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a b s t r a c t

Let P be a set n points in a d-dimensional space. Tverberg’s theorem says that, if n is at
least (k−1)(d+1)+1, then P can be partitioned into k sets whose convex hulls intersect.
Partitions with this property are called Tverberg partitions. A partition has tolerance t if
the partition remains a Tverberg partition after removal of any set of t points from P .
Tolerant Tverberg partitions exist in any dimension provided that n is sufficiently large.
Let N(d, k, t) be the smallest value of n such that tolerant Tverberg partitions exist for
any set of n points in Rd. Only few exact values of N(d, k, t) are known.

In this paper we establish a new tight bound for N(2, 2, 2). We also prove many new
lower bounds on N(2, k, t) for k ≥ 2 and t ≥ 1.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The classical Tverberg’s theorem [17] states that a sufficiently large set of points in Rd can be partitioned into subsets
such that their convex hulls intersect. For the history and recent advances around Tverberg’s theorem, we refer the reader
to [3–5,12].

Theorem 1 (Tverberg [17]). Any set P of at least (k − 1)(d + 1) + 1 points in Rd can be partitioned into k sets P1, P2, . . . , Pk
whose convex hulls intersect, i.e.

k⋂
i=1

conv(Pi) ̸= ∅. (1)

In 1972, David Larman proved the first tolerant version of Tverberg’s theorem: any set of 2d + 3 points in Rd can be
partitioned into two sets A and B such that their convex hulls intersect with tolerance one, i.e., for any point x ∈ Rd,
conv(A \ {x}) ∩ conv(B \ {x}) ̸= ∅. García-Colín [7] generalized it for any tolerance. Soberón and Strausz [16] generalized
it further for partitions into many sets. The general problem can be stated as follows.

Problem (Tverberg Partitions with Tolerance). Given positive integers d, k, t , find the smallest positive integer N(d, k, t)
such that any set P of N(d, k, t) points in Rd can be partitioned into k subsets P1, P2, . . . , Pk such that for any set Y ⊂ P
of at most t points

k⋂
i=1

conv(Pi \ Y ) ̸= ∅. (2)
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We call a partition of P into k subsets P1, P2, . . . , Pk t-tolerant if condition (2) holds for any set Y of at most t points.
Several upper bounds for N(d, k, t) are known [9,11,13,16]. Some lower bounds for N(d, k, t) are known [2,8,14].

Theorem 2 (Ramírez-Alfonsín [2]). For any d ≥ 4

N(d, 2, 1) ≥

⌈
5d
3

⌉
+ 3. (3)

Theorem 3 (García-Colín and Larman [8]).

N(d, 2, t) ≥ 2d + t + 1. (4)

Theorem 4 (Soberón [14]).

N(d, k, t) ≥ k(t + ⌊d/2⌋ + 1). (5)

In contrast to Tverberg’s theorem, most bounds are not known to be tight. The only known tight bounds are the
following. Larman [11] proved N(d, 2, 1) = 2d+3 for d ≤ 3. Forge, Las Vergnas and Schuchert [6] proved N(4, 2, 1) = 11.
For all k ≥ 2, t ≥ 1 and dimension one, N(1, k, t) = k(t + 2) − 1 by Mulzer and Stein [13]. In this paper we establish a
new tight bound for N(2, 2, 2).

Theorem 5. N(2, 2, 2) = 10.

We also improve bound (5) for the plane.

Theorem 6. Let c be a positive integer. For any integers k ≥ 2c and t ≥ c

N(2, k, t) ≥ k(t + 2) + c. (6)

Remark. The bound of Theorem 6 can be stated without parameter c

N(2, k, t) ≥ k(t + 2) + min(t, ⌊k/2⌋). (7)

If d = 2 and k = 2 then Eq. (6) provides a lower bound N(2, 2, t) ≥ 2(t + 2) + 1. We further improve the bound for
k = 2 and t ≥ 3.

Theorem 7. For any t ≥ 3, N(2, 2, t) ≥ 2t + 6.

