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A B S T R A C T

This paper provides a survey of big data analytics applications and associated implementation issues. The em-
phasis is placed on applications that are novel and have demonstrated value to the industry, as illustrated using
field data and practical applications. The paper reflects on the lessons learned from initial implementations, as
well as ideas that are yet to be explored. The various data science trends treated in the literature are outlined,
while experiences from applying them in the electricity grid setting are emphasized to pave the way for future
applications. The paper ends with opportunities and challenges, as well as implementation goals and strategies
for achieving impactful outcomes.

1. Introduction

The definition of big data analytics in the electricity grid applica-
tions is involved. This is due to its broad scope and numerous data
science approaches that may be considered under this umbrella (sta-
tistical analysis tools, artificial intelligence, machine learning, deep
learning, etc.). The complexity also stems from the numerous ap-
proaches in different applications such asset management, operations,
control, protection, market and planning decisions, among others. One
underlying issue that makes it particularly difficult to delineate what
constitutes big data analytics is the volume of data being considered in
electricity grid applications today, which typically is at the terabyte
scale, far from the petabyte scale that is considered as big data in some
other domains. Finally, the concept of “data analytics” is also a bit
misleading since most of the traditional applications in the electricity
grid domain are based on the processing of measurement data, which
may or may not be considered as data analytics in a big data context. As
an example, the traditional approaches to state estimation and fault
location would not necessarily qualify as big data analytics if they are
only based on mathematical equations derived from physics. On the
other hand, fault prediction based on data-driven models utilizing high-
resolution weather and outage data may qualify for big data analytics.
As a result, this survey does not attempt to provide a rigorous definition
of what constitutes big data analytics for power systems, but rather
intends to emphasize the reported work that uses the latest advances in
data sciences as applied in the electricity grid for specific applications
such as asset and outage management, and integration of renewables.

The earliest work on the use of big data in the utility industry was
published in 2013 [1], but field demonstrations were reported only in
the last few years [2]. The approaches surveyed in this paper are at the
crossroads of novel data analytics techniques, added application bene-
fits, and unique data sets or features used in the implementation. While
the literature is saturated by papers focusing on novel data analytics
approaches, the added benefit of our paper is in identifying the papers
that have bridged the vast data analytics literature with a few appli-
cations that have demonstrated tangible benefits using actual utility
data [3]. The data sets used for the applications are quite often tradi-
tional, and in a few instances, new data integration and management
approaches were used [4]. Covering an emerging area in the electricity
grid domain, the related papers are surveyed with an intent to define
promising trends, and what may result in transformational ideas in the
future [5]. While we recognize the contributions of other survey papers
[2–8] and recent books on the subject [9,10], we did not attempt a
rigorous approach of comparing our survey paper to such surveys to
avoid any overlaps since the focus and context of our paper stems from
our own deployment experiences and views that come from our own
practical insights.

To facilitate the educational component of the survey, we will in-
troduce some basic concepts of what constitutes big data in electricity
grid applications, and what are some of the traditional aspects of the
data properties that uniquely represent the electricity grid domain. In
doing so, some well-known facts about big data are framed using re-
levant electricity-grid-related examples. With the same goal, we offer a
classification of the data analytics fundamentals and related
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implementation techniques. We also share experiences from the real-
life implementations of big data analytics approaches and tools for
electricity grids, focusing on the various engineering issues associated
with the implementation of novel applications. We then focus on spe-
cific applications reported in the literatures and try to classify them
based on their relation to the various uses in the electricity grid settings.

The main contribution of the paper is in pointing out the key im-
plementation issues, while at the same time providing a broad overview
of the trends for selected applications. For future users, the paper gives
a large number of references by researchers and electricity grid pro-
fessionals but does not explore the level of their scientific contributions;
the intent here is to trace the references associated with practical ap-
plications. Our classification provides easier access to the applications
of interest rather than a guidance to the most relevant works in the
general data analytics area. Some important works may not have been
reported or we may have not been able to locate it due to worldwide
publication spread.

The paper is organized as follows: after the introduction in
Section 1, we focus on the importance and the feasibility of big data
analytics in Section 2, the challenges in Section 3, the applications
survey in Section 4, and the future opportunities and challenges in
Section 5. A representative list of references is provided at the end.

2. Importance and feasibility of big data analytics in electricity
grids

2.1. Impact of big data analytics

The changes in the electricity industry are unprecedented, including
the shifts in the energy mix, more active customers, new devices and
technologies, and evolving business models never seen before. These
resulted in increased complexity and uncertainty, bringing to the fore
new challenges as well as opportunities. At the core of addressing these
challenges is the need for better decision-making in the grid operational
and planning stages, including long-term investment and policy. In
addition, the grid is being instrumented with capabilities for sensing
and data acquisition resolution with orders of a magnitude higher than
what was previously implemented. The new data with novel data
analytics methods can support the electricity grid objectives of higher
resilience, economic efficiency, and reduced emissions. The electricity
grid data analytics emerges as the key factor that enables the technol-
ogies for better decision-making. It became a core industry capability
and a strategic advantage to organizations who seek to innovate and
provide higher levels of service quality and customer satisfaction. The
applications of data analytics to the electricity grid are numerous and
can be identified in many activities of the industry. Data analytics is,
hence, a transformational step toward the future grid.

2.2. Novel data sources

Applying big data solutions in different electricity grids is focused
on exploring emerging heterogeneous data sources that have distinct
quality, spatial and/or temporal resolution, and information presenta-
tion. It is feasible to leverage these data by applying the following
knowledge extraction approaches in different use case examples: (a)
combining emerging and conventional data sources, e.g., by using data
fusion theory [11]; (b) extracting and combining information from
different modalities (e.g., images, texts, categorical statements) using
multimodal learning [12] or a heterogeneous information network
[13]; and (c) combining data from geographically distributed data
sources, e.g., by using classical vector autoregressive [14] or deep
learning [15] methods.

Novel data sources are emerging in different domains:

• The grid infrastructure: system operators are improving network ob-
servability by installing phasor measurement units (PMU) that can

provide high reporting rate data (e.g., 30 measurements per second
of voltage/current magnitude, phase, and frequency) and remote
terminal units (RTU) in substations and smart meters at the con-
sumer level. Sensors for remote supervision of substations are also
being tested for asset condition monitoring and quality of service
improvement [16].

• Renewable power plants: the renewable energy industry is installing
and operating monitoring sensors at the wind turbine and photo-
voltaic panel level, which generates a large volume of data (e.g., a
wind turbine can have more than 100 sensors inside the rotor, which
gather more than 10,000 data points every second) that can be used
for predictive maintenance (and reduce Operation and Maintenance
costs); data from a grid of numerical weather predictions, geo-
graphically distributed sensors (e.g., wind turbines, pyranometers),
sky cameras, and satellite images can be combined to improve
power (and weather) forecasting skills in multiple time horizons
[17]. In renewable generation forecasting, the scale of studies has
also grown from a single site to over 100 sites [18].

• Consumer and social media: while at the early stages of deployment,
the proliferation of the internet-of-things devices in smart homes
and buildings were creating conditions for data-driven energy and
non-energy services [19], whose impact depends on solving chal-
lenges such as data privacy/protection and consumer engagement.
Moreover, the increased footprints of social media have enabled the
power companies to better understand and engage customers than
ever before [20]. Researchers have also tried to fuse Twitter data
into power outage detection [21].

• Electricity markets: Over the last few years in Europe, the electricity
market transparency has improved noticeably, and after the pub-
lication of Regulation (EU) No 5 43/2013 [22], the amount of
publicly available data is increasing [23], including access to in-
dividual offers from market players (usually available with a delay
of few months). The same trend is happening in the USA, with
platforms such as the Form EIA-930 data collection that provides a
centralized and comprehensive source for hourly operating data of
the high-voltage bulk electric power grid in the lower 48 states. This
open data can be used for different objectives: to improve the price
forecasting skills by combining prices from different regions [24] or
to assess the large-scale impact of renewable energy generation in
cross-border power flow [25].

