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Abstract—1In this paper we derive exact and approximate
conditions for the (local) stability of the cluster synchronization
manifold for sparsely interconnected oscillators with heteroge-
neous and weighted Kuramoto dynamics. Cluster synchroniza-
tion, which emerges when the oscillators can be partitioned
in a way that their phases remain identical over time within
each group, is critically important for normal and abnormal
behaviors in technological and biological systems ranging from
the power grid to the human brain. Yet, despite its importance,
cluster synchronization has received limited attention, so that
the fundamental mechanisms regulating cluster synchronization
in important classes of oscillatory networks are still unknown.
In this paper we provide the first conditions for the stability
of the cluster synchronization manifold for general weighted
networks of heterogeneous oscillators with Kuramoto dynamics.
In particular, we discuss how existing results are inapplicable or
insufficient to characterize the stability of cluster synchroniza-
tion for oscillators with Kuramoto dynamics, provide rigorous
quantitative conditions that reveal how the network weights and
oscillators’ natural frequencies regulate cluster synchronization,
and offer examples to quantify the tightness of our conditions.
Further, we develop approximate conditions that, despite their
heuristic nature, are numerically shown to tightly capture the
transition to stability of the cluster synchronization manifold.

I. INTRODUCTION

Synchronization arises spontaneously and by design in
a broad range of natural and man-made systems [1]-[3],
and is characterized by the onset of coherent trajectories
among different interconnected units. Full synchronization
has been extensively studied, e.g., see [4], and it corresponds
to the case where all of the units exhibit coherent behavior.
In contrast and despite its fundamental importance for the
functionalities of many network systems [5], cluster synchro-
nization, where disjoint and, possibly, time-varying groups
organize along different synchronized trajectories, has been
the subject of fewer and isolated studies, e.g., see [6]-[8].

The underlying mechanisms of cluster synchronization
are particularly useful to model, analyze, and regulate syn-
chronized neural activity in the human brain (see Fig. 1).
In fact, because different patterns of synchronized neural
activity are thought to be clear biomarkers of different
neurological disorders [9], [10], methods to characterize and
control the large-scale structural architecture of the brain,
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Fig. 1. As evident from fMRI scans, neural activity across different regions
is correlated over time, and this correlation pattern defines clusters of syn-
chronized brain areas corresponding to well-defined neural systems. Distinct
correlation patterns are biomarkers of healthy and diseased neural states.

its intrinsic properties, and brain-wide oscillatory patterns,
can inform the design of novel diagnostics and treatments
for neurological diseases and psychiatric disorders. Moti-
vated by these outstanding challenges, in this paper we
derive prescriptive conditions for the stability of cluster
synchronization in sparse networks of oscillators. We focus
on oscillators with heterogeneous and weighted Kuramoto
dynamics, which, despite their apparent simplicity, have been
shown to be particularly suited to model the onset of complex
synchronization phenomena in neural systems [11], as well
as in many other natural and technological systems [1], [2].
Related work. Cluster synchronization is a challenging prob-
lem that has attracted the attention of the physics, dynamical
systems, and controls communities. Existing studies on this
topic have highlighted a relation between cluster synchro-
nization and the presence of certain group symmetries [12],
[13] and edge weights [6]—[8] in the underlying interconnec-
tion graph, for a class of coupled oscillators. Yet, as we show,
group symmetries of the underlying graph are not necessary
for cluster synchronization, and the Kuramoto model used
in this paper does not satisfy the assumptions of the above
papers, thus making the existing results inapplicable.

