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Abstract

We give new lower bounds for M (n, d), for various positive integers n and d with n > d,
where M (n, d) is the largest number of permutations on n symbols with pairwise Hamming
distance at least d. Large sets of permutations on n symbols with pairwise Hamming distance d
are needed for constructing error correcting permutation codes, which have been proposed for
power-line communications. Our technique, partition and extension, is universally applicable
to constructing such sets for all » and all d, d < n. We describe three new techniques,
sequential partition and extension, parallel partition and extension, and a modified Kronecker
product operation, which extend the applicability of partition and extension in different
ways. We describe how partition and extension gives improved lower bounds for M (n, n —
1) using mutually orthogonal Latin squares (MOLS). We present efficient algorithms for
computing new partitions: an iterative greedy algorithm and an algorithm based on integer
linear programming. These algorithms yield partitions of positions (or symbols) used as input
to our partition and extension techniques. We report many new lower bounds for M (n, d)
found using these techniques for n up to 600.
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1 Introduction

The use of permutation codes for error correction of communications transmitted over power-
lines has been suggested [17,22]. Due to the extreme noise in such channels, codewords
are sent by frequency modulation rather than by amplitude modulation. Let’s say we use
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frequencies fo, fi, f2, ..., fn—1, which we view by the index set Z,, = {0, 1,2, --- ,n—1}.
A permutation on Z,, corresponding to a codeword, specifies in which order frequencies are
to be sent.

The Hamming distance between two permutations, o and t on Z,, denoted by hd(o, 7),
is the number of positions x in Z, such that o (x) # 7(x). For example, the permutations on
Zs,0 =04132and t =243 12 have hd(o, T) = 3, as they differ in positions 0, 2, and
3. A set A of permutations on Z,, (called a permutation array or PA for short) has Hamming
distance d, denoted by hd(A) > d, if, for all o, T € A, hd(o, ) > d. The maximum size
of a PA A on Z,, with hd(A) > d is denoted by M (n, d). Two PAs A and B have Hamming
distance d, denoted by hd(A, B) > d, if, forallo € Aand t € B, hd(o, 1) > d.

There are known combinatorial upper and lower bounds on M (n, d), specifically the
Gilbert—Varshamov (GV') bounds, together with some recent improvements to the GV bounds
[11,13,25]. Generally, these bounds are theoretical and are often improved by empirical
techniques. Some exact values are known: (1) for all n, M (n, n) = n, and, (2) for ¢, a power
of a prime, M(q,q — 1) = g(g — 1) and M(qg + 1,9 — 1) = (¢ + 1)g(g — 1). These
exact values come from sharply k-transitive groups, for k = 2 and k = 3, namely the affine
general linear group, denoted by AGL, and the projective general linear group, denoted by
PGL [10,11]. The Mathieu sharply 4-transitive and 5-transitive groups, give exact values for
M(11,8) = 7920 and M (12, 8) = 95,040 [6,10,12]. It is not feasible to do an exhaustive
search for good permutation arrays when n becomes large. There are n! permutations on Z,,,
so the search space becomes computationally impractical. Some researchers have attempted
to mitigate the problem by considering automorphisms groups and replacing permutations by
sets of permutations. For example, in [19], Janiszczak et al. considered sets of permutations
invariant under isometries to improve several lower bounds for M (n, d), for various choices
of nandd,n < 22. Chuetal. [7] and Smith and Montemanni [23] also provide lower bounds
obtained by the use of automorphism groups, and are also generally limited to small values
of n.

There is also a connection between mutually orthogonal Latin squares (MOLS) and per-
mutation arrays [9]. Specifically, if there are k mutually orthogonal Latin squares of side n,
then M(n,n — 1) > kn. Let N (n) denote the number of mutually orthogonal Latin squares
of side n. Finding better lower bounds for N (n) is an on-going combinatorial problem of
considerable interest world-wide [8,24].

Recently, we described a new technique, called partition and extension [3,4] and we
illustrated how to use this technique to improve several lower bounds for M (n, n — 1) over
those given by MOLS. Partition and extension operates on permutation arrays that can be
decomposed into subsets with certain properties. (A description follows in Sect. 2.) In its
simplest form, partition and extension converts a PA A on n symbols with hd(A) =d — 1,
into a PA A’ onn + 1 symbols with hd(A’) = d. That is, when a PA A exhibiting M (n,d —1)
meets the necessary conditions for simple partition and extension, the technique obtains a
lower bound for M(n + 1, d).

