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Control of brain network dynamics across diverse scales of space and time
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The human brain is composed of distinct regions that are each associated with particular functions and
distinct propensities for the control of neural dynamics. However, the relation between these functions and
control profiles is poorly understood, as is the variation in this relation across diverse scales of space and time.
Here we probe the relation between control and dynamics in brain networks constructed from diffusion tensor
imaging data in a large community sample of young adults. Specifically, we probe the control properties of each
brain region and investigate their relationship with dynamics across various spatial scales using the Laplacian
eigenspectrum. In addition, through analysis of regional modal controllability and partitioning of modes, we
determine whether the associated dynamics are fast or slow, as well as whether they are alternating or monotone.
We find that brain regions that facilitate the control of energetically easy transitions are associated with activity
on short length scales and slow timescales. Conversely, brain regions that facilitate control of difficult transitions
are associated with activity on long length scales and fast timescales. Built on linear dynamical models, our
results offer parsimonious explanations for the activity propagation and network control profiles supported by
regions of differing neuroanatomical structure.
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I. INTRODUCTION

The brain is an inherently networked system that displays
incredibly rich and complex dynamics [1,2]. Building accu-
rate models of those dynamics remains a key challenge that is
fundamental to the field of neuroscience, with the potential
to inform personalized medicine by predicting a patient’s
disease progression and response to therapy [3–6]. Efforts to
build such models necessarily depend on the development of
interdisciplinary approaches informed by dynamical systems
theory, statistical physics, and network science as well as
substantial knowledge of the intricacies of the underlying bi-
ology [7]. Because of the multiscale nature of the system [8,9],
there are some regimes of function or modalities of measure-
ment whose dynamics are well-fit by one mathematical model
and others whose dynamics are well-fit by another mathemat-
ical model [2,10–12]. On the one hand, large-scale measure-
ments of brain activity can display a wave-like nature and
other characteristics consistent with linear, diffusive dynamics
instantiated on a physically embedded system [13–17]. On the
other hand, fine timescale measurements of brain activity can
display oscillatory characteristics consistent with nonlinear,
synchronization dynamics thought to support distributed com-
munication and computation [18–21].

Evidence for the first type of dynamics comes, for example,
from studies of both large- and small-scale neuronal processes
whose intrinsic or endogeneous activity can be partially ex-
plained by simple linear models [13,14]. Moreover, wavelike
activity has been observed using functional magentic reso-
nance imaging (fMRI) in the visual cortex, where traveling
wave responses to visual stimuli are observed to propagate
out from the fovea [16]. Notably, such traveling waves with
various timescales have been observed across different regions
of the brain [22], and it has been posited that the direction and
wavelength of the wave could encode information transmitted
between regions [23]. In addition to the outward propagation
of activity, spiral waves also occur frequently in the neocortex
in vivo, both during pharmacologically induced oscillations
and during sleeplike states [24], while seizures may manifest
as recurrent spiral waves that propagate in the neocortex [17].
Such multiplicity of phenomena motivates the use of dynami-
cal models that emphasize the spatially embedded nature of
brain networks [25], and the extended versus transient re-
sponses that such an embedding can support [26]. An example
is the use of finite-element modeling to simulate the propaga-
tion of brain stimulation [27,28], where effects are distributed
on a localized part of brain tissue [29]. Another example is
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that of diffusive models, where network diffusion over long
timescales has been used to model disease progression in the
brain for dementia [15] or to predict longitudinal patterns of
atrophy and metabolism in Alzheimer’s disease [30].

Evidence for the second type of dynamics comes from
studies of both large- and small-scale ensembles that pro-
duce rhythmic or oscillatory activity [18,19,31]. For exam-
ple, scalp electrodes in humans can be used to measure
rhythms of certain frequencies, which in turn have been
associated with different cognitive processes and behavioral
responses [20,21]. For example, attentional control via the in-
hibition of behaviorally irrelevant stimuli and motor responses
has been associated with the synchronization of α and β

rhythms between right inferior frontal and primary sensory
neocortex [32]. Similarly, higher frequency γ rhythms in local
synchronization have been observed during visual responses,
while lower frequency β rhythms reflecting coherence over
parietal and temporal cortices have been observed during
activities that required more multimodal sensory integra-
tion [33]. Initial efforts sought to explain such phenomena
using a simple neuronal model with conduction delays, where
excitatory units describe pyramidal cells and inhibitory units
describe interneurons [34]. More recent work suggests that
the β rhythms specifically can emerge from the integration
of nearly synchronous bursts of excitatory synaptic drive
targeting proximal and distal dendrites of pyramidal neurons,
where the defining feature of a β event was a strong distal
drive to supragranular and infragranular layers of cortex that
lasted one β period [35]. Notably, the laminar architecture of
the neocortical network has also proven critical for explaining
γ rhythms [36].