Cluster synchronization of oscillators with Kuramoto dy-
namics has been studied in [14], [15], where an approximate
definition of cluster synchronization is used, in [16], [17],
where conditions are given only for the invariance of the
cluster synchronization manifold, in [18], where only the par-
ticular case of two clusters of identical Kuramoto oscillators
with inertia is considered, and in [19], where only implicit
and numerical stability conditions on the linearized dynamics
are derived. To the best of our knowledge, this work presents
the first conditions for the (local) stability of the cluster
synchronization manifold in sparse and weighted networks
of heterogeneous oscillators with Kuramoto dynamics.
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Paper contribution. This paper makes two main con-
tributions. First, we derive rigorous analytical conditions
for the stability of the cluster synchronization manifold in
weighted networks of Kuramoto oscillators. Specifically, (i)
we leverage the theory of stability of perturbed nonlinear
systems to derive quantitative conditions on the network
weights that guarantee local exponential stability of the
cluster synchronization manifold, and (ii)) we develop a
Lyapunov argument to show that, independent of the network
weights, the cluster synchronization manifold becomes stable
when the natural frequencies of the oscillators in disjoint
clusters are sufficiently different (in their limit to infinity).
These conditions reveal that the network weights and the
oscillators’ natural frequencies constitute two independent
mechanisms to promote stability of the cluster synchroniza-
tion manifold. Second, we derive approximate stability con-
ditions by combining the low-pass behavior of the linearized
dynamics of the isolated clusters with a small-gain result
for interconnected time-varying systems. While relying on
a heuristic argument, these approximate conditions involve
both the aforementioned independent mechanisms, and are
numerically shown to be considerably more accurate in pre-
dicting stability of the cluster synchronization manifold when
compared to our exact conditions. Due to space constraints,
proofs are omitted here and will be available in [20].
Mathematical notation. The sets R and R>( denote the
positive and nonnegative real numbers, respectively. The sets
St and T" denote the unit circle and the n-dimensional
torus, respectively. The ¢?-norm is denoted as || - ||. A
block-diagonal matrix is represented by blkdiag(-). We de-
note a positive definite matrix A with A > 0. Let X;(A4)
and o0;(A) denote the i-th eigenvalue and singular value
of A € R™™™, respectively, and Apax(A) = max; [A;(A)].
Finally, let A(4) = 1 3, X\i(A) and 5(A) = 2 37, 0,(A).

n
II. PROBLEM SETUP AND PRELIMINARY NOTIONS

In this paper we characterize the stability properties of
certain synchronized trajectories arising in networks of non-
identical oscillators with Kuramoto dynamics. To this aim,
let G = (V,€) be the connected and weighted bidirected
graph! representing the network of oscillators, where V =
{1,...,n} and £ C V xV represent the oscillators, or nodes,
and their interconnection edges, respectively. Let A = [a;;]
be the weighted adjacency matrix of G, where a;; € Ry
is the weight of the edge (j,i) € &, and a;; = 0 when
(j,1) € £. The dynamics of the i-th oscillator reads as

01‘ = W; + Z Qi sin(Gj — 97,)7
J#i
where w; € Ry and 6; € S' denote the 4-th oscillator’s
natural frequency and phase, respectively.
Let P = {P1,...,Pm} be a nontrivial partition of V,
where each cluster contains at least two oscillators.”> The
network G exhibits cluster synchronization with partition P

(D

IA bidirected graph is a directed graph where (i, j) € & implies (j,4) €
£. The adjacency matrix of a bidirected graph needs not be symmetric.
2The case m = 1 leads to full synchronization, and it is not studied here.
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Fig. 2. Fig. 2(a) illustrates a network of 6 oscillators with adjacency matrix
as in Fig. 2(b). In this network, the partition P = {P1, P2}, which satisfies
Assumption (A2), cannot be identified by group symmetries of the network
for any choice of the positive weights a1, a2, a3, au, $1 and Ba.

if the oscillators in each cluster evolve with equal phases. To
be specific, we define the cluster synchronization manifold
associated with the partition P as

Sp={0eT" : 6,=0,foralli,j € Py, k=1,...,m}.

Then, the network is cluster-synchronized with partition P
when the phases of the oscillators belong to Sp at all times.