The purpose of this paper is to illustrate many new ways to use the partition and exten-
sion technique, and ways to generate appropriate partitions. We describe a method called
sequential partition and extension, an improvement which uses iteration to extend permuta-
tion arrays by two or more symbols. When certain conditions are met, sequential partition
and extension obtains new PAs on n 4 2 symbols with Hamming distance d from PAs on n
symbols with Hamming distance d — 1. Another new technique, which we call parallel par-
tition and extension, introduces several new symbols simultaneously. In some cases, parallel
partition and extension on PAs on n symbols with Hamming distance d — r gives new lower
bounds for M (n + r, d). We illustrate how to use partition and extension on blocks defined
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by cosets of the cyclic subgroup of the group AGL(1, ¢g), and on PAs created by a modified
Kronecker product operation. We give new results derived from partition and extension on
blocks defined by mutually orthogonal Latin squares (MOLS). We describe experimental
algorithms and heuristics for creating partitions, including a greedy algorithm and an opti-
mization approach based on integer linear programming. These new techniques improve on
previously reported results [4].

2 Previous results on partition and extension

We briefly describe the technique called partition and extension, which transforms a PA on
Z, with Hamming distance d — 1 into a PA on Z,,;; with Hamming distance d. A detailed
description and several examples appear in [4]. Throughout this paper we will use the phrase
simple partition and extension to refer to this version of partition and extension.

Let s be a positive integer. Let M|, M», ..., M, be an ordered list of s pairwise disjoint
permutation arrays on Z,. Let P = (Py, P2, ..., Py) and Q = (Q1, O, ..., Q) be two
ordered lists of subsets of Z,, such that the sets in P and Q are partitions of Z,. For each set
M;, P; is the set of locations and Q; is the set of symbols to be replaced by the new symbol
n. When a permutation o in M; has a symbol ¢ in Q; appearing in a position p in P;, o is
extended (i.e., converted to a permutation o’ on n + 1 symbols) by moving ¢ to the end of the
permutation and placing the symbol # in position p. That is, the extension of o by position
k, denoted by ext (o) = o”, is a permutation on Z, ;| defined by: o’ (k) = n, o’ (n) = o (k),
and forall j (0 < j <n, j #k),o'(j) =o(j). We refer to this new permutation as ext(o)
and o’ interchangeably.

For each i, let covered(M;) be the subset of M;, defined by covered(M;) = {0 €
M; |3p € P;, o(p) € Q;}. We say that a permutation o is covered if ¢ € covered(M;)
for some i. In order for a permutation o’ to be included in the extended set of permutations
on Z,41, o must be covered. That is, o must have one of the named symbols in one of the
named positions. In general, when o € covered(M;), there may be more than one position
p € Pi suchthat o(p) € Q;. If so, arbitrarily designate one of these positions to cover .

For our construction, we include an additional PA M, 1, for which there is no correspond-
ing set of positions or symbols. None of the permutations in M, are in any of the PAs M;.
The partition and extension operation adds the new symbol 7 to the end of each permutation
in Myy. Every permutation in M, is used in the construction of our new PA. Thus, we
create the list M = (M1, Ma, ..., Msy1), which includes this extra set.

Atriple I[1 = (M, P, Q) is adistance-d partition system for Z, if it satisfies the following
properties:

() YM; € M, hd(M;) > d, and
M Vvi,jd<i<j=<s+1), dM;,M;)>d— 1.

Simple partition and extension uses sets P; and Q; in the two partitions P and Q to
modify the covered permutations in M;, for 1 <i < s, for the purpose of creating a new PA
on Z,1 with Hamming distance d. Let IT = (M, P, Q) be a distance-d partition system,
where M = (M1, M», ..., Ms11), for some s. We now show how the simple partition and
extension operation creates a new permutation array ext(I1) on Z, 4. Foralli (1 <i <),
let ext(M;) be the set of permutations defined by

ext(M;) = {ext(o) | 0 € covered(M;)}.
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Table 1 An example of simple

. . Initial permutations in IT Modified permutations in ext(IT)
partition and extension on the
distance-4 partition system 01237 41230
M= (M,P, Q), where 1032 40321
M = (M), My, M3), P = Mi=13301 extM=1534109
{{0,2}, {1,3}} and 3210 32401
={{0,1}, {2,3 z _
Q=1{{0.1}, 2,31 02317 ro43127
1320 14203
Ma=12013 extM2)=150143
3102 L31042 ]
03127 ro31247
1203 12034
M3—{2130 extM3)=151304
3021 130214

