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Abstract. We introduce the problem of hidden Hamiltonian cycle recovery, where there is
an unknown Hamiltonian cycle in an n-vertex complete graph that needs to be inferred
from noisy edge measurements. The measurements are independent and distributed
according to Pn for edges in the cycle andQn otherwise. This formulation is motivated by a
problem in genome assembly, where the goal is to order a set of contigs (genome sub-
sequences) according to their positions on the genome using long-range linking mea-
surements between the contigs. Computing the maximum likelihood estimate in this
model reduces to a traveling salesman problem (TSP). Despite the NP-hardness of TSP, we
show that a simple linear programming (LP) relaxation—namely, the fractional 2-factor
(F2F) LP—recovers the hiddenHamiltonian cycle with high probability as n→∞ provided
that αn − log n→∞, where αn ≜ −2 log∫ ̅̅̅̅̅̅̅̅̅̅̅

dPndQn
√

is the Rényi divergence of order 1
2. This

condition is information-theoretically optimal in the sense that, under mild distributional
assumptions, αn ≥ (1 + o(1))log n is necessary for any algorithm to succeed regardless of
the computational cost. Departing from the usual proof techniques based on dual witness
construction, the analysis relies on the combinatorial characterization (in particular, the
half-integrality) of the extreme points of the F2F polytope. Represented as bicolored
multigraphs, these extreme points are further decomposed into simpler “blossom-type”
structures for the large deviation analysis and counting arguments. Evaluation of the
algorithm on real data shows improvements over existing approaches.

Funding: V. Bagaria and D. Tse are supported by the Center for Science of Information, a National
Science Foundation (NSF) Science and Technology Center grant [CCF-0939370], as well as the
National Human Genome Research Institute of the National Institutes of Health [Award
R01HG008164]. J. Ding was supported in part by the NSF [Grant DMS-1757479] and an Alfred
Sloan fellowship. Y. Wuwas supported in part by the NSF [Grants IIS-1447879 and CCF-1527105],
the NSF CAREER program [Award CCF-1651588], and an Alfred Sloan fellowship. J. Xu was
supported in part by a Simons-Berkeley Research Fellowship and the NSF [Grants CCF-1850743,
IIS-1838124, and CCF-1856424].
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1. Introduction
Given an input graph, the problem of finding a sub-
graph satisfying certain properties has diverse applica-
tions. MAX CUT, MAX CLIQUE, and the traveling
salesman problem (TSP) are a few canonical exam-
ples. Traditionally, these problems have been stud-
ied in theoretical computer science from the worst-
case perspective, and many such problems have
been shown to be NP-hard. However, in machine
learning applications, many such problems arise
when an underlying ground truth subgraph needs
to be recovered from the noisy measurement data
represented by the entire graph. Canonical models

to study such problems include planted partition
models (Condon and Karp 2001) (such as planted
clique; see Jerrum 1992) in community detection
and planted ranking models (such as the Mallows
model; see Mallows 1957) in rank aggregation. In
these models, the planted or hidden subgraph repre-
sents the ground truth, and one is not necessarily in-
terested in the worst-case instances but rather in only
instances for which there is enough information in the
data to recover the ground truth subgraph (i.e., when
the amount of is are above the information limit). The
key question is whether there exists an efficient re-
covery algorithm that can be successful all the way to
the information limit.

53
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In this paper, we pose and answer this question
for a hidden Hamiltonian cycle recovery model.

Definition 1 (Hidden Hamiltonian Cycle Recovery).
• Given: Let n ≥ 1, and there are two distributions

Pn and Qn, parameterized by n.
• Observation: We observe a randomly weighted,

undirected complete graph G � ([n],E)with a hidden
Hamiltonian cycle C∗ such that every edge has an
independent weight distributed as Pn if it is on C∗ and
as Qn otherwise.

• Inference Problem: Recover the hidden Hamilto-
nian cycle C∗ from the observed random graph.

Our problem is motivated from de novo genome
assembly, the reconstruction of an organism’s long
sequence of A–G–C–T nucleotides from fragmented
sequencing data. The first step of the standard as-
sembly pipeline stitches together short, overlapping
fragments (so-called shotgun reads) to form longer
subsequences called contigs, of lengths typically tens
to hundreds of thousands of nucleotides (Figure 1).
Because of coverage gaps and other issues, these in-
dividual contigs cannot be extended to the whole ge-
nome. To get amore complete picture of the genome, the
contigs need to be ordered according to their positions
on the genome, a process called scaffolding. Recent ad-
vances in sequencing assays (Lieberman-Aiden et al.
2009, Putnam et al. 2016) aid this process by providing
long-range linking information between these contigs
in the form of randomly sampled Hi-C reads. These
data can be summarized by a contact map (Figure 2),
tabulating the counts of Hi-C reads linking each pair
of contigs. The problem of ordering the contigs from
the contact map data can be modeled by the hid-
den Hamiltonian cycle recovery problem, where the
vertices of the graph are the contigs, the hidden
Hamiltonian cycle is the true ordering of the contigs
on the genome, and the weights on the graph are the

counts of the Hi-C reads linking the contigs. Strictly
speaking, this applies only to genomes that are cir-
cular. For genomes that are linear, the ordering of the
contigs would correspond to a hidden Hamiltonian
path.We show in Section EC.1 of the e-companion that
our results extend to a hidden Hamiltonian path model
as well. As can be seen in Figure 2(a), there is a much
larger concentration of Hi-C reads between contigs ad-
jacent on the genome than between faraway contigs.
A first-order model is to choose Pn � Pois(λn) and Qn �
Pois(μn), where λn is the average number of Hi-C reads
between adjacent contigs and μn is the average num-
ber between nonadjacent contigs. The parameter nλn +
n(n−1)

2 μn increaseswith the coverage depth (the average
number of Hi-C reads that include a given nucleotide)
of the Hi-C reads and is part of the design of the se-
quencing experiment.
The hidden Hamiltonian cycle can be represented

as an adjacency vector x∗ ∈ {0, 1} n
2( ) such that x∗e � 1

if edge e is on the Hamiltonian cycle and x∗e � 0 oth-
erwise. LetAdenote theweighted adjacencymatrix of
G so that Ae is distributed according to Pn (respec-
tively, Qn) if x∗e � 1 (respectively, 0). The maximum
likelihood (ML) estimator for the hidden Hamiltonian
cycle recovery problem is equivalent to solving the
traveling salesman problem (TSP) on a transformed
weighted graph, where each edge weight we �
log dPn

dQn
(Ae) is the log likelihood ratio evaluated on the

weights of the observed graph:
x̂ML � argmax

x
w, x〈 〉

s.t. x ∈ -(G),
(1)

where -(G) denotes the set of adjacency vectors of
all possible Hamiltonian cycles in G. In the Poisson
or Gaussian model where the log likelihood ratio
is an affine function, we can simply take w to be A
itself.

Figure 1. (Color online) Short Reads Are Assembled to FormContigs,Which Are Then Ordered byUsing Long-Range Linking
Hi-C Reads
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Solving TSP is NP-hard, and a natural approach is
to look for a tractable relaxation. It is well known that
TSP (1) can be cast as an integer linear program (ILP)
(Schalekamp et al. 2013):

x̂TSP � argmax
x

〈w, x〉 (2)

s.t. x δ(v)( ) � 2, (3)

x δ(S)( ) ≥ 2, ∀S ⊂ [n], 3 ≤ |S| ≤ n − 3,

(4)
xe ∈ {0, 1}, (5)

where δ(S) denotes the set of all edges in G with ex-
actly one endpoint inS ⊂ [n], and δ(v)≜ δ({v}); x δ(S)( ) �∑

e∈δ(S) xe. In particular, (3) are called degree constraints,
enforcing each vertex to have exactly two incident edges
in the graph represented by the adjacency vector x,
whereas (4) are subtour elimination constraints, elim-
inating solutions whose corresponding graph is a
disjoint union of subtours of length less than n. Note
that there are exponentially large numbers of subtour
elimination constraints. If we drop the subtour elim-
ination constraints as well as relax the integer con-
straints on x, we obtain the F2F linear programming
(LP) relaxation (a 2-factor is a spanning subgraph con-
sisting of disjoint cycles):

x̂F2F � argmax
x

w, x〈 〉
s.t. x δ(v)( ) � 2,

xe ∈ [0, 1].

(6)

The main result of the paper is the following. We ab-
breviate Pn and Qn as P and Q, respectively.
Theorem 1. Define

αn ≜ −2 log
∫ ̅̅̅̅̅̅̅̅̅

dPdQ
√

(7)

to be the Rényi divergence of order 1
2 between distributions

P and Q. If

αn − logn → +∞, (8)

then the optimal solution of the F2FLP (6) satisfiesminx∗∈-(G) ·
P x̂F2F � x∗{ } → 1 as n → ∞.