In this paper we characterize conditions on the network
weights and the oscillators’ natural frequency that guarantee
local exponential stability of the cluster synchronization
manifold Sp, for a given partition P.> Because invariance of
a set is a necessary condition for its stability [21, Chapter 3],
we assume that Sp is invariant under the oscillators’ dynam-
ics (1), or, equivalently [17], that the network of oscillators
G satisfies the following conditions for the given partition P:

(A1) The natural frequencies of the oscillators satisfy
w; =wj forevery i,j € Pyand k € {1,...,m};
(A2) The network weights satisfy Zkem a;r — aj = 0 for
every i,j € P, and z,£ € {1,...,m}, with z # £.
Remark 1: (Network symmetries and balanced weights)
Several conditions ensuring invariance and stability of Sp
require the network to satisfy restrictive group symmetries,
e.g., see [12], [19]. As shown in Fig. 2, cluster synchro-
nization does not require symmetric networks. Thus, the
stability conditions derived in this work apply to a larger
set of networks, and in fact different dynamics, compared to
existing results on cluster synchronization. (]
Define the phase difference x;; = 6; — 0;, and notice that

Tij = wj — w; + Z aj.sin(xj,) — a;;sin(x;.).  (2)
z=1
Further, define the following undirected graphs (see Fig. 3):
(i) the graph of the k-th cluster Gy = (Pg, &), where
& ={(,7) : (1,4) €E, i,j € Piks
(i) a spanning tree T, = (P, Espan k) Of Gri?
(iii) a spanning tree 7 = (V,&7) of G with & =
Ui 1 Epan, ke U Einer, Where |Einger| = m — 1.

Finally, define the following vectors of phase differences:
(k) _

(Av) @y, = [@ij], for all (4, ) € Espanie With @ < j,
nT T
(V) Tintra = xi(mza g 7xi(r:;a)1 , and

3Loosely speaking, the manifold Sp is locally exponentially stable if 6
converges to Sp exponentially fast when 6(0) is sufficiently close to Sp.

4We assume that the subgraphs G, of G are connected. This guarantees
the existence of the undirected spanning trees in (ii) and (iii).
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Fig. 3. This figure illustrates the graph-theoretic definitions introduced

in Section II for a network of 9 Kuramoto oscillators. Fig. 3(a) shows the
partitions P = {P1, P2, Ps}, where P1 = {1,2,3}, P> = {4,5,6} and
P3 = {7,8,9}. In Fig. 3(b), Espan, 1, Espan,2, and Egpan,3 represent (in red)
the edges of the intra-cluster spanning trees 71, 72 and 73, while the edges
belonging to the set &,y are depicted in purple. The vectors of intra-cluster

: 1) _ T .(2) _ T (3) _
differences read as x,, - = [x12 z23] ", T, = [Z45 T56] . and l”immr—

[z7s 279]T, and the inter-cluster differences read as Tiner = [236 T47] .

(Vi) Tiner = [x45], for all (i,7) € Einger With 7 < 7.

It should be noticed (see also Fig. 3) that the vectors
xi([ﬁza, Tintra aNd Tineer cONtain, respectively, Ninga k. = |Pi|—1,
Ninra = 1 — m and nper = m — 1 entries. Notice also that
every phase difference can be computed as a linear function
of Zinra and Tiner. To see this, let 4,5 € V, and let p(7, j) =
{p1,...,pe} be the unique path on 7 from 4 to j. Define
diff(p(é, j)) = Zf;;ll Sk, Where sj, = Lpiprt if pr < Pr+1s
and s, = —xp, ,p, otherwise. Then, x;; = diff(p(7, 7)), and
the vectors Tinya and Xiner contain a smallest set of phase
differences that can be used to quantify synchronization
among all of the oscillators in the network.

In the remaining part of this section we rewrite the intra-
cluster dynamics in a form that will be useful to present our
results. In particular, for (¢, j) € Epan,k, the dynamics (2) of
the intra-cluster difference x;; can be rewritten as

