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Structural Controllability of Symmetric Networks

Tommaso Menara

Abstract—The theory of structural controllability allows us to as-
sess controllability of a network as a function of its interconnection
graph and independently of the edge weights. Yet, existing struc-
tural controllability results require the weights to be selected arbi-
trarily and independently from one another and provide no guar-
antees when these conditions are not satisfied. In this note, we
develop a new theory for structural controllability of networks with
symmetric, thus constrained, weights. First, we show that network
controllability remains a generic property even when the weights
are symmetric. Then, we characterize necessary and sufficient
graph-theoretic conditions for structural controllability of networks
with symmetric weights: a symmetric network is structurally con-
trollable if and only if it is structurally controllable without weight
constraints. Finally, we use our results to assess structural con-
trollability from one region of a class of empirically-reconstructed
brain networks.

Index Terms—Graph theory, interconnected systems, network
controllability, structural controllability, symmetric networks.

|. INTRODUCTION

The question of controllability of complex network systems arising
in engineering, social, and biological domains has been the subject of
intensive study in the last few years [1]-[3]. One key question moti-
vating the investigation is to characterize relationships and tradeoffs
between the interconnection structure of a network and its control-
lability [4]-[6]. To this end, graphical tools from structural systems
theory [7]-[10] are typically preferred over algebraic controllability
tests, which suffer from numerical instabilities when the network car-
dinality grows, require exact knowledge of the network weights, and
are agnostic to the graph supporting the dynamics.

While the theory of structured systems and generic properties of lin-
ear systems is well developed and understood [11], all results assume
the possibility of assigning the network weights arbitrarily and inde-
pendently from one another. In fact, when this condition is violated,
the conclusions drawn from structural analysis may lead to incorrect
results [7], [12]. Unfortunately, it is often the case that this assumption
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is violated in real networks due to physical, technological, or biolog-
ical reasons. For instance, the small-signal network-preserving model
of a power network contains a Laplacian submatrix whose entries are
symmetric and satisfy linear constraints (row sums equal to zero) [13],
[14]. Similar constraints also appear when studying synchronization
in networks of Kuramoto oscillators [15] and general systems with
consensus dynamics [16]. Novel theories and tools are needed to study
controllability of networks with constrained weights.

In this paper, we focus on networks with symmetric weights and de-
rive graph-theoretic conditions for their structural controllability from
dedicated control inputs. While (group) symmetry has previously been
found to be responsible for network uncontrollability [17], [18], the
question of how symmetric edge weights affect structural controlla-
bility has not been investigated, with the exception of [19]. In [19],
however, the proposed conditions for structural controllability of undi-
rected (symmetric) networks are implicit and based on the generalized
zero forcing sets to estimate the dimension of the controllable subspace.
Similarly, although the recent paper [20] studies structural controlla-
bility for a class of networks with constrained parameters, this class
of network matrices does not contain the set of symmetric matrices
considered in this paper. Thus, the necessary and sufficient conditions
derived in this paper are the first graph-theoretic conditions for struc-
tural controllability of networks with symmetric weights.

The contribution of this paper is threefold. First, we show that con-
trollability of symmetric networks is a generic property. That is, either
the network is controllable for almost all symmetric choices of inter-
connection weights or it is not controllable for all symmetric weights.
This first result can be easily extended to different classes of constraints
other than symmetry. Second, we show that a network with symmet-
ric weights is structurally controllable if and only if it is spanned by
a (symmetric) cactus rooted at the control node. By comparing our
result with those presented by Lin [21], our analysis shows that a net-
work is structurally controllable with symmetric weights if and only
if it is structurally controllable with unconstrained weights. Third, we
use our results to show that a class of (symmetric) brain networks re-
constructed from diffusion magnetic resonance imaging (MRI) data is
structurally controllable from a single dedicated control region. Finally,
we note that, due to duality between controllability and observabil-
ity, the results of this paper extend directly to the study of structural
observability of networks with symmetric weights and a dedicated
Sensor.

The rest of the paper is organized as follows. Section II contains
our network model and preliminary notions. Section III contains our
analysis and conditions for structural controllability of networks with
symmetric weights and some examples. Finally, Section IV contains an
illustrative example featuring brain networks, and Section V concludes
the paper.

