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Abstract

Objective. Predicting how the brain can be driven to specific states by means of internal or external
control requires a fundamental understanding of the relationship between neural connectivity

and activity. Network control theory is a powerful tool from the physical and engineering sciences
that can provide insights regarding that relationship; it formalizes the study of how the dynamics

of a complex system can arise from its underlying structure of interconnected units. Approach.
Given the recent use of network control theory in neuroscience, it is now timely to offer a practical
guide to methodological considerations in the controllability of structural brain networks. Here

we provide a systematic overview of the framework, examine the impact of modeling choices on
frequently studied control metrics, and suggest potentially useful theoretical extensions. We ground
our discussions, numerical demonstrations, and theoretical advances in a dataset of high-resolution
diffusion imaging with 730 diffusion directions acquired over approximately 1 h of scanning from
ten healthy young adults. Main results. Following a didactic introduction of the theory, we probe
how a selection of modeling choices affects four common statistics: average controllability, modal
controllability, minimum control energy, and optimal control energy. Next, we extend the current
state-of-the-art in two ways: first, by developing an alternative measure of structural connectivity
that accounts for radial propagation of activity through abutting tissue, and second, by defining

a complementary metric quantifying the complexity of the energy landscape of a system. We

close with specific modeling recommendations and a discussion of methodological constraints.
Significance. Our hope is that this accessible account will inspire the neuroimaging community to
more fully exploit the potential of network control theory in tackling pressing questions in cognitive,
developmental, and clinical neuroscience.
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1. Introduction

The brain is a complex system of interconnected
units that dynamically transitions through diverse
activation states supporting cognitive function [1].
Understanding the mechanisms and processes that
give rise to these trajectories through state space is
crucial for intervening in disease to restore cognitive
functioning [2]. One relevant factor enabling such
rich neural dynamics is the network architecture of
the underlying structural substrate [3-5]. Yet, the
exact mechanisms by which the physical architecture
of the brain both supports and constrains its function
remain largely unknown [6-8].

Recent advances in network control theory offer
a formal means to study how the temporal dynam-
ics of a complex system emerges from its underlying
network structure [9, 10]. Applying this theory to the
brain requires that one first builds a network model
in which brain regions (nodes) are anatomically con-
nected to one another (edges) [11, 12]. The state of the
brain network system is then reflected in the pattern
of neurophysiological activity across network nodes,
and state trajectories represent the temporal sequence
of brain states that the system traverses [13, 14]. With
definitions of the network and its state in hand, we
can consider the problem of network controllability,
which in essence amounts to asking how the system
can be driven to specific target states by means of inter-
nal or external control input [15]. In the context of the
brain, such input can intuitively take the form of elec-
trical stimulation [16-20], task modulation [21-23],
or other perturbations from the world or from differ-
ent portions of the body [24, 25]. Practically, network
control theory and its associated toolkit enables us to
study the general role of brain regions in controlling
neural dynamics in diverse scales and species [26-29],
and in both health [30, 31] and disease [32, 33] or
injury [34]. For instance, we could ask whether the
functional alterations often observed in diseased brain
networks can be explained by structural network dif-
ferences. Moreover, the approach can be used to deter-
mine the patterns of input required to induce specific
state transitions necessary for behavior [17,21, 34, 35].
For instance, we could address the question of which
brain regions we should target with neurofeedback to
elicit specific changes in a large-scale brain network
supporting memory performance.

Network control theory offers three primary
advantages over traditional approaches to the study
of brain network function. First, the multi-modal
nature of the theoretical framework explicitly enforces
a simultaneous study of brain structure and func-
tion, in contrast to approaches that characterize each
separately and then assess statistical covariance. Sec-
ond, network control theory exceeds the often purely
descriptive approach of network science [36-38] by
building a generative model parameterized by both
a network’s spatial features and its temporal features
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[39]. The model then offers predictions of the brain’s
response to both endogenous and exogenous input
signals. In the case of the former, the model could
hypothetically prove useful in understanding how the
brain enacts cognitive control to reach task-relevant
cognitive states [21, 23, 30]. In the context of the lat-
ter, the model could similarly prove useful in inform-
ing neuromodulation for the treatment of neurologi-
cal and psychiatric disorders [39]. Third, initial studies
applying network control theory in neuroscience dem-
onstrate that network controllability is a useful marker
of brain dynamics.

Network control theory has been used to address
a broad range of neuroscientific questions. Relevant
studies have quantified the capacity of different brain
regions to alter whole-brain dynamics [30], demon-
strated that this capacity grows with development
[40], and found that controllability is associated with
executive functioning [23]. Moreover, the theory has
been applied to data collected during invasive neuro-
modulation regimens to predict response to electrical
stimulation in practice [17, 20] and in theory [16]. A
part of these initial applications is particularly prom-
ising since they explicitly link predictions of network
control theory to independently measured neurobio-
logical variables [17, 20, 23]. One of these studies sug-
gests that controllability is associated with cognitive
performance by showing that network control theory
predicts individual differences in executive function
as well as brain activation during a working memory
task [23]. Another study relates network control the-
ory to the reconfiguration of functional interactions
and to transitions towards better memory encoding
brain states, both induced by intracranial stimulation
in epilepsy patients [20]. More recent work shows that
network control theory can successfully predict activ-
ity changes elicited by grid stimulation in epilepsy
patients, although the correlation with the true brain
state was small in magnitude but statistically signifi-
cant [17]. These three examples illustrate the utility
of network control theory in understanding how spa-
tial characteristics of the brain give rise to its complex
function.

In light of the promising applicability of network
control theory in neuroscience, we wish to provide a
systematic overview of how the framework can be
used to study the controllability of neural dynamics.
This primer is constructed so as to offer neuroscien-
tists some basic intuitions regarding the foundational
concepts, and to guide them through the necessary
prerequisites and considerations. For a more techni-
cal introduction that nevertheless remains heavily
motivated by neuroscience, we refer the interested
reader to [41, 42]; and for further information about
the underlying mathematics (which remains agnostic
to the application domain), we refer the reader to [10,
43]. Because the application of network control theory
can be formulated in several ways, we systematically
probe how diverging theoretical assumptions and pos-
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sible modeling choices influence controllability met-
rics and the estimated energy of state transitions. For
example, we consider discrete and continuous time
systems, methods for system stabilization, the time
horizon for control, and the set of control nodes. We
complement these studies with specific recommen-
dations for best practices, which depend in no small
part upon the nature of the neuroscientific question
being investigated. To further stimulate research in this
exciting field, we suggest a few useful extensions of the
theoretical framework, such as alternative estimates of
structural connectivity and a complementary metric
that quantifies the complexity of the energy landscape.

2. Theoretical framework

2.1. Network control theory

The core of the theoretical framework is the structural
network of neurons (or larger neural units) in the brain
that allows the activity of a brain region to diffuse and
change the activity of connected brain regions (figure
1(A)). Here, we introduce a mathematical model that
describes the natural dynamics of a complex linear
system (figure 1(B)). Formally, the temporal evolution
of network activity is modeled as a linear function of
its connectivity:

x = Ax(t), (1)

where x(t) is a vector of size N x 1that represents the
state of the system. Here we operationalize the system’s
state to reflect the magnitude of the neurophysiological
activity of the N brain regions at a single point in time.
Over time, x(t) denotes the state trajectory, which is
the temporal sequence of states or activity patterns that
is traversed by the system. The adjacency matrix A is of
size N x N,and denotes the relationships between the
system elements. Here, we operationalize that relation
as the structural connectivity between each pair of
brain regions.

Next, we extend this model to account for con-
trolled dynamics, which occur when the brain is
induced to deviate from its natural trajectory by the
injection of internal or external input signals (figure
1(C)). In this case, the temporal dynamics of a system
additionally depends on the control energy injected
into a set of nodes across time

% = Ax(t) + B, u,(t). (2)

Here, B, is a matrix of size N x m that denotes the
set of m control nodes or brain regions into which
we wish to inject inputs. For the remainder of the
paper, we construct this matrix to represent the
independent control of m brain regions using m
indicator vectors, each having set only the ith element
to 1, corresponding to a control node. If we control all
brain regions, B,; corresponds to the N x N identity
matrix with ones on the diagonal and zeros elsewhere.
If we control only a single brain region i, B,; reduces
to asingle N x 1vector with a one in the ith element
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and zeros elsewhere. The term u,(t) is a vector of m
functions of size m x 1 denoting the control input,
which is the amount of input injected into each of the
m control nodes at each time point ¢. Over time, u,;(t)
denotes the injected control input over time.