The Rényi divergence of order ρ > 0 from P to Q is
defined as (Rényi 1961)

Dρ(P‖Q)≜ 1
ρ − 1

log
∫

(dP)ρ(dQ)1−ρ. (9)

It particular, for ρ � 1/2, it is related to the so-called
Battacharyya distance B(P,Q) via D1

2
(P‖Q)�2B(P,Q). For

Gaussian, Poisson, or Bernoulli weight distribution,
the explicit expressions of αn are given as follows:

αn �

μ2/4 if P � 1(μ, 1),
Q � 1(0, 1)̅

λ̅
√ − ̅

μ̅
√( )

2 if P � Pois(λ),
Q � Pois(μ)

−2 log ̅̅̅̅
pq

√ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(1 − p)(1 − q)√( )
if P � Bern(p),
Q � Bern(q).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

Figure 2. (Color online) (a) Contact Map Where the Rows (and Columns) Correspond to Ordered Contigs of Human
Chromosome 1 (Putnam et al. 2016), and the Value at Entry (i, j) Corresponds to the Number of Hi-C Reads Between Contig i
and Contig j; (b) Contact Map of the Unordered Matrix in (a), Where the Contigs Are Randomly Ordered (These Are the Data
from Which the Ordering of the Contigs Is Inferred)
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Although the relaxation from TSP to F2F LP is quite
drastic, the resulting algorithm is, in fact, information-
theoretically optimal for the hidden Hamiltonian cycle
recovery problem. Specifically, under an assumption
which can be easily verified for Poisson, Gaussian, or
Bernoulli weight distribution, we show in Section 6
that if there exists any algorithm, efficient or not,
which exactly recovers x∗ with high probability, then
it must hold that

αn ≥ (1 + o(1)) logn.
This necessary condition, together with sufficient con-
dition (8), implies that the optimal recovery threshold
is at

lim inf
n→∞

αn

log n
� 1,

achieved by the F2F LP.
We discuss three consequences of Theorem 1. First,

as a corollary of the integrality and the optimality of
the F2F LP, it can be shown that the max-product
belief propagation algorithm introduced in Bayati
et al. (2011) can be used to solve the F2F LP exactly,
which, for the Gaussian or Poisson weight distribu-
tion, requires o(n2 logn) iterations (see Section 2 for
details). Second, note that we do not require the edge
weights to be real valued. Thus the formulation also
encompasses the case of partial observation, by letting
the weight of every edge in G takes on a special
“erasure” symbol with some probability. See Section
EC.6 in the e-companion for details. Third, from the
optimality of the F2F LP, we show that for the
Gaussian or Poisson weight distribution, with high
probability, the hidden Hamiltonian tour can be re-
covered exactly in O(n3 log3 n) time using a packing
LP solver (Allen-Zhu andOrecchia 2019) and a simple
rounding scheme. See Section EC.8 in the e-companion
for details.

In related work, a version of the hidden Hamilto-
nian cycle model was studied in Broder et al. (1994),
where the observed graph is the superposition of a
hidden Hamiltonian cycle and an Erdős–Rényi ran-
dom graph with constant average degree d. Our
measurement model is more general than the one in
Broder et al. (1994), but more important, the goal in
Broder et al. (1994) is not to recover the hidden
Hamiltonian cycle but rather to find anyHamiltonian
cycle in the observed graph, which may not coincide
with the hidden one. (In fact, in the regime consid-
ered there, exact recovery of the hidden cycle is
information-theoretically impossible. See Remark 1 for a
justification.) The fractional 2-factor relaxation of TSP
has been well studied in the worst case (Dantzig et al.
1954, Boyd and Carr 1999, Schalekamp et al. 2013). It
has been shown that under the cost minimization for-
mulation where the costs are symmetric and satisfy the

triangle inequality, the integral gap of F2F is 4/3; here,
the integrality gap is defined as the worst-case ratio of
the cost of the optimal integral solution to the cost of the
optimal relaxed solution. By contrast, our model does
not make any metric assumption on the graph weights.
The rest of this paper is organized as follows. In

Section 2, we describe a few other computationally
efficient algorithms for the hidden Hamiltonian cycle
problem and benchmark their performance against
the information-theoretic limit. In Section 3, we dis-
cuss related work in more detail. Sections 4 and 5 are
devoted to the proof of Theorem 1, and Section 6
characterizes the information-theoretic limit for the
recovery problem. In Section EC.1 in the e-companion,
we describe the closely related hidden Hamiltonian
path problem and show that it can be reduced to and
from the hidden Hamiltonian cycle problem both
statistically and computationally. Empirical evalua-
tion of various algorithms on both simulated and
real DNA data sets are given in Section EC.2 in the
e-companion.

2. Performance of Other Algorithms
It is striking to see that the simple F2F LP relaxation
of the TSP achieves the optimal recovery threshold in
the hidden Hamiltonian cycle model. A natural ques-
tion to ask is whether there exists another efficient and
perhaps even simpler estimator with provable opti-
mality. We have considered various efficient algo-
rithms and derived their performance guarantees.
As summarized in Table 1, spectral algorithms is
orderwise suboptimal; greedy methods including
thresholding achieve the optimal scaling but not the
sharp constant. Finally, max-product belief propagation
also achieves the sharp threshold as a corollary of our
result on the F2F LP. In Table 1,

βn ≜ − 3
2
log

∫
(dP)2/3(dQ)1/3 (11)

is the 1
3-Rényi divergence from Q to P (see (9)). By

Jensen’s and Hölder’s inequality, for any distinct P
and Q, we have

1
2
αn < βn < αn. (12)

Table 1. Sufficient Conditions for Various Efficient
Algorithms to Achieve Exact Recovery

Efficient algorithms Performance guarantee

F2F LP αn − logn → +∞
Max-product BP
Greedy merging βn − logn → +∞
Simple thresholding αn − 2 logn → +∞
Nearest neighbor
Spectral methods αn � n5 (Gaussian)

Bagaria et al.: Hidden Hamiltonian Cycle Recovery via Linear Programming
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For Gaussian weights with P � 1(μ, 1) and Q � 1(0, 1),
we have βn � 1

6μ
2 � 2

3αn. Simulation of these algo-
rithms confirm these theoretical results. See Figure EC.1
in Section EC.2.1 of the e-companion.

2.1. Spectral Methods
Spectral algorithms are powerful methods for re-
covering the underlying structure in planted models
based on the principal eigenvectors of the observed
adjacency matrix A. Under planted models such as
planted clique (Alon et al. 1998) or planted partition
models (McSherry 2001), spectral algorithms and
their variants have been shown to achieve either the
optimal recovery thresholds (Massoulié 2013, Abbe
and Sandon 2015, Bordenave et al. 2015) or the best
possible performance within certain relaxation hier-
archies (Deshpande and Montanari 2015, Meka et al.
2015, Barak et al. 2016). The rationale behind spectral
algorithms is that the principal eigenvectors of E A[ ]
contain information about underlying structures and
the principal eigenvectors of A are close to those of
E A[ ], provided that the spectral gap (the gap between
the largest few eigenvalues and the rest of them) is
much larger than the spectral norm of the perturba-
tion ‖A − E A[ ]‖. In our setting, indeed, the principal
eigenvectors of E A[ ] contain information about the
ground truth Hamiltonian cycle C∗. To see this, let us
consider the Gaussian case where P � 1(μ, 1) andQ �
1(0, 1) as an illustrating example. Then the observed
matrix can be expressed as

A � μC∗ + Z,

where, with a slight abuse of notation, we use A to
denote the weighted adjacency matrix of G and C∗ to
denote the adjacency matrix of the true Hamiltonian
cycle; Z is a symmetric Gaussian matrix with zero
diagonal and Zij � Zji independently drawn from
1(0, 1) for i < j. Because C∗ is a circulant matrix, its
eigenvalues and the corresponding eigenvectors can
be explicitly derived via discrete Fourier transform.
It turns out that the eigenvector corresponding to
the second-largest eigenvalue of C∗ contains per-
fect information about the true Hamiltonian cycle.
Unfortunately, in contrast to the planted clique and
planted partition models under which E A[ ] is low
rank and has a large eigengap, here, C∗ is full rank,
and the gap between the second- and third-largest
eigenvalue is on the order of 1/n2, which is much
smaller than ‖Z‖ � Θ( ̅̅

n
√ ). Therefore, for spectral al-

gorithms to succeed, a very high signal level μ2 � n5

is required. This agrees with the empirical perfor-
mance on simulated data and is highly suboptimal
compared with the sufficient condition (8) of F2F LP:
μ2 − 4 logn → ∞.