Il. PROBLEM SETUP AND PRELIMINARY NOTIONS

We study controllability of symmetric network systems, which are
described by a weighted directed graph (digraph) G = (V, £), where
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V={1,...,n}and £ CV x V are the vertex and edge sets, respec-
tively, and a symmetric weighted adjacency matrix A = [a,;] with
a;; =0if (i,j) ¢ Eand a;; € Rif (4,5) € £ Letz € R" be the vec-
tor containing the state of the network nodes over time, and let i € V
be the control node. We let 2 evolve according to linear time-invariant
dynamics

§(x) = Az + b'u, Q)]

where §(z) denotes the time derivative (resp. time shift) operator for
continuous-time (resp. discrete time) dynamics and b° = ¢;, with ¢;
the ith canonical vector of dimension n. Finally, let the controllability
matrix of (1) be

C(Ab) =[b  Ab Ay, 2
and recall that the network (1) is controllable if and only if its control-
lability matrix C(A, b') is invertible [22].

Assessing controllability of network systems is numerically diffi-
cult because the controllability matrix typically becomes ill condi-
tioned as the network cardinality increases; e.g., see [4] and [23].
Because different controllability tests suffer similar numerical diffi-
culties, a convenient tool to study controllability of networks is to
resort to the theory of structural systems. To formalize this discus-
sion, let ag = {a;; : (i,J) € E}orerea denote the set of nonzero en-
tries of A in lexicographic order, and notice that the determinant
det(C(A,b")) = ¢(ag) is a polynomial function with variables ag.
From the above reasoning, the network (1) is uncontrollable when the
weights a¢ are chosen so that ¢(ag) = 0. Let S contain the choices of
weights that render the network (1) uncontrollable; that is,

S={zcR? : ¢(z,...,24) =0}, 3)

where d = |€| = |ag|. Notice that S describes an algebraic variety of
R? [24]. This implies that controllability of (1) is a generic prop-
erty, as it fails to hold on an algebraic variety of the parameter space
[24]-[26]. Consequently, when assessing controllability of the network
(1) as a function of the weights, only the two following mutually ex-
clusive cases are possible:
1) either there is no choice of weights a;;, with a;; = 0if (4, 5) ¢ &,
rendering the network (1) controllable; or
2) the network (1) is controllable for all choices of weights a,;,
with a;; = 0 if (i,7) & &, except, possibly, those belonging to
the proper algebraic variety S C R?.!

Loosely speaking, if one can find a choice of weights such that the
network (1) is controllable, then almost all choices of weights yield a
controllable network. In this case, the network is said to be structurally
controllable [7], [21], [27].

Classical results on structural controllability cannot be directly ap-
plied to networks where the weights are constrained [7], [12]. In fact,
these results assume that the network weights can be selected arbi-
trarily and independently from one another, a condition that cannot be
satisfied, for instance, when the weights need to be symmetric. In this
note, we overcome this limitation and extend the results on structural
controllability to symmetric networks. In particular, we show that a net-
work is structurally controllable with symmetric weights if and only if
it is structurally controllable with unconstrained weights.

Ill. STRUCTURAL CONTROLLABILITY OF SYMMETRIC NETWORKS

In this section, we derive necessary and sufficient graph-theoretic
conditions for structural controllability of networks with symmetric

IThe variety S of R? is proper when S # R [24].

weights. We proceed as follows. First, we show that network control-
lability remains a generic property when the weights are symmetric.
Second, we provide conditions to construct controllable networks with
symmetric weights. Finally, combining these results yields conditions
for structural controllability of networks with symmetric weights.

Theorem 3.1 (Symmetry and Genericity): Controllability of the
network (1) with symmetric matrix A is a generic property.

Proof: Letd = |&| and dy = |{i : (i,i) € £}|. Notice that a net-
work with symmetric weights is uniquely specified by (d + d;)/2 pa-
rameters, for instance, by the set ;. = {a;; : (4,)) € €, © < j}ordered
in lexicographic order. Furthermore, because of the symmetry con-
straint, the determinant of the controllability matrix of (1) is a poly-
nomial function ¢'(a%), which can be obtained, for instance, from
the determinant det(C(A, b')) by substituting a;; with a;; whenever
¢ > j. Thus, even for symmetric networks, the determinant of the con-
trollability matrix is a polynomial function of the network weights, and
the weights that render the network uncontrollable define the algebraic
variety P = {z € RUFTE)/2 ¢/ (2, ..., Z(d+dy)/2) = 0}. To con-
clude, either P = R(?*+9s)/2 and the network is uncontrollable for all
choices of symmetric weights, or P is a proper algebraic variety of
R(?+45)/2 and the network is controllable for all choices of symmetric
weights except, if any, those belonging to the set P of zero Lebesgue
measure [24]. [ |

Theorem 3.1 shows that controllability remains a generic property
even when the weights are constrained to be symmetric. This result will
be key in the derivation of our conditions for structural controllability
of networks with symmetric weights. In fact, because controllability
remains a generic property, it will be sufficient to show that a network
is controllable for a specific choice of symmetric weights to guarantee
that controllability holds for almost all choices of weights. In the next
example, we illustrate that the set of symmetric weights preventing
controllability forms an algebraic variety.