For the interested reader, we wish to provide a few
mathematical intuitions that might facilitate a deeper
understanding of the presented concepts. By equa-
tion (1), the structure of the network determines its
dynamic evolution over time. Mathematically, the
structural connectivity matrix A serves as linear
operator that maps each state, x, to the rate of change
from that state, x. This linear transformation can be
described in terms of the evolutionary modes of the
system consisting of the N eigenvectors of A and their
associated eigenvalues (figure 1(D)). Each eigenvector
of A can be imagined as an axis of the linear transfor-
mation which remains invariant over time. Thus, the
eigenvectors reflect directions in the state space along
which the system independently moves, each charac-
terized by a specific pattern of brain region activity.
Each eigenvalue, in turn, determines the rate of growth
or decay along its associated eigenvector; that is, each
eigenvalue determines how slow or fast the system
grows or decays in the direction defined by the eigen-
vector. Thus, the eigenvalues control the temporal per-
sistence of the set of supported modes of activity.

Especially for the interpretation of results, it is
important to keep in mind that the dynamic model
is relatively simple and relies on the assumptions of
linearity, time invariance, and freedom from noise.
Linearity implies that the system evolves linearly over
time which is not an accurate reflection of extended
dynamics in most neural processes. However, it has
been shown that non-linear dynamics can be locally
approximated by linear dynamics [44, 45]. Time
invariance implies that the system’s response does not
depend on the time point because both the structural
network A and the control set B, are constant over
time. This assumption likely holds true for short time
scales but could be challenged by long-term structural
reorganization, which has been observed across devel-
opment and adulthood [40, 46, 47]. Freedom from
noise implies that all properties of signal propaga-
tion are accounted for deterministically by the model.
Yet, noise is a feature of neural signals at both small
[48-50] and large time scales [51, 52]. Nevertheless, it
is customary and reasonable when first developing a
mathematical model of a complex system to consider
the salient features of the model that do not depend on
noise [42,53,54].

2.2. Prerequisites

The core of the dynamic model is the network
structure that enables activity changes within a
particular brain region to diffuse and induce state
changes in connected regions. Thus, the first step is to
build a structural connectivity network by defining
the weighted adjacency matrix A (figure 1(A)). The
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Figure 1. Schematics of network control theory and relevant concepts. (A) Structural brain network construction. Brain atlas and
diffusion imaging data define the nodes and edges of the structural connectivity matrix A. (B) Natural dynamics of the brain. The
temporal evolution of brain states, such as the magnitude of neurophysiological activity across brain regions, is modeled as a linear
function of brain structure. The area under the curve illustrates the impulse response and thus, average controllability of brain
region #4. (C) Controlled dynamics. The state trajectory additionally depends on control input injected into the system. The control
input matrix B,; determines the nodes into which a control signal u,, is injected (yellow flash) over time. The area under the curve of
the control energy signals corresponds to the control energy required by the given state transition. (D) Activity modes of a system. The
structural connectivity matrix A can be decomposed into N eigenvectors and eigenvalues that determine the system’s dynamics.
Eigenvectors determine the supported modes of activity; eigenvalues determine the rate of decline of their associated mode. Brain
region i’s controllability v;; of mode j corresponds to a projection of the jth eigenvector onto the dimension spanned by brain region
i. (E) Control energies and controllability metrics. (Left) Control energy for specific state transitions. Here we illustrate the minimum
control energy required to drive the brain from a specific initial state to a specific target state using a particular control node set.

The optimal control energy additionally constrains the size of the state trajectory. (Right) Control strategies potentially examining

all possible state transitions (dashed arrows). Average controllability has been previously described as a brain region’s ability to
control nearby states that require little energy. Modal controllability has been previously described as a brain region’s ability to
control distant states that require more energy. (F) Controllability metrics and control energies can be relevant on an individual and
regional level. To examine both levels separately, we will summarize statistics across brain regions and individuals, respectively. For
consistency between two parameter choices such as discrete- and continuous-time systems, we will calculate the Pearson correlation
between individual (regional) values extracted from one parameter choice and those extracted from the second parameter

choice. (G) Complexity of the energy landscape. The landscape of possible minimum control energy trajectories is determined

by the eigenvalues of the inverse of the controllability Gramian W, . We used the variability of the eigenvalues to quantify the
heterogeneity of the energy landscape. Abbreviations: IQR, interquartile range.

structural network of human and nonhuman animals
can be modeled using a range of spatial scales of neural
units and physical links between them [12]. Here, we
focus on the construction of the human connectome
which requires (i) a brain parcellation that defines the
N nodes of the network and (ii) diffusion imaging data
that define the strength of structural connectivity A;;
between two brain regions i and j. Because self-loops
are difficult to resolve using diffusion MRI techniques,
we set the diagonal of A to zero. As a further practical
note, the sparse nature of human connectomes
typically does not require any thresholding of the
matrix.

The next step is to pick a time-system that best
reflects the neural dynamics under study. Here, we con-
sider two options: discrete and continuous. A discrete-
time system assumes that the system evolves in discrete
time steps whereas a continuous-time system models
continuously changing dynamics. Neural processes

can often not be clearly assigned to one of these catego-
ries. Depending on the choice, the modeled dynamics
can differ substantially because of their distinct math-
ematical implementation. More concretely, discrete-
time dynamics rely on difference equations whereas
continuous-time systems are based on differential
equations. Note that we exclusively present formulas
for continuous-time systems in the main text; the dis-
crete-time versions can be found in the supplementary
formulas (stacks.iop.org/JNE/17/026031/mmedia).

The third step is to choose a method to stabi-
lize the system to avoid its infinite growth over time.
Because extremely large brain states are neurobiologi-
cally implausible, we normalize the system such that it
either approaches the largest supported mode of activ-
ity or goes to zero over time:

A
Aporm = ————— — L.
norm )\(A)mux+c (3)
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Here, I denotes the identity matrix of size N x N,
and A(A)uqx denotes the largest positive eigenvalue of
the system. For non-negative matrices, the largest
positive eigenvalue is guaranteed to have the same
or larger magnitude than all other eigenvalues due
to the Perron—Frobenius theorem. Note that this
normalization sets the diagonal of A to —1. These
decaying internal dynamics within each brain region
are necessary for the stabilization of the system. To
normalize the system, we must specify the parameter
¢, which determines the rate of stabilization of the
system. If ¢ = 0, the largest mode of activity is stable
and all other modes decay; thus, the system approaches
the largest mode over time. If ¢ > 0, such as the
commonly used choice ¢ = 1, all modes decay; thus,
the system goes to zero over time. As will become clear
in the next section, the latter variant can be especially
useful for the computation of average controllability in
infinite time as well as modal controllability due to its
mathematical definition.