• Environmental and ambient domains: the weather data is of para-
mount importance in predicting operating conditions, including
faults. The data from ground weather stations [26], satellite [27]
and radar resources [28] are readily available from government
databases. Specialized sensor networks, such as the national light-
ning detection network in the USA [29], are also sources of rather
useful weather data. Several weather forecast services are also at our
disposal for providing pre-calculated features of the weather data
sets [30]. Additionally, data about vegetation, soil, animal migra-
tion, and other ambient conditions may be readily available from
various other sources [31]. The means of utilizing high precision
data by using specialized databases such as Light Detection and
Ranging (LIDAR) or drone surveys are also reported in the literature
[32]. Such data is not typically collected within the utility industry
jurisdiction and constitute an outside data of great value to the in-
dustry. In load forecasting, the research frontier has moved from
temperature collected at a single station to a variety of weather
variables and multiple weather stations [33–35]. In solar power
forecasting, sky image data are heavily used for cloud detection
[36].

Researchers and practitioners nowadays focus on exploiting existing
data and exploring emerging data sources and data at a larger scale to
pursue improvements in electricity grid planning and operations. A
large data set or a variety of data sources are not necessary to claim a
research topic in big data analytics. There are many other important
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aspects of big data analytics, such as building algorithms that can
leverage a high-performance computing environment and expanding
the size of models to capture detailed features in the data [37]. Another
example is to use hourly load and weather data informed long-term
load forecasts, which are traditionally based on monthly data [38,39].
A recent review article on smart meter data analytics listed 10 publicly
available datasets for electricity demand [40]. Table 1 highlights some
example data sources for general applications of power systems data
analytics, with an emphasis on publicly available data to promote re-
producible research. Such a list of datasets is increasing at a rapid pace
under various open modeling approaches and data sharing initiatives.
Such data is mostly related to electricity network measurements or
properties.

In such studies, diverse data sets with quite different data proper-
ties. Fig. 1 illustrates data properties for an example of the use of one
type of (synchrophasor) data. Examples of where merging diverse data
sets created value may be found in the reported work on outage pre-
diction [41]. Table 2 gives examples from a particular geographic re-
gion (USA). Such data may be available in many other parts of the
world from local government agencies or industry services. Unlike the
data in Table 1, this data is characterized by not being directly related
to power system measurements or properties, yet is highly correlated to
the data in Table 1. The importance of big data properties depicted in
Fig. 1 is that many such properties may be found in datasets used in an
electricity grid application, which creates non-trivial data integration
challenges.

2.3. Important considerations when creating datasets

How the data sets are created is quite important for big data ana-
lytics applications due to additional considerations such as:

• Spatiotemporal correlation and synchronism

• Scalability

• Missing data

• Bad data diversity

• Various types of uncertainties

How each of these considerations reflect on the big data applica-
tions in the electricity grid is outside the scope of this paper, but cer-
tainly is worth exploring as new data sets get added and merged.

3. Big data analytics challenges

3.1. Data sciences foundations

The goal of data science is to extract value from data. The steps of
the data management life cycle include data collection; preprocessing
(exploration, sampling, dimensionality reduction/feature selection,
feature creation, transformation, cleaning, and integration); analytical
processing (modeling, which often includes multiple building blocks);

Table 1
Examples of open-source data sets.

Data source Application areas

GEFCom2012 [42] Load forecasting; wind
power forecasting

GEFCom2014 [43] Load forecasting; price
forecasting; wind power
forecasting; solar power
forecasting

GEFCom2017 [44] Distribution level load
forecasting

Irish data [45] Smart meter data analytics
ARPA-E GRID DATA projects [46] Power system analysis
My Electric Avenue [47,48] Electric vehicles
EV Research @ Caltech [49] Electric vehicles
ENTSO-E Transparency Platform [23,50] Electricity markets
European power system [51,52] Power system models
UK power system [53] Power system models
Load dataset with grid data [54,55] Load forecasting
Sotavento wind farm, Spain [56] Wind power forecasting
NREL wind integration toolkit [57] Wind integration
Data sets for benchmarking solar energy

forecasting methods [58]
Solar energy forecasting

Photovoltaic hourly power measurements and
geographical grid (169 equally distributed
points) from the Weather Research and
Forecasting model [59,60].

Solar energy forecasting

Fig. 1. Big data properties.
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interpretation; and reporting results [61]. The key skills needed in this
area are often viewed as multidisciplinary at the intersection of com-
puter science, mathematics, statistics, and the problem domain. On the
technical side, major challenges are typically related to big data, arti-
ficial intelligence, and machine learning methodologies, while the
process of applied data science could also require social sciences,
communications, and business skills, and it has been suggested that this
intersection should include additional disciplines [62].

A holistic view of data science emphasizes that data science is “more
than a combination of statistics and computer science” as “it requires
training in how to weave statistical and computational techniques into
a larger framework, problem by problem, and to address discipline-
specific questions” [63]. The same authors point out that data science
requires: (1) understanding the context of data, (2) appreciating the
responsibilities involved in using private and public data; and (3) clear
communication on what can and cannot be inferred from a dataset.

The core components of data science are machine learning-based
methods for finding patterns in data that may provide insights into the
phenomena described by the data, and predictions regarding future
events of interest. In machine learning, the objective is to learn a
function that maps the given input data (explanatory variables) to the
observed output (response). A simplified representation of reality cre-
ated for this purpose, called a model, is used to estimate the unknown
response for new cases based on observed explanatory variables of in-
terest, and this process is called inference or, more simply, prediction.

Machine learning techniques typically address applications where
traditional analytics are inappropriate due to data size, high di-
mensionality, heterogeneity, diversity, or other challenges. Methods are
developed to address various aspects of these challenges. In some
methods, independence of data records is assumed (e.g., when data
types are multidimensional numerical tables, tables with categorical or
mixed attributes, or text). Otherwise, specialized data science methods
have been developed to model implicit or explicit dependencies in data
sets common in time-series, discrete sequences, or spatial, spatio-tem-
poral, or network applications.

Machine learning objectives are often grouped into descriptive tasks
and predictive tasks. Descriptive tasks aim to discover interpretable
patterns that describe past data, and predictive tasks are those where
the goal is to identify patterns observed in training data in order to
estimate future predictions of risks and other outcomes. Descriptive
tasks are usually unsupervised, meaning that only explanatory variables
are considered in the analysis. Common descriptive objectives include
data clustering [64,65], association discovery [66], and detection of
deviations from normal behavior, including extreme value analysis,
outlier detection, and identification of emerging patterns [67]. Pre-
diction tasks are supervised, such that they require not only explanatory
variables but also the value of the dependent variable that is being
predicted. Practical examples include risk assessment [68] and diag-
nostics [69].

There are also semi-supervised [70] and self-training methods [71],
where training data includes some labeled data and much more un-
labeled data.

In classification, the response variables being predicted are a class
(e.g., one of several kinds of data labels), or in the case of regression, it
is a continuous value. One of the commonly used approaches for clas-
sification is the induction-based decision tree. Hunt's algorithm [67],
one of the earliest decision tree methods, proposed the general proce-
dure of partitioning data, based on the value of a single attribute and
proceeding recursively on subsets if the class is not sufficiently pure at
the subsets. Many methods have been proposed to measure a data
subset impurity and to determine the next split (e.g., entropy in CART
[72] or Gini index in ID3 [73] and C4.5 [74]) as well as to prune the
tree, thereby improving model generalization. Decision trees are easy to
interpret, are quite inexpensive to construct, and are very fast at clas-
sifying unknown cases. They are also robust to noise and can handle
redundant or irrelevant attributes, but they do not account for

interactions between attributes. One of the limitations of decision trees
is that they require pruning, as otherwise they grow too big resulting in
overfit problems. This limitation is successfully addressed by Random
Forests, built as an ensemble of decorrelated decision trees [75,76].
This ensemble is inspired by the Bagging method, an aggregation
method based on bootstrap sampling, developed for reducing variance
without enlarging bias [77]. In Random Forests, this idea is further
extended by limiting each node to consider only a small random subset
of attributes. The resulting solution is empirically shown to be more
accurate than the AdaBoost algorithm, which is an effective ensemble-
based classifier that in training adjusts to the weight of an observation
based on the previous classification [78].