Although empirical studies find pervasive evidence of
these two distinct types of dynamics, the field lacks a complete
theoretical framework to model how the spatiotemporal char-
acteristics of these dynamics can inform the control properties
of specific brain regions, which are interconnected by a fixed
structural network. To address this question, recent efforts
have begun to study how such distinct dynamics can be guided
or controlled by local energy input [40]. For the control of
those features of the dynamics that are well-approximated by
linear systems theory, efforts have stipulated a linear model of
the dynamics dependent upon the structural network implicit
in white matter connectivity [41,42]. This framework of net-
work control has been useful to understand brain anatomy and
regional function across multiple species including the nema-
tode Caenorhabditis elegans [43], the fly Drosophila [44], the
mouse [44], the macaque [41], and the human [39]. Network
control theory has also been used to explore the control pro-
files of brain regions based on their network connectivity [45],
and hence to map control propensities on to canonically
understood cognitive functions [39,41,46] and their alterations
in psychiatric disorders [47]. For the control of those fea-
tures of the dynamics that require nonlinear systems theory,
network control is more difficult [37,48], but some initial
work has begun to assess the utility of control principles for
seizure abatement [42] and to determine routes along which
information can be propagated by transient synchrony [20,21].
In extending these ongoing efforts, a key challenge remains
to build models that can predict not only the generic control
properties of a system, but also the length scales over which

control-induced dynamics will propagate, and to link these
length scales to the timescales of dynamical transitions or
control of activity enacted by regional drivers.

Here, we perform initial numerical experiments to address
this challenge by relating new developments in the linear
control of regional activity in brain networks and their pre-
dicted timescales, with the length scales implicit in nonlinear
dynamical models of inter-regional synchronization. We use
the framework of network control [49] to probe the relation
between control and dynamics in brain networks constructed
from diffusion tensor imaging data in a young adult sub-
set of the Philadelphia Neurodevelopmental Cohort, a large
community-based sample of youth [50,51]. Use of this large
sample allows us to probe relations between control and
dynamics in an ensemble of brain networks in which control
propensities vary extensively [39]. The paper is organized as
follows. Following a description of the formalism in Sec. II,
we turn in Sec. III to a review of network controllability
metrics and their predictions regarding the control profiles
of certain brain regions (see the Appendix for details re-
garding brain network construction from neuroimaging data).
In Sec. IV, we consider metrics for the characterization of
spatial scales of synchronization in network dynamics [52]
and for the control of such synchronization [53]. In Sec. V, we
consider metrics for the characterization of temporal scales
of control in network dynamics, specifically assessing the
role of modal controllers in driving transient versus extended
temporal modes of brain activity [45]. In Sec. VI, we compare
the relation between control of timescales and control of
length scales that we observe in brain networks to those
that we observe in networks constructed via the rules of
preferential attachment, gaining insight into the dependence
of spatiotemporal control on the underlying topology. In
Sec. VII, we place our findings within the broader context
of empirical results from neuroimaging experiments. We also
discuss the implications of our findings for our understanding
of how various controllers are associated with distinct types
of dynamics, and in turn how distinct dynamics are associated
with different regional controllers. We close with a brief
discussion of potential future directions.

II. MATHEMATICAL FRAMEWORK

In this section, we describe a formalism for building net-
work models of brain architecture and states, and for studying
network controllability of brain dynamics.

A. Network models of brain architecture and states

Here, we study 190 brain networks describing the white
matter connectivity of youth in the Philadelphia Neurode-
velopmental Cohort. For each network composed of N =
234 cortical and subcortical brain regions, A ∈ RN×N is a
symmetric and weighted adjacency matrix whose elements
indicate the number of white matter streamlines connecting
two different brain regions indexed with (i, j). For further
details regarding the construction of brain networks from
neuroimaging data see the Appendix, and for prior work in
this data set see Refs. [39,46,54,55].

More formally, a networked system such as the brain can
be represented by the graph G = (V, E ), where V and E are
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the vertex and edge sets, respectively. Let ai j be the weight
associated with the edge (i, j) ∈ E , and define the weighted
adjacency matrix of G as A = [ai j], where ai j = 0 whenever
(i, j) �∈ E . We associate a real value (state) with each node,
collect the node states into a vector (network state), and define
the map x : N�0 → Rn to describe the evolution (network
dynamics) of the network state over time.

Next we seek to define an appropriate equation of state.
Based on prior work demonstrating the utility of simple
linear models in predicting intrinsic brain dynamics across
spatial scales [13,14], we employ a simplified noise-free linear
discrete-time and time-invariant network model [41]:

x(t + 1) = Ax(t ) + BKuK(t ), (1)

where x : R�0 → RN describes the state (i.e., a measure of
the electrical charge, oxygen level, or firing rate) of brain
regions over time, and A ∈ RN×N is the structural connectivity
described in the previous section. Hence, the size of the vector
x is given by N , and the value of x describes the brain activity
of that region.

B. Network controllability of brain dynamics

To assess controllability of this networked system, we must
first ensure its stability and define input points for the injection
of control energy. We note first that the diagonal elements of
the matrix A satisfy Aii = 0. Next we note that to assure Schur
stability, we divide the matrix by 1 + ξ0(A), where ξ0(A) is
the largest eigenvalue of A. The input matrix BK identifies the
control points K in the brain, where K = {k1, . . . , km} and

BK = [ek1 · · · ekm ], (2)

and ei denotes the ith canonical vector of dimension N . The
input uK : N → R|K| denotes the control strategy, i.e., the
control signal injected into the network via the nodes K.
More precisely, it is a map from the set of natural numbers
(representing the time instant), and the set of real vectors of
length |K| (representing the actual control vector).

We can now study the controllability of this dynamical
system, which refers to the possibility of driving the state of
the system to a specific target state by means of an external
control input [56]. Classic results in control theory ensure that
controllability of the network Eq. (1) from the set of nodes
K is equivalent to the controllability Gramian WK being
invertible, where

WK =
∞∑

τ=0

Aτ BKBT
KAτ . (3)

Consistent with Refs. [39,41,46,47], we use this framework to
choose control nodes one at a time, and thus the input matrix
BK in fact reduces to a one-dimensional vector, e.g., BK =
(1 0 0 · · ·)T when the first brain region is the control
node. In this case, K simply describes this control node, i.e.,
the controllability Gramian can be indexed by the ith control
node that it describes: Wi.