Example 1 (Structural Controllability With Symmetric Weights):
Consider a network with symmetric adjacency matrix

0 a12  G13
A=la 0 as|, “4)

a13  G23 0

and input vector b' = [1 0 O}T. From (2), the controllability matrix
of the pair (4, b') is

2 2
0 ay, +aj,

1
C(A,bl): 0 ap 13023 5 5)
0

a3 a12023

with determinant det(C(A,b")) = asza?, — asza?y. Thus, the net-
work is controllable (i.e., det (C(A, b)) # 0) for all symmetric choices
of weights a1, a3, and a»3, except those lying on the proper alge-
braic variety shown in Fig. 1 and defined by the equation aszaf, — a3
aly = 0. |

Remark 1 (Structural Controllability of Consensus Systems): A
multi-agent consensus network with leader nodes is described by a
linear time-invariant dynamical system, where the nonzero entries of
A have a specified sign and the sums along the rows of A equal to a con-
stant (1 for discrete-time networks, and O in the case of continuous-time
networks) [28], [29]. Theorem 3.1 can be easily extended to include
constraints on the sign of the entries of A and on their sums. In fact,
if Y77, a;; = ¢, for some constant ¢ € R, then” a;; = ¢ — Y7, ay;
can be substituted in the polynomial det(C(A, b)), showing that the

2If a;; = 0, then select a different nonzero entry.
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0 > 1 Fig. 2. A sym-cactus G = U;: G, rooted at the control node. Sym-
a 1 a3 cycles G, ..., Gs are highlighted with different colors. Notice that G, is
12 not a sym-cycle because it comprises one node without a self loop. See
Definition 2.
Fig. 1. Algebraic variety defined by az3a?, — asza?, = 0, which deter-

mines the weights for which the network in Example 1 is not controllable.
The network is controllable for all weights outside of this algebraic variety.

set of parameters preventing controllability forms an algebraic variety
of the free parameter space and that controllability remains a generic
property despite the constraints. Similarly, when some entries have a
specified sign or need to assume identical values, the set of parameters
preventing controllability can be shown to be a subset of an algebraic
variety, which either equals the set of feasible parameters or remains
of zero Lebesgue measure. ]

Example 2 (Structural Controllability of Consensus Systems): Con-
sider a linear discrete-time consensus system with node 1 as a leader
and adjacency matrix

azy a3z 0

Because the rows of A need to sum to 1, it is possible to rewrite three
parameters as a function of the others. For instance, rewrite a3 =
1 —ajs,a93 =1 —asi,and ass = 1 — ag;. By doing so, the determi-

nant det(C(A, b')) = —a3,as; + a3, + as1a, — a},, and the set of
weights that make such determinant vanish defines a proper algebraic
variety of the parameter space R?. ]

We next introduce some graph-theoretic notions [7], [30]. Given a
digraph, a path is an ordered sequence of nodes such that any pair of
consecutive nodes in the sequence is a directed edge of the digraph. A
digraph is strongly connected if there exists a directed path from any
node to any other node. Furthermore, given the digraphs G;,...,G,,,
let G = |J; _ ,G: be the connected digraph (V, &) defined as follows
V=U", Vi and €=, & UE, where [€] = 2(m — 1) and, for
all i € {2,...,m}, there is a unique pair of edges (p;,¢;) € € and
(gi,p;) € Ewithp; €V, and ¢; € U;;ll V; . Finally, we present some
definitions that are inspired by Lin [21] and will be used to derive
our structural controllability conditions for networks with symmetric
weights.

Definition 1 (Sym-Cycle): A sym-cycle is a strongly connected
digraph with n >1 nodes, edge set {(i,j) : |[i—j|=1}U
{(1,n), (n,1)}, and symmetric weights a;; = a;;. [ |

From Definition 1, the adjacency matrix of a sym-cycle is

a;; #0 ifli—jl=1lor(z,7) €{(1,n),(n,1)},
Ao {@#0 ilimdl=torGa) e (L) o
a;; =0 otherwise.

Definition 2 (Sym-Cactus): A sym-cactus is a strongly connected
digraph G = (V, £) defined as G = U:Ll G, and satisfying the follow-
ing properties,

1) G = (W, &) isasym-cycleif |V | > 1 (if |[V;| = 1, we allow G,
to contain no edges, that is, & = ().

2) G = (V;, &) isasym-cycle forevery i € {2,...,m}.
3) The node sets satisfy V; N'V; = (), whenever i # j. [ |

Notice that, if |V; | = 1, the graph G, in Definition 2 can either be a
sym-cycle (thus, having a self loop) or a node without self loop.