A popular alternative technique that can handle interactions among
explanatory variables is to classify a new case by computing distance to
k-nearest neighbors in the training set and to predict the class based on
a majority or a weighted majority of the identified k-neighbors whose
class is known. This is a lazy learning method, since the model is not
built explicitly, and inference time required to classify a new case is
quite large. It also requires a comparison of each new data point to each
data point in the training set. In addition, this technique is not easy to
use when many attribute values are missing, since in such cases, the
distance-based method of determining nearest neighbors could be un-
reliable. Some of these limitations could be overcome by proximity
graphs, in which nodes are connected if certain geometric conditions
are satisfied. In such a formulation, various efficient graph algorithms
(e.g., minimum spanning trees and triangulations) could be used to
identify nearest and relative neighbors more efficiently [80].

An alternative classification approach that is mathematically more
rigorous is to estimate the posterior probability of the target class using
Bayes’ theorem. A simple but elegant and robust approach, called Naive
Bayes, assumes that the attribute values are conditionally independent
of each other, given the class label y. In such a case, the class-condi-
tional probabilities of all the attributes can be factored as a product of
the class-conditional probabilities of every attribute. The approach is
robust to noise, missing values, and irrelevant attributes. However,
conditional independence among explanatory variables is a strong as-
sumption that is not valid in many applications. For such scenarios, a
class of probabilistic graphical models called Bayesian Belief Networks
were developed by modeling conditional dependencies via directed
acyclic graphs. The exact inference on such graphs is NP-hard [81], and
therefore, their applications are limited to smaller numbers of attributes
or to special types of graph structures.

Another effective probabilistic classifier is logistic regression [82].
We have successfully used this method to predict weather-related
power outage probabilities [83]. Assuming a two-class problem (the
response y = 0 or 1), this approach avoids directly estimating the
conditional probability of an instance, but instead estimates the ratio of
posterior class probabilities P(y=1|x)/P(y=0|x). A great advantage of
logistic regression as compared to k-nearest neighbors is that it is ap-
plicable to high-dimensional problems, since the method does not rely
on measuring similarities between data points. Another benefit of this
approach is that weight parameters correspond to individual attributes
and, therefore, provide fairly easy interpretability. Still, the presence of
a large number of irrelevant attributes is a challenge for logistic re-
gression, and this method is not applicable to classifying cases with
missing values, which could be a serious limitation in practice.

The logistic regression model can be viewed as a case of generalized
linear model. Other representationally powerful models from this ca-
tegory are Support Vector Machines (SVM) and Multilayer Neural
Networks (MNN). In SVM, the optimization problem is formulated as
finding a maximum margin separating the hyperplane for which a large
region exists on each side of the decision boundary [84]. This is for-
mulated as a constrained nonlinear programming problem expressed as
a function of the coefficients of the separating hyperplane, which is
solved using the Lagrange multiplier method. For non-linear classifi-
cation, data is implicitly transformed into a high-dimensional space,
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where the problem is linearly separable. This is achieved by using the
kernel trick, so as to reduce the problem effectively to a linear classi-
fication situation. Using carefully selected kernels (Gaussian, poly-
nomial, or sigmoid) allows the approximation of arbitrary decision
boundaries. The main benefits of the SVM approach are that it is robust
to noise and reduces overfitting while finding the global minima of the
objective function. However, the computational cost of SVM is high,
and it is still challenging to use this model when descriptive variables
are partially missing in observed data.

Multilayer feed-forward neural networks (FNN) are also used suc-
cessfully for classification in a variety of challenging applications [85].
For example, we have successfully trained FNN to discriminate between
power transformer magnetizing inrush and fault current [86]. This
model has at least one layer of hidden units, each computing a non-
linear smooth and differentiable function of a weighted input sum (e.g.,
sigmoid function). In this model, the problem of updating the para-
meters when an error is observed at the output is commonly solved by
error backpropagation from the output toward the previous layers. In
this process, the error of a node in the hidden layer is estimated as a
function of the error estimates and weights in the nodes in the previous
layer, and this value is used to update the weights of this hidden node
by computing an error gradient with respect to the weights in the node
[87]. FNNs are able to approximate arbitrary functions, and hence are
representationally more powerful than SVM. However, when designing
a network, overfitting must be carefully addressed. Also, noise in data
could cause training problems, as the model may converge to a local
minimum, and the training process might require a long time, limiting
practical applications. Another problem with classical FNN is that
learning deep networks is very difficult, due to the compounding effect
of saturating the sigmoid activation function when backpropagating
small errors, which results in very slow convergence. Huge progress in
addressing this issue, called the vanishing gradient problem, has been
made in recent years. This, together with progress in GPU-based dis-
tributed computational infrastructure and availability of very large
datasets, has allowed the development of effective deep neural net-
works, which significantly outperformed all the alternatives in many
challenging applications, including computer vision, natural language
processing, speech and audio recognition, and healthcare informatics
[88]. Many deep learning architectures were proposed to handle var-
ious data properties. Some of the established solutions commonly ap-
plied to a wide variety of datasets include convolutional neural net-
works for grid-based data (e.g., imaging) [89] and recurrent neural
networks for sequences and temporal data [90].

In power systems, data is often observed over space and time, and
therefore, more advanced graph-based structural regression methods
are used to exploit structural dependencies. For example, we have used
structured learning in Gaussian Conditional Random Fields to assess the
risk of insulation breakdown for a given exposure and associated
weather threats in a power network [91]. The latest research in deep
learning [88,92,93] suggests that a broad range of applications, in-
cluding structured regression, could benefit from learning latent re-
presentations for input data. In our study [94], learning representations
for power system substations, based on their spatial proximity, was
greatly beneficial for predicting power outages and estimating outage
probabilities. In such an approach, nodes of a graph are embedded in a
lower-dimensional space, where standard machine learning methods
could be more easily applied. The embedding algorithms aim at con-
serving graph structure and simplifying the learning models by moving
away from graph representations. An advantage of using such meth-
odologies is that they can potentially uncover more complex spatial
dependencies that include some long-range interactions in addition to
influences of the local neighborhood.

The node embedding process represents the original graph in a new
feature space, which best-describes the spatial relationships of the
nodes in the original graph. This characteristic of the node embedding
aims to capture the essential relationships of the original graph

structure while simplifying representation to a lower-dimensional list of
feature vectors.

There are several algorithms to obtain such an embedding; Two
commonly used algorithms are DeepWalk [95] and Node2Vec [96].
Both algorithms rely on community information obtained by random
walks, which were used to learn latent space representations. In addi-
tion, DeepWalk is able to perform local exploration efficiently and can
accommodate small changes in graph structure without global re-
computation. Node2Vec is an algorithmic framework that generalizes
the DeepWalk process to provide a flexible notion of a node's neigh-
borhood, which allows learning richer representations by effectively
exploring diverse neighborhoods. This solution was successfully em-
ployed to develop a novel approach to solar radiation forecasting, based
on spatial and temporal embeddings using the Node2Vec model for
graph data [97]. This approach simplifies the learning models by
moving away from complex graphs. The model was developed for
forecasts ranging from 3 to 12 hours ahead. The model predicted solar
irradiance with very high accuracy in the summer, when there are more
clear sky days. During the winter months, the accuracy had a slight
drop, but was still high and remained robust even when observational
data was missing both spatially and temporally.

3.2. Engineering aspects

While big data analytics relies on strong data science foundations,
there are also several important aspects for those methods to be used in
practice. Interacting with practitioners and those in the industry that
try to rip tangible benefits from using data science, one often hears that
the actual data science part may only consist 10% of the work, while
90% relates to setting up the workflow, data management (and storage)
as well as computing aspects. Therefore, it is of utmost importance here
to observe some of the engineering-related aspects of big data analytics.
They have been defined as the main challenges for the success of big
data analytics [98,99].

At the core of the concept of big data analytics is the underlying idea
that the data to be handled is “big”. For an attempt at properly defining
big data and its essential features, the reader is referred to [100]. Ty-
pical examples relate to the collection of PMU data, as well as high-
resolution data at the asset level, (e.g., from wind turbines, Photovoltaic
(PV) inverters, smart meters, etc.). The collection rate of these data is at
the second to minute time scales, and for many geographical locations
simultaneously, while also consisting of many different types of vari-
ables. In general, such data in the electricity grid includes point mea-
surements, images, and possibly text. Some of these aspects of big data
for power systems, from challenges to applications, were recently
covered by Arghandeh and Zhou [9].