Several upper bounds for N(d, k, t) are known [7,9,15]. For example, Soberón [15] proved N(d, k, t) = kt + O(
√
t) for

fixed k and d. Therefore, it is interesting to find lower and upper bounds for P(d, k, t) = N(d, k, t) − kt . Theorems 5–7
provide new lower bounds for P(d, k, t) for d = 2.

The rest of the paper is organized as follows. Section 2 introduces some observations and lemmas that will be used in
our proofs. Theorems 6 and 7 are proven in Section 3. Theorem 5 is proven in Section 4. Finally, we discuss the results
and open problems in Section 5.

2. Preliminaries

We start with a simple observation.

Observation 8. Every part in a t-tolerant partition has size at least t + 1.

The following lemma is simple, yet very useful in proving that a partition is not t-tolerant.

Lemma 9. Let P1, P2, . . . , Pk be a partition of a finite set P in Rd and let X be a subset of a set Pi such that

conv(X) ∩ conv(P \ X) = ∅ (8)

and |X | = m, |Pi| = t + m. Then the partition of P is not t-tolerant.

Proof. Let Y = Pi \ X . Then |Y | = t . Therefore
k⋂

j=1

conv(Pj \ Y ) = ∅ (9)

by Eq. (8) since one of the sets in the intersection is X and every other set is a subset of P \ X . □
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Fig. 1. A point set for Theorem 6.

Two special cases of Lemma 9.

Lemma 10. A partition P1, P2, . . . , Pk of a finite set P in Rd is not t-tolerant if one of the following conditions holds.

(1) A set Pj contains a vertex of conv(P) and |Pj| = t + 1.
(2) A set Pj contains two points pi, pi+1 such that pi, pi+1 is an edge of conv(P) and |Pj| = t + 2.

Proof. The first claim follows from Lemma 9 by setting X = {pi} where pi ∈ Pj is a vertex of conv(P). The second claim
follows from Lemma 9 by setting X = {pi, pi+1}. □

3. Proofs of Theorems 6 and 7

First, we prove Theorem 6.

Proof of Theorem 6. Construct a set P of k(t+2)+c−1 points in the plane as follows. Let Q be a regular (k(t+2)−1)-gon
with center at the origin O. Place k(t + 2)− 1 points q1, . . . , qk(t+2)−1 at the vertices of Q and c points p1, . . . , pc close to
the origin. More specifically, we assume that |p1|, . . . , |pc | < d where d is the distance from the origin to the line p1pk.
Let V = {q1, . . . , qk(t+2)−1}. We assume that the vertices of Q are sorted in clockwise order, see Fig. 1.

We show that any partition of P into P1, P2, . . . , Pk is not t-tolerant. By Observation 8, we assume |Pi| ≥ t + 1 for all
i. If |Pi| = t + 1 for some i, then Pi contains a point qj since t + 1 > c. The partition is not t-tolerant by Lemma 10(1).

It remains to consider the case where all sets in the partition have size at least t +2. At most c−1 sets in the partition
may have size ≥ t + 3. Since k ≥ 2c there exists a set Pi of size t + 2 such that Pi ⊂ V . Since |V | = k(t + 2) − 1, there
exist two points qa and qa+j with j ≤ k − 1 such that the vertices between qa and qa+j are in Q \ Pi (we assume here
that qx = qy if x ≡ y (mod k(t + 2) − 1)). There is a set Pm,m ̸= i such that none of these vertices are in Pm. Therefore
the partition is not t-tolerant since conv{qa, qb} ∩ conv(Pm) = ∅. Note that the distance from the origin to any point in
{p1, . . . , pc} is smaller than the distance from the origin to the line qaqb. □

Next we prove Theorem 7.

