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Abstract
Area coverage and communication are fundamental concerns in networks of cooper-
ating robots. The goal is to address the issue of how well a group of collaborating
robots having a limited communication range is able to monitor a given geographical
space. Typically, an area of interest is partitioned into smaller subareas, with each
robot in charge of a given subarea. This gives rise to a communication network that
allows robots to exchange information when they are sufficiently close to each other.
To be effective, the systemmust be resilient, i.e., be able to recover from robot failures.
In a recent paper Bereg et al. (J Comb Optim 36(2):365–391, 2018), the concept of
k-resilience of a synchronized system was introduced as the cardinality of a smallest
set of robots whose failure suffices to cause that at least k surviving robots operate
without communication, thus entering a state of starvation. It was proven that the
problem of computing the k-resilience is NP-hard in general. In this paper, we study
several problems related to the resilience of a synchronized system with respect to
coverage and communication on realistic topologies including grid and cycle configu-
rations. The broadcasting resilience is the minimum number of robots whose removal
may disconnect the network. The coverage resilience is theminimumnumber of robots
whose removal may result in a non-covered subarea. We prove that the three resilience
measures can be efficiently computed for these configurations.
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1 Introduction

Interest in systems of autonomous robots that perform tasks cooperatively has been on
the rise in recent years (Abdulla et al. 2014; Alena et al. 2018; Mazayev et al. 2016).
In many cases the cooperation between robots is a crucial requirement for the success
of the system. A common scenario involves the completion of a task with each robot
being assigned a certain subtask. In this case, if one or more robots fail, the remaining
robots are expected to assume the pending subtasks. Even if the risk of failure among
the members of the team is low, cooperation could be fundamental, for example, in
monitoring missions.

There is a vast literature on optimization problems motivated by problems in
robotics and mobile sensors. Algorithmic and combinatorial problems have been
inspired by infrastructure security Kranakis and Krizanc (2015), area coverage Choset
(2001), scheduling Hwang and Cheng (2001) or robotic assembly Hamacher (1992),
to name a few.

In previous work, a combinatorial scheduling problem has been addressed in Díaz-
Báñez et al. (2017) and Díaz-Báñez et al. (2015) for monitoring a terrain using a
system of synchronized aerial robots (UAVs) with communication constraints. Later,
motivated by the protocol proposed in those papers, an optimization problem related
to the robustness of the system with respect to failures was studied Bereg et al. (2018).
The k-resilience of the system, was defined as the cardinality of a smallest set of robots
whose failure results in at least k surviving robots operating without communication
as they continue to follow the proposed protocol. In Bereg et al. (2018), it was shown
that the problem of computing the k-resilience is NP-hard when k is part of the input,
but can be computed efficiently when k = 1. In this paper, we give additional results
for this measure and other robustness metrics when the partition of the terrain allows
one to model the problem using grids or cycles as the underlying graphs, a common
configuration in many real life scenarios while patrolling big areas or boundaries such
as coastlines.

1.1 A synchronized system

Consider a team of n mobile robots performing a task while each of them periodically
travels along a predetermined closed trajectory (the trajectories are pairwise disjoint).
The range of the communication interfaces of the robots is very small compared
to the workspace area. Thus, two robots can establish a communication link and
exchange information only when they are close enough to each other. Díaz-Báñez
et al. (2015) and Díaz-Báñez et al. (2017) address the problem of maintaining periodic
communication between robots while each performs its assigned task bymoving along
its assigned trajectory. The authors study an abstraction of the problem on a simpler
scenario where the trajectories are pairwise disjoint circles of unit radius, a tour of a
robot in a circle takes one time unit and the communication range of each robot is a
value ε < 0.5. We say that two circles Ci and C j are close if the distance between
their centers is less than 2+ ε and we denote the segment connecting their centers by
{i, j}. When two robots u and u′ traversing Ci and C j , respectively, lie on {i, j} at
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(a) (b) (c)

Fig. 1 a Two robots u and u′ at the link position between close trajectories. b Shifting operation between
trajectories with the same travel direction. c Shifting operation between trajectories with opposite travel
directions

the same time, they can exchange information (they are within communication range
of each other). In this case, we say that u and u′ are in link position (see Fig. 1a).
Moreover, since the robots travel along their trajectories at the same constant speed
of 2π length per time unit, they are synchronized and can exchange information once
per time unit.

Suppose now that we have set up a system with one robot per circular trajectory
such that every pair of robots in close circles are synchronized. The performance of
this system is compromised when a robot abandons the mission to refuel or due to
some technical failure. Díaz-Báñez et al. (2015) and Díaz-Báñez et al. (2017) also
address this problem and propose the following strategy: let � be a link between close
trajectories Ci and C j with synchronized robots u and u′, respectively. Suppose that
u′ in C j abandons the system. When u in Ci arrives at �, its communication interface
detects the absence of u′. To compensate, u assumes the subtask assigned to u′ in C j

(which is interrupted at themoment), leavingCi and shifting toC j (see Fig. 1b, c). This
approach is referred as the shifting strategy in Díaz-Báñez et al. (2017). Notice that,
due to kinematic constraints while shifting, it is convenient that synchronized robots
fly in opposite directions, one in clockwise and the other one in counterclockwise
direction (see Fig. 1).

Let T = {C1, . . . ,Cn} be set of unit circles (trajectories) such that Ci and C j are
disjoint for all i �= j . Let ε < 0.5 be the communication range of the robots. Let
Gε(T ) = (V , Eε) be a graph whose nodes are the centers of the circles in T and
whose edges are the pairs of circle centers at distance 2 + ε or less. From now on
assume that Gε(T ) is connected, as otherwise there cannot be full communication in
the system. As proposed in Díaz-Báñez et al. (2015) and Díaz-Báñez et al. (2017), a
synchronized communication system (SCS) is a bipartite connected graphG = (V , E),
a spanning subgraph of Gε(T ), such that {i, j} ∈ E if and only if the robots in Ci

and C j are synchronized and fly in opposite directions. Every robot in a SCS applies
the shifting strategy if it detects the absence of a neighbor in a link position. The
graph G is called the communication graph of the SCS and two trajectories Ci and
C j are neighboring if {i, j} ∈ E (see Fig. 2). Note that while G must be connected
and bipartite in order to enforce the desired direction of travel, Gε(T ) just needs to be
connected.
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(a) (b)

Fig. 2 a, b are two different states of a SCS formed by four trajectories. The communication graph is
drawn using gray dotted lines. The arrow-arcs represent the travel direction of every trajectory. Notice that
every pair of neighboring trajectories have opposite travel directions and every pair of robots in neighboring
trajectories are synchronized

(a) (b) (c)

Fig. 3 a, b When the robots represented by hollow points leave the system then the surviving ones, solid
points, follow the closed path drawn with bold solid stroke. The trajectory segments in dotted stroke in (b)
and (c) are non-covered. In b u1 and u3 are starving, however, in c, u1 and u3 are not starving, they meet
u5 periodically. The message broadcasting is possible in (c) but it is not in (b)

1.2 Combinatorial problems and results

A robot is in a state of starvation if, while following the travel protocol, it fails to
encounter any other robots at the designated link positions, thus altogether losing its
ability to communicate. The concept of k-resilience of a SCS, introduced inBereg et al.
(2018), asks for the smallest set of robots whose failure suffices to cause the starvation
of at least k surviving robots. Observe in Fig. 3a, b, that if the robots represented by
hollow points leave the system, then the surviving ones, u1 and u3, starve, permanently
failing to meet other robots.1 It was shown in Bereg et al. (2018) that the problem of
computing the k-resilience is NP-hard, even if the communication graph is a tree. In
this paper we refer to this measure as the k-isolation resilience and prove that, for
some configurations of the communication graph (cycles and grids), its value can be
computed efficiently.