2.3. Optimal control energy

Optimal control energy could intuitively be described
astheinternal cognitive control or external stimulation
effort required to drive a system from one state to
another. For instance, a transition from a resting state
to a simple visual attention task would likely require
less effort compared to a complex working memory
task. Note that the effort is not only based on energy
costs but also the length of the state transition. To
quantify the degree of controllability of a network,
we consider an optimal control problem to steer the
network from a specific initial state x(0) = x to a
specific target state x(T) = xr over the time horizon
T while minimizing a combination of both the length
of the state trajectory and the required control energy
[34, 55, 56]. Formally, we consider the problem

T
u(t); = argminJ(u,) = argmin/
Uy U 0
(o =0 o = x0) + g0 e ),
where the parameter p determines the relative
weighting between the costs associated with the length
of the state trajectory and input energy. We use the cost
function J(u(¢)%) to find the unique optimal control
input u(t) which allows us to calculate the optimal
control energy (figure 1(E)) required by a single brain
region i (figure 1(C)):

T
B = [ ol ®)
0
and in total
m T
E'=)E = / wi(t) ui(ndt.  (6)
i=1 0
To calculate optimal control energy, we must specify

an initial brain state x; and a target brain state xr by
assigning each brain region an initial and target activity
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level. For this purpose, we can extract regional activity
values directly from functional neuroimaging data
such as electrocorticography or magnetic resonance
imaging [17, 57, 58], or we can use model-based
estimates of task-related activation such as (3 values
from a general linear model [59]. Another option to
generate realistic brain states lies in the meta-analysis
of large functional neuroimaging databases such as
Neurosynth [60] and BrainMap [61]. Additionally, we
must specify the control set By, a set of brain regions
into which we wish to inject signals. Theoretically,
this choice can vary from controlling a single region
to controlling the full brain. The choice of small- to
medium-sized control sets, however, can lead to large
numerical instabilities that accumulate and bias
the results. Thus, we recommend to ensure that the
system reached the desired target state. To reduce the
numerical error of the calculation, we can also define a
relaxed control set B, by allowing large control input
to control regions and small, random inputs to all
other brain regions [17]. We must also specify the time
horizon T over which the control input is effective. For
pragmatic reasons such as the potential translation
to real external brain stimulation, the time horizon
is usually set to finite time. Empirical evidence on
the timeline of the state transition under study could
further guide this modelling choice. However, it should
be noted that the time horizon is measured in arbitrary
units even if brain states are defined by functional
imaging data. Finally, we must specify the time step
dt to numerically approximate a continuous-time
system. Because the numerical simulations converge
on truly continuous dynamics as dt approaches zero,
the time step dt should be set sufficiently small [34].

The cost function J is motivated by the fact that
biological systems might constrain the features of the
traversed states, such as their type, diversity, or mag-
nitude. Transitioning through states not too far away
from the target state is supposed to avoid extremely
large and thus neurobiologically implausible brain
state transitions. In the case where no specific assump-
tions are made on the relative importance of the two
constraints and where both the distance and energy
values are of a comparable scale, an equal weighting of
p = lisareasonable choice. Depending on our neuro-
biological assumptions, we can also define alternative
cost functions and potentially restrict them to a subset
of brain regions [21].

2.4. Minimum control energy

A specific and commonly used subform of optimal
control energy is the minimum control energy, which
could also intuitively be described as the internal
cognitive control or external stimulation -effort
required to drive a system from one state to another.
In contrast to optimal control energy, the effort
is only based on energy costs. Minimum control
energy is obtained by letting p — oo in (4), so that
the cost function ] accounts only for the energy of
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the control input to steer the network from an initial
state x(0) = x, to a target state x(T) = xr. Thus, we
call this metric minimum control energy (figure 1(E)).
To compute the minimum control energy for a given
network, it is convenient to define the controllability
Gramian as

T
W,.r= / BBl dt. (7)
0

The eigenvalues of W, r can be used to answer
several questions regarding the controllability of a
network. First, if the smallest eigenvalue of W r is
zero, then the network is not controllable. That is,
there exist final states xr that cannot be reached by
any control input, independent of its energy. Second,
the magnitude of the smallest eigenvalue of W, r is
inversely proportional to the largest energy needed to
reach a final state. That is, there exists a final state xt
that can be reached only using inputs whose energy
is at least proportional to the inverse of the smallest
eigenvalue of W, r. The foundational papers [30, 62]
have shown that brain networks are controllable from
any single region; that is, the smallest eigenvalue of
W, r is greater than zero. However, brain networks
require very large control energy; that is, the smallest
eigenvalue of W, 1 can be extremely small. It should
also be noted that the computation of the smallest
eigenvalue of W, r tends to be numerically difficult,
which motivates the next metric.

2.5. Average controllability

Apart from examining specific state transitions, the
theoretical framework also allows us to ask questions
regarding the general role of brain regions in
controlling neural dynamics. A third metricis obtained
by measuring the impulse response of a system, which
is the ability of a network to amplify and spread control
inputs. More concretely, average controllability
equals Trace(W . r) and quantifies the energy of the
impulse response of a system, which describes how a
system naturally evolves over time from some initial
condition [43]. Starting from an exclusive activation
of the specified control regions, we observe the brain’s
natural response (figure 1(B)). The larger and more
variable this natural response, the more states can
be reached with low energy input by controlling this
specific set of brain regions. Average controllability is
intuitively described as the ability of a set of control
nodes to drive the system to easily reachable, nearby
states such as an activation of the default mode system
enabling a resting or relaxed brain state (figures 1(B)
and (E)) [30]. The relation of Trace(W, r) and the
average input energy Tmce(W;lT) is further discussed
in the Supplementary Methods.

To calculate average controllability, we must spec-
ify the time horizon T, which is the time period over
which we wish to observe the impulse response of the
system. Note that the units of the time horizon depend
on the units of A. To observe the complete impulse
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response, we often assume infinite time. Further-
more, we must determine the control set B,., which is
the set of brain regions into which control input can
be injected. Even if the control set can comprise mul-
tiple, and even all nodes, average controllability is
often examined for individual brain regions to enable
comparison to another single-node metric: most com-
monly, modal controllability.

2.6. Modal controllability

Next, we introduce the metric modal controllability,
which was previously described as the ability of
a single node to drive the system to distant, more
difficult-to-reach states such as an activation of
higher-level attention networks supporting flexible
task switching (figure 1(E)) [30]. The controllability
metric is obtained directly from the eigenvalues and
eigenvectors of the network weighted adjacency
matrix. In particular, we use

N

¢i=> (1= (M), )

=1

as a scaled summary of node i’s ability to control
all N modes of the network. Note that we adapted
this continuous-time version from the discrete-
time version defined in [10] (details are provided in
the Supplementary Methods). To calculate modal
controllability, we are not required to specify any
parameters except the symmetric adjacency matrix
A. This metric capitalizes on information housed
in the modes of A, as summarized in the eigenvalues
Aj and the matrix of normalized -eigenvectors
V = [vij]. Entry v;; is a measure of the controllability
of mode Aj(A) from node i that geometrically
corresponds to projecting node i onto the eigenvector
j (figure 1(D)) [43, 63]. According to this heuristic,
the larger the magnitude of the projection, the higher
the ability of node i to control mode j. The metric
summarizes this notion across all modes, and then
scales them by their rate of decline as determined by
the eigenvalues. This weighting emphasizes especially
fast decaying modes which might on average be
more difficult to control because the injected control
energy only has a short-term impact. We note that the
presented definition of modal controllability is specific
for symmetric networks, although it can theoretically
be extended to directed networks.

2.7. Boundary controllability

Lastly, we introduce a third commonly used
controllability metric. Boundary controllability meas-
ures the ability of a set of brain regions to couple and
decouple trajectories of disjoint brain regions [ 10, 30].
Intuitively, brain regions displaying a high boundary
controllability lie between network communities and
play an important role in segregating and integrating
information across different cognitive systems [30].
The exact implementation of the metric differs
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across the neuroscientific literature [10, 30, 64, 65],
among others due to the diversity of available
methods to partition a neural system into network
communities [66]. Lacking a consistent definition of
boundary controllability of brain regions, we leave the
detailed study of this particular metric to future work.
Nonetheless, we wish to point the interested reader
towards several references that describe and apply the
metric in more detail [10, 30, 64, 65].

3. Materials and methods

3.1. Construction of structural brain networks
Based on the diffusion imaging data (acquisition
and preprocessing procedure are described in the
Supplementary Methods), we constructed a structural
brain network for each participant. Consistent with
previous work [30, 34, 35, 40], we defined nodes of the
network as brain regions according to the 234-node
Lausanne atlas (excluding brainstem) [67]. For this
purpose, the Lausanne parcels were dilated by 4mm
so that the parcels reached down into the white matter
enough to ensure accurate sampling of underlying
fibers. In the process of dilation, some voxels were
assigned to two or more regions of interest; to eradicate
this redundancy, we assigned each voxel to the mode of
its neighbors [68]. After warping the parcellation into
the subject’s diffusion space, we quantified the edges of
the network as total streamline count connecting a pair
of brain regions, corrected for their volume. Overall,
we constructed a 233 x 233 sparse, weighted, and
undirected adjacency matrix for each participant with
the number of interregional streamlines representing
structural connectivity.