2.2. Greedy Methods
To recover the hidden Hamiltonian cycle, we can also
resort to greedy methods. It turns out that the fol-
lowing simple thresholding algorithm achieves the
optimal recovery threshold (8) within a factor of 2: for
each vertex, keep the two incident edges with the two
largest weights and delete the other n − 3 edges. The
resulting graph has degree at most 2. It can be shown
that the resulting graph coincides with C∗ with high
probability provided that αn − 2 logn → +∞.
Another well-known greedy heuristic is the fol-

lowing nearest-neighbor algorithm. Start on an ar-
bitrary vertex as the current vertex and find the edge
with the largest weight connecting the current vertex
and an unvisited vertex v; set the current vertex to v
and mark v as visited. Repeat until all vertices have
been visited. Let v1, . . . , vn denote the sequence of
visited vertices and output the Hamiltonian cycle
formed by (v1, . . . , vn, v1). It can be shown (see Section
EC.5 in the e-companion) that the resulting Hamil-
tonian cycle coincides with C∗ with high probability
provided that αn − 2 log n → +∞.
Finally, we consider a greedy merging algorithm

proposed in Motahari et al. (2013): connect pairs of
verticeswith the largest edgeweights until all vertices
have degree 2. The output is a 2-factor, and it can be
shown that the output 2-factor coincides with C∗ with
high probability provided that βn − log n → +∞, strictly
improving on the performance guarantee of previous
two greedy algorithms.
Notice that the aforementioned greedy algorithms

only exploit local information and do not take into
account the global cycle structure. Naturally, none of
them achieves the optimal threshold (8). See Section
EC.5 in the e-companion for further details.

2.3. Max-Product Belief Propagation
We can improve on the simple thresholding algo-
rithm using an iterative message-passing algorithm
known as max-product belief propagation. Specifi-
cally, at each time t � 0, 1, . . . , tf , each vertex i sends a
real-valued message mi→j(t) to each of its neighbors j.
Messages are initialized by mi→j(0) � we for all e � (i, j).
For t ≥ 1, messages transmitted by vertex i in iteration
t are updated based on messages received in iteration
t − 1 recursively as follows:

mi→j(t) � we − 2ndmax
� ��j

m�→i(t − 1){ },

where 2ndmax denotes the second-largest value. At
the end of the final iteration tf , for every vertex, keep
the two incident edges with the two largest received
message values and delete the other n − 3 edges, and
output the resulting graph. Note that belief propa-
gation (BP) with one iteration tf � 1 reduces to the
simple thresholding algorithm.

Bagaria et al.: Hidden Hamiltonian Cycle Recovery via Linear Programming
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The belief propagation algorithm is studied in Bayati
et al. (2011) to find the b-factor with the maximum
weight for b ≥ 1; it is shown that if the fractional
b-factor LP relaxation has no strictly fractional opti-
mum solution, then the output of BP coincides with
the optimal b-factor when tf ≥ �2nw∗/ε�, where w∗ is
the weight of the optimal b-factor and ε is the dif-
ference between the weight of the optimal b-factor
and the second-largest weight of b-factors. Our op-
timality result of F2F implies that if αn − log n → +∞,
then with high probability, F2F has no fractional
optimum solution, and the optimal 2-factor coincides
with the ground truth x∗; Therefore, by combining our
result with results of BP in Bayati et al. (2011), we
immediately conclude that the output of BP coincides
with x∗ with high probability after tf iterations, pro-
vided that αn − log n → +∞. For both theGaussian and
Poisson models, with high probability, the number of
iterations tf of the BP algorithm is, in fact, o(n2 logn),
nearly linear in the problem size (see Section EC.9 in
the e-companion for a justification).

3. Related Work
We discuss additional related work before presenting
the proof of our main results. Because of the NP-
hardness of TSP, researchers have imposed struc-
tural assumptions on the costs (weights) and devised
efficient approximation algorithms. One natural as-
sumption is the metric assumption under which the
costs are symmetric (cij � cji for all i, j ∈ V) and satisfy
the triangle inequality (cik ≤ cij + cjk for all i, j, k ∈ V).
Metric TSP turns out to be still NP-hard, as shown
by reduction from the NP-hard Hamiltonian cycle
problem (Schrijver 2003, theorem 58.1). The best ap-
proximation algorithm for metric TSP currently known
is Christofides’ algorithm, which finds a Hamiltonian
cycle of cost at most a factor of 3/2 times the cost of
an optimal Hamiltonian cycle.

3.1. Integrality Gap of LP Relaxations of TSP
Various relaxations of TSP has also been extensively
studied under the metric assumption. To measure the
tightness of LP relaxations, a commonly used figure
of merit is the integrality gap. As is the convention in
the TSP literature, the optimization is formulated as
a minimization problem with nonnegative costs. In
general, the integrality gap is defined as the supremum
of the ratio OPT/FRAC, over all instances of the
problem, where FRAC denotes the objective value of
the optimal fractional solution, and OPT denotes
the objective value of the optimal integral solution
(Chlamtác and Tulsiani 2012). Note that, by defini-
tion, the integrality gap is always at least 1. Dropping
the integer constraints (5) in ILP formulation of TSP (2)
leads to a LP relaxation known as subtour LP (Dantzig
et al. 1954,Held andKarp 1970). The integrality gap of

the subtour LP is known to be between 4/3 and 3/2.
The integrality gap of fractional 2-factor LP (6) is
shown in Boyd and Carr (1999) and Schalekamp et al.
(2013) to be 4/3. In contrast to the previous worst-case
approximation results on metric TSP, this paper fo-
cuses on a planted instance of TSP, where we impose
probabilistic assumption on the costs (weights), and
the goal is to recover the hidden Hamiltonian cycle.
In particular, the metric assumption is not fulfilled
in our hidden Hamiltonian cycle model, and hence
the previous results do not apply. Our results im-
ply that when αn − log n → +∞, the optimal solution
of F2F coincides with the optimal solution of TSP
with probability tending to 1, where the probability
is taken over the randomness of weights w in the
hidden Hamiltonian cycle model. In other words, for
“typical” instances of the hidden Hamiltonian cycle
model, the optimal objective value of TSP is the same
as that of F2F.

3.2. SDP Relaxations of TSP
Semidefinite programming (SDP) relaxations of the
traveling salesman problem have also been extensively
studied in the literature.A classical SDP relaxationofTSP
due to Cvetković et al. (1999) is obtained by imposing
an extra constraint on the second-largest eigenvalue
of a Hamiltonian cycle in F2F LP (6). A more so-
phisticated SDP relaxation is derived in Zhao et al.
(1998) by viewing the TSP as a quadratic assignment
problem, from which one can obtain a simpler SDP
relaxation of TSP based on association schemes (De
Klerk et al. 2008). This SDP relaxation inDeKlerk et al.
(2008) is shown to dominate that of Cvetković et al.
(1999). Because all these SDP relaxations are tighter than
the F2F LP, our results immediately imply that the op-
timal solutions of these SDP relaxations coincide with
the true Hamiltonian cycle x∗ with high probability
provided αn − logn → +∞.

3.3. Data Seriation
The problem of recovering a hidden Hamiltonian
cycle (path) in a weighted complete graph falls into a
general problem known as data seriation (Kendall
1971) or data stringing (Chen et al. 2011). In partic-
ular, we are given a similarity matrix Y for n objects,
andwe are interested in seriating or stringing the data
by ordering the n objects so that similar objects i and j
are near each other. Data seriation has diverse ap-
plications ranging from data visualization and DNA
sequencing to functional data analysis (Chen et al.
2011) and archaeological dating (Robinson 1951).
Most previous work on data seriation focuses on the
noiseless case (Robinson 1951, Kendall 1971), where
there is an unknown ordering of n objects so that if
object j is closer than object k to object i in the ordering,
then Yij ≥ Yik (i.e., the similarity between i and j is
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always no less than the similarity between i and k).
Such a matrix Y is called Robinson matrix. It is shown
in Atkins et al. (1998) that one can recover the un-
derlying true ordering of objects up to a global shift
by component-wisely sorting the second eigenvector
of the Laplacian matrix associated with Y if Y is a
Robinson matrix. The data seriation problem has also
been formulated as a quadratic assignment problem
and convex relaxations are derived (see Fogel et al.
2013, Lim and Wright 2014, and references therein).

One interesting generalization of the hidden
Hamiltonian cycle model is to extend the hidden struc-
ture from a cycle to k-regular graph for general k ≥ 2
(e.g., nearest-neighbor graphs), which can potentially
better fit the genome assembly data. The underlying
k-regular graph can represent the hidden geometric
structure, and the observed graph can be viewed as a
realization of the Watts–Strogatz small-world graph
(Watts and Strogatz 1998) if the weight distribution
is Bernoulli. Recent work (Cai et al. 2017) has studied
the problem of detecting and recovering the underlying
k-regular graph under the small-world graph model
and derived conditions for reliable detection and re-
covery; however, the information limit and the optimal
algorithm remain open.

Finally, we mention that the Rényi divergence of
order 1/2 also plays a key role in determining the
exact recovery threshold for community detection
under the stochastic block models (Abbe and Sandon
2015, Jog and Loh 2015, Mossel et al. 2015, Abbe et al.
2016, Zhang and Zhou 2016).