In most of the scientific literature describing electricity applications
and beyond, it is assumed that data is available and is of good quality.
However cumbersome it may be, ensuring communication of data,
ensuring data integrity, as well as assuring data quality, are necessary
steps before designing and deploying a data-driven solution [101]. In
contrast, those aspects related to data availability and quality have been
considered for quite a while by the computer science community, for
which a number of methodologies were proposed [102]. Data cleansing
and modifications of datasets are then often involved, though one
should be aware that these actions may actually affect the original in-
formation in the datasets, for instance in terms of its statistical prop-
erties [103]. For applications in the electricity markets related to re-
newable energy, a classical problem for instance is filling gaps in time-
series, i.e., there may be periods where data is simply not available, due
to failures in logging, storing, or transmitting the data. To fill these
gaps, various methods have been proposed, taking advantage of data
surrounding that period, data with spatiotemporal dependencies
(especially relevant for weather-driven renewable energy generation),
data availability at different aggregation levels, as well as physical re-
lationships among variables of interest (e.g., in an optimal power flow
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problem). For a recent example related to electric load data, see dis-
cussion in [104].

Besides these data-related aspects, data-driven approaches used on
large datasets require substantial computing power to solve the simu-
lation and optimization problems involved. To centralize the data, these
problems can be solved through High-Performance Computing (HPC),
which is becoming increasingly common for the electricity grid and
electricity market applications [105]. Notable examples include op-
timal power flow [106] and transmission-switching problems [107].
Solving those large-scale problems with HPC will involve some form of
decomposition techniques, which have also become popular in power
system operations, markets, and planning problems [108]. However,
there may also be a number of applications for which this is neither
possible, nor is it desired to centralize the data. In that case, similar
approaches may be used to solve these problems in a decentralized
manner, though most likely at the cost of increased communication
burden due to the inherently iterative nature of distributed optimiza-
tion approaches. Notable examples include optimal power flow pro-
blems [109] and distributed learning for renewable energy forecasting
[110]. Most likely in the future, relevant setups will not be fully cen-
tralized or fully decentralized and will be relying on cloud-based, fog
and edge computing [111].

Big data analytics is to be placed in the bigger picture of problem-
solving. Indeed, in practice, it is only an additional tool to support
operations and decision-making. Therefore, before investing in specific
big data setups and analytical tools, the problem and related problem-
solving approach should be well-defined. For example, if forecasts are
there to support decision-making, the type of forecasts (e.g., determi-
nistic or probabilistic) and the forecast products (resolution, normal-
ization, etc.) should be decided upon based on the decision problem at
hand. Also, going from data to analytics, there is often the need for an
additional layer of extracting the right type and level of information
from the raw data. This may be done based on filtering and smoothing,
feature engineering, etc. A typical example would be that of event de-
tection based on data streams, to then be used as input to some other
analytical problems.

Additional requirements may bring another level of complexity to
big data analytics. A crucial requirement linked to the data itself (and
related data streams) is how to handle cybersecurity and privacy in the
electricity grids. Today, cybersecurity represents a crucial component
of future distributed power systems, on which big data analytics may be
performed [112]. Consequently, setups for big data analytics, as well as
the tools employed, need to be robust to be able to withstand the re-
moval of important data or falsification of data. Also, data privacy is of
increasing concern because if the data being collected is shared, one
could infer information about specific assets or consumers, which was
never meant to be known. Privacy concerns are especially valid now
that smart meters are being widely deployed [113], which is potentially
allowing one to gain knowledge about consumer-habits for targeted
marketing and criminal activities. Another key requirement relates to
the need to have interpretable models and outcomes. This has recently
triggered a new body of work related to interpretable machine learning
and physics-informed machine learning.

3.3. Decision making framework

The use of big data analytics inevitably leads to enhanced decision
making. Therefore, in the proposed data analytics, special attention is
given to the visualization of the results.

As an example, one approach used in the prediction of outages is to
develop risk maps such as the ones shown in Fig. 2. They represent the
weather hazard, vulnerability, and the risk calculated as the product of
the two

A risk assessment framework is formulated by the United Nations
Disaster Relief Office (UNDRO), which was explored recently by the
United Nations Office for Disaster Risk Reduction (UNISDR)) in their

related report [114], was later adopted by the Federal Emergency
Management Agency (FEMA) in the USA, since the main focus is on
climate-related impacts to infrastructure, society, and environment.
This introduces the State of Risk (SoR) as:

= × ×

= × ×P T P C T u C

Risk Hazard Vulnerability Consequences

( ) ( | ) ( ),

where P(T) is the Hazard or probability of a given threat intensity (T); u
(C) is the Loss (social, economic, or environmental) associated to the
level of Consequences (C), associated to the threat intensity (T); and P
(C|T) is the Vulnerability or probability of experiencing a consequence
level (C) given a threat intensity (T). The risk units are, therefore, ex-
pressed in the units of the losses.

In this context, the decision making is related to an optimization
process where objective function and constraints aimed at mitigation
actions are defined. A broader framework for such decision making for
the aforementioned examples of the outage prediction is shown in
Fig. 3.

4. Applications

4.1. Asset and outage management

Competitive electricity markets, privatization, and regulatory or
technical requirements mandate power utilities to optimize their op-
eration, outage, and asset management practices and develop the re-
quisite decision plans techno-economically. In today's utility practice,
asset and outage management are handled by different groups and are
viewed as long term vs. short term planning efforts, respectively. We
have kept the discussion of such seemingly unrelated issues together to
emphasize their close correlation in terms of the use of data, since
outage management may utilize the same data as asset management
and vice versa since the underlaying status of assets drives both ap-
plications:

1) Asset management classification

Asset management in electric power systems can be broadly clas-
sified into four main categories based on the possible time scales, i.e.,
real-time, short-term, mid-term, and long-term [115].

Real-time asset management mainly covers the key power system
resiliency principles and deals with the unexpected outages of power
system equipment and grid disruptions. By enhancing situational
awareness, the electricity grid operators can effectively monitor and
control the system. Short-term asset management strives to maximize
the rate of return associated with asset investments. The value mainly
depends on the uncertain market prices through various market reali-
zations. Market risk assessment is a key consideration, and the revenue/
profit distributions are gained through a profitability analysis.
Optimized maintenance scheduling falls within the mid-term asset
management. It guides the maintenance plans toward satisfactorily
meeting the system-wide desired targets.

The efforts are focused on optimizing the allocation of limited fi-
nancial resources where and when needed for an optimal outage
management without sacrificing the system reliability. Extensive de-
ployment of smart sensors and monitoring technologies is to be used for
health and reliability assessment of system equipment over time and to
optimize the maintenance plans accordingly [116]. The investment in
power system expansion planning, as well as the wide deployment of
distributed generations, fall within the scope of long-term asset man-
agement where the self-interested players, investors, and competitors
are invited to participate in future economic plans.

1) Weather impacts on outages
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Weather impacts on outages in power systems can be classified into
direct and indirect [117]:

• Direct impact to utility assets: This type of impact includes all the
situations where severe weather conditions directly caused the
component to fail. Examples are: lightning strikes to the utility
assets, wind impact making trees or tree branches come in contact
with lines, etc. These types of outages are marked as weather
caused outages.

• Indirect impact to utility assets: This type of impact accrues when
weather creates a situation in the network that indirectly causes

the component to fail. The examples are: hot weather conditions
increasing the demand thus causing the overload of the lines re-
sulting in line sags, increasing the risk of faults due to tree contact,
exposure of assets to long term weather impacts causing compo-
nent deterioration, etc. These types of outages are marked as
equipment failure.

1) Outage management background

The ability to track multiple-weather threats synchronously as they
develop and to assess associated multiple-consequence impacts to uti-
lity industry assets, infrastructure, and the lifelines they support is
critical in the utility sector. Electricity grids are spread across wide

Fig. 2. Maps of hazard and vulnerability (left, respectively) resulting in the risk map (right).

Fig. 3. Decision making framework for predictive risk assessment.
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regions with generation typically located in remote areas. Major con-
sumption in metropolitan areas means that the transmission grid has to
bring the power from remote generation sites to the consumption
centers, and distribution systems must provide the utility lifelines to the
individual customers. To accomplish this, the grid goes through dif-
ferent operating states (Fig. 4) [118]. The corresponding electricity
market states are shown in Table 3 [119]. By combining asset and
outage management, one deals with the impacts most effectively [94].