Remark 2 (Stem, Buds, Cactus, and Sym-Cactus): Our definitions
of sym-cycle and sym-cactus are compatible with the classic notions
of stem, bud, and cactus, as defined in [21]. In particular, because we
focus on networks with symmetric weights, stems, buds, and cacti, the
work in [21] becomes equivalent to interconnected sym -cycles. |

We say thata graph G = (V, £) is spanned by g/ V,enity' =y
and £’ C &. Furthermore, the sym-cactus G = U 1g is rooted at the
node 7 if 7 is a node of G, . Fig. 2 illustrates the definitions of sym-cycle
and sym-cactus rooted at node .

The following lemma shows that every sym-cycle is structurally
controllable from any node. That is, for almost all symmetric choices
of network weights, every cycle network is controllable independently
of the location of the control node.

Lemma 3.2 (Every Sym-Cycle is Structurally Controllable): Let
A € R"*" be the adjacency matrix of a sym-cycle. The pair (A, b") is
structurally controllable forall i € {1,...,n}.

Proof: Owing to Theorem 3.1, we need to show that, for every sym-
cycle and control node, there exists a choice of weights rendering the
network controllable. Without affecting generality, we assume that the
control nodeisi = 1 (if i # 1, simply apply a similarity transformation
PAPT via a permutation matrix P to reorder the nodes as desired).

If n < 2, the network is clearly controllable. For n > 2, partition
the matrix A as

0 A
Ay Ay

A=

where Ay, € RIX01 ) Ay € ROCDX and Ay, € R-Dx(-1)
Notice that Ay, is a tridiagonal matrix.

Suppose that the pair (A, b') is not structurally controllable. Then,
for all choices of weights, there exists an eigenvector® v of A such that

vT bt = 0[22]. Thus, v = [v1, v, ...,0,]F = [v1,?]7 =[0,7]T, and
the eigenproblem Av = Av becomes
0 Ap 0 0
=1, (M
A21 AQQ v AU

From (7), the pair (A,b') is uncontrollable if and only if Ay, has an
eigenvector o that lies in the null space of A;,. Equivalently, Ay, =
Av and A121_] = Q1201 + A1, V-1 = 0.

Assign all the weights of Ay, as 1 (or any other constant), and notice
that Ay, is a Toeplitz tridiagonal matrix with eigenvectors o' = [v}] =

3Since A = AT, we do not distinguish between left and right eigenvectors.
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[sin (Z)], fori,j € {1,...,n — 1} [31, Example 7.2.5]. Finally, to

ensure 7::0ntrollability of (A,b'), select a;» and ay,, such that for all
ie{l,...,n—1}

ays sin (%) + ay, sin (M) £0. 8)

n

Notice that (8) can be ensured by |a;2| # |ai, |- In fact
1) for 7 odd, sin (%) = sin (%) because

(n—1)im

W—%—i—ﬂm— —@k+1—i)m=0

by selecting k = (i — 1)/2;

2) for i even, sin (%) = —sin <w> because
—1)i ;
=D o+ T (= 2k = 0
n n
by selecting k = i/2. [ ]

Lemma 3.2 implies that every sym-cycle is controllable for almost
every symmetric choice of weights. In particular, the following choice
of weights yields a controllable sym-cycle from node ¢ (see the proof
of Lemma 3.2 and (8))

a;; = a, if|[i —j| =1, and
A= , ©)
A1y = Ap1 = ba with ‘a‘ 7& ‘b|7

for some nonzero constants a and b. We next show that sym-cacti are
also a fundamentally controllable structure contained in every struc-
turally controllable symmetric network.

Theorem 3.3 (Structural Controllability of Symmetric Networks With
One Control Node): The network G with control node i is structurally
controllable with symmetric weights if and only if it is spanned by a
sym-cactus rooted at 7.

The proof of Theorem 3.3 is postponed to the Appendix. In
Theorem 3.3, we show that a necessary and sufficient condition for
structural controllability of networks with symmetric weights is the
existence of a spanning sym-cactus rooted at the control node. This
result implies that the symmetry constraint on the network weights
does not prevent controllability if the same unconstrained network is
structurally controllable. It should be noticed that a sym-cactus is not,
in general, strongly structurally controllable [32]. That is, there exist
choices of weights that render a sym-cactus uncontrollable. We next
illustrate a systematic procedure to construct an uncontrollable sym-
cactus composed of controllable sym-cycles.