III. CONTROLLABILITY METRICS FOR
BRAIN NETWORKS

Within the network controllability framework, we study
two different control strategies that describe the ability to

move the network into different states defined as patterns of
regional activity. While the brain certainly displays nonlinear
activity, we study a linear model of this more complex nonlin-
ear process which is valid in a neighborhood of the lineariza-
tion point [see Fig. 1(a)]. Modeling of brain activity in large-
scale regional networks shows that the linear approximation
provides fair explanatory power of resting state fMRI BOLD
data [13]. Further, studies of this controllability framework
using nonlinear oscillators connected with coupling constants
estimated from white matter tracts shows a good overlap with
the linear approximation [37].

The energy landscape of the linear model is quadratic,
with at most one energy minimum (at the origin), correspond-
ing to the only state that can be maintained without cost.
Note that this origin of the linear system corresponds to the
linearization point, i.e., the equilibrium configuration of the
nonlinear model from which the linear model is obtained.
Using the linear model described in the previous section, we
can introduce two controllability metrics. Intuitively, average
controllability describes the ease of transition to many states
nearby on an energy landscape, while modal controllability
describes the ease of transition to a state distant on this
landscape [see Fig. 1(a)].

Average controllability of a network equals the average
input energy from a set of control nodes and over all pos-
sible target states. As a known result, average input en-
ergy is proportional to Trace(W−1

K ), the trace of the inverse
of the controllability Gramian. Instead and consistent with
Refs. [39,41,46], we adopt Trace(WK) as a measure of av-
erage controllability for two main reasons: first, Trace(W−1

K )
and Trace(WK) satisfy a relation of inverse proportionality,
so that the information obtained from the two metrics are
correlated with one another and, second, WK is typically very
ill-conditioned even for coarse network resolutions, so that
Trace(W−1

K ) cannot be accurately computed even for small
brain networks. It should be noted that Trace(WK) encodes a
well-defined control metric, namely the energy of the network
impulse response or, equivalently, the network H2 norm [57].
As discussed above, when a brain region i serves as a control
node, the resulting Gramian can be indexed as Wi, in order to
compute the regional average controllability.

To calculate the trace of the Gramian, we avoid the numer-
ical difficulties associated with solving the Lyapunov equa-
tion [58–61]. Given the stability of our matrix A, we can use
the following:

Trace(WK) = Trace

( ∞∑
τ=0

Aτ BKBT
KAτ

)

=
∞∑

τ=0

Trace
(
Aτ BKBT

KAτ
)

=
∞∑

τ=0

Trace
(
A2τ BKBT

K
)

=
( ∞∑

τ=0

A2τ

)(
BKBT

K
)

= (
I − A2τ

)−1(
BKBT

K
)
.

Here we used some properties of our system, that K contains
only one node and A is symmetric.
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(a) (b)

(c) (d)

FIG. 1. Controllability and synchronizability in brain networks. (a) While the brain displays nonlinear dynamics (top left), linear models
(top right) have shown great utility in predicting such dynamics across spatial scales [13,14,37]. We study two such metrics: Average
controllability provides an intuitive measure of the structural support for moving the brain to easy-to-reach states (short red transition),
whereas modal controllability provides an intuitive measure of the structural support for moving the brain to difficult-to-reach states (long
blue transition). (b) Diffusion tensor imaging measures the direction of water diffusion in the brain. From this data, white matter streamlines
can be reconstructed that connect brain regions in a structural network. (c.i) Regional average controllability ranked on N = 234 brain
regions of a group-averaged network for visualization purposes. (c.ii) Regions with high average controllability tend to display low modal
controllability: ρ = −0.76, df = 233, p < 1 × 10−16. (d) We operationalize a synchronous state as a state in which all nodes have the same
activity magnitude. Such a state is stable when the master stability function is negative for all positive eigenvalues of the graph Laplacian [38].
Following Ref. [39], we use the inverse spread of the Laplacian eigenvalues 1/σ 2({λi}) as a measure of global synchronizability. Adapted with
permission from Ref. [39].

Modal controllability refers to the ability of a node to
control each time-evolving mode of a dynamical network and
can be used to identify states that are difficult to control from
a set of control nodes. Modal controllability is computed from
the eigenvector matrix V = [vi j] of the network adjacency
matrix A. By extension from the PBH test [57], if the entry vi j

is small, then the jth mode is poorly controllable from node i.
Following Ref. [45], we define

φi =
∑

j

[
1 − ξ 2

j (A)
]
v2

i j (4)

as a scaled measure of the controllability of all N modes
ξ0(A), . . . , ξN−1(A) from the brain region i, allowing the com-
putation of regional modal controllability. Regions with high
modal controllability are able to control all of the dynamic
modes of the network and hence to drive the dynamics toward
hard-to-reach configurations.

We study these metrics in the 190 structural brain networks
derived from diffusion tensor imaging data [see Fig. 1(b)].
On a group-representative brain network constructed by
averaging all 190 subject-specific networks, we calculate
these controllability metrics and show their distribution across
the brain [see Fig. 1(c.i)]. Consistent with prior work in both

this and other data sets [39,41], we find that regions with
high average controllability tend to be located in network
hubs associated with the default-mode system, a set of regions
that tend to be active during intrinsic processing. Interestingly
and again consistent with prior work in this and other data
sets [39,41,47,62], regions with high modal controllability
tend to display low average controllability [see Fig. 1(c.ii)],
and are predominantly found in regions of the brain that be-
come active during tasks that demand high levels of executive
function or cognitive control.