The column on the left shows the ordered list of PAs M consisting three
PAs, My, My and M3 on Z4 with hd(M;) > 4, fori € {1,2, 3}, and
hd(M) > 3. The column on the right shows the new PAs, ext(M1),
ext(Mp) and ext(M3), obtained by simple partition and extension. By
Theorem 1, hd(ext(IT)) > 4

For M1, let ext(M;41) be the set of permutations on Z, 1| defined by adding the symbol n
to the end of every permutation of M.
Let ext(IT) be the set of permutations on Z, 41 defined by
s+1
ext(IT) = U ext(M;).

i=1
Note that

s+1

lext(T)| = ) |ext(M;)]. ey

i=1
Theorem 1 ([4]) Let d be a positive integer. Let T1 = (M, P, Q) be a distance-d partition
system for Z,, with M = (My, M, ..., Ms11) for some positive integer s. Let ext(I1) be
the PA on Z, 1 created by simple partition and extension. Then, hd(ext(I1)) > d.

The example in Table 1 illustrates the application of Theorem 1 to [T = (M, P, Q), where
M = (M, My, M3), P = {{0, 2}, {1, 3}} and Q = {{0, 1}, {2, 3}}. The column on the left
shows the PAs M1, M, and M,. M| is the cyclic subgroup of AGL(1, 4), and M, and M3
are two of its cosets. The blue symbols are the symbols of Q; that occupy positions in P;,
fori € 1, 2. The column on the right shows the new PAs obtained by simple partition and
extension on I1. To create ext(M;) and ext(M>), the blue symbols are moved to the end of
the permutations and a new symbol, 4, in red, occupies the positions vacated by the blue
symbols. To create ext(M3), the symbol 4 is simply appended to the end of each permutation.
Note that hd(M1) > 4, hd(M>) > 4 and hd(M1, M) > 3, so Il is a distance-4 partition
system. By Theorem 1, hd(ext(I1)) > 4.

3 Sequential partition and extension

Let 9 = {M,, M>, ... M,}, for some ¢, be a collection of PAs on Z,, that satisfy Properties I
and II for a distance-d partition system. The basic idea of sequential partition and extension is
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that we first create several disjoint PA’s by simple partition and extension, each consisting of
permutations on n 4 1 symbols with internal Hamming distance d. Then, we use partition and
extension again on these PA’s to get a larger PA on n + 2 symbols and Hamming distance d.
Such an iterative application of partition and extension can produce interesting new results.

Let (M1, M», ..., M,,) be an ordered set of subsets of It such that each M; contains
some number of PAs, such as My, ..., M;, from 9, and for all ¢, j, (1 <i < j <m), M;
and M ; are pairwise disjoint. Let {1y, [Ty, ..., I1,, }, be a collection of distance-d partition
systems on Z,, where for all i, (1 <i <m), I1; = (M;,P;, Q;), and M; C 9. We say
that {I1y, Iy, ..., I1,,} is pairwise disjoint if for all i, j, (1 <i < j < m), M; and M;
are pairwise disjoint.

For each iteration i, we employ a different distance-d partition system, I1; =
(M;, P;, Q;), that uses a previously unused set of PAs, M; C 9, to create a new PA,
ext(I1;), on Z, 41, with Hamming distance d. Hence, by repeated simple partition and exten-
sion, we create a collection of new PAs, ext(I1y), ext(I1p), ..., ext(Il,,), for some m > 1.
As long as the distance-d partition systems Iy, 1o, ..., I, are pairwise disjoint, the sets
{ext(I1y), ext(I1n), ..., ext(I1,,)} are pairwise disjoint as well.

In the following, we assume that the distance-d partition systems under consideration are
pairwise disjoint. The partitions 7; and Q; need not be distinct from partitions P; and Q.

Consider the case of applying simple partition and extension twice in succession using
two distance-d partition systems, [1; = (M, Py, Q1) and [Ty = (M>, P2, Q>). We present
Theorem 2 and Corollary 3, which give results on the Hamming distance and the size of
the resulting PA. Corollary 4 extends these results by induction. These results will be useful
later for describing a new method for creating PAs which we call sequential partition and
extension.

Theorem2 Let TI} = (M, P1, Q1) and Ty = (My, P2, Q) be pairwise disjoint
distance-d partition systems for Z,, with hd(My, M3) > d — 1. Then hd(ext(I1})) >
d, hd(ext(Ily)) > d, and hd(ext(I1}), ext(I1p)) > d — 1.