1) Transmission line outage prediction

The knowledge from historical data can be utilized to issue pre-
dictions of weather-related transmission outages 1-3 hours ahead.
Spatial embeddings are added to the input data set [94] to capture the
spatial interdependencies between nodes and events. Consider the ex-
ample with historical outage data collected from Bonneville Power
Administration (BPA) [120]. The Automated Surface Observing Sys-
tems (ASOS) program [26] data was used to collect the historical
weather measurements for the following parameters: Wind Direction
[degrees], Wind Speed [knots], Wind Gust [knots], Temperature [F],
Dew Point [F], Relative Humidity [%], Pressure [mb], Precipitation/
Hour [inch], and Present Weather Codes. The National Digital Forecast
Database (NDFD) [121] was used to extract the historical weather
forecast data that is used for the testing of the real-time outage prob-
ability mapping system utilized in the, insulation coordination study
[41].

The optimal placement of line surge arresters is aimed at mini-
mizing the overall risk of lightning-related outages and disturbances
while staying within the required budgetary limits [41]. The network
and its surrounding impacts are modeled using a multi-modal weighted
graph that uses data coming from various sources. The developed risk
model considers the accumulated impact of past lightning disturbances
to produce a more accurate estimate of insulator strength and predicts
insulator performances for the future lightning-caused overvoltage,

using Gaussian Conditional Random Fields (GCRF) [122]. The pre-
dictive data-driven method for vegetation management in distribution
is introduced in [123]. A model for spatio-temporal correlation of a
variety of data is developed, which enables real-time analysis of the
vegetation impact on the distribution feeders based on predictive risk
maps. A prediction algorithm is based on the GCRF regression pre-
dictor. The optimization algorithm is used to find the most cost-effec-
tive dynamic tree trimming schedule that minimizes the overall risk of
the network for each quarter.

1) Transformer health assessment

The traditional approaches for transformer health assessment were
developed by using domain knowledge of the physical and chemical
processes occurring inside the oil tanks of the transformer, later vali-
dated with empirical studies. Some examples are Duval's triangle [124],
IEC gas ratios [125], or the Key Gas analysis [126]. The increasing data
(e.g., periodic dissolved gas and oil analysis, sensors that collect real-
time data, etc.) collected by electrical utilities motivated the develop-
ment of data analytics methods based on supervised learning to classify
transformer condition and type of fault. Some examples are multi-
layered artificial neural networks [127], support vector machine [128],
and Bayesian networks [129]. The failures of step-down transformers
(22.9KV-220V) used in the distribution sectors in South Korea are
studied in [130].

The application of supervised learning algorithms faces the fol-
lowing challenges: (i) the majority of the algorithms offer low inter-
pretability to decision-makers, which is a fundamental requirement in
this problem; (ii) lack of available failure data with high quality; and
(iii) labeled data about transformer condition in most cases is not
available or is defined by a human (i.e., subjective classification of the
condition). The use of unsupervised learning is an alternative and ap-
pealing solution, but the literature remains limited. The first approach
of unsupervised learning was the Health Index described in reference
[131] that summarizes the overall health of the asset by combining the
results of operational observations, field inspections, and site and la-
boratory testing into a single index. However, the main limitations of
this index are: (i) empirical definition of the weights for each criterion,
and (ii) the lack of information about the type of fault. Other alter-
natives are clustering [132] and semi-supervised learning with Low
Dimensional Scaling [133]. Moreover, research in deep learning can
contribute to data augmentation [134] of transformer data and deliver
new techniques for unsupervised learning like Siamese networks [135].
It is important to emphasize that we should expect a lower performance
from unsupervised techniques when compared to supervised learning,
but a larger application potential in real-world datasets.

1) Predictions of catastrophic infrastructure damage causing outages

Big data analytics may be used to predict catastrophic asset failures
due to inclement weather events such as hurricanes, cyclones, tornados
and tsunamis [136,137]. Such studies are mostly related to the pre-
diction of the infrastructure damage, including the number of toppled
poles, destroyed substations, and other damages that require full re-
construction of the electricity grid infrastructure. An implicit assess-
ment is also associated with the outages since a reconstruction is
needed first to restore the service.

4.2. Smart meter data analytics

This application domain has a variety of use cases:

• Applications of a single smart meter analytics

• Applications of groups of smart meters

• Smart meters connected to grid models

Fig. 4. The electricity grid states.

Table 3
The electricity market states.

Type Configuration Market Parameters

Normal All MPs* complete Within limits
Emergency All MPs complete One or more parameters violate the limits
Restorative Structure incomplete Within limits

⁎ MPs (Market Participants) include generator companies, transmission
owners, load-serving entities, and other non-asset owners such as energy tra-
ders.
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Today's penetration of smart meters in the US alone exceeds 50%,
and in some European countries over 50%, providing important op-
portunities for data analytics to enhance customer management and
grid operations and planning. Smart meters provide readings of energy,
power, and voltage at temporal granularities typically of one hour or 15
minutes. Electric utilities, energy services providers, customers, and
researchers have identified numerous use cases for smart meter analy-
tics such as forecasting, customer load profiling and classification, load
estimation, and enhanced grid modeling [40]. When combined with
other data sources and utility systems, smart meter analytics can further
expand its benefits to utility operations enterprise-wide. A summary of
smart meter application is illustrated in Fig. 5.

Below, we provide a summary of the salient applications of smart
meter data analytics with corresponding references. Some of the ap-
plications will be expanded in the following sections under separate
titles.

1) Load Forecasting

The power industry has been using load forecasting for grid op-
eration and planning and for customer management. Smart meter data
caught the attention of researchers in the past decade for both point and
probabilistic load forecasting [138,139]. A more comprehensive treat-
ment of this topic is in the subsection.

1) Customer Load Profiling

Load profiling refers to the classification of the historical readings of
customer demand into groups based on their behavior. Clustering
techniques such as k-means, hierarchical clustering, and self-organizing
maps have been utilized for load profiling [140–142]. Time-varying
models combined with clustering have been utilized to develop com-
plex power load modeling using Advance Metering Infrastructure (AMI)
data [143].

1) DER Analytics

A significant amount of distributed energy resources (DER) are
being connected to the grid, including solar PV, energy storage, and
electric vehicles. These resources within the grid create new challenges
for utility providers including voltage variability [144], thermal limit
violations, reverse flows, and impacts on the expected life of the in-
frastructure such as transformers and voltage regulators. It is crucial for
utilities to have accurate information related to Distributed Energy
Resources (DERs) at the distribution circuit and behind-the-meter
(BTM). Researchers have demonstrated the possibility of detecting
rooftop PV [145] and electric vehicles charging at the consumer end
[146] using non-intrusive analytics on smart meter data. Deep neural
networks have been utilized to detect size, tilth, and azimuth para-
meters of solar PV installations based on AMI data [147].

1) Grid Applications

Smart meter data can be utilized in conjunction with distribution
feeder data to obtain refined models for distribution planning, or to
obtain insight into specific modeling problems. For instance, smart
meter data has been utilized for anomaly detection [148] such as
drastic changes in demand or voltage. Smart meter outage data has
been utilized for analytics and optimal outage restoration [149] and
feeder reconfiguration design. Smart meter analytics has also been used
for transformer connection correction [149], phase identification
[150], topology identification [151], and parameter estimation [152].

4.3. Load forecasting

In a utility analytics survey conducted in 2017 among 136 utilities
from 24 countries, 52% of the respondents considered energy fore-
casting as a high-priority application, the highest percentage among all
applications in the survey [153]. Forecast improvement can lead to

Fig. 5. Illustration of smart meter data analytics applications.
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better operational and planning decisions and thus to monetary savings
or system reliability enhancement. Depending upon the factors such as
the size of the company and the magnitude of error reduction, forecast
error reduction may result in annual savings up to millions of dollars
[154]. In the big data era, the growth of data, advancement of com-
puting technologies, and breakthroughs in advanced analytics further
stimulate the improvement of energy forecasting techniques and
methodologies. Many of these recent developments were recognized as
winning entries in the Global Energy Forecasting Competitions
(GEFCom) [42–44].