A desirable property of a communication network is the ability for messages broad-
casting.We say that there is a loss of connectivity in a system if only one robot survives
or there is a pair of robots that cannot exchange messages through a sequence of mes-

1 An illustration of this phenomenon is at https://www.youtube.com/watch?v=64gKnefnXew.
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Table 1 Complexities for computing the robustness measures

Measures Tree Cycle N × M grid General

Coverage resilience O(1) O(n) O(Tgcd (N , M)) O(n)

k-isolation resilience NP-Hard O(n) O(1) NP-Hard

Broadcasting resilience O(n3/2) O(n) O(1) O(nκ · min{κ3 + n, nκ})
Results in bold text were proved in Bereg et al. (2018)

sage exchanges between neighboring robots. For example, in Fig. 3b, a broadcast is
not possible because the living robots are isolated. It is easy to see that, even without
isolated robots, the system may not allow broadcasting, as the surviving robots are
partitioned into independent connected components, for communication purposes. In
this paper, we introduce a new robustness measure: the broadcasting resilience is the
minimum number of robots whose removal causes a loss of connectivity in the system.
We will show how to efficiently compute this measure for trees, cycles and grids.

Next, we focus on covering. Notice that in a system with one robot per trajectory,
every point of every trajectory is visited by some robot periodically. We say that every
trajectory point is covered. If some robots leave the system and the remaining ones
stay in their trajectories (ignoring the shifting strategy altogether) then, obviously all
the points of the trajectories of the leaving robots are non-covered. Using the shift-
ing strategy one may think that the covering is guaranteed. However, this is not true.
Sometimes, the departure of a set robots (independent of whether it causes starvation
or not among the active robots) results in some trajectory segments (set of consecutive
points of a trajectory), or even entire trajectories, to no longer be visited by an active
robot. In this case we say that these are non-covered trajectory segments, see Fig. 3b,
c. In this paper we introduce the notion of resilience of a covered synchronized system
(coverage resilience for short) as the minimum number of robots whose removal may
result in at least one non-covered trajectory segment. Thus, another objective of this
work is to study the problem of computing the coverage resilience in a synchronized
system.We will prove that this problem can be solved in linear time for any communi-
cation graph and, with a closed form solution for trees and grids. Table 1 summarizes
our results.

1.3 Related work

The three resilience measures are of interest for both ground and aerial robots. Also,
they are related to the most commonly used measures in robotics and ad-hoc mobile
networks. The k-isolation resilience and the broadcasting resilience are related to
the meeting-time (the maximum amount of time for two robots to communicate),
broadcast-time (maximum time for the dissemination of a message) and rendezvous
(the arrangement of two robots to meet). Allowing two robots to rendezvous so that
they can collaboratively explore an unknown environment has been widely consid-
ered in robotics, see for example Flocchini et al. (2016) and Roy and Dudek (2001).
Broadcasting and meeting time have been studied in mobile networks, robotics and
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random walks, see for example Clark et al. (2003), Hsieh et al. (2008), Lovász (1993)
and Winfield (2000).

On the other hand, the coverage resilience is related to the idle-time of a point p in a
terrain, that is, the maximum time that p is unattended by any of the robots. Notice that
the maximum number of robots that can fail so that the idle-time of all points is finite is
the value of the coverage resilience minus one. The problem of monitoring a region to
minimize idleness is studied in the mobile robot literature under the name patrolling.
Patrolling has been considered intensively in robotics where it is often viewed as a
form of coverage. It is defined as the act of surveillance by walking around an area in
order to protect or supervise it. The frequency of visits as a criterion for measuring
the efficiency of patrolling is called idleness. For a survey of diverse approaches to
patrolling based on idleness criteria we refer the reader to Alena et al. (2018) and
Almeida et al. (2004).

As we will show, the values of the resilience stated in this paper depend on the
topology of the communication graph. This graph is computed after the partition
strategy, in which the environment is partitioned into sections patrolled separately
by individual robots, has been applied. Partitioning or area decomposition for path
planning in robotics is a widely researched subject in coverage and tracking tasks and
a common topology is the grid (Galceran and Carreras 2013). In grid based methods,
the area partitioning is performed by applying a grid overlay on top of the area leading
to a discrete configuration space, where if all the cells are visited, then a complete
coverage is assumed (see Fig. 4). Additionally, cycles are considered in boundary or
fence patrolling (Czyzowicz et al. 2011). A strategy is to fragment the boundary into
sections which are patrolled separately by individual robots (Collins et al. 2013) (see
Fig. 5). Other studied configurations are trees. In fact, in area coverage, often it is
assumed that the underlying graph is a tree (computed, for example, on the dual graph
of a triangulation of the terrain). Spanning trees have been frequently used for multi-
robot coverage (Hazon and Kaminka 2008) and boundary patrolling (Czyzowicz et al.
2016). Also note that, if we consider the underlying graphG of the area decomposition
whose vertices are cells and whose edges are the pairs of close cells then, if G is
connected, a spanning tree of G can be used as communication graph because any tree
is bipartite and synchronizable (Díaz-Báñez et al. 2015, 2017). In our model, the area
to be covered is partitioned and each agent operates in a periodic curve on its assigned
subarea.

1.4 Outline

In Sect. 2, we formally state the optimization resilience problems studied here and,
in Sect. 3, the necessary technical tools are presented. The results on the coverage
resilience are shown in Sect. 4. These include a linear time algorithm for computing the
coverage resilience for general communication graphs, as well as analytic expressions,
as functions of the input size, for particular configurations including trees and grids.
In Sect. 5, we show that the k-isolation resilience introduced in Bereg et al. (2018) can
be computed efficiently for cycles and grids, in spite of being NP-hard in general. In
Sect. 6, we establish the relationship between the broadcasting resilience and circulant
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(a) (b) (c)

Fig. 4 a Region to patrol. b Area decomposition of the region to patrol using a grid pattern and the paths
to cover every cell of the region. c Simplification of the practical model using an abstraction with circular
trajectories. The underlying communication graph is represented using gray dotted strokes

(a) (b) (c)

Fig. 5 a Solid black stroke represent a border to monitor. The gray strip around the border is the region to
patrol. b Decomposition of the region into cells, one cell per robot and for every cell a closed trajectory to
cover it is computed. c Simplification of the practical model using an abstraction with circular trajectories.
The underlying communication graph is represented using gray dotted strokes

graphs, and solve the problem for cycles and grids. Finally, in Sect. 7 we conclude
with a summary of our results and a description of various open problems.

2 Problems definition

In the rest of this paperwe consider the simple circularmodel introduced by the authors
of Díaz-Báñez et al. (2015). However, all the results can be extended to general closed
trajectories using the same arguments of Díaz-Báñez et al. (2015) and Díaz-Báñez
et al. (2017) under the same set of assumptions. The first two definitions are borrowed
from Bereg et al. (2018).

Definition 1 (Synchronized communication system (SCS)) Let T = {C1, . . . ,Cn} be
a set of unit circles (trajectories) which are pairwise disjoint. Let ε < 0.5 be the
communication range of the robots. Let G be a bipartite connected graph whose
vertices are the centers of the circles in T and whose edges are given by a subset of
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the pairs (not necessarily all) of circle centers at distance 2+ε or less. A synchronized
communication system (SCS) with communication graph G consists of a team of n
robots, one per trajectory, such that every pair of neighboring trajectories in G have
opposite movement directions and every pair of robots in neighboring trajectories
are synchronized. An m-partial SCS, 0 < m ≤ n, is a synchronized communication
system in which n − m robots have left the team and the m remaining robots apply
the shifting strategy. If n = m, the SCS is said to be saturated.

Note that an SCS is a type of partial SCS where no robots have left. Thus, any
claims about partial SCSs holds for saturated SCSs as well.