4. Proof Techniques and a Simpler Result
The proof of the main result, Theorem 1, is quite in-
volved. In this section, we will discuss the high-level
ideas and the difference with the conventional proof
using dual certificates. As awarm-up, we also prove a
weaker version of the result on the 2-factor ILP. The
proof of the full result is given in Section 5.

4.1. Proof Techniques
A standard technique for analyzing convex relaxations
is the dual certificate argument, which amounts to con-
structing the dual variables so that the desired Karush-
Kuhn-Tucker conditions are satisfied for the pri-
mal variable corresponding to the ground truth.
This type of argument has been widely used, for
instance, for proving the optimality of SDP re-
laxations for community detection under stochastic
block models (Abbe et al. 2016;Hajek et al. 2016a,b, c;
Agarwal et al. 2017; Perry and Wein 2017; Bandeira
2018). However, for the F2F LP (6), we were only able
to find explicit constructions of dual certificates that
attain the optimal threshold within a factor of 2.
Instead, the proof of Theorem 1 is by means of a
direct primal argument, which shows that with high

probability no other vertices of the F2F polytope has a
higher objective value than that of the ground truth.
Nevertheless, it is still instructive to describe this dual
construction before explaining the ideas of the pri-
mal proof.
To certify the optimality of x∗ for F2F LP, it reduces

to constructing a dual variable u ∈ Rn (corresponding
to the degree constraints) such that for every edge
(i, j),

ui + uj ≤ wij, if x∗ij � 1, (13)

ui + uj ≥ wij, if x∗ij � 0. (14)

A simple choice of u is

ui � 1
2
min

j

{
wij : x∗ij � 1

}
. (15)

Then (13) is fulfilled automatically, and (14) can be
shown (see Section EC.4 in the e-companion) to hold
with high probability provided that

βn − logn → +∞. (16)

where βn is the 1
3 -Rényi divergence defined in (11).

Because αn/2 < βn < αn by (12), this construction shows
that F2F achieves the optimal recovery threshold by
at most a multiplicative factor of 2. For specific dis-
tributions, this factor-of-two gap can be further im-
proved (e.g., to 3

2 for Gaussian weights), for which we
have P � 1(μ, 1) and Q � 1(0, 1) and β � 1

6μ
2 � 2

3α.
However, this certificate does not get us all the way
to the information limit (8).
Departing from the usual dual certificate argument,

our proof of the optimality of F2F relaxation relies on
delicate primal analysis. In particular, we show that
〈w, x − x∗〉 < 0 for any vertex (extremal point) of the
F2F polytope x �� x∗ with high probability. It is known
that the F2F polytope is not integral in the sense that
some of its vertices is fractional. Fortunately, it turns
out that for any vertex x, its fractional entry xe must
be 1/2. Thanks to this half-integrality property, we
can encode the difference y≜ 2(x − x∗) as a bicolored
multigraphGy with a total weightw(Gy) � 2〈w, x − x∗〉.
Finally, we bound w(Gy) via a divide-and-conquer ar-
gument by first decomposing Gy into an edge-disjoint
union of graphs in a family with simpler structures
and then proving that for every graphH in this family,
its total weightw(H) is negative with high probability
under condition (8). Our decomposition of Gy heavily
exploits the fact thatGy is a balanced multigraph in the
sense that every vertex has an equal number of in-
cident red edges and blue edges, and the classical
graph-theoretic result that every connected balanced
multigraph has an Eulerian circuit with edges alter-
nating in colors.
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4.2. 2-Factor Integer Linear
Programming Relaxation

The 2-factor (2F) integer linear programming relaxa-
tion of the TSP is

x̂2F � argmax
x

〈w, x〉
s.t. x δ(v)( ) � 2,

xe ∈ {0, 1}.

(17)

The 2-factor ILP is the same as the F2F LP (6) except
that the xe’s have integrality constraints and is
therefore a tighter relaxation of the original TSP than
F2F LP. As a warm-up for the optimality proof of F2F
LP, we provide a much simpler proof, showing that
the optimal solution of the 2F ILP coincides with the
true cycle x∗ with high probability, under the same
condition thatαn − log n → +∞. We note that although
it is not an LP, the 2F ILP is shown in Letchford et al.
(2008) to be solvable in O n2m log(n2/m)( ) � O(n4) time
using a variant of the blossom algorithm (Edmonds
1965a, b), where n � |V(G)| andm � |E(G)|. See Section
EC.7 in the e-companion for detailed discussions on
the time complexity of 2F ILP.

Let xdenote the adjacency vector of a given 2-factor.
To prove that x∗ is the unique optimal solution to the
2F ILP, it suffices to show 〈w, x − x∗〉 < 0 for the ad-
jacency vector of any 2-factor x �� x∗. To capture the
difference between x and x∗,wedefine y ∈ {0,±1} n

2( ) by
y � x − x∗. (18)

Define a simple graph Gy with bicolored edge whose
adjacency matrix is |y|with isolated vertices removed
and each edge is colored red if ye � −1 and blue if ye �
+1 (see Figure 3 for an example). Furthermore, for a
given bicolored graph B, we define its weight as

w(B)≜ ∑
blue e∈E(B)

we −
∑

red e∈E(B)
we.

Then w(Gy) � 〈w, x − x∗〉.
A bicolored graph is balanced if for every vertex the

number of red incident edges is equal to the number of
blue incident edges. Because x(δ(v)) � 2 and x∗(δ(v)) � 2
for every vertex v, it follows that y(δ(v)) � 0, and thus
Gy is balanced. Define

@ � B : B is a simple, connected, and balanced
{
bicolored graph

}
,

@∗ � B ∈ @ : V(B) ⊂ [n], x∗e � 1 for every red edge
{
e ∈ E(B)},

where V(B) and E(B) denote the vertex set and edge
set of B, respectively.

Let B1, . . . ,Bm denote the connected components of
Gy. Because each connected component of Gy is bal-
anced, it follows that Bi ∈ @∗, and

w Gy
( ) � ∑m

i�1
w(Bi).

Hence, to showw(Gy) < 0 for all possibleGy, it reduces
to proving that w(B) < 0 for all B ∈ @∗.
Fix an even integer � ≥ 4, and let

@∗
� � {B ∈ @∗ : |E(B)| � �}.

Fix any B ∈ @∗
�. By the balancedness, B has �/2 red

edges and �/2 blue edges. Hence,

w(B) �d ∑�/2
i�1

Yi −
∑�/2
i�1

Xi,

where Xi’s and Yi’s are independent sequences of
random variables such that Xi’s are independent and
identically distributed (i.i.d.) copies of log(dP/dQ)
under distribution P, and Yi’s are i.i.d. copies of
log(dP/dQ) under distribution Q; the notation �d de-
notes equality in distribution. It follows from Chernoff’s
inequality (see the large-deviation bound (EC.2) in
Section EC.3 in the e-companion) that

P w(B) ≥ 0{ } � P
∑�/2
i�1

Yi −
∑�/2
i�1

Xi ≥ 0

{ }
≤ exp −αn�/2( ).

(19)

Next we claim that there are at most (2n)�/2 different
graphsB in@∗

�. The proof of the claim is deferred to the
end of this section. Combining the union bound with
(19) gives that

P max
B∈@∗

�

w(B) ≥ 0

{ }
≤ |@∗

� | exp −αn�/2( )
≤ exp − αn − log(2n)( )

�/2
{ }

.

Figure 3. (Color online) The Ground Truth x* Is a Cycle of
Length 6, x Is a Feasible Solution to (17) Corresponding to
TwoDisjoint Triangles, and the GraphGy for y � x − x* Is an
Alternating 4-Cycle
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Taking another union bound over all integers � ≥ 4,
we get the desired result:

P max
B∈@∗

w(B) ≥ 0
{ }

≤ ∑∞
��4

P max
B∈@∗

�

w(B) ≥ 0

{ }
≤ ∑∞

��4
exp − αn − log(2n)( )

�/2
{ }

≤ exp −2 αn − log(2n)( ){ }
1 − exp − αn − log(2n)( )

/2
{ } →(8) 0.

We are left to show that |@∗
� | ≤ (2n)�/2. This follows

from the following classical graph-theoretic result
that every connected balanced multigraph G has an
alternating Eulerian circuit—that is, the edges in the
circuit alternate in color.

Lemma 1. Every connected balanced bicolored multigraph
G has an alternating Eulerian circuit.

The lemma is proved in Kotzig (1968, theorem 1) in
a more general form (see also Pevzner 1995, corol-
lary 1). For completeness, we provide a short proof
in Section EC.10.1 in the e-companion.