Utilities have been practicing load forecasting for over a century
[155]. Following the growth of the electric grid footprints and the
power industry, long-term load forecasting, or spatial load forecasting,
in particular, has been considered as a crucial component to power
systems planning in the late 20th century to early 2000s [156–158],
when the load data were collected from distribution transformers and in
low resolution, such as monthly or annual. On the other hand, the in-
creasingly sophisticated operational needs started to require accurate
short-term load forecasts [159]. Artificial intelligence techniques, such
as artificial neural networks, took the majority of the literature in the
1990s [160]. Although many models were developed for Short-term
Load Flow (STLF), most were of little practical value. A notable success
developed from academia in the 1990s was a neural network model,
which was later commercialized and is still being used in the industry
today [161]. Another recent academic research discovery that has been
commercialized and deployed worldwide during the 2010s is a re-
gression-based modeling framework [39,162].

As distribution automation and smart grid technologies made high
spatiotemporal resolution data available to load forecasters, the re-
search in load forecasting flourished too. For instance, retail electricity
providers started to use hourly data for long-term load forecasting
[163]. Some market operators and utilities also relied on hourly or sub-
hourly data to forecast load at a high voltage level [38,39,164]. These
high-resolution load data allow forecasters to build models with hun-
dreds of parameters that can capture many salient features in the load
[37]. They also enabled the load forecasters to improve aggregate
forecasts by leveraging meter level load information [138].

While exploiting the use of high-resolution load data, researchers
and practitioners also invested some efforts on innovative ways of
leveraging weather data. Traditionally, only a small number of weather
stations are being used to forecast load in a specific region. In
GEFCom2012, temperature series from 11 weather stations were re-
leased to the research community [42]. A weather station selection
methodology was then proposed and shown to add value to state-of-the-
art load forecasts. The method was then used by a winning team in
GEFCom2014 [165]. Recently, it was further improved by other re-
searchers [166,167]. Since weather data can be used for many load
forecasting models, these weather station selection methods are bene-
ficial to both long- and short-term load forecasting.

While the main research trend of load forecasting research is to
leverage big data, another trend is to embed comprehensive informa-
tion about the future into load forecasts. Probabilistic load forecasting,
which provides forecasts in quantile, probability interval, or density
function, is certainly a hot topic in the past decade [168]. These
probabilistic load forecasts can be generated via simulating residuals
[169,170], generating input scenarios [171], or combining point fore-
casts [172]. Quantile regression has also been adopted to produce
probabilistic load forecasts [139,172,173]. Some methodological as-
pects of forecasting have also been studied specifically for probabilistic
load forecasting, such as feature selection [174,175] and forecast
combination [176].

In addition to improving load forecasts at high voltage levels, re-
searchers and practitioners have also devoted many efforts to load
forecasting at medium and low voltage levels. Some of them are at a
delivery point level [42,44], while others are at individual meters
[40,139,177]. Another popular topic is to forecast building level load,

ranging from academic buildings [178,179] to residential buildings
[180,181]. While the weather still plays a major role in many building
level load forecasting models, its effects on industrial load are rather
minimal. Load forecasting for factories and industrial plants is another
emerging topic in this category [182–184], and includes reactive power
load forecasting.

4.4. Renewable energy analytics and forecasting

The deployment of renewable energy generation capacities has
continued at a sustained pace over the past decade or two. Owing to the
variability of power generation from renewable energy sources, and
also due to the limited predictability, the emphasis has been placed on
developing approaches to integrate those renewables. Besides aspects
related to grid code, and some of the analytics and novel energy
management approaches covered in other sections, a large part of the
efforts has been on how to optimally use the wealth of data available to
improve knowledge about renewable power generation, most often
with a view on forecasting. One of the first papers proposing dynamic
models for predicting wind speed and corresponding power generation
is [185]. Even though focusing on simple models and a fictitious setup,
that manuscript laid the groundwork for a wealth of subsequent de-
velopments. Obviously, at the time, big data aspects were not discussed,
and the dimensionality of the models involved was small.

Today for wind farms, especially offshore, it is standard to collect
data at the turbine level at a one-second resolution. Similarly, for solar
power plants, data can be collected at the inverter level, and with a
similar second-level resolution. Those data at a very fine level are to be
leveraged to improve analytics and forecasts at the wind farm (or solar
power plant) level [186]. In addition, since renewable energy genera-
tion capacities start to be numerous and geographically dispersed in a
dense manner, one may also accommodate all the data collected at the
site levels to improve forecasts [14,18,187].

To this should be added a wealth of other data sources of relevance,
mainly related to meteorological observations and forecasts, which
describe complex processes and yield very large data volumes. On the
side of meteorological observations:

(i) Sky imagers have shown great potential for high-resolution mod-
eling and forecasting of solar power generation since they are
tracking moving clouds and their impact on solar panels [188].
They may give an image of the sky above the solar power plants
every 30 seconds;

(ii) Weather radars have similarly demonstrated their interest in ap-
praising and modeling dynamic regimes for application to high-
resolution wind power prediction [189]. Depending upon tech-
nology, radar images may be available between every minute and
every 10 minutes, with an image radius between 60 and 250 kms;

(iii) LIDARs are increasingly seen as highly relevant for wind mea-
surements upwind of wind turbines and integration in forecasting
methodologies [190], or more generally as new potential ob-
servations of wind profiles to be used in weather and renewable
energy prediction [191]. LIDARs provide wind measurements for
the cone they scan (vertically or horizontally, depending on the
way they are set-up) every few seconds.

One could additionally mention satellite images, of potential in-
terest for wind, solar, and wave energy. Their lower frequency of up-
date makes them less relevant for the time being though. The in-
formation from these various types of devices is referred to as remotely
sensed information.

A first and complex challenge when handling remotely sensed in-
formation is dimension reduction. This may be performed: (i) based on
statistical and signal processing techniques, e.g., Independent
Component Analysis–ICA, for motion fields in weather radar images;
(ii) by extracting physical features like clouds in sky images [188] or
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precipitation systems and their characteristics in radar images [192]; or
finally (iii) through functional models like wind profiles for LiDAR
vertical measurements.

Besides meteorological observations, new high-dimensional input
data may also take the form of weather forecasts. First of all, relevant
information in weather forecasts may not only be for the closest point to
a site of interest but may be provided over the whole area of that site of
interest [59]. Secondly, to express forecasts in a probabilistic manner,
ensemble weather forecasts consist of a set of alternative and equally
likely trajectories (typically, between 10 and 100) for relevant weather
variables. They can be interpreted as sample realizations from multi-
variate probabilistic forecasts to feed in renewable energy forecasting
approaches. These are available over large areas. e.g., all of Europe,
providing information on the multivariate space-time dependencies in
renewable power generation [193,194]. Finally, very high resolution
(spatial resolution in the order of tens to hundreds of meters and
temporal resolution in the order of seconds to minutes) weather fore-
casts are bringing new opportunities for renewable energy forecasting,
as for the recent example in [186] and applications at offshore wind
farms.

Today, the availability of such quantities of data calls for funda-
mental changes in renewable energy analytics and forecasting, both in
terms of the methods involved but also in terms of the business models.
We expect to see many innovative works appearing in the future pro-
posing approaches based on stochastic differential equations, deep
learning, distributed and federated learning as well as data markets.

4.5. Energy optimization and efficiency

Smart grid technologies offer a large potential to boost energy ef-
ficiency in different sectors. However, presently, energy efficiency ac-
tions are mainly confined to the implementation of ISO 50001 certifi-
cation as follows: (i) install additional equipment (meters, sensors, etc.)
to measure energy consumption; (ii) install new hardware and replace
equipment; and (iii) visualize the data in a seamless user interface, find
anomalous patterns; and identify energy-intensive processes. This
standardized practice provides monitoring and awareness of energy
consumption to human decision-makers, but it does not enable pre-
scriptive analysis and autonomous process control.

Different works in the literature explore model-driven energy opti-
mization techniques, such as integer programming for peak load re-
duction in steel-plants [195] and mixed-integer linear programming for
thermal domestic appliances [196]. Model-driven approaches have the
disadvantage of requiring a (mathematical) model of the physical
process and constraints, which might be complex to obtain in some
cases. They do not allow continuous improvement of control policies.