We assume that the shifting operation is instantaneous; this ensures that, if the fallen
robot was synchronized with other neighbor, the active robot will arrive on time at the
corresponding link positions after the shifting operation has been performed (in real
scenarios the robot accelerates during shifting in order to reach the next link position
at the expected time, then it can maintain the planned constant speed).

In anm-partial SCS, a robot starves or it is in starvation if every time that it arrives
at a link position the corresponding neighbor is not there causing a shifting to the
neighboring trajectory. The starvation number of an SCS is the maximum possible
number of starving robots in a partial SCS.

Definition 2 (k-isolation resilience of a SCS) The k-isolation resilience of a SCS
(k ≥ 1) is the minimum number ri , such that, there exist ri robots whose removal
causes the starvation of at least k surviving robots. If it is not possible to obtain k
starving robots then the k-isolation resilience is set to infinity.

Remark 1 As noted in Corollary 16 and Lemma 17 of Bereg et al. (2018) if the starva-
tion number of an SCS is s then for all k > s the k-isolation resilience of the system
is infinity and the s-isolation-resilience is n − s.

We say that anm-partial SCS has loss of connectivity if there exists a pair of surviv-
ing robots that cannot exchange messages (possibly through a sequence of message
relays between neighbors) or if there is only one surviving robot in the system.

Definition 3 (Broadcasting resilience) The broadcasting resilience of a SCS is the
minimum number rb, such that, there exist a set of rb robots whose removal causes a
loss of connectivity in the system.

Definition 4 (Coverage resilience) The coverage resilience of a SCS is the minimum
number rc, such that, there exist rc robots whose removal results in at least one non-
covered trajectory segment.

A generalization of the concept above is the T -coverage resilience.

Definition 5 (T -coverage resilience) Given T > 0, the T -coverage resilience is the
minimum number rcT , such that, there exist rcT robots whose removal causes the
idle-time of some trajectory point to be at least T units of time.

Remark 2 Notice that in a saturated SCS the idle-time of any trajectory point is 1. So,
the T -coverage resilience is zero for all T ≤ 1.
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(a) (b) (c)

Fig. 6 SCS trajectories are partitioned into rings. a two rings; b one ring; c three rings

In general, higher resilience values correspond to increased fault tolerance. We
focus on the following problems.

Problem 1 Given a SCS, determine its coverage resilience.

Problem 2 Given a SCS whose communication graph is a cycle or a grid, determine
its k-isolation resilience for a given natural number k.

Problem 3 Given a SCS, compute its broadcasting resilience.

3 Technical tools

In this section we present the two technical tools that we will use to solve the stated
problems. The first subsection deals with the notion of rings, a concept first introduced
in Bereg et al. (2018). The second subsection presents two new concepts, tokens and
token graph.

3.1 Rings

This subsection presents (with no proof) some results and concepts related to rings
that were introduced in Bereg et al. (2018). We enunciate them here in order to make
this paper self-contained.

Definition 6 (Ring) A ring in an SCS with communication graph G, is the locus of
points visited by a robot following the assigned movement direction in each trajectory
and always shifting to the neighboring trajectory (in G) at the corresponding link
positions.

Figure 6 shows various SCSs with different numbers of rings, each ring shown in
a different color and stroke type.

Remark 3 Each point in a trajectory belongs to a single ring, so, the rings in an SCS
are pairwise disjoint and partition the trajectory points into equivalence classes. Each
ring is a closed path composed of segments of trajectories and has a direction of travel
determined by the movement in the participating trajectories.
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(a) (b) (c)

Fig. 7 Tokens and robots movement. a Initial state of the SCS. At time 0, robot ui holds token zi . b State
of the system at time t1 > 0. Robots u0 and u3 met and exchanged tokens. c State of the system at time
t2 > t1 > 0. Robot u3 and its token z0 have been removed

Definition 7 (Path in a ring) A path in a ring r from a point p ∈ r to a point q ∈ r is
the ordered set of visited points from p to q following the travel direction of r (it may
contain tours on r ).

As suggested by the examples in Fig. 6, for any given system, different rings may
have different. In discussing the length of a ring, it is convenient to ignore the effect
on distance arising from shifting between neighboring trajectories and we assume
neighboring circular trajectories are tangent to each other.

Definition 8 (Length of a ring) The length of a ring is defined as the sum of the
lengths of trajectory arcs forming the ring. The length of every ring in an SCS is in
2πN (Corollary 13 of Bereg et al. (2018)).

Remark 4 We can extend the concept of length to a path in a ring as the sum of the
lengths of trajectory arcs forming the path. The length of a path between two robots
in the same ring is also in 2πN (Lemma 12 of Bereg et al. (2018)).

Lemma 1 In an m-partial SCS the number of robots in a given ring remains invariant;
if the length of the ring is 2�π then it has at most � robots. Furthermore, in a saturated
SCS, a ring of length 2�π has exactly � robots, each at distance 2π from the next.

3.2 Tokens and the token graph

In this section we introduce the notion of a token as an abstract entity used to describe
the behavior of a partial SCS. The key idea is to focus on the tokens instead of the
robots. This will be crucial to compute the broadcasting resilience. Let u0, . . . , un−1
be the set of robots at the beginning of time (when the SCS is deployed) each one
carrying a token. We assume the following protocol: at all times, each active robot
holds a token. When two robots meet, they exchange their tokens. When a robot is
removed, the token it carries is removed as well, see Fig. 7.

Remark 5 A starving robot never exchanges its token.
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(a) (b)

Fig. 8 a Robots u and u′, bearing tokens z and z′ respectively, arrive at the same time at a link position, so,
they meet each other. Analogously, we can say that the tokens z and z′ meet each other as well. b Robot u,
bearing token z, performs a shifting operation because it detects no robot at the link position

Lemma 2 Consider a partial SCS. Independently of the number of removed robots
and when they were removed, a live token always remains in its initial ring and moves
with constant speed (2π per unit time) along its ring.

Proof Let z be a token in a partial SCS. Let u be the robot bearing z at an arbitrary time
t . Let r be u’s ring at time t . Let�t > 0 be a real number. Suppose first that in the time
interval from t to t + �t , robot u remains active and does not reach any link position.
Then, in this time interval, u moves along r with constant speed of 2π per unit time (z
has the same behavior). Suppose now that there exists t ′, with t ≤ t ′ ≤ t + �t , such
that u remains active from t to t ′ and, u arrives at a link position � at t ′ for the first time
since t . Thus, in the time interval from t to t ′ the token z moves with u along r with
constant speed 2π per unit time. If, at time t ′, u meets another robot u′ at �, then both
robots remain in their trajectories and exchange their tokens, see Fig. 8a. Otherwise, if
at time t ′, u detects no neighbor at �, then it performs a shifting operation and passes
to the neighboring trajectory in the same ring, see Fig. 8b. Either way, token z keeps
moving in ring r immediately after t ′ with constant speed 2π per time unit. From
successive applications of the previous arguments the result follows. ��

Definition 9 Two tokens meet each other if they arrive at the same link position at the
same time (see Fig. 8a).

The proof of the following result follows easily from Lemma 2.

Lemma 3 Let z and z′ be two tokens of a partial SCS in rings r and r ′ (possibly the
same ring), respectively. The tokens z and z′ will meet each other if and only if the
following three conditions are fulfilled:

1. there is a link position � where the rings r and r ′ cross each other,
2. there are two paths of the same length L: one from z to � in r (possibly longer

than r) and other from z′ to � in r ′ (possibly longer than r ′), and,
3. z and z′ remains in the system after L

2π time units.

Definition 10 (Correspondence between tokens) Let z and z′ be two tokens in a partial
SCS. We say that there is a correspondence between z and z′ at time t if there exists
a �t > 0 such that z and z′ meet each other at time t + �t .