In view of Lemma 1, for every B ∈ @∗
�, it must have a

Eulerian circuit T given by the sequence of (v0, v1, . . . ,
v�−1, v� � v0)of vertices (verticesmay repeat) such that
vi ∈ [n], and (vi, vi+1) is a red edge for even i and blue
edge for odd i in B. Let 7 denote the set of all pos-
sible such Eulerian circuits. Moreover, every Eulerian
circuit T ∈ 7 uniquely determines a B ∈ @∗

�, because
the vertex set V(B) is the union of vertices vi’s, and the
colored edge set E(B) is the union of colored edges
(vi, vi+1)’s in T. Hence, |@∗

� | ≤ |7|. To enumerate all
possible T ∈ 7, it suffices to enumerate all the pos-
sible labelings of vertices in T. Recall that, by defi-
nition, for every red edge e � (vi, vi+1) in T, x∗e � 1. Thus
the two endpoints vi and vi+1 must be neighbors in the
true cycle corresponding to x∗, and hence once the
vertex labeling of vi is fixed, there are at most two
different choices for the vertex labeling of vi+1.
Therefore, we enumerate all possible Eulerian cir-
cuits T ∈ 7 by sequentially choose the vertex label-
ing of vi from i � 0 to i � � − 1. Given the vertex la-
belings of (v0, . . . , vi−1), the number of choices of the
vertex labeling of vi is at most n for even i and 2 for
odd i. Hence, |7| ≤ (2n)�/2, which further implies that
|@∗

� | ≤ (2n)�/2.

5. Proof of Theorem 1
In this section, we prove that the optimal solution of
the fractional 2-factor coincides with x∗ with high
probability, provided that αn − log n → ∞. This is the
bulk of the paper.

5.1. Graph Notations
We describe several key graph-theoretic notations used
in the proof. We start with multigraphs. Formally, a

multigraphG is an ordered pair (V,E)with a vertex set
V � V(G) and an edge multiset E � E(G) consisting of
subsets of V(G) of size 2. Note that, by definition,
multigraphs do not have self-loops. A multiedge is a
set of edges in E(G) with the same endpoints. The
multiplicity of an edge is its multiplicity as an element
in E(G). We call a multiedge single and double if its
edge multiplicity is 1 and 2, respectively. Note that
a double edge (u, v) refers to the set of two edges
connecting vertices u and v. We say a multigraph G
is bicolored if every distinct element in E(G) is colored
in either red or blue, and the repeated copies of an
element all have the same color.
For two multigraphs G and H on the same set of

vertices, we define G −H to be the multigraph in-
duced by the edge multiset E(G) \ E(H). The union of
multigraphs G and H is the multigraph G ∪H with
vertex setV(G) ∪ V(H) and edgemultiset E(G) ∪ E(H).
Note that here the union of multisets is defined so that
the multiplicity of each of the elements adds up. For
example, {a, a, b} ∪ {a, b, c} � {a, a, a, b, b, c}. By defini-
tion, the multiplicity of an element in E(G) ∪ E(H) is
the sum of its multiplicity in E(G) and E(H). When
E(G) ∩ E(H) � ∅, G ∪H is called an edge-disjoint union.
When V(G) ∩V(H) � ∅, G∪H is called an vertex-disjoint
union.
A walk in a multigraph G is a sequence (v0, v1, . . . ,

vm) of vertices (which may repeat) such that (vi−1, vi) ∈
E(G) for 1 ≤ i ≤ m. A trail in a multigraph G is a walk
(v0, v1, . . . , vm) such that for all 1 ≤ i ≤ m, the number of
times that edge (vi−1, vi) appears in thewalk is nomore
than its edge multiplicity in E(G). A trail is closed if the
starting and ending vertices are the same. A circuit is a
closed trail. AnEulerian trail in amultigraphG is a trail
(v0, v1, . . . , vm) such that for every e ∈ E(G), the number
of times that it appears in the trail coincides with its
edgemultiplicity inE(G). An Eulerian circuit is a closed
Eulerian trail. A path is a trail with no repeated vertex. A
cycle consists a path plus an edge from its last vertex to
the first.

5.2. Proof Outline
Let x∗ � (x∗e) denote the adjacency vector of the hidden
Hamiltonian cycle (ground truth). The feasible set of
the F2F LP (6) is the F2F polytope:

Q≜ x ∈ [0, 1] n
2( ) : x(δ(v)) � 2,∀v ∈ [n]

{ }
. (20)

To prove that x∗ is the unique optimal solution to the
F2F LP with high probability, it suffices to show that
〈w, x − x∗〉 < 0 holds with high probability for any
vertex (extremal point) of the F2F polytope x other than
x∗. It turns out that the vertices of the F2F polytope Q
have the following simple characterization (Balinski
1965, Boyd and Carr 1999, Schalekamp et al. 2013).
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First of all, for any vertex x, its fractional entry must
be a half-integer; that is,

xe ∈ {0, 1/2, 1}, ∀e. (21)

Furthermore, if we define the support graph of x as
the graph with vertex set [n] and edge set {e : xe ��
0}, then each connected component of the support
graph of x must be one of the following two cases: it
is either

1. a cycle of at least three vertices with xe � 1 for
all edges e in the cycle, or

2. consisting of an even number of odd-sized cycles
with xe � 1/2 for all edges e in the cycles that are
connected by paths of edges ewith xe � 1. In this case,
if we remove the edges in the odd cycles, the resulting
graph is a spanning disjoint set of paths formed by
edges e with xe � 1.

See Figure 4(a) for a graphical representation when
n = 6. It turns out that, among the aforementioned
characterizations of the vertices of the F2F polytope,
our analysis of the LP relaxation uses only the half-
integrality property (21).

To capture the difference between a given vertex x
and the true solution x∗, we use the following mul-
tigraph representation: define y ∈ R

n
2( ) by

y � 2(x − x∗), (22)

with ye � 2 xe − x∗e
( ) ∈ {0,±1,±2} (see Figure 4(b)). De-

fine a multigraph Gy whose adjacency matrix is |y|
with isolated vertices removed and each edge e is
colored red if ye < 0 or blue if ye > 0. In particular, the
edge multiplicity of Gy is at most 2. Compared with
(18), the extra factor of 2 in (22) is to ensure that y is still
integral; as a consequence, Gy may be a multigraph
with multiplicity 2 instead of a simple graph. For any
given bicolored multigraph F, we define its weight as

w(F)≜ ∑
blue e∈E(F)

we −
∑

red e∈E(F)
we,

where the summation above includes all repeated
copies of e in E(F). Then w(Gy) � w, x − x∗〈 〉. Hence, to

prove that x∗ is the unique optimal solution to the LP
program with high probability, it reduces to showing
that w(Gy) < 0 for all possible Gy constructed from the
extremal point x �� x∗ with high probability.
Instead offirst calculating the probability ofw(Gy) ≤ 0

and then taking a union bound on all possible Gy, our
proof crucially relies on a decomposition of Gy into
some suitably defined simpler graphs. In the next
subsection, wewill describe a family^∗ of graphs and
show that every possible Gy can be decomposed as a
union of graphs in^∗:Gy � ∪m

i�1Fi with Fi ∈ ^∗ for each
1 ≤ i ≤ m. Because themultiplicity of e inE(Gy) is equal
to the sum of multiplicities of e in E(Fi) over i ∈ [m], it
follows that

w(Gy) �
∑m
i�1

w(Fi).

Therefore, to show that w(Gy) < 0 for all possible Gy
with high probability, it suffices to show w(F) < 0 for
all graphs F in family ^∗.
We remark that in the analysis of the 2F ILP in Sec-

tion 4.2, we have y � x − x∗ as opposed to y � 2(x − x∗),
and thus Gy is a balanced simple graph. Consequently,
we can simply decompose Gy into its connected com-
ponents, which are connected, balanced simple graphs.
By contrast, here, the decomposition of Gy as a mul-
tigraph is much more sophisticated because of the
existence of double edges. In particular, the weight
of a double edge in F appears twice in w(F), and hence
its variance is twice the total variance of two inde-
pendent edge weights. For this reason, to control the
deviation of w(F) from its mean, it is essential to ac-
count for the contribution of double edges and sin-
gle edges separately, which, in turn, requires us to
separate the double edges from single edges in our
decomposition.