3.2. Mapping to cognitive systems

To define neurobiologically meaningful brain states,
we capitalized on an established functional brain
atlas [69]. By clustering the resting state functional
magnetic resonance imaging data of 1000 healthy
adults, Yeo et alidentified seven cognitive systems, each
consisting of a set of distributed brain regions that are
functionally coupled [69]. The functional parcellation
comprises visual (VIS), somatomotor (SOM), dorsal
attention (DOR), ventral attention (VEN), limbic
(LIM), frontoparietal control (FPC), and default mode
(DM) systems. To link the functional and anatomical
atlases, we mapped each brain region to the cognitive
system with the highest spatial overlap as reported
previously [21, 47]. More concretely, each Lausanne
parcel was assigned to the cognitive system that was
most frequently associated with its voxels as defined by
the purity index. Subcortical regions were summarized
in an eighth, subcortical system (SC).

3.3. Probingdifferent modeling choices

We used the structural connectivity matrices of our
sample to probe the impact of several modeling
choices on average and modal controllability, and
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on minimum and optimal control energy. Since
network control theory can be utilized to examine
controllability differences in both individuals and
brain regions, we separately studied the metrics on
an individual and regional level (figure 1(F); details
are provided in the Supplementary Methods). Note
that a part of these results could have been derived
from the theory a priori. Nonetheless, we consider this
illustration as useful for the neuroscience community
to gain a better understanding of network control
theory and the behavior of control metrics depending
on different modeling choices. In each examination
of the impact of one specific modeling choice, we
systematically varied the modeling choice of interest
while keeping all other parameters constant. In the
examination of the impact of time system, for instance,
we calculated controllability metrics separately
for discrete and continuous time-systems while
keeping time horizon, normalization parameter, and
control set constant. Variable parameter ranges were
guided by the common choice and the principles
of completeness or convergence (further details are
provided in the supplementary methods). Constant
modeling choices were guided by the modeling choices
most commonly used in the literature [30, 34, 35, 40].
Concretely, we employed a simplified noise-free linear
continuous-time and time-invariant network model,
stabilized using ¢= 1. When estimating average
controllability, we set the time horizon T to infinite
time. When estimating control energies, we used
T = 3,approximated by 1000 time stepsi.e.dt = 0.001.
When the system matrix A is stable, the controllability
Gramian equation converges as T approaches infinity.
Inthis case, the Gramian can be computed algebraically
by solving the Lyapunov equation.

Motivated by the questions most relevant to each
approach, we calculated average and modal control-
lability for each brain region based on single-node
control sets. Control energies, however, were based on
full brain control, which could either represent cogni-
tive control exerted by the whole brain internally [70]
or external control exerted by complex interventions
such as a combination of psychotropic drugs and psy-
chotherapy. We exercise full brain control because this
choice (i) has been used in previous work [21, 35, 57],
(ii) avoids additional neurobiological assumptions
due to control subset selection, and (iii) is numerically
tractable. We examined control energies required for
the transition between a specific initial and target state
of the brain. For the definition of these brain states, we
capitalized on previously defined functional systems.
For each specific brain state, regions belonging to the
activated cognitive system were set to one, whereas
all other brain regions were set to zero. Even if such
artificial state representations likely do not represent
actual neural dynamics, this simplification provides a
useful starting point for the systematic examination of
modeling choices [21, 34, 35]. To be thorough, we also
performed an additional simulation demonstrating
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a high consistency between binary and continuously
represented initial and target brain states (Sfigure 1).
We simulated state transitions from an active default
mode system representing the initial brain state to
the activation of six different cognitive systems repre-
senting the target brain states [69]. Except for the sec-
tion on full versus partial control, we averaged across
the examined state transitions. For optimal control
energy, we set the relative energy weight p = 1. In
the restricted set of state transitions we investigated,
minimum and optimal control energy yielded highly
similar results. To avoid redundancy, we report the
results on optimal control energy in the supplemen-
tary results (Sfigure 2—7). Nevertheless, we point out
deviating results of optimal control energy in the main
text. Furthermore, we provide a detailed examination
of how control metrics are empirically related to each
other in brain networks in the supplementary results
(Sfigure 8).

3.4. Construction of spatial adjacency network

In addition to diffusing along white matter fibers,
neural signals could potentially also diffuse between
spatially adjacent brain regions. In other words,
physical contact between two regions can be seen
as a form of structural connectivity. To examine this
complementary measure of structural connectivity,
we generated brain networks, S, based on the
amount of shared neighborhood between two brain
regions. We defined the edges of S as the number
of face-touching voxels between two parcels of the
Lausanne-atlas warped into subject space. In addition
to studying each structural matrix separately, we also
exploit the combined information of both measures
by constructing the matrix AS as an average of A and
S. Because both diffusion and adjacency measures
are expressed in arbitrary units and the actual scaling
might impact controllability metrics, we scaled S
and AS to the range of A. We tested the effects of the
structural connectivity types and their binarized
version in a repeated measures ANOVA with two
within-subject factors. To ensure that the effects of
matrix type and binarization were not exclusively
based on different edge weight distributions [65], we
verified the results by sampling edge weights of S and
AS from the distribution of A while preserving their
rank order.

3.5. Controllability of fast and slow dynamics

We capitalized on the concept of modal controllability
toprobe the ability of abrain region to control a specific
set of temporal dynamics such as fast and slow modes
[17,71]. Instead of summarizing across all modes that
a system supports, we restricted the calculation of
modal controllability to a subset of fastest (slowest)
modes. We define transient (persistent) modal
controllability as the ability of a brain region to control
fast (slow) modes. The temporal dynamics of modes
are determined by the magnitude of their eigenvalues.
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In continuous-time systems, large (small) eigenvalues
relate to quickly (slowly) decaying modes. The lack of
a formal definition of fast and slow dynamics requires
the choice of a threshold that specifies the subset of
modes (figure 1(D)). We systematically probed the
influence of threshold on a brain region’s ability to
control different temporal dynamics by calculating
transient and persistent modal controllability using
the 10%, 20%, 30%, 40%, and 50% fastest and slowest
modes. To disentangle these overlapping control tasks,
we additionally summarized the ability of each brain
region to control a specific interval of modes using
the unscaled eigenvector matrix V. For this purpose,
we summarized the unscaled eigenvector matrix V
into 10 and 2 intervals respectively; the partitioning is
based on the rate of decay of the eigenvectors, that is
their associated eigenvalues. This separation enabled
a comparison to persistent and transient modal
controllability based on a cut-off of 10% and 50%,
respectively.

3.6. Definition of complexity of the energy
landscape
The control trajectories from any initial state to any
target state span the energy landscape of a dynamic
system. A homogeneous energy landscape could
intuitively indicate that different brain states can be
reached by similar control efforts. This characteristic
could be either advantageous because it enables
access to a diversity of brain states or disadvantageous
because unhealthy statesareamong those thatare easily
accessed. The heterogeneity of the minimum control
energy landscape is determined by the eigenvalues of
the inverse of the controllability Gramian [43]. Note
that we assume independent control from all brain
regions because the inverse of the Gramian is often ill-
conditioned for small control sets [30]. We capitalized
on the variability of the eigenvalues to quantify the
complexity of the minimum control energy landscape
of a brain network, that is how the magnitude of the
minimum control energy varies across all possible
state transitions (figure 1(G)). To account for the
observed skewness of the distribution, we adopted
the interquartile range as a measure of variability.
Formally, we define the complexity of the energy
landscape as the difference between the 75th and 25th
percentile of the eigenvalue distribution of the inverted
controllability Gramian
CK?,T = P75()\W:1T) - PZS()‘W;;) (9)