Proof of Theorem 7. Construct a set P of 2t+5 points in the plane as follows. First, place 2t+2 points in convex position
P ′

= {p1, p2, . . . , p2t+2} where points are in clockwise order. Then place three points Q = {q1, q2, q3} inside the convex
hull of P ′ such that point qi, i = 1, 2, 3 is close to edge p2i−1p2i (it is required that qi is inside triangles △p2i−2p2i−1p2i and
△p2i−1p2ip2i+1), see Fig. 2. We show that any partition of P into P1, P2 is not t-tolerant.

Without loss of generality, we assume |P1| ≤ |P2|. Therefore, |P1| ≤ t + 2. By Observation 8, we assume |P1| ≥ t + 1.
Suppose |P1| = t + 1. Since t ≥ 3, P1 contains a point of P ′. The partition is not t-tolerant by Lemma 10(1).

It remains to consider the case where |P1| = t + 2. If set P1 does not contain a point qi, then P1 ⊂ P ′ and |P1| ≥ |P ′
|/2.

Then P1 contains two consecutive points of P ′. The partition is not t-tolerant by Lemma 10(2). Therefore P1 ∩ Q ̸= ∅.
Suppose qi ∈ P1 for some i. If p2i−1 ∈ P1 or p2i ∈ P1 then the partition is not t-tolerant using X = {qi, p2i−1} or

X = {qi, p2i}, respectively, and Lemma 9. Therefore, we assume that both points p2i−1 and p2i are in P2.
Let m = |P1 ∩ {q1, q2, q3}|. Then m ∈ {1, 2, 3}. By the previous argument, set P2 contains at least m pairs of consecutive

points of P ′ (the pair p2i−1, p2i for each point qi ∈ P1). Note that |P ′
∩ P1| = t +2−m and |P ′

∩ P2| = t +m. We will show
that set P1 contains a pair of consecutive points of P ′. Then, the partition is not t-tolerant by Lemma 10(2).
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Fig. 2. A point set for Theorem 7.

Fig. 3. A set S of nine points for Lemma 11.

If m = 1 then |P ′
∩ P1| = |P ′

∩ P2| = t + 1 and set P2 contains a pair of consecutive points of P ′. Then set P1 contains
a pair of consecutive points of P ′.

Suppose m = 2, say qi, qj ∈ P1 where i < j. Then set P2 contains p2i−1, p2i, p2j−1, and p2j. There are two intervals
p2i+1, . . . , p2j−2 and p2j+1, . . . , p2i−2 in P ′ containing points of P1. Note that each interval contains an even number of
points. If set P1 does not contain a pair of consecutive points of P ′, then set P1 contains at most half of points in each
interval. Then |P ′

∩ P1| < t . This contradiction implies that set P1 contains a pair of consecutive points of P ′.
Finally, if m = 3 then there exists only one interval p7, p8, . . . , p2t+2 and set P1 must contain a pair of consecutive

points of P ′; otherwise |P ′
∩ P1| < t − 1. The theorem follows. □

4. Proof of Theorem 5

We found a special configuration of nine points to prove a lower bound for Theorem 5. For this, we checked point
configurations of all order types for n = 9. Order types, introduced by Goodman and Pollack [10], are useful for
characterizing the combinatorial properties of point configurations. An order type of a set of points p1, p2, . . . , pn in
general position in the plane is defined using a mapping that assigns each triple of integers i, j, k with 1 ≤ i < j < k ≤ n
the orientation (either clockwise or counter-clockwise) of the triple pi, pj, pk. Two point sets P1 and P2 have the same
order type if there is a bijection π from P1 to P2 preserving this map, i.e., for any three distinct points a, b, c in P1, the
orientation of a, b, c and the orientation of π (a), π (b), π (c) are the same. Aichholzer et al. [1] established that there are
158,817 order types for n = 9. We developed a program for testing each of these point sets whether it admits a 2-tolerant
partition into two sets. The proof of the tolerance of a configuration found by the program turns out to be not simple
even using the tools from Section 2.

Lemma 11. There exists a set of nine points in the plane that does not admit a 2-tolerant partition into two sets.