5.3. Edge Decomposition
Our decomposition of Gy relies on the notion of bal-
anced multigraph and alternating Eulerian circuit. A
bicolored multigraph is balanced if for every vertex
the number of red incident edges is equal to the
number of blue incident edges. Because x(δ(v)) � 2
and x∗(δ(v)) � 2 for every vertex v, it follows that
y(δ(v)) � 0, and thus Gy is balanced. As a result, the
vertices in Gy all have even degrees (in fact, either
2, 4, 6, or 8). Therefore each connected component of
Gy has an Eulerian circuit. Recall that Eulerian circuit
is alternating if the edges in the Eulerian circuit al-
ternate in color. In view of Lemma 1, each connected
component of Gy has an Eulerian circuit. In the re-
mainder, we suppress the subscript y in Gy whenever
the context is clear.
Next, we describe a family ^ of graphs and show

that G is a union of graphs in this family. First, we

Figure 4. (Color online) (a) The Support Graph of a
Fractional Vertex x of the F2F Polytope with n � 6 (the
Edges in the Support Graph of x* Are Highlighted in Red);
(b) the Multigraph Representation of y � 2(x − x*)
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need to introduce a few notations. For any pair of two
vertices u, v in graph G, vertex identification (also
known as vertex contraction) produces a graph by
removing all edges between u, v and replacing u, v
with a single vertex w incident to all edges formerly
incident to either u or v. When u and v are adjacent
(i.e., sharing two endpoints of edge e), vertex iden-
tification specializes to the edge contraction of e, and
the resulting graph is denoted by G · e; visually, e
shrinks to a vertex. Note that edge contraction may
introduce multiedges. We define a stem as a path
(v0, v1, . . . , vk−1) for some k distinct vertices such that
(vi−1, vi) is a double edge for all 1 ≤ i ≤ k and the
double edges alternate in color. The two endpoints v0
and vk−1 of the stem are identified as the tips of the
stem. We say a tip of the stem is red if it is incident to
the red double edge; otherwise, we say it is blue.
Given a stem and an even cycle C0 consisting of only
single edges of alternating colors, we define the fol-
lowing blossoming procedure to connect the stemwith
C0: first contract any single blue (red) edge in C0 to a
vertex v and attached to v the stem by identifying v
with a blue (red) tip of the stem. The resulting graph
known as a flower has an alternating circuit, and the
contracted C0 is called a blossom. The tip of the stem
not incident to the blossom is called the tip of the
flower. We say a flower is red (blue) if its tip is red
(blue). For example, a red flower is shown in Figure 5.
Similar notions of the stem, flower, and blossomwere
introduced in Edmonds (1965b) in the context of
simple graphs.

Then we introduce a family 8 of balanced graphs.
We startwith an even cycleG0 in alternating colors. At
each step t ≥ 1, construct a new balanced graph Gt

from Gt−1 as follows. Fix any cycle consisting of at
least four edges in Gt−1. In this cycle, pick any edge
and apply the following flowering procedure: contract
the red (blue) edge to one vertex w and attach to w a
flower by identifying w with the root of a blue (red)
flower. Because we allow contracting an edge in-
cident to a stem, it is possible to have a vertex with
multiple stems attached. Let 8 denote the collection
of all graphs obtained from applying the flowering
procedure recursively for finitely many times. In
particular, 8 includes all even cycles in alternating
colors. For example, the graph in Figure 6 is in 8,
which is obtained by starting with a 10-cycle and
applying the flowering procedure four times. By

construction, any graph H ∈ 8 must contain an even
� ≥ 4 number of single edges.
Alternatively, note that each graph in the family 8

can be viewed as cycles interconnected by stems.
Thus, we can representGt using a treeTt, whose nodes
correspond to even cycles and links correspond to
stems (see Figure 7 for a tree representation of the
graph in Figure 6). Next we describe this enumeration
scheme in detail. Every node in the tree represents a
cycle in alternating colors, with a mark � being the
length of the cycle. The cycle corresponding to the
root node is assumed to have a fixed ordering of
edges, and the root node has an extra mark that is 1 if
the color of the first edge in the corresponding cycle is
blue and 0 otherwise. Every link (u, v) represents a
stem consisting of only double edges of alternating
colors with mark (k, i), where k is the length of the
stem, and i is the index of the contracted edge of the
parent vertex u.We startwith treeT0 with a single root
node corresponding to G0 � C0, with the mark being
the length of C0. At each step t ≥ 1, we view the
flowering procedure as growing to a new tree Tt as
follows. For any vertex u in Tt−1 that corresponds to an
alternating cycleC, a new vertex v that corresponds to
an alternating cycleC′, and a stem, we connect u and v
with an edge corresponding to the stem. The edge is
marked with (k, i), where k is the length of the stem,
and i is the index of the contracted edge in C. Then the
edges in the alternating cycleC′ are indexed by 1, 2, . . .
by starting from the contracted edge in C′ and tra-
versing C′ in a clockwise direction.
Finally, we need to introduce the notion of ho-

momorphism between two bicolored multigraphs,
H and F. There exist multiple definitions of homo-
morphism between multigraphs; here, we follow the
convention in Lovász (2012, section 5.2.1). Let A and B
denote two multisets. Let A′ and B′ denote the set of
distinct elements in A and B, respectively. We say ψ :
A → B is bijective if ψ : A′ → B′ is bijective, and for
every element a ∈ A′, the multiplicity of a in A is the
same as the multiplicity of ψ(a) in B. For example, if
A � {a, a, b, c} and B � {x, x, y, z}, let ψ(a) � x, ψ(b) � y,
and ψ(c) � z; then ψ : A → B is bijective. A node-and-
edge homomorphism H → F is a vertex map φ :V(H)→
V(F) and bijective edge map ψ :E(H)→E(F) pair such
that if e∈E(H) connects i and j, then ψ(e) connects φ(i)
and φ(j) and has the same color as e. We say H is
homomorphic to F if such a node-to-edge homo-
morphism exists. By construction, an edge e is in-
cident to u in H if and only if ψ(e) is incident to φ(u) in
F. Therefore, if H is homomorphic to F, then they are
either both balanced or both unbalanced. Moreover,
because ψ is bijective, H→ F is edge-multiplicity
preserving; that is, the multiplicity of ψ(e) in E(F) is
the same as the multiplicity of e in E(H). Hence, the
number of double (single) edges in H and F is the

Figure 5. (Color online) A Red Flower Consisting of a Stem
of Four Alternating Double Edges Followed by a Blossom of
Five Single Edges
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same. Furthermore, note that for two node-and-edge
homomorphisms (φ,ψ) :H→F and (φ,ψ′) :H→F′
with the same vertex map φ, it holds that F� F′. Hence,
when the context is clear, we simplywrite φ :H→ F or
φ(H) �F by suppressing the underlying edge map.

Let ^ denote the collection of all graphs F such that
H → F for some H ∈ 8. In particular, ^ ⊇ 8, and this
inclusion is as strict as the example in Figure 8 shows.
The next lemma shows that ^ includes all connected
balanced simple graphs. This result serves as the base
case of the induction proof of the decomposition lemma.

Lemma 2. An alternating cycle is homomorphic to any
connected balanced simple graph G with an equal number of
edges. In particular, G ∈ ^.

Proof. By Lemma 1, G has an Eulerian circuit T � (v0,
v1, . . . , vm−1, vm � v0) of alternating colors where m is
the total number of edges in G and vertices vi’s may
repeat. Let C denote any alternating cycle with m
edges.WewriteC � (u0,u1, . . . ,um−1,um � u0) such that
the edge (u0,u1) has the same color as (v0, v1). Then we
define a vertex and edge map pair (φ, ψ) from C to G
such that φ(ui) � vi and ψ (ui,ui+1)( ) � (vi, vi+1) for all
0 ≤ i ≤ m − 1. Because both G and C are simple graphs,
ψ : E(C) → E(G) is bijective. Hence, (φ, ψ) : C → G is a
node-and-edge homomorphism, and the conclusion
follows. □

In contrast to connected balanced simple graphs,
if a balanced graph G contains double edges, then
certainly no alternating cycle is homomorphic to G.
What’s more, it is possible that G is not homomorphic
to any graph in the class8; that is,Gmaynot belong to
^. See Figure 9 for such an example. Nevertheless, the
next lemma shows that if G has an edge multiplicity of
at most 2, then it can be decomposed as a union of
elements in ^.

Lemma 3 (Decomposition). Every balanced multigraph G
with an edge multiplicity of at most 2 can be decomposed as a
union of elements in ^.

The proof is given in the e-companion to this paper.
For k ≥ 0 and � ≥ 3, we define 8k,� ⊂ 8 as the bi-

colored balanced multigraphs H ∈ 8 with k double
edges and � single edges. The following lemma upper
bounds the number of unlabeled graphs in 8k,�.

Lemma4 (Enumeration of IsomorphismClasses). Let k ≥ 0
and even � ≥ 4. Then the number of unlabeled graphs in8k,�
is at most 17k4�.

The proof is given in the e-companion to this paper.
Define

^∗ � F ∈ ^ : V(F) ⊂ [n] and E(F)| | ≤ 4n and for
{
every red edge e ∈ E(F), x∗e � 1

}
.

The constraint that |E(F)| ≤ 4n is because, for any vertex
x of the F2F polytope, the multigraph Gy obtained
from y � 2(x − x∗) has a maximal degree of at most 8.
Given H ∈ 8, we say a homomorphism φ : H → F is
compatible with x∗ if φ(H) ∈ ^∗. Denote by Φ∗

H the set of
all homomorphisms φ : H → F that are compatible
with x∗. Then

^∗ � φ(H) : φ ∈ Φ∗
H ,H ∈ 8

{ }
.