We calculated the complexity of the energy land-
scape for each participant based on an infinite-time
controllability Gramian. Then, we tested the com-
plexity of the energy landscape of the brain network
against three null models preserving distinct network
characteristics. The topological null model preserved
degree and strength distribution by iteratively switch-
ing connections between randomly selected edge pairs
and subsequently associating the connections with the
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Figure 2. Consistency of metrics across time. (A) Consistency of average controllability and minimum control energy across time
systems. Pearson correlation coefficient between a given metric estimated for discrete- versus continuous-time systems across a
range of time horizons T. (Left) Average controllability; (right) minimum control energy. (B) Consistency of average controllability
and minimum control energy in a continuous-time system for any two choices of time horizon. Heat maps depict correlation
matrix of different time horizons. Each heat map entry corresponds to the Pearson correlation of a metric based on two different
time horizon choices. (Top) Pearson correlation of individual metrics averaged across brain regions. (Bottom) Pearson correlation
of regional metrics averaged across participants. From these results, we deduce that average controllability and minimum control
energy differ qualitatively for discrete- versus continuous-time systems when comparing estimates from short time horizons versus
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empirically observed edge weights [72]. The spatial
null model preserved the relationship between Euclid-
ean distance on the edge weights by adding the initially
removed distance effects to the randomly rewired
graph [73]. The combined null model preserved both
the strength distribution and spatial embedding of
the brain networks by approximating the observed
strength distributions and effects of Euclidean dis-
tance on the edge weights [73]. Overall, we generated
1000 random instantiations of each null model.

4. Results

In the application of network control theory, we can
rely on different neurobiological assumptions that are
reflected in our modeling decisions. We begin with
an examination of the impact of different modeling
choices, before investigating several proposed model
extensions.

4.1. Consistency across time systems

When examininghowthebrain’sarchitecture givesrise
to its complex dynamics by means of network control
theory, one of the first modeling steps represents the
type of the dynamic model. We can either assume that
the neural dynamics evolve in discrete time steps or
continuously. In light of potentially distinct dynamics
of discrete- and continuous-time systems, we initially
examined the consistency of minimum control energy,
average controllability, and modal controllability
across time systems. For this purpose, we calculated
the Pearson correlation of each metric between
discrete- and continuous-time systems, separately
summarized across brain regions and individuals,

and—if applicable—for different time horizons T
(figure 2(A)). Average controllability showed a high
consistency across time systems (individual level:
Tmin = 0.80, p =5 x 1073 regional level r,,;, = 0.99,
p =5 x 10722!), particularly for time horizons close
to zero or infinity. Likewise, modal controllability
demonstrated a high consistency across time systems
(individual level: r = 0.99, p =3 x 10™'% regional
level r=1.0, p=2x 107'%). Minimum control
energy, however, wasless consistentacross time systems
(individual level: r,,;, = 0.77, p = 0.01; regional level
Tmin =033, p=2x1077), particularly for short
time horizons. The observed results are in line with
theoretical considerations that suggest a convergence
of discrete- and continuous-time systems for infinite
time. Overall, the consistency across discrete- and
continuous-time systems was high but depended on
the metric, the observation level, and the chosen time
horizon.

4.2. Consistencyacross time horizons

Network control theory might lend itself particularly
well to evaluate how local perturbations of the brain,
for instance elicited by deep brain stimulation or
transcranial magnetic stimulation, affect whole brain
dynamics. In such a setting we might be interested in
assessing different temporal scales of brain stimulation
such as the effect of stimulation in the short term or in
the long term. This question prompts the examination
of the time horizon of the injected signal as another
early modeling decision. We addressed this question
by quantifying the Pearson correlation between values
estimated for one time horizon T and for another time
horizon T’, separately averaged across brain regions or
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across individuals (figure 2(B)). We first noted that the
time horizon affected the scaling of the metrics (Sfigure
2(A)). More specifically, average controllability
monotonically increased in magnitude with larger
time horizons. This observation is consistent with the
theory—because we observed the impulse response of
the system for a longer time interval, the magnitude
of the impulse response was larger. Minimum control
energy monotonically decreased with larger time
horizons; this theoretically derivable relation is
intuitive when we consider the fact that longer time
horizons allow the system to capitalize on its own
natural dynamics, thereby demanding less exogenous
control input. In contrast, optimal control energy first
rapidly decreased and then slightly increased with
larger time horizons (Sfigure 2(A)). The increasing
amount of optimal control energy might be required to
additionally constrain the distance of traversed brain
states over longer time horizons. In general, we found
a high consistency between the metrics across a wide
range of examined time horizons. However, smaller
time horizons demonstrated a different control regime
in which average controllability (individual level:
Tmin = —0.56, p = 0.09; regional level (7, = 0.88,
p=7x10"7%) and minimum control energy
(individual level: 7., = 0.28, p = 0.44; regional level
(fmin=—0.71, p=6x 107%7) were partly anti-
correlated with the corresponding metrics in larger
time horizons. In sum, short time horizons induced
an alternative control regime in average controllability
and minimum control energy compared to longer
time horizons.

4.3. Impact of normalization

The normalization step represents another modeling
decision that is related to time. For mathematical
reasons, we often assume the neural dynamics to
diminish and stabilize over time. Neurobiological
considerations determine the degree of normalization;
that is, how fast or slow we assume the neural system
to stabilize. To investigate the effect of normalization
on controllability metrics and control energies,
we calculated average controllability, modal
controllability, and minimum control energy for
different choices of the normalization parameter c. At
both individual and regional levels, we first observed
that with increasing ¢, average controllability decreased
whereas modal controllability and minimum control
energy increased (Sfigure 3). Next, we investigated the
consistency of the metrics across different manners of
normalization by quantifying the Pearson correlation
between metrics for two choices of the normalization
parameter ¢, separately summarized across brain
regions (figure 3(A)) and individuals (Sfigure 4(A)). In
both cases, we observed two different control regimes
dependingonsmall (¢ = 0.1toc = 10%figure3(B))and
large (c = 10* to ¢ = 105 figure 3(C)) normalization
parameters. Within each regime, the results were
highly consistent independent of the normalization
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parameter c¢. Between both regimes, however, the
consistency in average controllability (individual level:
Tmin = —0.19, p = 0.61; regional level: 7, = 0.86,
p=1x10"%;), modal controllability (individual
level: 7, = 0.29, p = 0.41; regional level: 7,,;, = 0.99,
p=7x107%), and minimum control energy
(individual level: r,,;, = 0.87, p = 2 x 10 regional
level: 7, = 0.81, p = 6 x 107°°) was reduced. This
alternative control regime is due to a faster stabilization
of the system. As directly follows from equation (3),
the increase of the normalization parameter c leads to
an increased decay rate of the slowest mode which, in
turn, means a faster stabilization of the system. Taken
together, a faster stabilization of the system introduced
an alternative control regime that particularly affected
controllability metrics.

4.4. Impact of control set size

In the study of the effects of brain stimulation on
brain activity, we can also ask how many and which
brain regions we should control in order to drive
the system to a, for instance healthy, state. More
concretely, we could compare the effects of targeting
a specific neural circuit to the effects of whole-brain
stimulation. This motivates the examination of a
final modeling choice: the number of controlled
brain regions. That is, we studied the number of brain
regions into which we wish to inject signals. To probe
the effect of control set size on minimum control
energy, we generated random control sets of a varying
number of brain regions that allow for a control input
ranging from single-node to full-brain control. We
then proceeded by testing the impact on minimum
control energy and the numerical error in six brain
state transitions: from activation of the default mode
to activation of six canonical cognitive systems as
defined by Yeo et al [69]. Importantly, the numerical
error was reasonably small (<1 x 107°) when we
controlled at least 28.3%-29.6% of brain regions
(Nyis = 66, Nsom = 67, Npor = 67, Nypn = 68,
N = 69, Ngpc = 68), increasing our confidence in
the results. We observed that minimum control energy
and the numerical error decreased exponentially with
increasing control set size, with differences depending
on specific state transitions and control sets (Sfigure
5(A)). Intuitively, the control of a larger number
of brain regions required less control energy. The
exponential relationship between control energy and
control node set can also be mathematically derived
[10].