IV. CONTROLLABILITY OF SPATIAL SCALES:
NETWORK DYNAMICS IN HARMONIC WAVES

In contrast to the time-varying or transient dynamics
that can be described using models mentioned in the previ-
ous section, recent observations of brain dynamics also in-
clude sustained patterns of collective activity across relatively
large areas [22,63]. Such wave patterns call for a different
description: one better suited by a framework developed for
networked oscillators and synchronized activity.

Specifically, the previous linear model [Eq. (1)] is not
relevant to wavelike dynamics, even as it is supported by
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FIG. 2. Synchronizability and the spatial extent of predicted harmonic waves. (a) Spatial distribution of the eigenvector φ1 for the smallest
Laplacian eigenvalue λ1, showing which regions on a group-averaged brain network most strongly contribute to this large-scale mode.
(b) Spatial distribution of the eigenvector φN−1 for the largest Laplacian eigenvalue λN−1, showing which regions most strongly contribute to this
small-scale mode. (c) Regions most relevant for this large-scale mode |φ j

1 | are positively correlated with regions of high modal controllability:
ρ = 0.27, df = 233, p < 1 × 10−4. (d) Regions most relevant for this small-scale mode |φ j

N−1| are positively correlated with regions of high
average controllability: ρ = 0.95, df = 233, p < 1 × 10−5. Note that the color in panels (a, b) is recapitulated by values along the vertical
axis in panels (c, d), simply for ease of identifying relevant brain regions with the given results.

other empirical observations [13,14,43]. Therefore, to com-
plement our previous efforts to study the control of brain state
transitions via a simple linear model of network dynamics,
here we turn to the question of how to control the synchrony
of harmonic waves [52] which naturally arise in the same
underlying white matter architecture. Notably, extensive prior
work in the dynamical systems literature has considered ways
in which to measure the synchronizability of a networked
system. To be clear, here we define the synchronizability as
a measure of the ability of a network to persist in a single syn-
chronous state s(t ), i.e., x1(t ) = ... = xn(t + 1) = s(t ). The
master stability function (MSF) allows analysis of the stability
of this synchronous state without detailed specification of the
properties of the dynamical units [see Fig. 1(d)] [38]. Within
this framework, linear stability depends upon the positive
eigenvalues {λi}, i = 1, ..., N − 1 of the Laplacian matrix L
defined by Li j = δi j

∑
k Aik − Ai j . The synchronous state is

stable when the master stability function is negative for all
positive eigenvalues of the graph Laplacian [see Fig. 1(d)].

For the purposes of control, it is useful to note that the
structure of the graph Laplacian provides information regard-
ing the most likely modes of standing waves: the vibrational
states of a dynamical system in which the frequency of
vibration is the same for all elements. These modes are given

by the eigenvectors of the graph Laplacian. For example, the
eigenvector φ1 of the smallest positive Laplacian eigenvalue
λ1 is an odd mode associated with large-scale waves [38,52]
[Fig. 2(a)]. In contrast, the eigenvector φN−1 of the largest
Laplacian eigenvalue λN−1 is an even mode associated with
small-scale waves [Fig. 2(b)]. Recent developments in push-
pull control capitalize on these relations to control the tran-
sition into and out of synchrony by targeting network nodes
that have a large weight for a given extremal eigenvector of
the Laplacian [53].

To investigate the control of synchrony in the harmonic
waves of brain networks, we calculate the eigenvectors of
the Laplacian for each subject, and then we average the
eigenvectors across all of the 190 subjects. We observe that
the strength of control for harmonic waves of a network can
be understood in terms of the network’s predisposition to
average and modal control. First, we observe that the regional
strength of the large-scale waves |φ j

1 | is positively correlated
with regional modal controllability [Spearman correlation
coefficient ρ = 0.27, df = 233, p < 1 × 10−4; Fig. 2(c)].
This relation suggests that regions that enable synchronous
behavior over long distances are also predicted to be effective
in moving the brain to energetically distant states (see a
list of the highest and lowest such regions in Table I of the
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Appendix). Second, we observe that the regional strength
of the small-scale waves |φ j

N−1| is positively correlated
with regional average controllability [Spearman correlation
coefficient ρ = 0.95, df = 233, p < 1 × 10−5; Fig. 2(d)].
This relation suggests that regions that enable synchronous
behavior over short distances are also predicted to be effective
in moving the brain to energetically nearby states (see a list
of the highest and lowest such regions in Table II of the
Appendix). To confirm that our results do not depend on the
stage at which we average over subjects, we also calculate
these correlations for the Laplacian spectra obtained from
a group-averaged network (procedure described in Sec. II).
We find that the regional strength of the large-scale waves in
the group network is still positively correlated with regional
modal controllability (Spearman correlation coefficient ρ =
0.28, df = 233, p < 1 × 10−4), while the regional strength
of the small-scale waves in the group network is still positively
correlated with regional average controllability (Spearman
correlation coefficient ρ = 0.86, df = 233, p < 1 × 10−5).
These results demonstrate that our findings do not depend
unduly on the stage at which we average over subjects.