Proof. Consider a set S of nine points shown in Fig. 3 where S = P ∪ Q , P = {p1, . . . , p6} and Q = {q1, q2, q3}. We will
prove that any partition of S = A ∪ B is not 2-tolerant, i.e. there exists a set C = {a, b} ⊆ S such that

conv(A \ C) ∩ conv(B \ C) = ∅.
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Fig. 4. Case 2a. The points of A are red and the points of B are black. The shaded polygons are the convex hulls of A−C and B−C . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) Case 2b. (b) Case 2c.

We can assume that |A| < |B|. By Observation 8, we assume |A| ≥ 3. Suppose that |A| = 3. If A = Q , take C = {p1, p2}.
If A ̸= Q then the partition of S is not 2-tolerant by Lemma 10(1).

It remains to analyze partitions with |A| = 4. By Lemma 10(2), we assume that A does not contain two consecutive
points pi, pi+1 (assuming p7 = p1). For example, this implies that A contains at least one point of Q . Consider the following
cases depending on |A ∩ P|.

Case 1. Set A contains exactly one point of P , say pi. Then Q ⊂ A. One of the sets {p1, p2, p3}, {p3, p4, p5}, {p4, p5, p6},
say set X , does not contain pi. The partition is not 2-tolerant using X and Lemma 9.

Case 2. Set A contains exactly two points of P , i.e. A = {pi, pj, qc, qd} for some 1 ≤ i < j ≤ 6 and 1 ≤ c < d ≤ 3.
Case 2a. Suppose i = 1. By our assumption j /∈ {2, 6}. We can assume that j ̸= 3 using X = {p4, p5, p6} and Lemma 9.

So, j ∈ {4, 5}.
We also can assume that q1 ∈ B using X = {p1, q1} and Lemma 9. Therefore {q2, q3} ⊂ A. If j = 4 (so A = {p1, p4, q2, q3}),

take C = {p1, p3}, see Fig. 4(a). If j = 5 (so A = {p1, p5, q2, q3}), take C = {p6, q2}, see Fig. 4(b).
Case 2b. Suppose i = 2. Then j ≥ 4. We can assume j ̸= 4 using X = {p1, p5, p6} and Lemma 9. We can assume j ̸= 6

using X = {p3, p4, p5} and Lemma 9. Thus, j = 5. We can assume q1 ∈ A using X = {p1, p6, q1} and Lemma 9.
If q3 ∈ A then A = {p2, p5, q1, q3} we can use X = {p3, p4, q2} and Lemma 9. If q2 ∈ A then A = {p2, p5, q1, q2} and we

can use C = {p1, p5}, see Fig. 5(a).
Case 2c. Suppose i, j ∈ {3, 4, 5, 6}. We can assume q1, q2 ∈ A using X = {p1, p2, x} for x ∈ {q1, q2} and Lemma 9. Since

pi and pi+1 cannot be in A together, there are three options. If p3, p5 ∈ A, take C = {p4, q1}, see Fig. 5(b). If p4, p6 ∈ A then
we can use X = {p1, p2, p3} and Lemma 9. If p3, p6 ∈ A then we can use X = {p3, q2} and Lemma 9.

Case 3. Set A contains exactly three points of P , i.e. {p1, p3, p5} ⊂ A or {p2, p4, p6} ⊂ A.
Case 3a. Suppose {p1, p3, p5} ⊂ A. If q1 ∈ A then we can use X = {p1, q1} and Lemma 9. If q2 ∈ A, take C = {p2, p5},

see Fig. 6(a). If q3 ∈ A, take C = {p3, p6}, see Fig. 6(b).
Case 3b. Suppose {p2, p4, p6} ⊂ A. If q1 ∈ A, take C = {p1, p4}, see Fig. 7(a). If q2 ∈ A, take C = {p3, p6}, see Fig. 7(b). If

q3 ∈ A, take C = {p2, p5}, see Fig. 7(c). The lemma follows. □

Corollary 12. N(2, 2, 2) ≥ 10.
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Fig. 6. Case 3a.

Fig. 7. Case 3b.