;= aj.sin(diff(p(f, 2))) — a;. sin(diff(p(i, 2)))
z2E€Py

k k
FO) (28

intra

+ Y ajesin(diff(p(j, 2))) — a;. sin(diff(p(i, 2))),
2Z Py

GE;C) (Zintra> Tinter)
which leads to

x(k) = F(k) (x(k) ) + G(k) (ﬁUintra, ximer)a

intra intra

3)

where F(*) is the vector of Fi(jk) and G®) is the vector of

Ggf), for all (,7) € Epan,k» ¢ < j. Finally, by concatenating
. (k)
the dynamics of z;

i for all K =1,...,m, we obtain

“4)

j:intra = F(xintra) + G(l'imraa xinter)-

Let C be the set of connected pairs of clusters; that is,
C=A{z2) : 3(i,j) € Ewithi € Py,j € P,, and £ <
z}. Let Zpom denote the trajectory iner wWhen Zing, = 0 at
all times, and notice that x;; = 22 for any ¢ € Py and

j € P, with (¢, z) € C. Then, the linearization of the intra-
cluster dynamics (4) around the trajectory Xy, = 0 and
Tinter = Tnom reads as follows:

Tintra = (Jintra + Jinter) Tintra, 5
where the matrices Ji and Jiner are defined as
aF intra .
T = 2| g (), ), ()
8winlra Tintra=0
oG 2 Lz
‘]inter = 8$imra Tintra=0 = Z cos (l‘ (e )) ‘]iglter)' (7)

(¢,z)eC

In other words, the linearization of the intra-cluster dy-
namics (4) along cluster-synchronized trajectories yields a
time-varying system due to (7). This marks an important
difference between cluster and full synchronization, where
the dynamics in proximity of the synchronization manifold
are time-invariant, and calls for novel and more involved
conditions for cluster synchronization.

III. EXACT STABILITY CONDITIONS FOR CLUSTER
SYNCHRONIZATION

In this section we derive sufficient stability conditions
for local exponential stability of the cluster synchronization
manifold. We make the following assumption,

(A3) The matrix Ji, in (6) is Hurwitz stable,
which can be shown to be satisfied, for instance, in the case
of symmetric network weights (A = AT) [4], [20]. Our first
stability result leverages tools from perturbation theory [22,
Chapter 9] and the following instrumental lemma.

Lemma 3.1: (Bounded norm of inter-cluster dynamics)
Let G (Zinga, Tineer) be as in (3), & = 2max, Niga,», and

K Z Aij, if ¢ 75 k‘,
(ko) — JEP, (8)
7 HZ Z a;j, otherwise,
L#k jEP,

with k,¢ € {1,...,m} and ¢ € Py. Then,

m
16® @iy zmer) | < D740 lzfi
=1

As formalized in the next theorem, Lemma 3.1 states that
the inter-cluster dynamics are linearly bounded and, together
with results on stability of perturbed systems, implies that the
origin of (4), and thus the cluster synchronization manifold
Sp, is exponentially stable for some choices of the network
weights. Recall that an M -matrix is a real nonsingular matrix
A = [a;j] such that a;; < 0 for all ¢ # j and all leading
principal minors are positive [23, Chapter 2.5].

Theorem 3.2: (Sufficient condition on network weights
for the stability of Sp) Let v(¥9) be the constants defined in
(8), and define the matrix S € R™*™ as

Aliox,) — (kk)
S = [swe) = {_r?;?k(e) V0

if k=,

iwze,

where X, = 0 satisfies J,IXk + XiJr = —1 with Ji as in
(6). If S is an M-matrix, then the cluster synchronization
manifold is locally exponentially stable.
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Theorem 3.2 contains a sufficient condition on the net-
work weights for the stability of the cluster synchronization
manifold Sp. Qualitatively, Theorem 3.2 proves that Sp is
locally exponentially stable when the intra-cluster coupling
(measured by Al (X3)) is sufficiently stronger than the
perturbation induced by the inter-cluster connections (quan-
tified by ~(9). Quantitatively, as illustrated in Fig. 4(c),
the condition in Theorem 3.2 is often conservative, possibly
because it does not account for the contribution of the
oscillators’ natural frequencies to promote synchronization.

Theorem 3.3: (Stability of Sp for large natural fre-
quency differences) Let w; be the natural frequency of the
oscillators in the i-th cluster, with ¢ € {1,...,m}. In the
limit |w; — wj| — oo for all 4,5 € {1,...,m}, the cluster
synchronization manifold is locally exponentially stable.