V. CONTROLLABILITY OF TEMPORAL SCALES:
NETWORK DYNAMICS IN FAST OR SLOW,

ALTERNATING OR MONOTONE MODES

To complement the findings reported in the previous sec-
tion explicating the spatial scales of control, we next turn to
a consideration of the timescales of control. We note that in
a discrete-time system, the eigenvalues of the network adja-
cency matrix A give the rate of decay of the various supported
modes of activity. These modes of a linear time-invariant
system are the elementary components of the dynamic re-
sponse of the system to stimuli. Each mode gives rise to an
elementary response (or trajectory), and the combination of
the modes generates more complex responses and trajectories.
Distinct processes and timescales of activity are observed in
the brain, where rhythms of certain frequencies have been as-
sociated with different cognitive processes and behavioral re-
sponses [20,21]. For instance, higher frequency γ rhythms in
local synchronization emerge during visual responses, while
lower frequency β rhythms reflecting coherence over parietal
and temporal cortices have been observed during activities
that required more multimodal sensory integration [33,35].
In our discrete time linear model, the eigenvalues with large
magnitude decay slowly while the eigenvalues with small
magnitude decay quickly. The relationship between eigen-
values and the rate of decay of associated modes of activity
suggests that the control of such modes can be analyzed
separately for different timescales. Although our prior expres-
sion for modal controllability [Eq. (4)] summed over all N
modes of the adjacency matrix A, we can instead partition
the sum into different groups based on the eigenvalues ξ j of
the modes. For instance, a region i can be evaluated for its
controllability of fast modes with φfast

i = ∑small |ξ j |
j v2

i j and for

its controllability of slow modes with φslow
i = ∑large |ξ j |

j v2
i j .

Note that in this case, all the eigenvalues have magnitude
smaller than 1. Further, in the above expression we have also
removed the scaling factor in Eq. (4) of [1 − ξ 2

j (A)] as this
factor is unnecessary for the calculation of control timescales;

FIG. 3. Extracting fast or slow, and alternating or monotone
modes of network dynamics. Here we show the histogram of N =
234 eigenvalues of the group representative brain network, con-
structed by averaging all 190 subject-specific brain networks. Given
the trimodal distribution of eigenvalues, we partition them into a
densely populated cluster of |ξ j | < 0.2, a lightly populated cluster of
0.2 < |ξ j | < 0.6, and the remaining |ξ j | > 0.6 eigenvalues that are
separated from the other modes with a clear gap. This partitioning
can be done for both positive and negative eigenvalues, respectively,
which correspond to the monotone and alternating modes of the sys-
tem. From left to right, these groups are ξ j < −0.6 (slow alternating),
−0.2 < ξ j < 0 (fast alternating), 0 < ξ j < 0.2 (fast monotone), and
ξ j > 0.6 (slow monotone), respectively.

in supporting calculations, we also verified that the inclusion
or exclusion of this factor does not alter our subsequent
findings.

To investigate regional propensities for the control of fast
versus slow modes, we considered the group-representative
network constructed by averaging all 190 subject-specific
brain networks. We examined the spectrum of this repre-
sentative network (see Fig. 3), and note that there are three
well-separated groups of eigenvalues. In the center, there is
a densely populated cluster of magnitude between 0 and 0.2
(fast), which have at least double the modes in each bin of
width 0.1 as compared to all the bins outside this cluster.
On the two ends, there are sparse modes with magnitude
above 0.6 (slow) that have a clear gap from all the other
modes. In between these above mentioned groups, there is a
lightly populated cluster of eigenvalue magnitude between 0.2
and 0.6, which are distinct from the other groups due to the
reasons mentioned. Given this visually trimodal distribution,
it is hence natural to partition the eigenvalues into three groups
that differ in their relevant timescales: |ξ j | < 0.2 (fast), 0.2 <

|ξ j | < 0.6 (medium), and |ξ j | > 0.6 (slow).
Now, it is also important to note that eigenvalues carry ad-

ditional information: the sign of the eigenvalue determines the
nature of the system’s response, where a mode with a positive
eigenvalue decays monotonically with each time step, while a
mode with a negative eigenvalue has a decaying response that
alternates between positive and negative values at each time
step. To allow sensitivity to these monotone and alternating
modes, we can restrict the range in the sum of φfast

i and
φslow

i to the positive or to the negative eigenvalues. By doing
so, we now have four groups of interest: 0 < ξ j < 0.2 (fast
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FIG. 4. Monotone modes and their control profiles across the brain. (a) Spatial distribution of the controllability of slow monotone
modes (ξ j > 0.6), showing which regions on a group-representative brain network most strongly contribute. (b) Spatial distribution of the
controllability of fast monotone modes (0 < ξ j < 0.2), showing which regions on a group-representative network most strongly contribute.
(c) Regions most relevant for control of slow monotone modes tended to be regions of high average controllability: ρ = 0.99, df =
233, p < 1 × 10−4. (d) Regions most relevant for control of fast monotone modes tended to be regions of high modal controllability:
ρ = 0.59, df = 233, p < 1 × 10−4. Note that the color in panels (a, b) is recapitulated by values along the vertical axis in panels (c, d),
simply for ease of identifying relevant brain regions with the given results.

monotone), ξ j > 0.6 (slow monotone), −0.2 < ξ j < 0 (fast
alternating), and ξ j < −0.6 (slow alternating). By separately
identifying these diverse modes, we can determine whether
and how brain regions’ differing controllability of particular
timescales might relate to their differing controllability of
various length scale modes.