The advent of internet-of-things technology offers technical condi-
tions for data-driven modeling in energy optimization. Some examples
are the use of batch reinforcement learning (fitted Q-iteration) for
controlling a cluster of domestic electric water heaters for demand re-
sponse services [197]; fitted Q-iteration combined with auto-encoders
for energy optimization in electric water heaters [198]; deep re-
inforcement learning for predictive energy optimization of wastewater
pumping stations [199]; and tree-based modeling of building energy
consumption for optimal heating system scheduling [200]. This ap-
proach does not require full modeling of the process equations since its
understanding is made in real-time through data. However, data
availability and the time (e.g., number of interactions with the physical
system) required to “train” data-driven optimization methods remain as
practical challenges for industry adoption.

Besides data-driven energy optimization, additional data-driven
energy services can be offered by energy service companies (ESCOs),
aggregators, and retailers to their customers aimed at maximizing end-
user awareness to energy efficiency actions and extracting business
value from data.

An important contribution to increase end-user awareness is non-

intrusive load monitoring from smart meter data, which can be applied
to detect and estimate residential PV installations [145], heat pump
consumption [201], and individual load profiles from feeder load
curves [202]. Customer segmentation with load profiling can be applied
by aggregators and retailers to identify target customers, design tailor-
made dynamic or real-time tariffs [203], model dynamic behavior of
controllable loads/appliances [204], or inform consumers if they are
facing an abnormal change of their load profile. The standard techni-
ques are batch time series clustering, but online clustering is a funda-
mental requirement due to the dynamic nature in the consumption
behavior [205].

Smart meter data combined with exogenous variables (e.g., outdoor
temperature) can support retailers and aggregators to estimate the de-
mand response potential of their customers. In [206], a stochastic
knapsack problem is formulated for customer selection in DR programs
using consumption data, as well as to estimate the probability of
achieving a load reduction target. Causality inference between Dis-
tributed Resource (DR) tariffs and consumption is used in [207] to es-
timate consumers’ elasticity and to identify if dynamic tariffs influence
the consumers’ usual consumption diagram; a similar goal is attained
with a correlation-based approach [208]. Moreover, online learning can
be used to dynamically adjust price signal to obtain a desirable usage
behavior, e.g., by formulating an online convex optimization problem
[209] or via a parametric utility model [210].

The data collected from energy efficiency audits and certification is
very valuable for different stakeholders and services [211]. For in-
stance, the Department of Energy (DOE) Buildings Performance Data-
base can be used for different goals [212]: energy efficiency score
benchmarking of different building types and geographical location;
estimate energy savings potential associated to specific retrofit actions;
and portfolio-level impact assessment of energy technologies. In fact,
data-driven techniques can be used for an a priori assessment of retrofit
measures in terms of energy savings and “de-risk” investments in en-
ergy technologies. For instance, multi-linear regression can produce a
probabilistic estimation of the return-on-investment associated, with
different retrofit measures, considering the building's characteristics
and systems [213].

4.6. Synchrophasor data analytics and event analysis

To appreciate the importance of Phasor Measurement Unit (PMU)
data, one has to go back to the reports on the causes for the major
blackout in the Northeast USA on August 13, 2003 [214]. The U.S.-
Canada Power System Outage Task Force has concluded that one of the
main reasons for the occurrence of the blackout was the lack of situa-
tional awareness. This, in turn, was attributed to the limited operator
view of the power system events and associated dynamics enabled at
the time by the by Energy Management System (EMS) through the field
measurements provided by the Supervisory Control and Data Acquisi-
tion (SCADA) systems and substation recording devices such as digital
fault recorders, digital relays, and sequence of events recorders. The key
deficiency was the measurement reporting rate (SCADA Remote
Terminal Units), lack of differentiated time stamping (SCADA data-
base), and inability to timely update the power system model to reflect
cascading switching events (state estimator). In addition, the fault re-
cording devices were not adequately time-synchronized and time-
stamped. To remedy such shortcomings, the PMUs and synchrophasor-
based Wide Area Monitoring, Protection and Control (WAMPAC) were
identified as an adequate measurement infrastructure. With a boost in
funding from the American Recovery and Reinvestment Act of 2009,
many PMUs were installed across the USA reaching more than 2,500
units today. An even larger number of PMUs were installed in China,
and plans for a large number of installations are underway in India.

One of the main strengths of PMUs is that they provide time-syn-
chronized measurements of real-time voltage and current phasors at
much higher reporting rates compared to SCADA Remote Terminal
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Units (RTU). Insight into how this is done can be obtained from Fig. 6
where the PMU generic architecture is shown [215]. The key char-
acteristics of PMU are the one pulse per second (1PPS) and the time-
code provided by the Global Positioning Satellite (GPS) clock receiver.
The accurate clock signal at the rate of 1PPS feeds the sample and hold
(S/H) circuits at all PMUs, enabling synchronous sampling of input
waveforms across not only the inputs of one PMU but inputs of all PMUs
installed in a given power system. The time-code representing absolute
time adds an ability to time-stamp all reference times. Such calculated
phasor values are reported at a rate per second of 30, 60, 120, or even
higher, giving two key advantages: a) providing streaming measure-
ments of high-fidelity data, and b) assuring high accuracy calculation of
the phase difference between any location in the system and the re-
ference phasor.

This provides a unique opportunity for post-event analysis, espe-
cially in the case of complex events (for example, cascading faults
caused by equipment failures leading to blackouts). In addition, cap-
turing and analyzing oscillations in a power system is important since it
announces a possibility of system collapse [216]. The PMUs play an
important role in disturbance recording [217] with the recent devel-
opment of disturbance identification and classification technologies
[217–220]. In recent years, power system capabilities have been ex-
tended to include renewable resources, increased energy demand,
electric vehicle integration, etc. All of these technologies impose novel
challenges to the system operation. PMU data provide a valuable source
that could help meet the challenges and increase the resilience of the
composite grid.

Thus, the data collected from PMUs plays a vital role in applications
such as system monitoring, control, protection, state estimation, stabi-
lity assessment, and fault detection [221]. However, the post-event
analysis is still performed manually in many cases with limited or no
capability of prediction. The proposed techniques embedded in the
mentioned software solutions are aimed at automated analysis capable
of not only classifying past events but also predicting future con-
tingencies using the records of streaming data.

The majority of predictive methods for PMU data analysis in lit-
erature are focused on enabling more meaningful situational awareness
than what is covered by EMS SCADA, in turn assuring dynamic stability
of the system [222–229]. The prediction methods can extend the op-
erators’ capability to differentiate types of events, ranging from normal
operation to operation in extremes by capturing PMU waveform fea-
tures and automatically identifying events during the classification
process. This enables the applications of big data, AI, and machine
learning to help in predicting multiple types of alert and emergency
events in power systems, in addition to tracking normal operation and
dynamic stability extremes. The initial insight can be used as the guide
for future research in this area and potentially open the door for a more
thorough exploration of prediction algorithms based on PMU for other
applications, such as asset management and monitoring, or outage

management and prediction.
One challenge that all entities involved with the development of

online and offline applications are facing is the proliferation of an ex-
tremely large amount of data coming from PMUs. To improve the
systems reliability, security, and efficiency, automated tools will need
to be developed that are capable of both analyzing past events and
informing decisions in real-time. This means that the proposed ap-
proaches need to differentiate between techniques suitable for acces-
sing and processing a large amount of historical data where the pro-
cessing time is less important vs the techniques aimed at real-time
processing of streaming data where the computational efficiency is
crucial.

As computational resources advance, learning and extracting useful
patterns from big data creates new opportunities. Deep learning
[88,92,93] allowed for finding more abstract patterns from big com-
plex, and even heterogeneous data [230]. A deep model learns in a
multi-layered fashion. Each time the new data or an excreted set of
features is passed through a layer, an additional level of data abstrac-
tion is introduced. Thus, through many consecutive layers, deep models
learn richer, high-level representations of low-level raw data such as
images, sound, and text. In other words, deep models provide an end-to-
end framework for automated, complex, feature extraction at a high
level of abstraction. The deep models do not extract predefined re-
presentations—on the contrary, they tend to find invariant patterns by
removing variation in data [231]. The ultimate hypothesis in this re-
gard suggests that the more data there is, the more knowledge is being
extracted [232], and thus the greater the generalization capability that
can be achieved. The learned representations are compact, which re-
quires less computation and, thus, makes further learning quite effi-
cient.