Theorem 3.3 proves that the cluster synchronization man-
ifold is stable in the limit of infinitely different natural
frequencies across the clusters. Some comments are in
order. First, although Theorem 3.3 contains an asymptotic
result, Fig. 4(d) and our analysis in Section IV show that
heterogeneous yet bounded natural frequencies are suffi-
cient to guarantee stability of the cluster synchronization
manifold. Second, Theorems 3.2 and 3.3 prove that cluster
synchronization can be achieved through two independent
mechanisms that rely, respectively, on the network weights
and on the oscillators’ natural frequencies. Tighter stability
conditions are expected to arise from the combination of
these independent stability mechanisms, as we successfully
pursue in the next section.

Example 1: (Comparison between stability conditions)
Consider the network in Fig. 4(a) with partition P =
{P1,P2}, where P; = {1,2} and P, = {3,4}, and adja-
cency matrix as in Fig. 4(b). The parameters a1, a2 € Ry
and 5 € Ry denote the intra- and inter-cluster couplings,
respectively. The matrix S in Theorem 3.2 becomes S =

4°‘j; ;B 4;22762 ﬁ]. In Fig. 4(c) we compare stability condi-
tions based on the matrix S in (9) and numerical conditions
given by Floquet stability theory.’> Notice that, for certain
parameters, the synchronization manifold is unstable. Finally,
Fig. 4(d) shows that, as the inter-cluster coupling S grows,
the stability of Sp is achieved by increasing the difference
of the natural frequencies, as predicted by Theorem 3.3. [

IV. APPROXIMATE STABILITY CONDITIONS FOR CLUSTER
SYNCHRONIZATION

Stability of cluster synchronization is guaranteed by the
stability of the time-varying interconnected system (5),
where the subsystems are identified by the isolated clusters.
For interconnected systems with time-varying dynamics

J#i
where A;(t) and B;;(t) are time-varying matrices of suitable

dimensions, a simplified version of the small-gain theorem
can readily be derived from [25] and reads as follows.

(10)

5This comparison is possible for the case of two clusters, as we are able
to explicitly derive the trajectory of the periodic inter-cluster difference [20].
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Fig. 4. Fig. 4(a) illustrates the network of 4 Kuramoto oscillators in
Example 1. We identify the clusters P; and P2 in blue and orange,
respectively. Fig. 4(c) compares the stability conditions of Theorem 3.2 and
numerical stability via Floquet decomposition [24]. We fix a1 = w1 = 1,
wg = 8, and let ag and B vary. The condition in Theorem 3.2 (dark
green) identifies a subset of the stable configurations (light green). Fig. 4(d)
illustrates that stability is guaranteed for sufficiently heterogeneous natural
frequencies, as predicted by Theorem 3.3 (a1 = w1 = 1, o = 0.001).

Theorem 4.1: (Small-gain stability test [25]) The origin
of the system in (10) is (globally) exponentially stable if:

(i) the origin of each isolated subsystem y; = A;(t)y; is
(globally) exponentially stable;

(i) there exist &;; € R>q (gains) s.t., V't > 0, |ly; #(t)]] <
>z i SuPrepo 1y (I, @ = 1,...,m, where
y;,r(t) is the forced response of the i-th subsystem;

(iii) the matrix Z £ [¢;;] € R™*™ (gain matrix) satisfies

Amax(2) < L. (11)

As conditions (i)-(ii) in Theorem 4.1 are generally difficult
to verify in systems with time-varying dynamics, in what
follows we propose and validate an approximation to the
dynamics (5), which allows us to apply Theorem 4.1 and
derive (approximate) stability conditions for the cluster syn-
chronization manifold. As we will show through numerical
examples, our approximate stability conditions are tight.

To simplify the derivation of our approximate stability
conditions, we start with the case of clusters with two nodes,
so that the dynamics of the intra-cluster phase difference is
scalar. This procedure extends directly to the general case.
To obtain our stability condition, we follow three main steps.