Beginning with the control of only monotone dynamics,
we find that support for slow monotone dynamics (eigenval-
ues ξ j > 0.6) differs across the brain with greatest support
located in the prefrontal cortex and temporoparietal junction
[Fig. 4(a); see a list of the highest and lowest such regions
in Table III of the Appendix]. Moreover, we find that the
degree to which a regional controller supports slow monotone
dynamics is strongly and positively correlated with regional
average controllability [Spearman correlation coefficient ρ =
0.99, df = 233, p < 1 × 10−4; Fig. 4(c)], providing support
for energetically easy state transitions. Similarly, we also
find that support for fast monotone dynamics (eigenvalues
0 < ξ j < 0.2) differs across the brain with greatest support
located in subcortical areas [Fig. 4(b); see a list of the high-
est and lowest such regions in Table IV of the Appendix].
In addition, we find that the degree to which a regional
controller supports fast monotone dynamics is strongly and
positively correlated with regional modal controllability [ρ =
0.59, df = 233, p < 1 × 10−4; Fig. 4(d)], providing support
for energetically more difficult state transitions.

When studying the control of alternating dynamics, we find
that support for slow alternating dynamics (eigenvalues ξ j <

−0.6) differs across the brain with greatest support located
in the temporoparietal junction, inferior frontal gyrus, and
precuneus [Fig. 5(a); see a list of the highest and lowest
such regions in Table V of the Appendix]. Moreover, we
find that the degree to which a regional controller supports
slow alternating dynamics is strongly and positively corre-
lated with regional average controllability [ρ = 0.83, df =
233, p < 1 × 10−4; Fig. 5(c)], providing support for ener-
getically easy state transitions. Last, we also find that sup-
port for fast alternating dynamics (eigenvalues −0.2 < ξ j <

0) differs across the brain with greatest support located in
several midline structures [Fig. 5(b); see a list of the high-
est and lowest such regions in Table VI of the Appendix].
In this case, we find that the degree to which a regional
controller supports fast alternating dynamics is strongly and
positively correlated with regional modal controllability [ρ =
0.24, df = 233, p < 2 × 10−4; Fig. 5(d)], providing support
for energetically more difficult state transitions.

VI. DEPENDENCE UPON GRAPH ARCHITECTURE

The results described thus far provide striking relations
between the temporal and spatial scales of network dynamics
that a brain region can control. An interesting and important
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FIG. 5. Alternating modes and their control profiles across the brain. (a) Spatial distribution of the controllability of slow alternating
modes (ξ j < −0.6), showing which regions on a group-representative brain network most strongly contribute. (b) Spatial distribution of the
controllability of fast alternating modes (−0.2 < ξ j < 0), showing which regions on a group-representative network most strongly contribute.
(c) Regions most relevant for the control of slow alternating modes tended to be regions of high average controllability: ρ = 0.83, df =
233, p < 1 × 10−4. (d) Regions most relevant for the control of fast alternating modes tended to be regions of high modal controllability:
ρ = 0.24, df = 233, p < 2 × 10−4. Note that the color in panels (a, b) is recapitulated by values along the vertical axis in panels (c, d),
simply for ease of identifying relevant brain regions with the given results.

question to ask is whether and to what degree these relations
hold true in graph models with vastly different topologies.
In choosing a particularly dissimilar comparator, we consider
the fact that human brain networks are known to display
high clustering and short path length [64,65], community
structure [54], and core-periphery structure [66]. A notable
graph model that stands in stark contrast to this architecture
is the scale-free model [67], also sometimes referred to as
the preferential attachment model [68] or the Barabasi-Albert
model [69], which displays low clustering and longer path
length, less community structure, and less core-periphery
structure. For ease of comparison, we provide a table con-
trasting these primary network metrics in both networks; see
Table VII in the Appendix.

We therefore study a synthetically constructed Barabasi-
Albert network with the same number of nodes (N = 234)
and the same average strength as the group-representative
brain network in our empirical data set. As before, we cal-
culate controllability metrics and the Laplacian eigenvectors
to investigate the spatial harmonics. We find that the rela-
tionships between controllers of different length scales with
average and modal controllers remain similar across both
brain and Barabasi-Albert graphs. Specifically, the nodes in
the Barabasi-Albert graph most relevant for the large-scale
mode |φ j

1 | tend to be the nodes with high modal control-
lability: ρ = 0.64, df = 233, p < 1 × 10−4. Meanwhile, the

nodes in the Barabasi-Albert graph most relevant for the
small-scale mode |φ j

N−1| tend to be the nodes with high
average controllability: ρ = 0.77, df = 233, p < 1 × 10−5.
Such positive correlations were also found in the brain
network (Sec. III).

To study the control of modes with different timescales, we
employ the same partition that we used in the brain network,
i.e., groups of |ξ j | < 0.2, 0.2 < |ξ j | < 0.6, and |ξ j | > 0.6
for both positive and negative eigenvalues, respectively (see
Fig. 6). Interestingly, we find that the distribution of eigen-
values differs significantly in the Barabasi-Albert network in
comparison to the group-representative brain network, with
the striking absence of slow alternating modes. When we
consider only the fast alternating modes, we observe that the
relationship between the controllers of these fast modes and
the modal controllers is inverted in the Barabasi-Albert net-
work in comparison to the group-representative brain network
(see Fig. 7). In the brain, the degree to which a regional
controller supports fast alternating dynamics tracks the degree
to which that same regional controller supports energetically
more difficult transitions. In the Barabasi-Albert network, the
degree to which a regional controller supports fast alternating
dynamics is anti-correlated with the degree to which that same
regional controller supports energetically more difficult tran-
sitions (Spearman correlation coefficient ρ = −0.91, df =
233, p < 1 × 10−4).