Informally, we can say that there is a correspondence between two tokens if, pro-
vided they survive long enough, they meet each other.
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Lemma 4 Let r and r ′ be two rings of a partial SCS of lengths 2πμ and 2πμ′,
respectively. Let z and z′ be two tokens in r and r ′, respectively. If z and z′ meet
each other at � then they will meet each other every mcm(μ,μ′) (minimum common
multiple of μ and μ′) time units while they remain in the system.

Proof Suppose that z and z′ meet each other at � at time t . The location reached after
traveling mcm(μ,μ′) time units from � in r is the point � + 2π · mcm(μ,μ′) = �.
The same occurs by traveling on r ′. If at time t + mcm(μ,μ′) the tokens z and z′
remain in the system, then they meet each other at � (Lemma 3). The result follows
from successive applications of this argument. ��

Let x be a point in a ring r and let d be a non-negative real number. The point x +d
is the point reached by traveling distance d from x following the travel direction in r .
Analogously, the point x − d is the point y such that y + d is x . Notice that d could
be greater than the length of r . Also notice that x − d + d = x + d − d = x .

Lemma 5 Let z and z′ be two tokens in a partial SCS at time t1. Suppose that at
time t2 > t1 a set (possibly empty) of robots (with their respective tokens) have been
removed from the system but z and z′ remain. Then, there is a correspondence between
z and z′ at time t1 if and only if there is a correspondence between z and z′ at time t2.

Proof Let r and r ′ be the rings of z and z′, respectively (r and r ′ could be the same
ring). Let 2πμ and 2πμ′ be the lengths of r and r ′, respectively.

Suppose there is a correspondence between z and z′ at time t1. Let xt1 and x ′
t1 be

the positions of z and z′ in r and r ′, respectively, at time t1. Then, by the definition of
correspondence and Lemma 3, there are paths p and p′ (in r and r ′ respectively) of
length 2π�t starting at xt1 and x ′

t1 , respectively, and ending at a link position �. That
is:

xt1 + 2π�t = �

x ′
t1 + 2π�t = �.

Let k be the smallest non-negative integer such that k · mcm(μ,μ′) + �t ≥ t2 − t1.
From Lemma 4, we have that:

xt1 + 2π(k · mcm(μ,μ′) + �t) = �

x ′
t1 + 2π(k · mcm(μ,μ′) + �t) = �.

Let xt1 + 2π(t2 − t1) and x ′
t1 + 2π(t2 − t1) be the positions occupied by z and z′ after

traveling for t2 − t1 time units, respectively. Let q and q ′ be the paths obtained by
traveling from these positions in r and r ′, respectively, during k ·mcm(μ,μ′)+�t −
(t2 − t1) time units. Notice that q and q ′ have the same length 2π(k · mcm(μ,μ′) +
�t − (t2 − t1)). Moreover:

xt1 + 2π(t2 − t1) + 2π(k · mcm(μ,μ′) + �t − (t2 − t1)) = �

x ′
t1 + 2π(t2 − t1) + 2π(k · mcm(μ,μ′) + �t − (t2 − t1)) = �.
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Therefore, there will be a correspondence between z and z′ at time t2.
Now, suppose there is a correspondence between z and z′ at time t2. Let xt2 and x ′

t2
be the positions at time t2 of z and z′ in r and r ′, respectively. Then, by definition of
correspondence and Lemma 3, there are two paths p and p′ (in r and r ′ respectively)
of length 2π�t starting at xt2 and x ′

t2 , respectively, and ending at a link position �.
That is:

xt2 + 2π�t = �

x ′
t2 + 2π�t = �.

Recall that if x is a position in a ring and d is non-negative real number then the
position x − d is the point y such that y + d is x . Then, from Lemma 2 we have
that xt2 − 2π(t2 − t1) and x ′

t2 − 2π(t2 − t1) were the positions at time t1 of z and z′,
respectively. Let q and q ′ be the paths obtained by traveling from these positions in r
and r ′, respectively, during t2 − t1 +�t time units. Notice that q and q ′ have the same
length 2π(t2 − t1 + �t). Moreover:

xt2 − 2π(t2 − t1) + 2π(t2 − t1 + �t) = xt2 + 2π�t = �

x ′
t2 − 2π(t2 − t1) + 2π(t2 − t1 + �t) = x ′

t2 + 2π�t = �.

Therefore, there was a correspondence between z and z′ at time t1 and the result
follows. ��
Remark 6 The previous lemma states that the relation of correspondence between two
tokens remains invariant unless one of them is removed from the system.

Definition 11 (Token graph) Let F be an m-partial SCS. Let Z be the set of surviving
tokens. The token graph of F is the graph TF whose vertices are the tokens in Z [that
is, V (TF ) = Z ] and whose set of edges is:

E(TF ) = {{z, z′}|z ∈ Z , z′ ∈ Z , there is a correspondence between z and z′}.

From Remark 6, the token graph of a partial SCS remains invariant while no addi-
tional robots removed. Figure 9a shows the token graph of the SCS of Fig. 7 before
the robot u3 is removed.

From the definition of token graph and Lemma 5, the next result (illustrated in
Fig. 9b) follows.

Lemma 6 Let F be an m-partial SCS with set of tokens Z. Let F ′ be the m′-partial
SCS resulting from the removal of some robots from F , with Z ′ ⊂ Z, the set of tokens
of F ′. Let TF and TF ′ be the token graphs of F and F ′ respectively. Then, TF ′ is the
subgraph induced by Z ′ in TF .

The following lemma relates starvation with token and will be useful for comput-
ing the k-isolation resilience. The proof is straightforward by using Remark 5 and
Lemma 5.
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Lemma 7 Let z be a token in a partial SCS F . Let u be the robot bearing z. The robot
u is starving in F if and only if no matters how long the system is running with no
more removal of robots, z does not meet any other token or, equivalently, z has degree
0 in the token graph of F .

4 Computing the coverage resilience

In this section we show how to compute the coverage resilience for arbitrary graphs
as well as for trees and grids.

Notice that if a token z is at a point x of a ring r then x is being covered by the
robot bearing z. This simple observation allows us to study the coverage resilience
using tokens.

Upon deployment of a system, a ring of length 2πl contains l tokens at distance
2π from one to the next (Lemma 1). From Lemma 2, the distribution of the tokens in
a ring when some robots have been removed from the system looks like Fig. 10. The
following theorems are deduced.

Theorem 1 Let r be a ring of length 2lπ in a partial SCS. If a < l is the maximum
number of absent consecutive tokens in r then the idle-time of any point in r is a + 1
(see Fig. 10).

z1

z2z3

z0 z1

z2z3
(a) (b)

Fig. 9 a Token graph of the SCS of Fig. 7 at time 0 (Fig. 7a). Notice that the token graph at time t1 (Fig. 7b)
does not change. b The token graph of the resultant partial SCS after removing robot u3 (Fig. 7c)

Fig. 10 Tokens in a ring of a partial SCS. The hollow points represent the removed tokens
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Theorem 2 Let r be a ring in a partial SCS. A trajectory segment of r is non-covered
if and only if r does not contain surviving robots.

From Remark 3 and Theorem 2 the following result is deduced.

Corollary 3 Let c be the number of rings in an SCS. Let 2l1π, 2l2π, . . . , 2lcπ be
the lengths of the c rings. The coverage resilience of the system is the minimum of
{l1, l2, . . . , lc}.
Theorem 4 The coverage resilience of a given SCS can be computed in linear time on
the number of trajectories in the system.

