in |R| (Figure 6). This automaton, likewise, can be considered as a sequence graph,
while allowing for empty labels ε. Additionally, the edges from source or sink vertices in the
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Figure 6: An example to illustrate the conversion of a regular expression into a state-labeled
non-deterministic automaton using the construction rules provided by Myers and Miller
(1989).

alignment graph can be adjusted to force the alignment to begin or end at selected vertices
respectively. This way, it is possible to solve the sequence to regular expression alignment
problem in O(m|R|) time. Our quadratic time complexity in this context matches with
Myers and Miller (1989), but our algorithm has the advantage of being simpler and generic.

Directed assembly graphs Alignment to assembly graphs is useful for read error correc-
tion (Salmela and Rivals, 2014; Wang et al., 2018; Zhang et al., 2019; Limasset et al., 2019)
and genome assembly (Antipov et al., 2015; Wick et al., 2017; Garg et al., 2018) applications.
De Bruijn graphs and overlap graphs, likewise, can be converted into a sequence graph for
computing the alignments. Each vertex in a de Bruijn graph represents a k-mer, and two
vertices are connected if they have k − 1 base long suffix-prefix overlap. Transforming a de
Bruijn graph to a vertex labeled sequence graph requires labeling the vertices by using their
k-mer value. For all vertices with in-degree 0, we split the k-mer string into a chain of k
characters, whereas for all vertices with in-degree ≥ 1, we define the kth character of its k-
mer as its label (Figure 7). This procedure remains correct even in the presence of self-loops,
as a vertex with a self-loop in a de Bruijn graph must be a homopolymer vertex. Overlap
graphs, on the contrary, are vertex labeled graphs, where an edge signifies a suffix-prefix
match. This graph also can be converted similarly, by defining the edges and labels such
that we avoid redundant overlaps along any path.

Bidirected graphs Assembly graphs and variation graphs are often used in their bidirec-
tional form (Medvedev et al., 2007; Garrison et al., 2018; Novak et al., 2017) to incorporate
the strand orientation within the graph. We can process these by first converting the bidi-
rectional graph into its uni-directional form by splitting each vertex into two (one for each
strand), followed by converting it into a directed graph.

5 Conclusions and Open Problems

The sequence to graph alignment problem is useful in the context of several applications in
genomics, pan-genomics and transcriptomics. In this paper, we show that the problem is
NP-complete when changes are allowed in the sequence graph, for any alphabet of size ≥ 2.
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Figure 7: An example to illustrate the conversion of a de Bruijn graph (k=3) into the
corresponding character labeled sequence graph.

When changes are allowed in the query sequence alone, we provide a asymptotically faster
polynomial time algorithm that generalizes to linear gap penalty and affine gap penalty
functions. The proposed algorithms use elementary data structures, therefore are simple to
implement. Overall, the theoretical results presented in this work enhance the fundamental
understanding of the problem, and will aid the development of faster tools for mapping to
graphs.

The alignment problem for sequence graphs is a rich area with several unsolved problems.
For the intractable problem variants, development of fast exact and approximate algorithms
are fertile grounds for future research. The presented hardness proofs hold for general labeled
graphs. As such, the problem complexity remains open for special instances (e.g., de Bruijn
graphs). For the polynomially solvable problem variant, empirical evaluation of the proposed
as well as existing approaches will help evaluate their practical utility. It will be useful to
explore better algorithms when a substitution matrix (e.g., PAM, BLOSUM) based scoring
is desired. Finally, working towards robust indexing schemes and heuristics that scale to
large input graphs and different sequencing technologies is an active subject of research.
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