(Approximate input-output response of the system (5)) The
scalar intra-cluster dynamics of the k-th cluster reads as

. 14
xi(flr)a = (Jk + Jimer,k)xi(rﬁza + Z Jinter,lcfxi(m)raa (12)
£k
where J, Jinler,k = ZZ#I@ Mke Cos(x(ke))’ Jinler,fz =

Ce cos(x)), myg, and (g, are scalar quantities derived from
(5). As w®) & . — w, grows, we have ¢ z(**)(t) ~

This approximation is reasonable for heterogeneous natural frequencies
[20, Lemma A.2]. The same approximation has been used also in [14],
although for a different analysis of cluster synchronization.
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Fig. 5. In this figure we plot the maximum error between the forced
response of (12) and the proposed approximation in (13) as w(12) increases.
For the simulation, «; = 81 = w1 = 1, a2 = 0.01, and wo varies as
indicated. Initial conditions are chosen randomly in the interval (0, 0.001].

Wt Thus, Jinterk = Y gy, ke COSWHFE), Jiner oz ~
Ce- cos(w®@)t), and the approximate forced response of (12)

‘
to the input x; . becomes

~ Z/ Ji (t—T) Cké COS(w(kZ )

(#k

where we have approximated the transition matrix of
the linear time- Varymg system (12) as (see also [24])
eJo It Jmecidr oy ofg JkdT — eJit The last approximation
is motivated by the fact that Jiyerr is a high-frequency
signal with zero mean, so that its integral over time becomes
negligible compared to the integral of Jj. Our approximation
is validated in Fig. 5 for the network in Fig. 4(a), where we
see that the input-output responses of the original (12) and
approximated (13) systems remain close to each other for
different values of the natural frequency.

2 (k)

Lintra b

(0

lnTId

(r)dr, (13)

(Computation of approximate input-output gains) Equation
(13) can be viewed as the forced response of a linear time-
invariant system with matrix J; to the modulated input
Ckgcos(w(u)T)xi(ft)ra. Following [26], each term in the sum
in (13) can be expressed as a Taylor series about the natural
frequency of the modulating function. This yields

0)
= e Z RO cos(w ROt 4 qp(R6)) —Zintral ] ", (1)

1ntra f "
#k =0 &
Chre
(14)
. A 1 (k&) _ |izr d"Hy(iw)
with Hi(s) = — T & = 7(1167’(0:“)(1@@) > and
(ke) " d"Hy (iw)
Yp = angle( dw™ w:w(ke))'

We propose the following first-order approximation of (14):

[ Hi(iw®0)| e, ()], if J, < Jp,
Crel 29 1, 0 kO 1.0 . 15)
|H¢(0)] |H (lw )‘ ‘Ilﬂtrd( )" if Jé < Jg.

Loosely speaking, the former approximation is motivated
by the fact that the modulated input coming from the ¢-th
system is “slower” than the k-th system. Instead, the second
approximation is valid when the input from the ¢-th system is
“faster” than the k-th system, and it follows from [26]. Using
(15), we define the approximate input-ouput gains iy, k % £:

|Hi (i w®)||Crel, if Jp < Jo,
Ske = |H} (0)] (k) : (16)
|He(o)||H€(1°" WICkel, if Jo < Jg.
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Fig. 6. In this figure we plot the gains £12 (left panel) and 21 (right panel)
in a logarithmic scale. For this comparison, we select § = a2 = 1 and
a1 = 0.01; thus, 12 = (21 = 8, J1 = —2a1, and J2 —2a2. In the
left panel, the additional green line represents the approximate gain obtained
by truncating the series in (14) after the first term. Notice that, in such a
case, the approximation is accurate only for large frequencies w(12) The
red curve, instead, represent the proposed approximation detailed in (16).
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Fig. 7. The heatmap in Fig. 7(a) represents the error between wg, and
wf defined in Example 2. We let a1 = w1 = 1, and B, ag vary as

indicated. The white area contains stable network realizations predicted by
both the Floquet exponents and the condition (11). Fig. 7(b) shows that, for
the parameters in Example 1, the approximate stability condition based on
Theorem 4.1 and (16) is much tighter than the condition in Theorem 3.2.

Our approximation is validated in Fig. 6 for the network
in Fig. 4(a), where it can be seen that, for the considered
example, the proposed gains are accurate when J, > Jg,
and they constitute a reasonable upper bound when J, < Jj.
Additional studies are required to further validate and support
the proposed approximate gains (see also Example 2).