Proof Corollary 3 suggests a simple algorithm to compute the coverage resilience
of a SCS by determining the rings in the system and their lengths. To do that, it is
sufficient to follow the movement of a token until reaching the starting point. In this
way, the length of a detected ring is the sum of the lengths of the traversed arcs. The
complexity of detecting a ring in this way is O(m) where m is the number of link
positions traversed by the ring. When a ring is detected (by returning to the starting
point), then we choose a non visited trajectory arc in order to detect another ring and
so on. If there are no more non-visited trajectory arcs then we are done. Let G be
the communication graph of the SCS. Recall that every link position of the system is
an edge of the communication graph G. Clearly, the complexity of this algorithm is
O(|E |) where E is the set of edges in G. Taking into account that the communication
graph is planar then this algorithm has running time O(n) where n is the number of
trajectories. ��

Given a value T > 0, the T -coverage resilience can also be computed using the
rings of the SCS. Let c be the number of rings in the system and 2l1π, 2l2π, . . . , 2lcπ
their lengths. Let l∗ be the minimum of {l1, l2, . . . , lc}. Using Lemma 1 we deduce
that if l∗ ≥ �T �, then the T -coverage resilience is �T �−1; otherwise, the T -coverage
resilience is l∗. As a consequence, we can state the following.

Theorem 5 The T -coverage resilience of an SCS is min{l∗, �T � − 1} where 2πl∗ is
the length of the shortest ring in the system.

4.1 Coverage resilience for trees and grids

If the communication graph is a tree, it contains a single ring (Lemma 7 of Bereg et al.
(2018)) and thus its coverage resilience is n, where n is the number of trajectories.
Furthermore, the T -coverage resilience is min{n, �T � − 1}. Therefore the system
is very stable (with respect to covering) because no matter the number of robots is
removed, the remaining robots will cover all the trajectories.

In the rest of this section, we study the coverage resilience of a SCS where the
communication graph is a grid. Consider a set of M · N trajectories distributed in M
rows and N columns. Each trajectory is identified by a pair (i, j) where 1 ≤ i ≤ M
and 1 ≤ j ≤ N indicate the row and the column, respectively, where the trajectory is
located. In the communication graph, trajectory (i, j) is linked to trajectories (i−1, j)
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Fig. 11 A 3 × 4 grid SCS. The
drawn portion of a ring hits the
top boundary at trajectories
(1, 2) and (1, 4), it hits the
bottom boundary at (3, 2), the
left boundary at (2, 1) and the
right one at (1, 4).

(a) (b) (c) (d)

Fig. 12 Local behavior of a ring in a grid SCS

if i > 1, (i, j − 1) if j > 1, (i + 1, j) if i < M and (i, j + 1) if j < N . We refer to
this type of SCS as a grid SCS. An m-partial grid SCS is analogously defined.

In a grid SCS we say that a ring hits the top boundary of the grid if the ring passes
through the top section of a circle in the first row. Analogously we can define when a
ring hits the left, bottom or right boundary of the ring. See Fig. 11.

Figure 12 shows the local behavior of a ring as it visits the trajectories of a grid SCS.
In this figure, small white squares denote two kinds of points: the points where the
ring hits the boundaries and the contact points between two neighboring circles (for
simplicity, tangent trajectories are considered). Note that these points are traversed
diagonally (with slopes 1 and−1) by a ring. We consider themovement lattice formed
by these points (see Fig. 13). If the grid communication graph has M rows and N
columns then the movement lattice has 2M + 1 rows indexed from 0 (topmost) to 2M
(bottommost) and 2N+1 columns indexed from 0 (leftmost) to 2N (rightmost). In this
way, every vertex of the lattice can be referenced by its row and column (see Fig. 13).
Notice that a starving robot moves diagonally on this lattice (following the ring that
houses it) and only changes its direction when reaching a vertex with out-degree equal
to one (i.e. when it hits a grid boundary, it bounces).

Lemma 8 An M × M grid SCS has M rings of length 2Mπ . Each ring hits each of
the four boundaries exactly once.

Proof Let H be the movement lattice of the system. Let r be the ring that hits the top
boundary at the vertex (0, i) of H . It is easy to see that r hits the right boundary at
vertex (2M − i, 2M), the bottom boundary at the vertex (2M, 2M − i) and the left
boundary at (i, 0). Also, r does not hit the boundaries in any other vertex. Note that
a step from one vertex to another in the movement lattice corresponds to a section
of a ring of length π/2. The ring r visits 4M vertices on H , thus the length of r is
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Fig. 13 Movement lattice in a
grid

S1 S2

⇒

S3

Fig. 14 S3 is the resultant SCS of the concatenation of the SCSs S1 and S2

4M ·π/2, i.e., 2Mπ . Repeating this argument for each hitting point in the top boundary
we obtain M rings of length 2Mπ . The sum of the lengths of all circles in the system
is 2M2π and the sum of the lengths of the M rings in the system is 2M2π too, so
there is no other ring in the system. ��

Let S1 and S2 be two grid SCSs. We say that S1 and S2 are concatenable if S1 and
S2 have the same number of rows M and for all 1 ≤ i ≤ M the movement direction
assigned to the last trajectory of the i th row of S1 is opposite to themovement direction
assigned to the first trajectory of the i th row of S2. The concatenation of S1 and S2,
such that the last trajectory in the i th row of S1 is linked with the first trajectory in
the i th row of S2 (for all 1 ≤ i ≤ M), produces a new M × (N + N ′) grid SCS, see
Fig. 14.

The following result is a technical lemma that we need in order to complete the
proof of Theorem 6.

Lemma 9 Let S and U be two concatenable grid SCSs of size M × N and M × M,
respectively. Suppose that S has k rings of the same length l, and every ring in S hits
each of the left and right boundaries exactly c times, and hits each of the top and
bottom boundaries exactly c′ times. Let R be the M × (N + M) grid SCS resulting
from the concatenation of S and U. Then, R has exactly k rings of the same length
l + 2cMπ and every ring in R hits each of the left and right boundaries exactly c
times, and hits each of the top and bottom boundaries exactly c′ + c times.

Proof By Lemma 8,U has M rings of length 2Mπ , and all of them hit each boundary
once. Thus, every ring in U extends the length of a ring in S by 2Mπ , see Fig. 15.
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Fig. 15 r is the ring in S that hits the right boundary in the second row. s is the ring in U that hits the left
boundary in the second row. t is the ring in R obtained from r and s in the concatenation of S and U

Since every ring in S hits the right boundary c times then, after concatenation, each
ring in S is fused with c rings inU . Note that two rings in S can not be fused together
in the concatenation. Then, every ring in R is formed by the fusion of a ring in S and
c rings in U . Therefore, R has k rings of the same length l + 2cMπ . Every ring so
obtained hits the left boundary c times at the c hitting points of the respective ring in
S, and hits the right boundary c times at the hitting points of the c respective rings in
U . Every ring in R hits each of the top and bottom boundaries c′ + c times, at the c′
hitting points of the respective ring in S and at the hitting points of the c respective
rings in U .

We now proceed to establish a key result of this subsection.

Theorem 6 An M × N grid SCS has gcd(M, N ) (greatest common divisor of M and
N ) rings of the same length 2πMN

gcd(M,N )
. Moreover, every ring r hits each of the left

and right boundaries M
gcd(M,N )

times and hits each of the top and bottom boundaries
N

gcd(M,N )
times.

Proof We prove the result by induction in the number of rows. For M = 1, we have
that every 1 × N grid SCS has a single ring, gcd(1, N ) = 1, one hitting point in left
and right boundaries, and N hitting points in the top and bottom boundaries. Thus, the
theorem holds in this case. Assume as inductive hypothesis that: for a fixed value P ,
the theorem holds for every M × N grid SCS with M ≤ P .

We need to prove the theorem for a (P + 1) × N grid SCS. If N ≤ P then, using
the fact that a (P + 1) × N grid SCS is equivalent to a N × (P + 1) grid SCS, the
theorem holds by the inductive hypothesis. If N = P + 1 then the theorem holds by
Lemma 8. In order to prove the theorem for a (P + 1) × N grid SCS with N > P + 1
we use induction in the number of columns. Assume as second inductive hypothesis
that: for a fixed value Q ≥ P + 1, the theorem holds for every (P + 1) × N grid SCS
with N ≤ Q.