The overall architecture of the PMU data automated analysis pro-
cess is given in Fig. 6.

4.7. Grid applications

The investment in Smart Grid technologies (e.g., smart meter, PMU,
and intelligent electronic devices [IED]) for distribution and transmis-
sion grids are enhancing their monitoring and control capabilities
[233]. In parallel, new market and regulatory frameworks are being
tested (at pilot level) and implemented in different countries to support
the integration of flexible DER.

1) Observability

Despite all the technological advances, observability of low voltage
(LV) grids remains a major bottleneck to fully explore the potential
from these technologies and integrate flexible DER to electricity mar-
kets and power system management. This can be divided into two main
challenges: (i) topology and grid's parameters characterization; and (ii)
real-time monitoring.

Information from smart meters installed in LV customers and in
secondary substation feeders can be used to construct grid topology
using a variety of methods, such as: probabilistic graphical model and
LASSO linear regression [234,235]; and power flow combined with
mutual information [151]. In some cases, information about grid to-
pology is available, but the electrical parameters exhibit gross errors or
are unknown (i.e., parameters from cable catalogues are used), and
thus, it is necessary to conduct a robust (and data-driven) estimation of
grid parameters [236,237]. This problem also requires the development
of methods for planning sensor placement and minimization of mon-
itoring costs [238]. Another source of uncertainty is the connection
phase of each customer. Clustering 15-min voltage magnitude mea-
surements from smart meters can identify groups of customers con-
nected to the same phase and reduce the workforce cost for phase
identification in the field [239]. Smart meter data can also be used to
estimate the rated power of behind-the-meter PV panels [240] and

Fig. 6. Generic architecture of a PMU [215].
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detect electric vehicles charging [241].
In terms of real-time monitoring, information about voltage profiles

is very important to generate alarms to human operators in LV dispatch
centers. However, even with communication protocols such as Power
Line Communication (PLC) PRIME or General Packet Radio Service
(GRPS) either is technically unfeasible to collect every 15-min in-
formation from hundreds of customers or the communication costs are
very high. Data-driven state estimation functions help to estimate the
voltage magnitude in every LV node in real-time using only information
from a subset of smart meters (i.e., 10-20%) with real-time commu-
nication [242]. Load and generation forecasts can be used as input in a
standard state estimation algorithm and produce a probabilistic esti-
mation of the nodal voltage [243].

Other voltage levels are also benefiting from data-driven state es-
timation functions for real-time monitoring. Some examples include the
following: a robust data-driven state estimation was proposed in [244]
to exploit historical data collected by substation meters and PMUs, by
finding system similarities in a supervised learning framework with
kernel ridge regression; a dynamic state estimator with forecasting
capability is described in [245]; the combination of SCADA data from
primary substations (normally available in central databases with a few
seconds/minutes delay) and secondary substation (normally available
in central databases with a delay of hours) can extrapolate quasi-real-
time operating conditions of Medium Voltage (MV) grids [246,247];
and a mosaic of local competitive auto-encoders estimates the status of
grid switchers based on a set of local electrical measurements [248].

Furthermore, traditional functions, such as outage detection, can
benefit from data analytics functions that integrate textual, temporal,
and spatial information from social media [21] and PMU data [218].

1) Controllability and decision-support

Data-driven functions are also being integrated in traditional energy
management (EMS) and distribution management systems (DMS) to
complement or replace classical grid analytical functions such as power
flow, network reconfiguration, optimal power flow, etc. In some cases,
a machine learning model is used as a proxy for traditional functions,
e.g., to estimate power flow of a Jacobian matrix with PMU data [249]
and unit commitment computations [250]. A potential disadvantage of
this approach is that a large dataset needs to be collected or simulated
to fit the models. However, after being fitted, it can be integrated into
different applications and provide fast estimations.

In other cases, machine learning is used to learn from (or imitate)
historical data of human operators control actions and decision-aid
[251] or to explore new (and better) solutions by using expert systems
[252]. An important advantage of these two approaches, developed for
Transmission System Owners (TSOs), is its high interpretability to
human decision-makers and the capacity to exploit expert knowledge
(i.e., past decisions and control heuristics). However, both fall into the
imitation learning paradigm i.e., supervised learning applied to deci-
sions from an expert, and do not explore (or search for) new solutions.
An alternative is reinforcement learning, which provides a trade-off
between exploitation and exploration and in some cases, like the case
described in [253], can be combined with imitation learning.

Some use cases for this data-driven control approach are: fast
ranking of higher-order contingencies (according to their risk) to better
prioritize power systems simulations [254]; and causality analysis on
measurement data to implement optimal node attack strategies [255].

Finally, the integration of renewable energy systems and the wide
adoption/implementation of IEC 61850 is increasing the volume of
alarm data and the number of alarms that require attention and control
actions in control rooms [256]. Traditional approaches are based in
rule-based expert systems [257], but without the capacity to provide
valuable insights into the information contained in an alarm sequence
and reduce the cognitive load of human operators. In [258], an un-
supervised rough classification technique is proposed to reduce the

volume of substation data and messages received during emergency
scenarios and improve decision-making, but do not provide suggestions
of control actions. This last step of decision-making (i.e., define a se-
quence of manual maneuvers by the operator) is missing in most ap-
proaches that handle data from protection schemes and is fundamental
to generate the actual impact from data analytics functions, such as
reduce time to make the first decision and System Average Interruption
Duration Index (SAIDI).

5. Future opportunities and challenges

The survey indicates many applications that are at different stages
of practical implementation. While the number of references on the
general subject of big data is already large, it is expected that the work
will be progressing at an unprecedented pace, and the number of re-
ferences will grow even more in the near future. However, it is not clear
in some of the published surveys, what the end applications of some of
the surveyed techniques are, and what are the associated benefits and
business drivers. We see the benefit of future research in its focus on
end-applications while answering the fundamental issues at the same
time to advance the following opportunities eventually;

• Predicting events ahead of time and allowing mitigation strategies
to be implemented and risk quantification with uncertainty forecasts
to be calculated.

• Monetizing historical data for the benefits of owners and users.

• Combining physical and data models for improved root-cause ana-
lysis.

• Preventing power system outages and operational constraints cur-
rently costing billions of dollars.

• Making the users aware of upcoming electricity supply constraints
and utilizing distributed resources more effectively to mitigate
outages and other contingencies.

• Spurring innovation by utilizing cross-discipline experiences from
seemingly different domains but with a strong correlation of data
properties and analytics requirements.

• Utilizing data from many disparate ubiquitous sources such as ta-
blets, smartphones, and other personal electronic devices making
the owners and stakeholders of the data analytics enterprise the
participating actors.

• Replacing some of the tasks performed by operating agents and
experts today by algorithms and automated processes

At the same time, many challenges need to be overcome:

• Lack of real-world data to make future studies more practically fo-
cused.

• Lack of open data and benchmark models for different use cases.

• The use of synthetic data may have to be carefully evaluated for
yielding any meaningful outcomes.

• Agreeable metrics for evaluating big data analytics’ results for their
validity and impact (e.g., return-on-investment of big data tech-
nologies).

• Offer model's interpretability and sufficient accuracy to decision-
makers.

• Availability of open-source platforms for data management and data
analytics implementation.

• Limited viewing capabilities for large amounts of data points in
scalable data models.

• Consideration of computational requirements to find an optimal
trade-off between centralized and decentralized computing.

• Cybersecurity and privacy of the data management in data analytics
enterprises.
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6. Conclusions

This survey has strived to achieve several goals:

• It addressed both the breadth and depth of practical big data ana-
lytics application in the electricity grid.

• It made a review of the key issues in implementing big data analytics
in the selected grid domains.

• It gave ample examples of recent trends in the decision-making
framework and predictive analytics.

• It enumerated a number of references that may be used by re-
searchers to further their own research.

• It gave some direction of future research and outlined challenges
and opportunities.

The paper is by no means an exhaustive account of all the published
works or trends. If interested in the subject matter, the readers of this
survey should explore additional aspects not mentioned here.
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