In the following, we upper bound the number of el-
ements in Φ∗

H for a given H ∈ 8. We need to set up a
few notations. Let Hd and Hs denote the subgraph of
H induced by all the double edges and all the single
edges, respectively. Then we have an edge-disjoint
union H � Hd ∪Hs. For a vertex map φ ∈ Φ∗

H, let φd
and φs denote φ restricted to V(Hd) and V(Hs), re-
spectively. Note that φd(v) � φs(v) for all v ∈ V(Hd) ∩
V(Hs). We write φ � (φs,φd).
Lemma 5 (Enumeration of Homomorphisms). Let k ≥ 0,
and let � ≥ 4 be an even integer. Fix a bicolored balanced
multigraph H ∈ 8k,�.
• There exists an integer 0 ≤ r ≤ �/2 such that

log |Φ∗
Hd
| ≤ 1

2
(k + r) log(2n), (23)

where

Φ∗
Hd

≜ φd : ∃φs, s.t. (φd,φs) ∈{
Φ∗

H

}
.

Figure 7. Tree Representation of Graph in Figure 6

Figure 6. (Color online) Example of Graph in Family 8
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• For any fixed vertex map φd : V(Hd) → [n],
log φs : φs,φd

( ) ∈ Φ∗
H

{ }⃒⃒ ⃒⃒
≤ �/2 − r( ) log n + �/2 + k( ) log 2. (24)

The proof is given in the e-companion to this paper.

5.4. Proof of Theorem 1
We prove that if

α − log n ≥ 16 log 17, (25)

then

min
x∗

P x̂F2F � x∗{ } ≥ 1 − 8 exp −(α − logn)/8( )
. (26)

In fact, we will prove a stronger statement:

min
x∗

P
{
w, x − x∗〈 〉

≤ −(α − logn)/2, ∀ extremal point x �� x∗
}

≥ 1 − 8 exp −(α − log n)/8( )
. (27)

Then Theorem 1 readily follows by taking α − log n →
+∞.

For any extremal point x of F2F polytope, letting
y � 2(x − x∗), by Lemma 3,

Gy �
⋃m
i�1

Fi, Fi ∈ ^

for each 1 ≤ i ≤ m and some finite m. Note that for
each red edge e in Gy, x∗e � 1. Therefore, Fi ∈ ^∗. Thus,
to prove (27), it suffices to show

P max
F∈^∗

w(F) ≤ (α − log n)/2
{ }
≥ 1 − 8 exp −(α − logn)/8( )

. (28)

Fix k ≥ 0 and � ≥ 4; define

^∗
k,� � F ∈ ^∗ : E(F) consists of k double edges

{
and � single edges

}
.

Then

^∗
k,� � {φ(H) : H ∈ 8k,� and Φ ∈ Φ∗

H}, (29)
and

^∗ � ⋃
k≥0

⋃
�≥4

^∗
k,�.

In view of (29), we have

max
F∈^∗

k,�

w(F) � max
H∈8k,�

max
φ∈Φ∗

H

w(φ(H)). (30)

We first show a high probability bound to the inner
maximum for a given H ∈ 8k,�. Because maximizing
over φ is equivalent to first maximizing over φd and
then maximizing over φs for a fixed φd, it follows that

max
φ∈Φ∗

H

w(φ(H))

� max
φd∈Φ∗

Hd

w φd(Hd)
( ) + max

φs:(φd,φs)∈Φ∗
H

w φs(Hs)( )( )
.

Recall that Xi’s and Yi’s are two independent se-
quences of random variables, where Xi’s are i.i.d.
copies of log(dP/dQ) under distribution P and Yi’s are
i.i.d. copies of log(dP/dQ) under distribution Q. Re-
call that �r and �b (respectively, kr and kb) denote the
number of red and blue single (respectively, double)
edges in H, respectively. Let δ � kb − kr � (�r − �b)/2.
Then δ ≤ min{k, �/2}. In view of (EC.23) and (EC.24)
in the e-companion, for a fixed φd,

w φd(Hd)
( )�d 2 ∑(k+δ)/2

i�1
Yi −

∑(k−δ)/2
i�1

Xi

( )
,

Figure 9. (Color online) Example of a Graph G That Is Not in ^ but Can Be Decomposed as F � F1 ∪ F2 with F1, F2 ∈ ^

Figure 8. (Color online) Example of a Graph F in ^ but Not
in 8

Note. Here, F is homomorphic toH ∈ 8, where the homomorphismφ
maps both vertices 11 and 12 to 11.
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and for a fixed φs,

w φs(Hs)( )�d ∑�/2−δ
i�1

Yi −
∑�/2+δ
i�1

Xi,

where�d denotes equality indistribution.Moreover, for a
fixedφd,w(φd(Hd)) is the sum of the weights on double
edges,which is independent of the collection ofw φs(Hs)( )
ranging over all possible φs such that (φs,φd) ∈ Φ∗

H .
Recall from Lemma 5 that there exists an integer 0 ≤

r ≤ �/2 such that

log |Φ∗
Hd
| ≤ 1

2
(k + r) log(2n),

log φs : φs,φd

( ) ∈ Φ∗
H

{ }⃒⃒ ⃒⃒ ≤ �/2 − r( ) log n
+ k + �/2( ) log 2.

Invoking the large deviation bound Lemma EC.1 in
Section EC.3 in the e-companion with s � (k − δ)/2,
t � �/2 − δ, u � δ, and v � r − δ, and noting that

s + u + v/2 � (k + r)/2
t − v � �/2 − r,

s + t + u − v/2 � (k + � − r)/2 ≥ k/2 + �/4,

and (25), we get

P max
φ∈Φ∗

H

w(φ(H)) ≥ −(α − log n)(k/4 + �/8)
{ }
≤ 5 exp −(α − log n)(k/8 + �/16)( )

. (31)

It follows that

P max
F∈^∗

k,�

w(F) ≥ −(α − log n)(k/4 + �/8)
{ }

≤(a) 5|8k,� | exp −(α − log n)(k/8 + �/16)( )
≤(b) 5 × 17k4� exp −(α − log n)(k/8 + �/16)( )
≤(c) 5 exp −(α − log n)(k/16 + �/32)( )

,

where (a) follows from union bound, (b) follows from
Lemma 4, and (c) holds because α − logn ≥ 16 log 17
by assumption (25). Taking another union bound over
k ≥ 0 and � ≥ 4, we get

P max
F∈^∗

w(F) ≥ −(α − log n)/2
{ }
� P max

k≥0,�≥4
max
F∈^∗

k,�

w(F) ≥ −(α − log n)/2
{ }

≤ ∑
k≥0

∑
�≥4

P max
F∈^∗

k,�

w(F) ≥ −(α− log n)(k/4+�/8)
{ }

≤ 5
∑
k≥0

∑
�≥4

exp −(α − logn)(k/16 + �/32)( )
≤ 5
1 − e−(α−log n)/8

e−(α−log n)/8

1 − e−(α−log n)/32

≤ 5
1 − 1/17

e−(α−logn)/8

1 − 1/4
≤ 8e−(α−log n)/8.

Therefore, we arrive at the desired (28), completing
the proof of Theorem 1.

6. Information-Theoretic
Necessary Conditions

We first present a general necessary condition needed
for any algorithm to succeed in recovering the hidden
Hamiltonian cycle with high probability. Recall that
X and Y are two independent random variables dis-
tributed as the log likelihood ratio log(dP/dQ) under
P and Q, respectively.

Theorem 2 (Information-Theoretic Conditions). If there exists
a sequence of estimators x̂ such thatminx∗∈-(G) P{̂x � x∗} → 1
as n → ∞, then

sup
τ∈R

logP X ≤ τ{ } + logP Y ≥ τ{ }{ }
+ log n ≤ O(1). (32)

Next, we state a regularity assumption on P and Q
under which it immediately follows from Theorem 2
that αn ≥ (1 + o(1)) logn is necessary information
theoretically, thereby establishing the optimality of
F2F LP.

Assumption 1. It holds that

sup
τ∈R

logP X ≤ τ{ } + logP Y ≥ τ{ }{ }
≥ − 1 + o(1)( )αn + o(log n).

Corollary 1. Suppose Assumption 1 holds. If there exists a
sequence of estimators x̂ such that minx∗∈-(G) P{̂x � x∗} →
1 as n → ∞, then

αn ≥ 1 + o(1)( ) log n. (33)

Assumption 1 is very general and fulfilledwhen the
weight distributions are either Poisson, Gaussian, or
Bernoulli, as the following result shows.

Lemma 6. Assumption 1 holds in the Gaussian case with
P � 1(μ, 1) and Q � 1(0, 1), the Poisson case with P �
Pois(λ) and Q � Pois(μ) for λ ≥ μ such that

log(λμ) � o ( ̅
λ̅

√ − ̅
μ̅

√ )2
( )

+ o(log n),
and the Bernoulli case with P � Bern(p) and Q � Bern(q)
for p ≥ q.