062301-8



CONTROL OF BRAIN NETWORK DYNAMICS ACROSS … PHYSICAL REVIEW E 101, 062301 (2020)

FIG. 6. Histogram of N = 234 eigenvalues of a Barabasi-
Albert preferential attachment network. As we had done for the
group-representative brain network, we make partitions of |ξ j | <

0.2, 0.2 < |ξ j | < 0.6, and |ξ j | > 0.6 for positive and negative eigen-
values, respectively, which correspond to the monotone and alternat-
ing modes of the system.

VII. DISCUSSION

The human brain displays a variety of different types of
dynamics. Here we use two different models to compare
the control profiles of various brain regions: diffusion dy-
namics and network control, respectively. The two dynami-
cal models we use capture different properties of the same
brain network, hence it is useful to compare and contrast
these different dynamics produced by the same system. The
model for synchronizability uses the master stability function
(MSF) formalism based on a model of connected oscillators,
whereas our controllability analysis relies on a linear discrete
time model. Note that while the MSF approach originally
studied continuous time systems, there have been extensions
to discrete time systems [70]. In the latter case, a modified
graph Laplacian is used that has the same eigenvalues as a
regular Laplacian operator (and the eigenvectors are similar
up to a constant shift) [71]. Hence, our two models are

related by the structure of the network, which appears in
the interconnections among the oscillators in the first model,
and as a weighted adjacency matrix in the second model.
Through these analyses we find that brain regions with high
average controllability are also predicted to effectively control
dynamics on short length scales, while regions of high modal
controllability are predicted to do the converse. In addition,
regions of high average controllability are also predicted to
effectively control dynamics on slow scales, while regions of
high modal controllability are predicted to do the converse.
Collectively, our results expand our understanding of the
relations between brain network dynamics and control, and
the relative roles that different brain regions can play in con-
trolling the diverse length and timescales of neural dynamics.

A. Pertinent theoretical considerations

There are two important theoretical considerations relevant
to our work: the relation between linear and nonlinear network
control, and the nature of the master stability function. The
first consideration is crucial, particularly given recent results
regarding the difficulty of applying linear control models to
nonlinear systems [72]. While linear models are certainly
valid only within the domain of linearization, we note that
the modeling of brain activity in large-scale regional networks
shows that the linear approximation provides fair explanatory
power of resting state fMRI BOLD data [13]. Further, studies
of this controllability framework using nonlinear oscillators
connected with coupling constants estimated from large-scale
white matter structural connections shows a good overlap
with the linear approximation [37]. While the model we
employ is a discrete-time system, this controllability Gramian
is statistically similar to that obtained in a continuous-time
system [41], through the comparison of simulations run using
MATLAB’s lyap function. Regarding the second, we note that
we have plotted a typical example of an MSF for a network
of oscillators schematically in Fig. 1(d); however, specific
details will depend on the dynamics of individual nodes
and the connectivity between them. The shape of the MSF
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FIG. 7. Different results from the group-representative brain network and a Barabasi-Albert network. Study of the alternating dynamical
modes for the two different networks shows that while controllers of fast modes are positively correlated with modal controllers in the brain
network (left), the same controllers are negatively correlated in a Barabasi-Albert network (right), ρ = −0.91, df = 233, p < 1 × 10−4. [The
color in the left image simply corresponds to the strength of control of fast alternating modes, for consistency with Fig. 5(d).]
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is typically convex for generic oscillator systems, including
chaotic oscillators that have stable limit cycles [73].

Separately, it is worth noting that there are several impor-
tant and interesting questions at the intersection of control
theory and network neuroscience. First, early work focused
on the question of whether a brain network is controllable
from a single region, providing initial evidence in the af-
firmative [41]. A subsequent numerical study cast doubt on
that evidence [74], while two even later studies provided
additional theoretical evidence in the affirmative [75,76]. No-
tably, the structural controllability of networks depends upon
their topology, being quite different for diverse graph models
including the Erdős-Rényi, ring lattice, Watts-Strogatz, mod-
ular, random geometric, and Barabasi-Albert model [62,75],
the latter of which we also study here. Second, several stud-
ies address the question of whether a set of control points
(network nodes) can be identified that can effectively and re-
liably induce a particular change in system dynamics [43,77].
Third, another body of work focuses on the question of how
to guide the brain from one state of activity to another state
of activity given the underlying structural connections along
which activity can propagate [78,79]. Work in this vein has
offered validated predictions of the effects of brain stimula-
tion [80], and explanations of individual differences in cogni-
tive control [81]. This list of questions is far from exhaustive,
and we expand upon it in this work by probing the timescales
and spatial scales relevant for control in brain networks.

B. Future directions

Our work provides an initial foray into the combined study
of brain network dynamics and control, and how the two de-
pend upon the length scales and timescales of brain states and
state transitions. From a mathematical perspective, it would
be interesting to study these relations in other graph models
with different topologies, and also to work to find analytical
forms for the relations we observe in numerical experiments.
From a neurophysics perspective, future efforts could extend
our work into other age groups, or into clinical groups of
patients with psychiatric disease or neurological disorders
where such relations might be altered. Efforts could also
determine whether our findings in humans are recapitulated
in other animals, and across different spatial resolutions of
imaging data. Another avenue for further investigation could
be the use of directed brain networks, such as those that are
available from tract-tracing studies of macaques, which would
display complex eigenvalues thereby providing additional
oscillatory timescales for more extensive study. Lastly, this
trimodal nature of the data (see Fig. 3) appears to arise when
studying group-representative data, which led to our choice
of timescale bins. Future work could extend our study to
the single-subject level, where a distinct and subject-specific
binning procedure might prove helpful.
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APPENDIX