Next, we were interested in how control and state
trajectories differ in partial- compared to full-brain
control sets. We calculated the minimum control
energy trajectory and the distance between the state
trajectory and the target state for the same six state
transitions controlling all versus randomly drawn sets
of 150 brain regions. In full-brain control, we observed
an exponential increase in energy (figure 4(A)) and an
approximately linear decrease in the distance between

10



I0P Publishing

J. Neural Eng. 17 (2020) 026031

T M Karrer etal

107"
Normalization parameter

— Regional level,c=1 7

r Regional level, ¢ = 10° 1

A .
Average controllability Modal controllability Minimum control energy
0° 10° 10° 1
’> 10° 108
T g 10¢ 10° o
=y s 108 )
5 S 10 @
3 - o
2 10 102 2
2 10 10 -
1
L ! -0.1
-1

10" 1 10 102 10° 10 10° 10° "“10' 1 10 102 10° 10* 105 1061010'1 1 10 102 10% 104 10° 10°
Normalization parameter

208 OS
IYYYYYS
SO OO
BREDE

Figure 3. Different control regimes depending on normalization. Consistency of (left) average controllability, (middle) modal
controllability, and (right) minimum control energy for different choices of the normalization parameter c. (A) Heat maps depict
correlation matrices of different normalization parameters. Each heat map entry corresponds to the Pearson correlation between
ametric calculated using one normalization parameter and the same metric calculated using a second normalization parameter.
Pearson correlation of individual metrics summarized across brain regions. Normalizing the system such that it stabilizes faster
introduces a different control regime. (B) Regional controllability metrics and control energy projected onto the brain surface using
anormalization parameter ¢ = 1. (C) Analogously, the same metrics plotted onto the brain surface using a normalization parameter
¢ = 10°. Together, panels (B) and (C) illustrate the fact that small and large choices of the normalization parameter can induce two
different control regimes. Within each regime, the resulting controllability metrics were highly consistent whereas the consistency
between both regimes was reduced. Note: metric values are ranked for visualization purposes only.
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current and target state (figure 4(B)) across the control
horizon. When we controlled only a part of the brain,
control and state trajectories differed considerably. For
instance, instead of taking the direct route through the
state space, the system traversed more distant states
before it reached the target state. Theoretical work has
indeed shown that such non-local trajectories gener-
ally emerge if only a subset of nodes is controlled [74].

Finally, we wished to study the effect of distance
between initial and target state on minimum control
energy. Because the set of state transitions that we stud-
ied lacked sufficient variability in these distances, we
additionally simulated trajectories from a zero-activ-
ity initial state to random target states with a varying
size of brain regions activated. We found a monotonic
increase of minimum control energy with increas-
ing distance between initial and target states (figure
4(C)), which is in line with theoretical considerations.
When employing a partial control set, a subset of the
random state transitions required massive amounts

of control energy. A further exploration revealed that
these hardly controllable state transitions involved
an activation of two weakly connected limbic regions
that were not part of the random control set. Similarly,
the six state transitions likely required less control on
average because the activation of densely connected
cognitive systems is an easier control task than the acti-
vation of randomly chosen regions in target states of
equal distance. This could be explained by the fact that
densely connected brain regions influence each other
more strongly in their neurophysiological activity than
loosely connected brain regions. Thus, it is a very dif-
ficult control task to activate brain regions that are only
loosely connected to the other, active brain regions,
particularly if we cannot directly control the target
brain regions. Similarly, due to their stronger mutual
influence, it is easier to reach a similar activation level
in densely connected brain regions than in a randomly
chosen set of regions. The findings in optimal control
energy were highly similar, even if the exact control
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Figure 4. Minimum control energy in full and partial control sets. Minimum control energy for state transitions from the default
mode system to six target cognitive systems (colored lines and triangles). (Top) Results from simulations using a whole-brain control
setincludingall 233 brain regions. (Bottom) Results from simulations using a control set consisting of random subsets of 150 brain
regions. (A) Minimum control energy across the control trajectory differs quantitatively between full and partial brain control. (B)
Euclidean distance between the current state and the target state across the control trajectory differs between full and partial brain
control. (C) Minimum control energy increases with larger Euclidean distance between initial and target states. Blue dots depict state
transitions from a zero-activity brain state to states comprised of a varying number of randomly activated brain regions. All values
are averaged across participants. Lines and ribbons represent the best fit to the data and the 95% confidence interval, respectively.
Abbreviations: x, = initial state, x; = target state, x(¢) = state at time , VIS = visual, SOM = somatomotor, DOR = dorsal
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and state trajectories were different (Sfigure 6). Over-
all, state and control trajectories differed substantially
depending on which brain regions were allowed to
receive energy input.

4.5. Structural connectivity measures

After systematically examining the impact of diverse
modeling choices, we wished to provide several,
potentially useful extensions of the theoretical
framework. We begin with a consideration of the
architecture of the brain which represents the core
of network control theory. Thus, it is particularly
relevant how we define the inter-connections between
brain regions. Typically used DTI data do not take
into account the fact that the signal can theoretically
diffuse via physical contact between two brain regions.
To evaluate the consequences of different forms of
the adjacency matrix reflecting different modes of
signal propagation in the brain, we additionally built
structural connectivity networks based on the amount
of shared neighborhood between two brain regions.
Then, we calculated controllability metrics and control
energies for the two alternative measures of structural
connectivity, their combination, and their binarized
versions (figure 5). We first examined the similarity
in controllability of structural networks based on
diffusion imaging (A ) and based on spatial adjacency

(S). Between A and S, we found small- to medium-
sized Pearson correlations in average controllability
(individual level: r=0.02, p=0.95 regional
level: r=—0.01, p =0.92), modal controllability
(individual level: r= —0.15, p =0.67; regional
level: r=0.41, p=10x 107", and minimum
control energy (individual level: r = 0.36, p = 0.31;
regional level: r = 0.64, p =2 x 107!°). Thus, the
two measures of structural connectivity provide
complementary information. Next, we quantified the
effect of binarization, matrix type (A versus S), and
their combination AS, on controllability metrics and
control energy. Repeated measures ANOVAs revealed
significant main effects of matrix type and binarization
on a Bonferroni-corrected level of o = 0.01 except for
the effect of matrix type on average controllability
(individual level: F=5.98,p =5 x 107%; regional
level F = 1.30,p = 0.27).

To ensure that these results were not exclusively
due to different edge weight distributions, we veri-
fied these results using S and AS based on the same
edge weight distribution as A. When we examined the
effects in more detail, we observed that the binariza-
tion reduced the absolute values and variance of aver-
age controllability on both the regional and individual
level, whereas modal controllability displayed a reverse
effect. This pattern of results is in line with findings
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Figure5. Structural connectivity measures. (A) Average controllability, (B) modal controllability, and (C) minimum control
energy for different measures of structural connectivity. The network encoded in A is based on streamline counts between two
brain regions from diffusion imaging. The network encoded in § is based on the extent of spatial adjacency between two brain
regions from T1-weighted images. The network encoded in AS is an average of A and S. Additionally, we consider binary versions
of the three networks, and refer to them as bA, bS, and bAS, respectively. (Top) Box plots depict individual controllability metrics
and control energy summarized across brain regions. Colored diamonds represent individuals and provide insight into individual
changes. (Bottom) Violin plots depict regional metrics averaged across participants. Collectively, these panels illustrate the fact that
the two structural connectivity measures provide complementary information that is retained by their combination.

Connectivity matrix

that less connected brain regions exhibit lower aver-
age controllability but higher modal controllability
[35]. Similarly, individual minimum control energy
was increased for binary matrices compared to fully
weighted matrices; this result is consistent with previ-
ous evidence demonstrating that control nodes with
more homogeneous edge weights require larger con-
trol energy [29]. Overall, the binarization of the struc-
tural connectivity matrix substantially reduced the
variance of controllability metrics but not minimum
control energy, suggesting that the edge weights carry
valuable information especially for controllability
metrics.