(Approximate stability test) We define the gain matrix = =
[Ere] € R™ ™ with & = 0 if K = £, and &, as in
(16) if k # ¢. Finally, our approximate stability condition
for the cluster synchronization manifold consists of applying
Theorem 4.1 with the approximate gain matrix =.

Example 2: (Tightness of approximate stability condi-
tion) Consider the network in Example 1. In Fig. 7 we
compare the proposed approximate stability condition with
the numerical outcomes from Floquet stability theory. In Fig.
7(a) we use the following quantities: wg, is the smallest
frequency difference w('? such that condition (11) with
gains as in (16) is satisfied, and wy is the smallest frequency
difference w('? such that the largest Floquet exponent of
(5) is negative. Notice that the approximate condition in
(11) closely reproduces the numerical instability-stability
transition in a reasonable region of intra- and inter-cluster
parameters; namely, for small values of S and as — 1. In
Fig. 7(b) we show that our approximate stability condition
outperforms the analytical one derived in Theorem 3.2. [J
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Fig. 8. This figure shows the error between wg, and wf defined in
Example 2 and using the approximate gain matrix (%7), as the cardinality
of the clusters increases. For each cardinality N, we generate 100 random
realizations of the graphs G1 and Go described in Remark 2. The intra-
cluster weights of Gi (resp. G2) are uniformly distributed in [0, 1] (resp.
[0,0.01]), and the inter-cluster weights are uniformly distributed in [0, 1].
The dashed blue line represents the mean difference wy, — wy for the
approximate gains in (17), and the dashed red line represents the mean
difference wy;, —wy" for the analytical test in [20, Theorem 3.5]. The shaded
area contains the maximum and minimum values among all realizations.

Remark 2: (Extension to clusters with multiple nodes)
When the clusters contain more than two nodes, a gain matrix
similar to (16) can be computed by using a suitable scalar
approximation of the transfer matrix Hy(s) = (sI — Jx) L.
We propose the following stability test, which relies on using
the mean singular value of H}, to compute input-output gains:

ngE(Hk(iw(ke)))a if X(Jk) < X(Jg),

ke= Z(Hi () = 17, (1 (o (*O) it M(J MJ 17)
ke g0y @ (He(Qw ™)), it A Je) < A(Jk),

where vy = ||Jiner kel at time ¢ = 0. We validate the

approximate stability condition (11) on random networks
with 2N nodes that are generated as follows. First, we
choose two weighted undirected and connected Erdos-Rényi
graphs G; and G, with cardinality N and edge probability
p = 0.5. To facilitate instability of Sp for small natural
frequency differences, we select small intra-cluster weights
in Gy (see Fig. 7(a)). Second, we connect G; and Go to
satisfy Assumption (A2). Finally, for each N, we compare
the condition (11) with our approximate gains (17) and the
condition in [20, Theorem 3.5] with the smallest value of
the natural frequency ensuring stability, which is obtained
using the Floquet exponents of (5). For different random
realizations of Gy and Go, Fig. 8 shows that our heuristic test
consistently performs better than its analytical counterpart.[]

V. CONCLUSION

In this paper we derive exact and approximate conditions
for the local exponential stability of the cluster synchroniza-
tion manifold in networks of Kuramoto oscillators. Our exact
conditions show that the cluster synchronization manifold is
stable when the intra-cluster weights are sufficiently larger
than the inter-cluster weights, and that stability is also guar-
anteed when the natural frequencies across different clusters
are sufficiently heterogeneous. Our approximate conditions,
instead, combine the above independent mechanisms of sta-
bility based on the network weights and oscillators’ natural
frequencies, and are shown to be considerably more accurate
than our exact conditions. To the best of our knowledge, the
conditions presented in this paper constitute the first explicit
and provable results for the stability of the cluster synchro-
nization manifold in general networks of Kuramoto oscilla-
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tors. Finally, these results are expected to find applicability
across different domains, including the characterization and
control of abnormal patterns of synchronized neural activity
in the human brain, as we are currently investigating.
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