Let S be a (P+1)×(Q+1) grid SCS.We have that Q+1 > P+1, then removing
the last P + 1 columns of S we obtain a (P + 1) × (Q − P) grid SCS denoted by
S′. The theorem holds for S′ by the second inductive hypothesis. The P + 1 removed
columns conform a (P + 1) × (P + 1) grid SCS which is concatenable with S′.
So, concatenating S′ with the P + 1 removed columns we obtain S. Then, by using
Lemma 9 and properties of the greatest common divisor, the result follows. ��

123



1006 Journal of Combinatorial Optimization (2020) 39:988–1016

By using Theorem 6, Corollary 3 and Theorem 5 we arrive to the main result of
this subsection.

Theorem 7 The coverage resilience of an M × N grid SCS is:

M · N
gcd(M, N )

.

And, the value of the T -coverage resilience is:

min

{
M · N

gcd(M, N )
, �T � − 1

}
.

5 Computing the k-isolation resilience for cycles and grids

In Bereg et al. (2018), the authors show that the problem of computing the k-isolation
resilience is NP-hard, even when the communication graph is a tree. In this section
we show how to compute efficiently this measure when the communication graph is
a cycle or a grid.

5.1 Cycles

Lemma 10 Let G be the communication graph of a m-partial SCS. If G is a cycle,
then the system has exactly two rings, one with CW direction and the other with CCW
direction. Furthermore, every edge of G corresponds to a crossing of the two rings.

Proof We proceed by induction on the number 2M of trajectories (nodes) in G (recall
that G is bipartite, so every cycle has even length). If M = 2, we have 4 trajectories,
and the claim holds, as shown in Fig. 6a. Assume as inductive hypothesis that, for a
fixed value M , the claim holds for every cycle graph with 2M trajectories. Now, let
us consider a cycle graph G with 2(M + 1) trajectories (Fig. 16a). If we remove two
consecutive trajectories (C and D) and “glue” the ends in the broken section we obtain
a cycle graphG ′ with 2M trajectories (Fig. 16b). By the inductive hypothesis, the claim
holds for G ′. Figure 16b shows the clockwise ring using solid stroke in red, and the
other one using dashed stroke in blue. The sections of rings in the removed two circles
are also shown in Fig. 16b. After that, inserting again the two removed trajectories into
the original position we obtain a cycle graph with 2(M+1) trajectories, reestablishing
the claim, see Fig. 16c. Note that, as depicted in Fig. 16c, when we reinsert the
removed trajectories, we match terminals (solid-circle to solid-circle, solid-square to
solid-square, etc.). ��

Lemma 11 In an m-partial SCS, whose communication graph is a cycle with rings r
and r ′, a robot in r is starving if and only if r ′ is empty of robots (tokens).

Proof Suppose that there are tokens z and z′ in r and r ′, respectively. From Lemmas 2
and 10 we deduce that if z and z′ remain in the system long enough they will meet
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(a) (b) (c)

Fig. 16 Induction proof of Lemma 10

each other, so, there is a correspondence between them. Also, note that there is no
correspondence between tokens of the same ring. Then, from Lemma 7 it follows that
a robot in r bearing a token z is starving if and only if the ring r ′ is empty of tokens. ��

Using Lemmas 11 and 1 we conclude.

Theorem 8 Consider a system whose communication graph is a cycle and let r and r ′
be the two rings with lengths 2πl and 2πl ′, respectively. The starvation number of the
system is max{l, l ′} and the k-isolation resilience is min{l, l ′} if k ≤ max{l, l ′} and
infinity, otherwise.

Remark 7 If the communication graph is a cycle with starvation number ζ , then for
all k ≤ ζ , the value of the k-isolation resilience matches the value of the coverage
resilience of the system (Theorem 8 and Corollary 3).

To close this subsection, notice that to compute the k-isolation resilience of an SCS
whose communication graph is a cycle we can use the same linear time algorithm
described in Theorem 4.

5.2 Grids

In this subsection we revisit the grid SCS introduced in Sect. 4.1. We show a set of
results that allow us to calculate the k-isolation resilience with a closed formula. All
the results presented in previous sections or in Bereg et al. (2018) are directly based
on the properties of rings (their lengths, number, or topology). However, the following
results, surprisingly, do not use these tools.

Consider again the movement lattice introduced in Sect. 4.1. Analyzing the move-
ment of a token in the movement lattice of a grid SCS, we arrive at the following
remark.

Remark 8 In the lattice of a grid SCS, every tokenmoveswith constant speed according
to a mathematical billiard pattern of motion Tabachnikov (2005). Moreover, the X-
motion (resp. Y-motion) of a token, which is the projection of the tokenmotion onto the
X -axis (resp. Y -axis), is a periodic movement of a ball on a line segment that bounces
off the ends, see Fig. 17. Notice also that the speed in the X -axis (resp. Y -axis), hence
on the lattice as well, of all the tokens is the same.
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Fig. 17 The small hollow disk
represents a token moving in the
movement lattice. The horizontal
and vertical projections of the
token motion are also shown

Fig. 18 The white points represent the positions of robots in trajectories of a same row in a grid SCS,
β = π − α

Lemma 12 In a partial grid SCS, if two robots occupy trajectories in the same row
(resp. column) at some instant of time, then their respective tokens have always been
and will always be in the same row (resp. column) of the movement lattice.

Proof Let u and v be robots in the same row, say row i , at some time t (the case of
robots in the same column is treated similarly). Suppose that robot u is at position
α. Since the system is synchronized, the position of robot v is at α or π − α, see
Fig. 18. However, independent of whether the position of v is α or π − α, they both
have the same direction along the Y axis (both going down or both going up) due to
synchronization. Then, due to the periodic constant motion of the tokens in Y axis
(Remark 8), the tokens of u and v are in the same row at any time (before t and after
t). The lemma follows. ��

Theorem 9 A robot in a partial grid SCS is starving if and only if there is no other
robot in the same row or column at any time.

Proof (⇒) Let u be a starving robot. For the sake of contradiction, suppose that there
is another robot v in the same row at some time t (the case when they are in the
same column is analyzed similarly). Let z and z′ be the tokens of u and v at time t ,
respectively. Since the X -motion of each of these tokens is periodic and has the same
constant speed, it is easy to see that after some time, say �t units of time, z and z′ will
meet each other in the X -axis projection. Thus, the tokens z and z′ have the same x
and y coordinates in the movement lattice at time t +�t . Since z and z′ at time t +�t
belong to two different robots (one robot is u and the other robot is not necessarily v),
these robots are at the link position between two neighboring trajectories as shown in
Fig. 1a. Therefore, robot u is not starving, a contradiction.

(⇐) It suffices to show that, if a robot u is not starving, then there is another robot
in the same row or column at some time. Robot u will be communicating with another
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robot, say v, at some time t . There are two possibilities for the link position in the
grid. The trajectories of u and v at time t are either in the same row or in the same
column. Either way, the theorem follows. ��

Finally, by induction on k and the pigeonhole principle, we conclude.

Theorem 10 The starvation number in an M × N grid SCS is min(M, N ) and its
k-isolation resilience is k(M + N − 2) − k(k − 1) if k ≤ min(M, N ) and infinity,
otherwise.

6 The broadcasting resilience

The robots of a synchronized communication system (a saturated SCS) conform a
connected network because every pair of robots can send/receive messages between
each other, possibly by multiple relays between neighboring robots.

We can model the message transmission by means of the following protocol: the
messages are carried by the tokens instead of the robots. If a token is carrying a
message and meets another token who does not know it, then, after the meeting, both
of them know the message. Therefore, when a robot u sends a message at time t , we
assume that u associates the message with its token at time t . At time t ′ > t , we say
that a robot u′ knows the message if and only if it is bearing a token that knows the
message.