4.6. Persistent and transient modal controllability

Many neuroscientific endeavors focus on the speed of
neural dynamics. Network control theory allows us
to explicitly study whether a brain region is capable
of controlling fast and slowly changing activity
modes by means of transient and persistent modal
controllability. However, there is no clear definition
of which activity modes are considered as fast or
slow. Thus, we wished to further inspect how the
definition of fast and slow temporal dynamics affects
transient and persistent modal controllability. We
began with the calculation of both metrics across
various thresholds for determining which modes were
considered to be transient versus persistent. First, we
observed that with increasing threshold the magnitude

of both transient and persistent modal controllability
increased because the number of summed modes was
expanded. As expected, we further noted that transient
and persistent modal controllability based on a
threshold of 0.5 summed up to modal controllability.
The initially positive Pearson correlation between
transient and persistent modal controllability of
brain regions reduced and turned into a negative
association with increasing thresholds (ry; = 0.82,
o1 =7 X 107, =0.78,pp2 = 7 x 10743 =0.65,
Pos=1x10"%; ryy=—020, pos=23x107%
ro5 = —0.99,pos = 4 x 1071%7)(figure6(A)).Notably,
for small thresholds such as 0.1, a subset of brain
regions was found to be capable of controlling both
fast and slow temporal dynamics (figure 6(B)). While
controlling for the size of each cognitive system, we
found that these brain regions belonged primarily to
the subcortex (36%) and VIS (22%) systems, but also
VEN (12%), DOR (9%), SOM (8%), DM (8%), and
FPC (5%) systems. For large thresholds such as 0.5,
brain regions seem to be either able to control fast
dynamics (39% SC, 14% DOR, 12% VIS, 11% DM, 8%
FPC, 6% SOM, 5% VEN, and 5% LIM systems) or slow
dynamics (31% FPC, 26% subcortex, 22% SOM, 10%
DOR, 7% DM, and 3% VIS systems), but not both.

To explore this ambiguous relationship in more
detail, we disentangled the overlapping thresholds
by considering the unscaled eigenvector matrix V,
and then by summarizing the modes into 10 intervals
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Figure 6. Impact of threshold on persistent and transient modal controllability. Regional controllability of fast and slow modes
for two exemplary thresholds. (Top) Persistent and transient modal controllability defined as a brain region’s ability to control the
10% slowest and 10% fastest modes, respectively. (Bottom) Analogously, persistent and transient modal controllability based on
athreshold of 50% of the modes. (A) Scatter plots show the relationship between transient and persistent modal controllability
of brain regions averaged across participants. (B) Transient and persistent modal controllability projected onto the brain surface.
Note that metric values are ranked for visualization purposes only. (C) Heat maps depict each node’s ability to control a specific
interval of modes, ranging from the fastest (1) to the slowest (10 and 2 respectively) modes. For this purpose, we summarized

the unscaled eigenvector matrix Vinto 10 and 2 intervals according to their associated eigenvalues. The rows of the heat maps
were sorted by means of a hierarchal cluster analysis based on average linkage. When we aggregated the modes into 10 intervals,
similar brain regions were capable of controlling both the slowest and fastest group of modes. When we, however, aggregated the
modes into 2 intervals, brain regions were able to control either fast or slow modes. Thus, the ability of a brain region to control
fast and slow modes depended on the definition of the specific control task. Abbreviations: ctrb = controllability, VIS = visual,
SOM = somatomotor, DOR = dorsal attention, VEN = ventral attention, LIM = limbic, FPC = frontoparietal control,

(9]

Persistent modal ctrb

Brain regions
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Mode intervals
rank zjvij2

versus 2 intervals (figure 6(C), top versus bottom).
Interestingly, this investigation into the controllability
of separate mode intervals also supported the notion
that similar brain regions were capable of controlling
fast and slow dynamics in the strict definition of these
control tasks (10 intervals) but not in the broader defi-
nition of these control tasks (2 intervals). Importantly,
we note that these results do not extend to discrete-
time systems because the definition of modes that
are considered as fast versus slow differs substantially
between time systems. Overall, the ability of a brain
region to control fast and slow modes largely depended
on the definition of the control tasks.

4.7. Complexity of energylandscape

Finally, we sought to extend the types of research
question we can address with the set of currently
available controllability and energy metrics. For this
purpose, we developed and validated a complementary
metric that measures the heterogeneity of all
possible minimum control energy trajectories.
The complexity of the energy landscape allows
us to quantify the similarity or dissimilarity of all
possible state transitions in respect to their required
amount of control energy. Based on the variability
of the eigenvalues of the controllability Gramian, we

quantified the complexity of the minimum control
energy landscape in each individual. Probing the
consistency of the complexity of the energy landscape
across time systems, we observed a large positive
Pearson correlation between discrete- and continuous-
time systems (r=0.87, p =1 x 1073). We further
examined the complementarity of the complexity
of the energy landscape by calculating the Pearson
correlation between the complexity measure and
the other established control metrics defined earlier.
We found a small negative association between
complexity and average controllability (r = —0.15,
p =0.68), a large negative association with modal
controllability (r = —0.67, p = 0.04), and a medium
negative association with minimum control energy
(r=—0.40, p=0.26). Next, we validated the
complexity of the energylandscape of the brain against
three null models, preserving either the strength
distribution or the spatial embedding, or both. Brain
networks showed a significantly lower complexity of
the energy landscape than the topological null model
(W=65 p=28x 1079%), the spatial null model
(W=0, p=5x107%), and the combined null
model (W = 2498, p = 6 x 107?), as quantified by a
Wilcoxon test (figure 7). Interestingly, the combination
of topological and spatial characteristics seemed to
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Figure7. Complexity of the energy landscape of the human brain. Heterogeneity of the minimum control energy landscape

of individual participants (dark blue diamonds) as compared to three null models preserving different characteristics of

brain networks. The complexity of the energy landscape was quantified by the variability of the eigenvalue distribution of the
controllability Gramian. Null model distributions (box plots) were estimated by randomly rewiring each brain network 100 times.
Spatial null models (blue box plots) preserved the relationship between edge weight and Euclidean distance. Topological null models
(yellow box plots) preserved degree and strength distributions. Combined null models (green box plots) preserved both strength
distribution and spatial embedding. Dashed lines indicate complexity of the energy landscape of brain networks and null models
averaged across individuals. The combination of topological and spatial characteristics partially explains the homogeneous energy

partially explain the brain’s higher homogeneity of
the energy landscape. We found consistent evidence
in discrete-time systems (Sfigure 9; further details are
provided in the supplementary results). Overall, the
complexity of the energy landscape of the brain was
complementary to other controllability metrics and
low compared to several null models.

5. Discussion

Network control theory is an emerging field in
neuroscience that has the potential to yield promising
insights into structure-function relationships in health
and disease. Here, we provided an overview of the
theoretical framework by illustrating the underlying
model of neural dynamics and commonly studied
controllability concepts. Based on the structural brain
networks from ultra high-resolution diffusion imaging
data (730 diffusion directions) of 10 healthy adults, we
calculated average and modal controllability as well
as minimum and optimal control energy. We then
systematically probed the impact of different modeling
choices, specifically the choice of time system, time
horizon, normalization, and size of the control set, on
these metrics. We further suggested potentially useful
model extensions such as an alternative measure of
structural connectivity accounting for propagation of
signals through gray matter to abutting regions, and a
complementary metric quantifying the complexity of
the energy landscape of brain networks.