The proof is given in the e-companion to this paper.
Let usnowexplain the intuitionbehindAssumption 1:

Denote the logmoment-generating functionofX andY as

ψP(θ) � logE[eθX], ψQ(θ) � logE[eθY] � ψP(θ − 1).
(34)

Denote the Legendre transform of ψP and ψQ as

EP(τ) � sup
θ≥0

−θτ − ψP(−θ){ }
,EQ(τ) � sup

θ≥0
θτ − ψQ(θ){ }

.

(35)
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Then Chernoff’s inequality gives the following large
deviation bounds: for any τ ∈ R,

P X ≤ τ{ } ≤ exp −EP(τ)( ), P Y ≥ τ{ } ≤ exp −EQ(τ)( )
,

(36)

Therefore,

sup
τ∈R

logP X ≤ τ{ } + logP Y ≥ τ{ }{ }
≤ − inf

τ∈R EP(τ) + EQ(τ){ }
.

The infimum on the right-hand side is, in fact, equal
to αn. Indeed,

inf
τ∈REP(τ) + EQ(τ)

� inf
τ∈R sup

θ1,θ2≥0
−θ1τ − ψP(−θ1) + θ2τ − ψQ(θ2){ }

≥ sup
θ1,θ2≥0

inf
τ∈R(θ2 − θ1)τ − ψP(−θ1) − ψQ(θ2)

{ }
� sup

θ≥0
−ψP(−θ) − ψQ(θ){ }

� −ψP(−1/2) − ψQ(1/2) � −2 log
∫ ̅̅̅̅̅̅̅̅̅

dPdQ
√ � αn,

and the infimum over τ is, in fact, achieved by

τ∗ � ψ′
P −1/2( ) � ψ′

Q 1/2( ),
so that EP τ∗( ) + EQ τ∗( ) � αn. Hence,

sup
τ∈R

logP X ≤ τ{ } + logP Y ≥ τ{ }{ }
≤ −EP τ∗( ) − EQ τ∗( ) � −αn.

Therefore, the point of Assumption 1 is to require that
the large deviation exponents in Chernoff’s inequal-
ities (36) are asymptotically tight, so that we can re-
verse the Chernoff bound in the lower bound proof.

6.1. Proof of Theorem 2
To lower bound the worst-case probability of error,
consider the Bayesian setting where the hidden Ham-
iltonian cycle x∗ is drawnuniformly at random fromall
possible Hamiltonian cycles of G. Because the prior
distribution of x∗ is uniform, the ML estimator min-
imizes the error probability among all estimators.
Thus, without loss of generality, we can assume that the
estimator x̂ used is x̂ML and the true Hamiltonian cycle
x∗ is given by (1, 2, . . . ,n, 1). Hence, by assumption,
P{̂xML � x∗} → 1.

Recall that theML estimator is equivalent to finding
a Hamiltonian cycle of the maximumweight. Given a
Hamiltonian cycle x, define the simple graph Gx with
a bicolored edge whose adjacency matrix is |x − x∗|,
and each edge is colored in red if (x − x∗)e � −1 and in
blue if (x − x∗)e � +1. Also, each edge e has a weight
we(x − x∗)e, and hence w(Gx) � w, x − x∗〈 〉. Note that if
Gx is a 4-cycle of alternating colors given by (i, i + 1,

j + 1, j, i), then x corresponds to a Hamiltonian cycle
constructed by deleting edges (i, i + 1), (j, j + 1) in C∗
and adding edges (i, j), (i + 1, j + 1) (see Figure 10 for
an illustration). Let $ denote the set of all possible
4-cycles of alternating colors given by (i, i + 1, j + 1, j).
Then |$| � n(n − 3)/2, because for a given i, j have
(n − 3) choices except i − 1, i, i + 1.
Define

S � ∑
D∈$

1 w(D)≥0{ }.

If S > 0, then there exists a Hamiltonian cycle x �� x∗
whose weight is at least as large as the weight of C∗;
hence the likelihood function has at least two maxi-
mizers, which in turn implies the probability of ex-
act recovery by ML estimator is at most 1/2. There-
fore, 12P S> 0{ } ≤ P ML fails{ } � o(1). As a consequence,
P S� 0{ }→ 1.
To explain the intuition, supposew(D) aremutually

independent for all D ∈ $. Then

P S � 0{ } � P ∀D ∈ $,w(D) < 0{ }
� ∏

D∈$
P w(D) < 0{ }

(a)� 1 − P Y1 + Y2 − X1 − X2 ≥ 0{ }( )|$|

≤ exp −|$|P Y1 + Y2 − X1 − X2 ≥ 0{ }( ), (37)

where (a)holdsbecausew(D)has the same distribution
as Y1 + Y2 − X1 − X2, and the inequality in the last line
holds in view of 1 − x ≤ e−x. In view of P S � 0{ } → 1, it
follows Equation (37) that

log |$| + logP Y1 + Y2 − X1 − X2 ≥ 0{ } → −∞. (38)

Furthermore, for any τ ∈ R, we have

logP Y1 + Y2 − X1 − X2 ≥ 0{ }
≥ log P Y1 ≥ τ{ }P Y2 ≥ τ{ }P X1≤τ{ }P X2≤τ{ }( )
� 2 logP Y ≥ τ{ } + 2 logP X ≤ τ{ }.

(39)
Combining Equations (38) and (39) and recalling that
|$| � n(n − 3)/2, we immediately get that

logP Y ≥ τ{ } + logP X ≤ τ{ } + log n → −∞. (40)

Figure 10. (Color online) The Cycle (1, 2, . . . , i, j, j − 1, . . . ,
i + 1, j + 1, j + 2, . . . , n) and the Corresponding Graph Gx as
a 4-Cycle
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Taking the supremum over τ ∈ R of the Equation (40)
yields the desired (32).

However,w(D) andw(D′) are dependent ifD andD′
share edges. To deal with this dependency, we focus
on a subset of $. In particular, for any τ ∈ R, define

I � odd i : wi,i+1 ≤ τ
{ }

and

J � (i, j) ∈ I × I : i �� j,wi,j + wi+1,j+1 ≥ 2τ
{ }

.

Then for any (i, j) ∈ J, the alternating 4-cycle given
by (i, i + 1, j + 1, j, i) belongs to $ and has a non-
positive weight. Hence, |J| ≤ S, and thus P |J| � 0{ } ≥
P S � 0{ } → 1.

Note that wi,i+1 has the same distribution as X. Thus
for any τ ∈ R,

P wi,i+1 ≤ τ
{ } � P X ≤ τ{ }≜ p.

Also, wi,i+1 are mutually independent for different i.
Thus |I| ∼Binom(�n/2�, p). By Chernoff’s bound for
binomial distribution,

P |I| ≤ np/4
{ } ≤ exp −np/8( )

. (41)

Thus,

P |J| � 0{ } ≤ P |J| � 0, |I| > np/4
{ } + P |I| ≤ np/4

{ }
≤ P |J| � 0 | |I| > np/4

{ } + exp −np/8( )
. (42)

Let q≜P Y ≥ τ{ }. Then P Y1 + Y2 ≥ 2τ{ } ≥ P Y1 ≥ τ{ } ·
P Y2 ≥ τ{ } � q2, and hence

P |J| � 0 | |I| > np/4
{ }
� P ∀i < j ∈ I,w(i,j) + w(i+1,j+1) < 2τ | |I| > np/4

{ }
≤(a) (1 − q2) np/4

2( ) ≤ e−q
2 np/4

2( ),
(43)

where (a) holds because conditional on I, w(i,j) +
w(i+1,j+1) are i.i.d. copies of Y1 + Y2. Combining
Equations (40)–(42) yields

P |J| � 0{ } ≤ e−q
2 np/4

2( ) + e−np/8. (44)

Recall that P |J| � 0{ } → 1. It follows that

e−q
2 np/4

2( ) + e−np/8 ≥ 1 + o(1). (45)

Hence, log n + log p + log q ≤ O(1), or equivalently,
logP X ≤ τ{ } + logP Y ≥ τ{ } + log n ≤ O(1). (46)

Taking the supremum over τ ∈ R of Equation (46)
yields the desired (32).

Remark 1. In passing, we remark that in the Bernoulli
casewhere p � 1 and q � d/n for a fixed constant d, exact
recovery of the hidden cycle is information-theoretically

impossible. To see this, suppose the hiddenHamiltonian
cycle is given by sequence of vertices (1, 2, . . . ,n, 1). If
q � Ω(1/n), then with a nonvanishing probability there
exist 1 ≤ i ≤ n − 4 and i + 2 ≤ j ≤ n − 2 such that (i, j)
and (i + 1, j + 1) are edges in G. Thus we have a new
Hamiltonian cycle bydeleting edges (i, i + 1) and ( j, j + 1)
in the hidden one and adding edges (i, j) and (i + 1, j + 1),
leading to the impossibility of exact recovery. See
Figure 10 for an illustration.
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