Lemma 13 Let F be an m-partial SCS and assume that no more robots leave the
system. If at some time t robot u ofF is bearing a token z then u will bear z periodically.
More formally, if u inF is bearing token z at time t, then there exist a value σ ∈ N (σ >

0) such that u is bearing z again at time at time t + σ .

Proof Let U = {ui1 , . . . , uim } be the set of live robots in F and let Z be the set of
tokens inF . Fix a time t0. For every trajectoryC j (1 ≤ j ≤ n) in the system, let p j be
the position of C j where there is or there should be (due to the synchronization of the
system) a robot at time t0, see Fig. 19. Let P = {p1, . . . , pn}. Notice that if a robot u
is at a point p ∈ P then after one time unit u′ is at point p′ that is in P as well. For
every l ∈ N and 1 ≤ j ≤ m, let (ρ(l)

j , τ
(l)
j ) be an ordered pair where ρ

(l)
j and τ

(l)
j are

the position and token of robot ui j at time t0 + l, respectively. Notice that ρ
(l)
j ∈ P

and τ
(l)
j ∈ Z for all j, l.

Let X(l) = ((ρ
(l)
1 , τ

(l)
1 ), . . . , (ρ

(l)
m , τ

(l)
m )). Note that X(l) describes the state of the

system at time t0 + l, a kind of snapshot of the system at time t0 + l. Let us analyze
the infinite sequence X = X(0), X(1), X(2), . . . . The values of this sequence are the
columns of Table 2. Now, recall that (ρ

(l)
j , τ

(l)
j ) is in P × Z for all l, j , then X(l) is

in (P × Z)m for all l. Notice that |P| = n and |Z | = m, thus |(P × Z)m | = (nm)m .
It follows, using the pigeonhole principle, that the sequence X repeats values. Let σ

be a natural number such that X(σ ) is the first repeated value in X . That is, there is a
value l ′ ∈ N, 0 ≤ l ′ < σ such that X(l ′) = X(σ ), see Table 2.

We claim that l ′ = 0. Suppose that l ′ > 0. As a consequence of the behavior of a
partial SCS it is easy to show that X(l ′ + 1) = X(σ + 1) and X(l ′ − 1) = X(σ − 1).
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Fig. 19 A 2-partial SCS at time
t0, the solid points are the
positions occupied by the
surviving robots and the hollow
points are the positions where a
removed robot should be

Table 2 The j th row represents
the sequence of transitions of the
robot ui j at times
t0, t0 + 1, t0 + 2, . . .

0 1 · · · σ · · ·

ui1 (ρ
(0)
1 , τ

(0)
1 ) (ρ

(1)
1 , τ

(1)
1 ) · · · (ρ

(σ)
1 , τ

(σ )
1 ) · · ·

ui2 (ρ
(0)
2 , τ

(0)
2 ) (ρ

(1)
2 , τ

(1)
2 ) · · · (ρ

(σ)
2 , τ

(σ )
2 ) · · ·

.

.

.
.
.
.

.

.

.
.
.
.

uim (ρ
(0)
m , τ

(0)
m ) (ρ

(1)
m , τ

(1)
m ) · · · (ρ

(σ)
m , τ

(σ )
m ) · · ·

Then the value X(σ − 1) is the first repeated value in X , a contradiction! Therefore
l ′ = 0 and σ is the period of the system, i.e., X(l) = X(l + σ) for all l ∈ N. ��

Lemma 14 Let F be an m-partial SCS and assume that no more robots are removed
fromF . Let TF be the token graph ofF . If at time t a robot u is bearing a token z then
at time t ′ > t robot u is bearing a token z′ which is in the same connected component
of z in TF .

Proof From the nature of the token graph, we know that if a robot u with token τ

exchanges its token with a robot u′ with token τ ′, then τ and τ ′ are adjacent in the
token graph. Then, the sequence of token’s exchanges made by u from time t to time
t ′ defines a path in TF . ��
Lemma 15 Let F be an m-partial SCS and assume that no more robots are removed
from the system. Let TF be the token graph of F . Let u and u′ be robots in F bearing
tokens z and z′ at time t, respectively. A message sent by u at time t is delivered to u′
if and only if z and z′ are in the same connected component of TF .

Proof (⇒) Suppose that a message sent by u at time t (hence, associated with z) is
delivered to u′ at time t ′. Let τ be the token held by u′ at time t ′. It is easy to see
that if τ contains the message then there is a path in TF between z and τ . Thus, from
Lemma 14, we deduce that z and z′ are in the same connected component of TF .

(⇐) Suppose that z and z′ are in the same connected component of TF . Thus, the
message in z will be delivered to z′ at some time. From Lemma 13, we deduce that
the message will reach u′. ��
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Remark 9 From the previous lemma we deduce that if it is possible to send a message
at time t from robot u to robot u′, then it is also possible to send a message at time t
from u′ to u.

From the previous remark and Lemma 15 we arrive to the following corollary.

Corollary 1 Let F be an m-partial SCS and assume that no more robots are removed
from the system. Let TF be the token graph of F . There is a loss of connectivity in F
if and only if TF is disconnected or if it consists of a single vertex.

Let G = (V , E) be a connected graph. A separator set is a subset S ⊂ V such
that the subgraph induced by V \S is disconnected. The connectivity of G, denoted by
κ(G) is |V | − 1 if G = Kn (the complete graph); otherwise, κ(G) is the cardinality
of a smallest separator set.

From Lemma 6, Corollary 1 and Henzinger et al. (2000), the next result follows.

Lemma 16 Let F be a SCS and let TF be the token graph of F . The broadcast-
ing resilience of F is κ(TF ) and it can be computed in O(nκ(TF ) · min{κ3(TF ) +
n, nκ(TF )}) time.

By using the definitions of the resilience measures we have.

Corollary 2 The broadcasting resilience of a SCS F is less than or equal to its 1-
isolation resilience.

In Bereg et al. (2018), it is shown that the 1-isolation resilience of a SCS can be
computed in Õ(n), therefore, we can compute a bound for the broadcasting resilience
of a SCS in almost linear time. The next subsections focuses on some configurations
that appear in practical applications: trees, cycles and grids.

6.1 Computing the broadcasting resilience on SCS’s with one ring

We start this subsection with the definition of a specific and widely studied type of
graph: the circulant graph.

Definition 12 Let V = {0, 1, . . . , n − 1}. A graph G = (V , E) is circulant if for all
d ∈ Z : ∃i ∈ V {i, (i + d) mod n} ∈ E ⇒ ∀ j ∈ V { j, ( j + d) mod n} ∈ E .

Lemma 17 Let F be a SCS with a single ring. The token graph of F is circulant.

Proof Let r be the ring of the system. Enumerate the tokens in F from 0 to n − 1
following the travel direction in r . Let d ∈ Z be an arbitrary value. Suppose that there
is a correspondence between two tokens i and (i + d) mod n. Let j �= i be any other
token.Weprove that there is a correspondence between tokens j and ( j+d) mod n. Let
0 < l < n be a natural number such that i = ( j+l) mod n. Notice that (i+d) mod n =
( j + d + l) mod n. Fix an arbitrary time t . Due to the way in which we enumerate
the tokens, there exist two paths p and p′ of the same length 2lπ , from j to i and
from ( j +d) mod n to (i +d) mod n, respectively (Remark 4). From the definition of
correspondence between tokens, it follows that at time t there are two paths, q and q ′,
of the same length from i and (i + d) mod n respectively, to a common link position
�. Then, there is a correspondence between j and ( j + d) mod n because of the paths
p + q and p′ + q ′ (where + indicates concatenation). ��
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Fig. 20 The dashed stroke
represent a ring r . The solid
points are the tokens numbered
following the travel direction on
r . The hollow square represents
a link position �. The bold solid
arrows from � indicates the
travel directions to find the first
pair of tokens that will meet at �

0
1

2

3
4

5
6

7
8

9

10
1112

Remark 10 Notice that a circulant graph can be encoded as (n, {d1, . . . , dm}) where
n is the number of vertices and the set of di values, 0 < di ≤ n/2, are the ‘jumps’
between adjacent nodes, that is, the nodes j and ( j + di ) mod n are adjacent for all
0 ≤ j < n.