Example 3 (Uncontrollable Sym-Cactus): Consider  the
cactus G = G; UG, with control node 1 and adjacency matrix

sym-

001 200 0 07
1 0 1lec 0 O
2 1 00 0 0
A= :
0 e 00 3 —
0 0 0[3 O
Lo 0 o]-4 3 0]

where the diagonal blocks are the adjacency matrices of the sym-
cycles G; and G, and the remaining blocks denote the interconnection
between G; and G, with weight c,. It can be verified that 1y = —2 is

a transmission zero of the system [22]

5(2) 0 1 +1
S FEY R P
y=1[1 2]a,

and that the pair (A, b') is uncontrollable when ¢, satisfies

1
1 7

2 3 -4 .
2 1

3 2 = 6.292853089,
1 2

—4 3 2,2

1,1

where [M];} denotes the ith diagonal entry of the matrix M ~!. The
reader is referred to the proof of Theorem 3.3, Case (2.a), for a detailed
derivation of this result. |

Following the above discussion and the derivation in the proof of
Theorem 3.3, we next describe an algorithm to assign the weights of
a sym-cactus to guarantee controllability. To this aim, let spec(M)
denote the spectrum of the matrix M, and notice that the adjacency
matrix A of the sym-cactus G = Zi 1 G; can be written recursively as
(k=2,...,m)

Ay = (10)

T
A1 creg e ]
b

T
cperey, H,

where Hj is the adjacency matrix of G., A, = H;, A,, = A, and
cr # 0, for some index g € {1,..., Z?;ll [V;|}.4 Let

All
A21

Ars

A]\¢7‘l =
Ay

) (11)

where Ay, is a scalar, and let Z), = {1 : Aj5(Asy — A1) e, =0}
be the zeros of the single-input single-output system (Ass, €, , A12).
Then, the pair (A, b') can be made controllable by selecting the weights
in G;. to recursively satisfy the following conditions:

1) (Hj,b") is controllable (see (9) for a choice of weights).

2) spec(H}.) Nspec(Agy) = 0.

3) Foralli € Zp.,¢;” # [Hy — A, [Ass — u}q’:_qk.

A procedure to construct a controllable sym-cactus is summarized in
Algorithm 1, whose complexity is linear in the number of sym-cycles
and cubic in their dimension.

Remark 3 (Structural Controllability of Symmetric Networks With
Multiple Dedicated Control Nodes): Theorem 3.3 can be extended to
the case of multiple dedicated control nodes; that is, when the input
matrix in (1) satisfies B = [e., -+ €., | and {c1,...,¢,, } TV is
the set of control nodes. In particular, a network G with m control
nodes {ci,...,c, } is structurally controllable with symmetric
weights if and only if it is spanned by a disjoint union of sym-cacti
rooted at the nodes {c1, ..., ¢, }. The necessity of this result follows
directly from [33, Th. 1], while its sufficiency is obtained by applying
the same steps as in the proof of Theorem 3.3 to each disjoint cactus.ll

‘We conclude this section with an example of structural controllability
in the case of multiple dedicated control nodes.

Example 4 (Structural Controllability With Symmetric Weights and
Multiple Dedicated Control Nodes): Consider the network in Fig. 3(a)

4This recursive construction follows directly from Definition 2.
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Algorithm 1: Design of controllable sym-cactus.

:{Hy : k=1,...,m, Hy satisfying (6)};
: Controllable pair (A,b'), with A adjacency matrix

of the sym-cactus G = U;lgi rooted at 1;

1 Select the weights of H; as in (9);
2 Set A1 = Hq;

for £k =2 :m do
3 Partition Aj_; according to (11) ;
4 | Select g € {1,..., 35"} W[}
5 Select the weights of H}, as in (9) and so that
spec(Hy) Nspec(Aaz) = 0;
6 Compute Z = {\ : A12(As2 — N) " leg, =0}

Input
Output

7 Select ¢i, # ¢y for every A € Z, where
-1
or = ([Hk — M| [Ase — ,\I};;%) 2,
8 Generate Ay, as in (10);

9 return A = A,,. The pair (A, bl) is controllable;

with adjacency matrix

r0{0 a3 0]0 0
010 asz asl O 0
0
0

ayzlazs 0 asyglass

o o o ©

A24  G34 0

0
010
0
0

aszs 010 ase Q57
0 0 0 ase6 0 ag7

0 0 0 as7 Qg7 0

and control vector b' = e;. The pair (A, b') is structurally controllable

because of Theorem 3.3. In fact, there exists a sym-cactus G = Uiazl Gi
that spans the network and is rooted at 1. Consider now the network
shown in Fig. 3(c) with adjacency matrix A = A and disconnect nodes
6 and 7; that is, ag7y = 0. The pair (1217 b') is not structurally control-
lable because there is no sym-cactus that spans the network and is
rooted at 1. However, by connecting an additional input at node 7,
it is possible to span the network with a disjoint union of sym-cacti.
That is, there exist distinct sym-cacti G; UG, and G,UG5 that span the
network and are rooted at 1 and 7, respectively. Therefore, by setting
b” = e, the pair (A, [b'b7]) is structurally controllable with symmetric
weights. ]