All data were acquired from the Philadelphia Neurode-
velopmental Cohort (PNC), a large community-based study
of brain development. This resource is publicly available
through the Database of Genotypes and Phenotypes. Each
subject provided their informed consent according to the
Institutional Review Board of the University of Pennsylvania
who approved all study protocols. These subjects had no
gross radiological abnormalities that distorted brain anatomy,
no history of inpatient psychiatric hospitalization, no use of
psychotropic medications at the time of scanning, and no
medical disorders that could impact brain function. Each
included subject also passed both manual and automated
quality-assessment protocols for DTI [82] and T1-weighted
structural imaging [83], and they had low in-scanner head
motion (less than 2 mm mean relative displacement between
b = 0 volumes). Here we study a subset of the full group
previously reported in Ref. [39]; specifically, we consider the
190 young adults aged 18 to 22 years.

Structural connectivity was estimated using 64-direction
DTI data. The diffusion tensor was estimated and deter-
ministic whole-brain fiber tracking was implemented in DSI
Studio using a modified FACT algorithm, with exactly one
million streamlines initiated per subject after removing all
streamlines with length less than 10 mm [41]. A 234-region
parcellation [84] was constructed from the T1 image using
FreeSurfer. Parcels were dilated by 4 mm to extend regions
into white matter, and registered to the first nonweighted (b =
0) volume using an affine transform. Edge weights Ai j in the
adjacency matrix were defined by the number of streamlines
connecting each pair of nodes end-to-end. All analyses were
replicated using an alternative edge weight definition, where
weights are equal to the number of streamlines connecting
each node pair divided by the total volume of the node
pair, as well as using probabilistic fiber tracking methods. A
schematic for structural connectome construction is depicted
in Fig. 1(b).

Lastly, we provide identification of the brain regions most
relevant for the control of large and small spatial scales, as
well as for fast and slow control of different dynamics. The
highest and lowest five brain regions in Figs. 2–5 are listed in
Tables I–VI.
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TABLE I. Brain regions with highest and lowest weights for the
largest-scale Laplacian eigenvector [Fig. 2(a)].

Highest Lowest

Postcentral 6 (L) Brainstem (L)
Supramarginal 2 (L) Precentral 1 (L)
Supramarginal 3 (L) Superior frontal 8 (L)
Supramarginal 1 (L) Caudate (L)
Postcentral 7 (L) Postcentral 1 (L)

TABLE II. Brain regions with highest and lowest weights for the
smallest-scale Laplacian eigenvector [Fig. 2(b)].

Highest Lowest

Brainstem (L) Postcentral 6 (L)
Precentral 6 (R) Postcentral 7 (L)
Postcentral 5 (R) Supramarginal 3 (L)
Thalamus proper (R) Supramarginal 2 (L)
Thalamus proper (L) Postcentral 1 (R)

TABLE III. Brain regions that provide the highest and lowest
support for the control of slow monotone dynamics [Fig. 4(a)].

Highest Lowest

Brainstem (L) Postcentral 6 (L)
Precentral 6 (R) Superior temporal 1 (L)
Thalamus proper (R) Supramarginal 3 (L)
Thalamus proper (L) Banks STS 1 (L)
Superior frontal 8 (L) Transverse temporal 1 (R)

TABLE IV. Brain regions that provide the highest and lowest
support for the control of fast monotone dynamics [Fig. 4(b)].

Highest Lowest

Superior frontal 8 (R) Brainstem (L)
Middle temporal 4 (L) Superior frontal 8 (L)
Insula 2 (L) Thalamus proper (L)
Transverse temporal 1 (L) Thalamus proper (R)
Superior temporal 2 (R) Precentral 6 (R)

TABLE V. Brain regions that provide the highest and lowest
support for the control of slow alternating dynamics [Fig. 5(a)].

Highest Lowest

Brainstem (L) Rostral middle frontal 2 (L)
Precentral 6 (R) Lateral orbitofrontal 1 (L)
Postcentral 5 (R) Precuneus 2 (R)
Precentral 3 (L) Banks STS 1 (L)
Precentral 2 (L) Inferior parietal 3 (L)

TABLE VI. Brain regions that provide the highest and lowest
support for the control of fast alternating dynamics [Fig. 5(b)].

Highest Lowest

Lateral occipital 3 (R) Brainstem (L)
Lateral occipital 1 (R) Thalamus proper (L)
Precuneus 2 (L) Superior frontal 8 (L)
Lingual 3 (L) Thalamus proper (R)
Accumbens area (L) Superior frontal 5 (R)

TABLE VII. We calculate primary network metrics for both the brain network and a Barabasi-Albert graph with the same number of nodes
(N = 234) and the same normalization (see Sec. IIB): the metrics of clustering coefficient, characteristic path length, modularity, and coreness,
respectively [86]. Uncertainty measurements are standard errors; modularity (a heuristic) is calculated over 1000 trials maximizing a common
modularity quality function [87].

Brain network Barabasi-Albert graph

Clustering coefficient [85] (5.5 × 10−4) ± (1.5 × 10−4) (4.3 × 10−3) ± (1.3 × 10−5)
Characteristic path length (binary) [85] 0.75 0.75
Characteristic path length (weighted) [86] 2.1 × 10−3 4.1 × 10−3

Modularity [87] 0.49 ± (1.6 × 10−4) 0.021 ± (2.5 × 10−5)
Coreness [88] 0.37 0.22
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