Lemma 18 Let F be a SCS with a single ring. The broadcasting resilience of F can
be computed in O(n3/2) time.

Proof Remark 10 implies that in order to compute TF it suffices to compute the
set of jumps in the circulant. First, enumerate the tokens from 0 to n − 1 follow-
ing the travel direction in the ring. Then, for every link position � do the following:
from � travel in the two opposite directions of the ring until we find the first pair
of token i and j that will meet at �, see Fig. 20 for an illustration. In this exam-
ple, i = 2 and j = 9. Now take d = min(| j − i |, n − | j − i |) and add it to
the set of jumps. This takes O(1) time. In Fig. 20, d = 6, inducing the edges
{0, 6}, {1, 7}, . . . , {5, 11}, {6, 12}, {7, 0}, . . . , {12, 5}. Since the number of link posi-
tions in the system is O(n), computing the jumps of the token graph TF takes O(n)

time. Thus, we encode TF by (n, J ) where J is the set of jumps. Then, κ(TF ) can be
computed in O(n3/2) time using the algorithm from Boesch and Tindell (1984) and
Meijer (1991). By Lemma 16, the result follows. ��

Now, since a SCS whose communication graph is a tree has one ring (Lemma 7 of
Bereg et al. (2018)), we have that.

Corollary 3 The broadcasting resilience of a SCS whose communication graph is a
tree can be computed in O(n3/2) time.

6.2 The broadcasting resilience on SCS’s whose communication graph is a cycle

Lemma 19 Let F be a SCS whose communication graph is a cycle. The broadcasting
resilience of F is min{l, l ′} where 2lπ and 2l ′π are the lengths of the two rings in F .
Moreover, the broadcasting resilience can be computed in linear time.

Proof From Lemmas 2 and 10 it follows that the token graph of F is the complete
bipartite graph Kl,l ′ and therefore the minimum separator vertex set of Kl,l ′ has car-
dinality min{l, l ′}. The linear time algorithm described in Theorem 4 allows us to
compute the rings of the system and their lengths. ��
Corollary 4 Let F be a SCS whose communication graph is a cycle. Let 2lπ and 2l ′π
be the lengths of the two rings in F . The three measures, broadcasting resilience,
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coverage resilience and k-isolation resilience (for all k ≤ max{l, l ′}), have the same
value, which is min{l, l ′}.

6.3 The broadcasting resilience on SCS’s whose communication graph is a grid

Lemma 20 Let F be an N × M SCS. The broadcasting resilience of F is N + M − 2.

Proof From Theorem 9 we deduce that the token graph of F is a complete graph if
and only if N = 1 or M = 1. In any of these cases the lemma holds.

If N ≥ 2 and M ≥ 2, the token graph TF has a separator set S ⊂ V (TF ) such that
|S| = κ(TF ). Now, from Theorem 10 we know that the 1-isolation resilience of F is
N + M − 2, then, by using Corollary 2, we have that κ(TF ) ≤ N + M − 2. Then:

|V (TF )\S| = N · M − κ(TF ) ≥ N · M − N − M + 2. (1)

In the following we prove that:

|V (TF )\S| ≤ N · M − N − M + 2. (2)

Let A �= ∅ and B �= ∅ form a bipartition of V (TF )\S such that {a, b} /∈ E(TF )

for all a ∈ A and b ∈ B. Let rows(A) ⊂ {1 . . . N } and rows(B) ⊂ {1 . . . N }
denote the sets of rows occupied by the tokens in A and B, respectively. Analogously,
let cols(A) ⊂ {1 . . . M} and cols(B) ⊂ {1 . . . M} denote the sets of columns
occupied by the tokens in A and B, respectively. Notice that rows(A) ∩rows(B) =
cols(A) ∩ cols(B) = ∅.

Take r ∈ rows(A) and c ∈ cols(A), let z be the token of F on the circle of row
r and column c. If z is not in A then z is in S. Let A′ = A ∪ {z} and S′ = S\{z}.
Notice that A′ and B form a bipartition of V (TF )\S′ and there is no edge from
A′ to B. Therefore, S′ is a separator set and |S′| < |S| which is a contradiction.
Thus, for every r ∈ rows(A) and c ∈ cols(A) the token on the circle (r , c) is
in A and |A| = |rows(A)| · |cols(A)|. Analogously, we can prove that |B| =
|rows(B)| · |cols(B)|. To simplify the notation, let |rows(A)| = rA, |cols(A)| =
cA, |rows(B)| = rB and |cols(B)| = cB . Then: |V (TF )\S| = |A| + |B| =
rA · cA + rB · cB .

Since rB ≤ N − rA and cB ≤ M − cA, then:

rA · cA + rB · cB − N · M + N + M − 2

≤ rA · cA + (N − rA) · (M − cA) − N · M + N + M − 2.

The right part of the above inequality can be rewritten as:

(1 − cA)(N − rA − 1) + (1 − rA)(M − cA − 1).

Notice that (1 − cA) ≤ 0 and (1 − rA) ≤ 0. On the other hand, (N − rA − 1) ≥ 0
and (M − cA − 1) ≥ 0. This proves inequality (2) and the stated lemma follows from
inequalities (1) and (2). ��
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7 Conclusion and open problems

Area coverage in cooperative robot networks is a fundamental component of many
applications. For instance, a group of UAVs can form a network and accomplish
complicatedmissions such as rescue, searching, patrolling andmapping. There are two
main issues which must be considered when developing a solution with a cooperative
robot network: coverage and communication.

In this paper we propose efficient algorithms for computing various parameters
of a synchronized system of robots related to the robustness of the network in the
presence of failures. With respect to communication between robots, we considered
two quality measures: the k-isolation resilience, introduced in Bereg et al. (2018) and
a new measure, the broadcasting resilience. The k-isolation resilience is the minimum
number of robots whose removal may cause the starvation (isolation) of at least k
surviving robots. Although the problem of computing this measure is NP-hard in
general, even for trees, we showed how to solve the problem when the communication
graph is a cycle (in linear time) or a grid (with an analytic expression). The broadcasting
resilience is related to the capacity of the system for sending messages through the
network. We showed how to efficiently compute this measure on trees, cycles and
grids. For the study of the robustness with respect to area coverage, we introduced
the concept of coverage resilience as the minimum number of robots whose removal
may result in at least one non-covered trajectory segment. Notice that if we denote
this measure as rc, the removal of at most rc − 1 robots from the system guarantees
that the total area is covered. In order to bound the idle-time of the system, that is,
the maximum time a point of the area is unattended by the robots, we also define
the T -coverage resilience as the minimum number of robots we can remove so that
the idle-time is at least T . We gave a linear time algorithm to compute these values
of resilience for a general communication graph and we found closed form solutions
depending on the input size for trees and grid-graphs. Moreover, we showed some
relationship between the parameters. For example, the three measures match when the
communication graph is a cycle.

The main open problem suggested by this paper is to improve the complexity of
the broadcasting resilience problem in general. Another research line is to consider
randomization in the shifting process when one or more robots fail. The idea of using
random walks of k < n robots shifting to a neighboring trajectory at the communica-
tion link with probability p results in some interesting open problems. These include
the computation of the expected meeting time (Tetali and Winkler 1991) or the hitting
time (Patel et al. 2016) of randomwalks in a partial SCS. Both problems are suggested
by the concept of k-isolation resilience. Related to the coverage resilience, it would
be interesting to study the expected idle-time of the system, that is, the expected time
for a point in the terrain to be visited. Finally, another interesting task is to calculate
the values of the shifting probability p that maximize the resilience measures.
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