IV. APPLICATION TO STRUCTURAL BRAIN NETWORKS

We apply our analysis to a class of structural brain networks recon-
structed from diffusion MRI data,> where nodes correspond to well-
known brain regions and edges correspond to white matter connections
between them [35]. The network dynamics can be derived from the lin-
earization of a general noise-free Wilson—Cowan system [36] and read
as 0(z) = Az + blu, where A is a symmetric matrix that represents
the anatomical connectivity of the brain. Furthermore, v : N — R is
the control input applied to the ith brain region, and z : N — R" is
the vector containing the state of the brain regions over time. Examples
of state values range from the magnitude of electrical activity [37] to

SDiffusion magnetic resonance images were acquired for a total of eight
subjects in triplicate (mean age 27 =+ 5 years, two female, two left handed), and
at each scanning session a 7'1-weighted anatomical scan was acquired. For each
subject, n = 234 regions were registered as areas of interest [34].

/O Go
?4—»@
Uy----- > Gy

(©) (C)

Fig. 3. Networks considered in Example 4. (a) Network of the pair
(A, b'). (b) Network is structurally controllable because it is spanned by
a sym-cactus rooted at 1. (c) Network of the pair (A4, b' ) is not structurally
controllable with only one control input at node 1. (d) By adding a control
input at node 7, the network recovers structural controllability because
it is spanned by a disjoint union of sym-cacti rooted at nodes 1 and 7,
respectively.

Fig. 4. Axial view of the structural brain network and a spanning Hamil-
tonian path. Each node represents a brain region of the anatomical
scans. The Hamiltonian path starts from the region representing the
control node (brain stem). Regions are plotted according to the mean
location of voxels in each of the 234 parcels in the Lausanne atlas [35]
and averaged over the cohort of healthy adult subjects. This figure was
obtained with BrainNet Viewer [42].

the quantity of oxyhemoglobin and deoxyhemoglobin in the hemo-
dynamic response [38]. Although brain dynamics may be nonlinear
at the microscale, the study of linear network models for macroscale
neural dynamics has been validated in several studies (see, e.g., [39]),
and has given access to theoretical and practical tools that are partic-
ularly useful around an operating point [34], [40]. Controllability of
this class of networks has been examined in different studies, includ-
ing [34], via numerical controllability tests. Yet, because of the large
cardinality of these networks, most controllability tests suffer from nu-
merical instabilities, sometimes leading to competing conclusions [34],
[41]. Furthermore, because typical diffusion MRI techniques produce
symmetric adjacency matrices, the graphical investigation of structural
controllability for this type of networks was, up to now, not possible.
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As illustrated in Fig. 4, the brain networks in our dataset are spanned
by a Hamiltonian path,® which is a special case of a sym-cactus, starting
from the control node. Theorem 3.3 implies that, despite having sym-
metric weights, networks reconstructed from diffusion MRI data are
structurally controllable from a single brain region, thus controllable
for almost every symmetric choice of weights.

V. CONCLUSION

In this note, we derive necessary and sufficient graph-theoretic condi-
tions for structural controllability of networks with symmetric weights
and one control node. Because weights need to be symmetric, clas-
sic results from structural systems theory cannot be directly applied.
Surprisingly, we show that network controllability remains a generic
property even when the weights are symmetric, and that a network
with symmetric weights is structurally controllable if and only if its
unconstrained equivalent network is structurally controllable; that is, if
and only if it is spanned by a (symmetric) cactus.

While our analysis focuses on symmetric weights and a single con-
trol node, as discussed in Remarks 1 and 3, our results extend directly
to other classes of parameter constraints and to the case of multiple
dedicated control nodes. The case of nondedicated control nodes, how-
ever, requires different definitions and reasoning, and it is left as the
subject of future research.

APPENDIX

We now prove some instrumental results and Theorem 3.3.
Lemma A.1 (Controllability of Subsystems): Consider the network

G=(V,E) with control nodes K CV, input matrix By =
[er ... ey |, andadjacency matrix A partitioned as
| An A
Ay Agy |’

where A;; € R™*™ and Ayy € R("=m)*(n=m) f the pair (A4, By) is
controllable, then (Ass, Aoy ) is also controllable.

Proof: If (Ayy, Ayy) is not controllable, then there exists an eigen-
vector vy associated with A € spec(A,2) satisfying [22]

vy [As1 Az —AI] =0.