Soberón and Strausz [16] proved an upper bound N(d, k, t) ≤ (k − 1)(t + 1)(d + 1) + 1 which implies N(2, 2, 2) ≤ 10.
Therefore N(2, 2, 2) = 10.

5. Further discussion and open problems

Improving the bounds for Tverberg partitions with tolerance is an interesting problem. There are many triples (d, k, t)
with a gap between known lower and upper bounds. Finding sharp bounds for N(d, k, t) is a challenging problem. For
example, Larman [11] conjectured that N(d, 2, 1) = 2d+3 for any d ≥ 1. The conjecture is open for d ≥ 5. For dimension
d = 5, the best known upper bound is N(5, 2, 1) ≤ 13 by Larman [11] and the best known lower bound is N(5, 2, 1) ≥ 12
by García-Colín and Larman [8].
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Table 1
3,702 order types of nine points that do not admit a 2-tolerant partition into two sets. The point sets
are partitioned using the size of the convex hull h. The size of each group is Nh .
h h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9

Nh 1303 1554 769 76 0 0 0

Fig. 8. Two point sets of nine points each with five points on the convex hull. The point sets have different order types. Both point sets do not
admit a 2-tolerant partition into two sets.

Another possibility for a new sharp bound is for d = 2, k = 2 and tolerance t = 3. The lower bound is N(2, 2, 3) ≥ 12
by Theorem 7. The best upper bound is N(2, 2, 3) ≤ 13 by Soberón and Strausz [16]. Based on our computer experiments,
we conjecture that N(2, 2, 3) = 12. One way to improve the upper bound for d = 2, k = 2 and t = 3 is to study the
following core lemma in the proof of the upper bound for N(d, k, t) [16].

Lemma 13. Let p ≥ 1 and r ≥ 0 be integers, S ⊂ Rp be a set of n = p(r + 1) + 1 points a1, a2, . . . , an and G be a group
with |G| ≤ p. If there is an action of G in a set S ′

⊂ Rp which is compatible with S ⊂ S ′, then for each ai there is a gi ∈ G such
that the set {g1a1, g2a2, . . . , gnan} captures the origin with tolerance r.

For d = 2, k = 2 and tolerance 3, Lemma 13 uses n = 13 points since p = (k − 1)(d + 1) = 3. Is this bound for n
sharp?

5.1. Order types and tolerant Tverberg partitions

Our proof of Theorem 5 uses the set of nine points shown in Fig. 3. It was computed by a program that we developed
for testing the tolerance of a given point set. We have applied this program to 158,817 order types for n = 9 which are
provided by Aichholzer et al. [1]. Our program found that 155,115 point sets admit a 2-tolerant partition into two sets.
Only 3,702 point sets do not admit a 2-tolerant partition into two sets and therefore, can be used as examples for proving
the lower bound N(2, 2, 2) ≥ 10.

We analyzed these 3,702 order types and found that their convex hulls have sizes between three and six. We count
the number of different order types for each size of the convex hull, see Table 1. Figs. 8–10 show some order types with
5, 4, and 3 points on the convex hull, respectively. It follows from our computer experiments that any set of nine points
in the plane with at least seven points on the convex hull admits a 2-tolerant partition into two sets. It is interesting to
investigate how the size of convex hull of a point set affects lower bounds of N(d, k, t).

CRediT authorship contribution statement

Sergey Bereg: Conceptualization, Methodology. Mohammadreza Haghpanah: Software.

Acknowledgments

The authors thank the anonymous referees for their careful reading of the manuscript and for their helpful comments.
This research is supported by National Science Foundation, USA award CCF-1718994.



S. Bereg and M. Haghpanah / Discrete Applied Mathematics 283 (2020) 596–603 603

Fig. 9. Two point sets of nine points each with four points on the convex hull. The point sets have different order types. Both point sets do not
admit a 2-tolerant partition into two sets.

Fig. 10. Two point sets of nine points each with three points on the convex hull. The point sets have different order types. Both point sets do not
admit a 2-tolerant partition into two sets.
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