5.1. Specificmodeling recommendations

Based on theoretic considerations and on our
systematic examination of different modeling choices,
we derived several specific recommendations. First,
we observed a generally high consistency between the
behavior of discrete- and continuous-time systems,
which depended on the metric, observation level,
and time horizon. Classifying the neural dynamics
under study as clearly discrete- or continuous-time is
often challenging. Unless an investigator has a clear
justification for choosing one time system over another,
we recommend to verify the obtained results in the
alternative time-system to allow for a better generality
of the findings and inferences drawn therefrom.
Second, we demonstrated that short time horizons led
to an alternative time system compared to longer time
horizons. Note that too short time horizons could be
neurobiologically implausible considering that the
transition between brain states is a dynamic process.
The arbitrary units of the time scale further challenge
the decision of which time horizon to choose. If there
exists no concrete justification for the choice of time
horizon, we recommend to validate the obtained
findings using several different time horizons. Third,
we found that a fast stabilization of the system induced
a substantially different control scenario, which is
in line with theoretic considerations. Again, if there
are no concrete neurobiological variables that can be
used to constrain one’s choice, we suggest that a slow
stabilization could be a plausible representation of
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most neural dynamics, allowing for a broader range
of dynamics. Since the influence of the normalization
parameter ¢ depends on the largest eigenvalue, the
same ¢ can have different stabilization effects in
different brain networks. To ensure consistency across
studies, we suggest to make ¢ dependent on the largest
positive eigenvalue of the structural connectivity
matrix, for instance by ¢ = 0.01 + A\(A) 4. Finally, the
observation that controlling brain dynamics becomes
increasingly difficult with reduced control sets is
coherent with the complexity of cognitive functions
and brain diseases. The amount of required control
energy for a specific state transition depended on
the size and composition of the control region set.
The decision critically depends on the individual
research question and hence, should be well informed
by theoretical or practical considerations. From a
methodological perspective, it is important to control
a sufficiently large number of brain regions to robustly
estimate control energies. An important next step
is the development of tools to determine the most
efficient control set for a specific state transition [29].
Lastly, we recommend that future studies assess and
report the relation between controllability metrics and
weighted degree (Sfigure 10 and 11). Because different
network topologies show different relationships
between these two metrics, a systematic examination
of such relationships in diverse graph ensembles is
an important direction for future research. In sum,
these recommendations could guide more informed
modeling choices in future applications of network
control theory to pressing questions in cognitive,
developmental, and clinical neuroscience.

5.2. Therole of time in network controllability

In our examination of different modeling choices,
we found that both a short time horizon and a fast
stabilization of the system induced an alternative
control regime. We suggest a common mechanism
underlying both time-related observations. Whereas
the injected control input has time to diffuse along
inter-connections between brain regions over
longer time horizons, it might be possible that this
diffusion process is constrained over short time
horizons. Instead, a different control regime could
come into effect in which the injected input primarily
controls each brain region independently rather than
capitalizing on their interconnections. This finding
suggests that time might play a more important role
in the controllability of structural brain networks than
is commonly assumed. Thus, it could be interesting to
further investigate the factor of time, for instance by
linking control to real-time measures of brain function
[17,57]. Another potentially fruitful venture could be
to determine optimal control horizons by capitalizing
on the natural dynamics of the system or by changing
inter-connections in more advanced dynamic models
[75]. Such methods emphasizing the role of time could
help to develop minimal clinical interventions such as
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neuromodulation [76], which is immediately relevant
for the control of seizures in epilepsy [77-81]. The
temporal nature of control is also potentially relevant
for further refining brain-machine interfaces [82, 83].

5.3. Future directions for proposed model
extensions

Moreover, the present work provides several potentially
useful extensions of network control theory. We first
developed and validated a complementary measure of
structural connectivity motivated by the fact that brain
networks based on diffusion imaging data disregard
the potential for neural signals to diffuse between
spatially adjacent brain regions. We demonstrated
that this alternative structural connectivity measure
based on the amount of shared neighborhood
between two brain regions was complementary to
the tractography version. We further showed that
their combination introduced more inter-individual
variability in controllability metrics, motivating
future efforts to employ this approach in studies of
individual differences. An important next step is to
test whether structural brain networks based on both
diffusion imaging and spatial adjacency outperform
networks purely based on diffusion imaging data by
better accounting for the observed neural dynamics
[44, 45]. Additionally, we examined the ability of the
brain to control slow and fast dynamics. We found that
the capability of a brain region to control different fast
modesdepended onthespecificdefinition of the control
task and was not consistent between time-systems.
Neuroscientists interested in the speed of neural
changes such as different frequency bands [84, 85]
should be careful in justifying their choice of time
system and the threshold which defines slow versus fast
modes.

Lastly, we wished to extend the existing set of con-
trollability metrics. For this purpose, we developed and
validated a new metric that quantifies the complexity
of the energy landscape of a given brain network. In
other words, the metric measures how heterogeneous
all possible state transitions are in the control energy
that they require. We showed that the brain exhibited
a more homogeneous energy landscape compared
to two different null models. We found that both the
brain networks’ strength distribution and spatial
embedding partially explained this observation, which
is in line with previous findings connecting local and
global network characteristics to network controllabil-
ity [29,30, 35]. The requirement of a similar amount of
energy to enable diverse state transitions implies that
brain architecture supports diverse transitions, which
in turn could explain the complex functional dynamics
consistently observed in neural systems. A crucial next
step is to test the practical utility of this new metric by
linking it to development, cognition, and psychiatric
disorders. Taken together, the proposed model exten-
sions hopefully stimulate and enrich future research. A
detailed outlook on further developments in network
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control theory is provided in the Supplementary Dis-
cussion.

5.4. Methodological considerations
Several methodological aspects could potentially
constrain the interpretability of our results. First, we
capitalized on high-resolution diffusion weighted
imaging data for the construction of structural
connectivity networks. Associated tractography
algorithms are still limited in their capacity to
reliably track fiber bundles, particularly long-range
connections [86, 87], in terms of their origin, exact
direction, and intersection [88]. Nevertheless,
diffusion weighted imaging serves as the state-of-
the-art method to study white matter architecture
in humans and therefore, tractography algorithms
are continuously being refined [89]. In the future,
the potential incorporation of directed structural
networks enabling more complex brain dynamics
may provide additional insight into control strategies
utilized by the human brain [90, 91]. Second, our
dynamic model of neural processes relied on several
simplifying assumptions including linearity and time-
invariance. However, such basic models often provide
a good starting-point to approximate higher-order
dynamics [44, 45] and can subsequently be adapted to
contain more complex features such as non-linearity
[92, 93] and time-dependence [75]. Third, it was
beyond the scope of this paper to examine the impact
of modeling choices in all of their theoretically possible
combinations. Instead, we systematically varied one
modeling choice at a time while keeping all other
choices constant. Thus, the obtained results might
not automatically generalize to left-out choices, for
example in the presence of higher order interactions.
In a similar vein, our findings might not be gener-
alizable to different edge weights due to the substantial
impact they can have on controllability metrics [65].
For a more detailed elaboration, we refer the inter-
ested reader to a comprehensive study of the behavior
of controllability metrics on networks with different
edge weighting schemes such as Gaussian, power-law,
and nonparametric distributions [65]. Because this
practical guide is supposed to primarily target the
neuroimaging community, choosing structural brain
networks based on diffusion imaging data seemed
most useful to us. Nevertheless, the generalizability to
other edge weight distributions or structural connec-
tivity measures remains an open question. A further
limitation of our study is the investigation of control
energies in a restricted set of six state transitions. For
didactic purposes, the initial and target brains states
were constructed in a controlled, yet unnatural way by
capitalizing on the artificial activation of brain regions
belonging to the same cognitive system. A thorough
investigation of the impact of different choices of brain
states would aid future application of network con-
trol theory to theoretical neuroscience, but is beyond

T M Karrer etal

the scope of this work. For greater ecological validity,
future studies should consider real brain states meas-
ured by functional neuroimaging [17, 57] as also pro-
vided by meta-analysis of large databases [60, 61]. The
present work is furthermore limited to the examina-
tion of how the brain transitions between two states
as opposed to how the brain maintains a specific state.
The systematic study of more complex brain dynam-
ics such as setpoint tracking is an exciting future direc-
tion in network control theory [57]. Lastly, we wish to
point out that the high consistency between minimum
and optimal control energy could also be due to differ-
ent scales of distance and energy costs. To avoid such
effects, future efforts could develop an optimal energy
algorithm that balances both constraints equally inde-
pendent of their scale.

5.5. Conclusions

Our systematic overview of network control theory
and possible modeling choices aimed to facilitate
a deeper understanding and better evaluation of
network control theory applications in neuroscience.
Future work can potentially benefit from our specific
recommendationsand the proposed model extensions.
Opverall, this work hopefully inspires the neuroscience
community to fully exploit the potential of network
control theory on multiple spatial scales ranging
from single neurons to brain regions. Ultimately, such
endeavors could advance our understanding of how
the architecture of the brain gives rise to complex
neural dynamics.
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