Letv! = [07 o] ]T, and notice that

Ay — Al
A21

AIZ
07 o] =0
[ E ] A22 — A

Then, v is a left eigenvector of A associated with the eigenvalue A €
spec(A), and it satisfies v” By = 0. This implies that (A, By) is not

controllable and concludes the proof. |
Lemma A.2 (Eigenspace of Perturbed Matrix): Let A € R"*" bea
symmetric matrix, and let A = e;el, withi € {1,...,n}. Then, A €

spec(A + c¢A) forall ¢ € R if and only if there exists v # 0 satisfying
(A—xI)v =0and Av = 0.

Proof: (If) The sufficiency of the statement follows by noting that
(A=Al 4+ cA)yv = (A —1I)v=0.(Only if) Let the vectors v, # 0
and vy # 0 satisfy v/ (A —AI + cA) =0 and (4 — Al)vy = 0, re-
spectively. Then, for all ¢ € R, vT (A — AT + cA)vy = vl Avy = 0.
Let vz denote the vector v, with ¢ = ¢ # 0. Notice that because
A =eiel', v.;v9,; =0, where v.; and vy ; denote the ith element
of vz and vy, respectively. Let v = v if vy ; = 0 and v = v; other-
wise. To conclude, notice that v # 0, Av = 0, and (A —AI)v = 0.1

A path in a graph is Hamiltonian if it visits all the vertices exactly once.

‘We are now ready to prove Theorem 3.3.

Proof: (Only if) Assume that G is structurally controllable from the
node 7. From [21], there must exist a directed cactus D rooted at 7
that spans G. Because G has symmetric weights, this also implies the
existence of a sym-cactus, which is obtained by adding edges to D
to make it symmetric. See Remark 2 for a discussion of directed and
symmetric cacti.

(If) Let the network be spanned by the sym-cactus G = Ui’ilgi
—k
rooted at the control node. Let Aj, be the adjacency matrix of | J,_, G;,

k < m. Without loss of generality, we assume b’ = b' (if b’ # b', re-
order the nodes). We will construct a controllable realization (A,), , b! ),
thus, proving that the original network admits a controllable realization.
The claimed statement then follows from Theorem 3.1.

We proceed by induction. In the base step, Lemma 3.2 concludes on
the controllability of the pair (A;,b'). In the inductive step, we assume
that (A, _1,b") is controllable and show that (A, b') is controllable.
Let Aj be partitioned as

A]l A12 AIS
Ak = A21 A22 A23 ) (12)
A31 A32 A33

where A1; € R, Ayy € R -Dx(m1-1) and Ay5 € R"2*"2 | with n,
and n, being the dimensions of A; _; and the difference between the
dimension of A, and Aj_;, respectively. Notice that A33 corresponds
to H}, in decomposition (10). We show that A, has no eigenvector v
of the form

v=1[0 of of]", (13)

which, by the eigenvector test, implies that (A ,b') is controllable.
Due to the definition of the operator U (a single connection between
adjacent sym-cycles) and by exploiting the decomposition of A in
(10), we have that either:
1) Azy = AL, =0and A3, = AT, = cre; #0;0r
2) A31 = A{g = 0and A32 = Agg = ck,elegk §£ 0,
where e; and e,, are canonical vectors of appropriate dimensions.
Case 1): Consider the eigenproblem A, v = Av. For v to be of the
form (13), > must be an eigenvalue of both A, and Aj;3. Therefore, by
choosing the weights in Az3 such that spec(Az3) Nspec(Aazs) = 0,
we obtain a controllable (A}, b'). Notice that such a choice of weights
always exists because As3 has generically full rank.” For instance,
given a full rank realization of As3, we can multiply A33 by a suitable
constant ¢ € R to guarantee that spec(cAsz) Nspec(Ass) = 0.
Case 2): Define the matrix P (1) as

A12 0
P()L) = A22 — Al A23
Asy Asz — A

Due to (13), the eigenproblem A, v = Av reduces to

P(x) {”1} = 0. (14)
We will show that P() is full rank for all A, thus, ensuring that an
eigenvector as (13) cannot exist. As in Case (1), we choose weights
in Aj; such that spec(Asz3) Nspec(Ass) = 0. Thus, we consider the
following three cases.

"The graph with adjacency matrix A33 contains a set of ny edges, for instance
M =1{(1,2),(2,3),...,(n2 —1,n9), (n2,1)}), where no two edges point to
the same node. Such set of edges is called a matching of size no, and its existence
guarantees that A33 is generically full rank [43, Sec. 1.1.2].
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(2.a) A & spec(Ass) Uspec(Ass).
(2.b) & € spec(As2).
(2.c) A € spec(Ass).
Case 2.a): Because Ayy — Al and As3 — Al are invertible,

Rank (P (1))
Agy — A1) 0
= Rank [ P(3) (422 —21)
0 (Azz — D)™t
Ajg(Agy — A1) 0
= Rank I n Ty
CkTQ I

where T, = elegk (Asy =AD" and Ty = ey, e] (A3 — A1)~

Notice that, for any vector v of appropriate dimension we have
Tsvs = aey, , for some value o dependent on A and Aj;. Similarly,
Tyvy = fey, for some value 5 dependent on A and As,. Furthermore,

for any fixed A, there exists a value ¢;, such that

1 Cp T3
Cj T2 I

(15)
is invertible. In fact, elementary column operations reveal that

I -TT, ¢ T
Rank( )—Rank<|: 832 kIS )

Notice that 737, is a rank-1 matrix and that spec(l —T3T,) =
{1,...,1,1— cii}, where A is the only nonzero eigenvalue of 15375.
Thus, (15) is invertible whenever ¢; # 1.

Let Z={) : A13(Ass —ArI)""e,, = 0}, and let ¢; be such that
(15) is invertible for all A € Z. Then, P (1) is also full rank for all
A € Z. Next, assume by contradiction that P(A) loses rank for some
value A € Z. Then, there exist nonzero w, and ws such that

A]Q(AQQ 7;.1)71 0

I Cl T3
Cp Tg I

()
1 T =0.
w3
Csz I
We have wy = —¢Tiws = —craey,, and cpadis(Ar —

XI)*leqk_ = 0. Notice that o # 0. Otherwise, T3w3 = 0 and, conse-
quently, wy = 0 and w3 = 0. Furthermore, A5 (A2y — X[)_leqk #0
because A ¢ Z. We conclude that, when c¢; is such that (15) is
invertible for all » € Z, P(A) is full rank.

Case 2.b): Because Az3 — Al is invertible

1 0
Rank (P(1)) = Rank (P(A) 0 (A — 1) ])

A12 0
= Rank Agg — Al ijjg
Ay 1

where T = e, e] (A33 — AI)™'. By means of elementary column
operations we obtain

Alg 0
Rank (P(1)) = Rank | | Ayy — AT — ;T3 A3, ¢,T;
0 1

Notice that if A ¢ spec(Aay — ¢, T3 Az ) for some ¢y, then P(A) can
be made full rank by a selection of ¢;. Instead, if A € spec(Asy —

A — ¢, T3 Aso) for all values of ¢, then, due to Lemma A.2, (Ayy —
A — ¢ T3 Azo)v = 0, for some fixed eigenvector v and for all ¢.
Because (A, _1,b') is controllable by the induction hypothesis, so is
the pair (Agy, Ag;) = (Ags, AT,) by Lemma A.1. We conclude that
Ajov # 0. This implies that, for all values of ¢;., the submatrix

Aps
Ay — M — ¢ T5 Az

is full rank and, consequently, so is P(2).
Case 2.c): Because Ayy — Al is invertible

Rank (P(1))
Ay —AI)™" 0
= Rank [ P(1) (A2z =21
0 1
Alz(AQQ — )\.1)71 0
= Rank I Ay
ci Ty A33 — Al

where T = e equ (Ags — AI)~!. By means of elementary row opera-
tions we obtain that Rank (P(A)) equals

AlQ(AQZ —)u[)il 0
Rank 1 Ass
0 A33 — M — CkAQSTQ

Notice that if A & spec(Ass — ¢, AazTy) for some ¢y, then P(A) can
be made full rank by a selection of ¢;, . Instead, if A € spec(Asz; — AT —
¢ Aa3Ty) for all values of ¢, then, due to Lemma A.2, (Asz3 — AT —
e Az3 Ty )v = 0, for some fixed eigenvector v and for all ¢;,. Because
(Az3,b") can be made controllable for all indices 7 due to Lemma 3.2,
the submatrix

Abs

(16)
Asz — A — ¢ Ags Ty

is full rank. To make P(A) full rank, we proceed by contradiction.
Suppose there exist nonzero v; and vy such that

Ayy(Agg —AI)7! 0
i
)
0 A33 - )\.I — CkAggTz
Notice that v, = —Aa3vy = —cieq, elT vy and that v; has exactly one

nonzero entry (q;) due to (16) being full rank. Finally, A1, (Agy —
2I)~tv; = 0 implies that A must be a transmission zero of the single-
input single-output system (Ass, €4, , A12) [22]. Thus, P(A) can be
made full rank by selecting A3z such that its eigenvalues are different
from the transmission zeros of the system (A;;, ¢, , A2).

In conclusion, by choosing A3; and the interconnection weight ¢
as discussed in Cases (1), (2.a), (2.b), and (2.c), we obtain a control-
lable realization of the sym-cactus G = Uz’,il G, thus, concluding the
inductive procedure. |
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