Proof By Theorem 1, hd(ext(I1y)) > d, hd(ext(I1z)) > d. We show that hd(ext(I1),
ext(TTp)) > d — 1. Pick two arbitrary permutations o’ € ext(IT;) and t/ € ext(I1y),
where for some k and j, 0’ = ext; (o) for some o € 1y, and " = ext;(r) for some 7 € IIy.
We consider two cases to determine the number of new agreements between o’ and t’ created
by the extension operation:

Casel: k=

The extension operation creates a new agreement in position k = j because o’ (k) =
t/(k) = n.Note that since 0’ (n) = o (k) and ' (n) = t(k), the relationship between
o’(n) and t’(n) is the same as the relationship between o (k) and 7 (k). Hence, there
is at most one new agreement between ¢’ and t’.

Case2: k # j

In this case, o’ (k) = n and t/(j) = n, so the new symbol n is in different positions
in o’ and t’. That is, inserting the symbol n does not, in itself, increase the number
of agreements. Now consider the symbols o (k) and t(j). If o (k) = 7(j), then
o’(n) = 1/(n).In this situation, extension creates a new agreement in position 72. On
the other hand, if o (k) # ©(j), then ¢’(n) # t/(n), so no new agreement is created
by extension. In either situation, extension creates at most one new agreement
between o’ and 7’.
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By assumption, hd(M, M3) > d —1,hence hd(o, t) > d —1 as well. That is the number
of disagreements between o and 7 is at least d — 1, or equivalently, the number of agreements
between o and T is at most n — (d — 1). So, the number of agreements between ¢’ and 7’ is at
most 1 +n — (d —1). Since 0’ = exty (o) and t/ = ext,, (t), both ¢’ and 7’ are permutations
on n + 1 (not n) symbols. Hence, hd(c’,t) > m+ 1) — (1 +n—(d—1)) >d —1,s0
hd(ext(I1y), ext(ITp)) > d — 1. O

Corollary 3 Let 1| = (M1, Py, Q1) and Iy = (Ma, P2, Q2) be pairwise disjoint distance-
d partition systems for Z,,, with hd(M, M) > d — 1. Let A = ext(I11) U ext(I1y). Then
Ais a PA on Z,y1 such that |A| = |ext(I11)| + |lext(I12)| and hd(A) > d — 1.

Proof Since both ext(IT1) and ext(I1,) are created by simple partition and extension of PAs
on Z,, Ais a PA on Z,1. Given that M, is disjoint from M, Equation 1 tells us that
|A| = |ext(IT;)| + |ext(T1,)|. Lastly, by Theorem 2, hd(A) > d — 1. O

Simple partition and extension can be used in a similar way on several more distance-d
partition systems on Z, to create large PAs on Z,, . This is formalized by Corollary 4.

Corollary 4 Let T} = (M1, P1,Q1), [Ih = (M2, P2, Q2), ..., I, = (M, P, Q)
be a collection of pairwise disjoint distance-d partition systems, for some m > 1, where
hd(M;, Mj) =d =1, foralli, j (1 <i < j <m). Let A= ext(Il}) Uext(ITx) U...U
ext(I1,,). Then

(1) Vi, j (1 <i < j<m), hd(ext(I1;), ext(I1)) > d — 1,
(2) Aisa PAon Z,yq,

(3) 1Al =Y lext(I1;)|, and

(4) hd(A) >d — 1.

Proof The results follow from Theorem 2 and Corollary 3 by induction on m. O

A new technique, which we call sequential partition and extension, can be used to
improve bounds for M (n + 2, d). It has two steps. First, simple partition and extension
is used to create the extended PAs ext(I1), ext(I1»), ..., ext(I1,,), for some m > 1. Let
M = {M, My, ..., M,,}, where for all i, M; = ext(I1;). Note that M is a collection of
PAs on Z, ;. Let P and QQ be partitions of Z,,1 such that ¥ = (M, P, Q) is a distance-d
partition system on Z, 1. Next, simple partition and extension is again used to create a new
PA, ext(V), on Z, 5.

We show that ext(W¥) is a PA on n + 2 symbols with Hamming distance d.

Theorem 5 Sequential partition and extension on a collection {111, Ny, ..., I}, of pair-
wise disjoint distance-d partition systems on Z,, results in a new PA on Z, 1, with Hamming
distance d.

Proof Let ext(I1y), ext(ITp), ..., ext(I1,) be the PAs on Z,;; created the first phase
of sequential partition and extension. By Theorem 1, hd(ext(I1;)) > d. By Corollary 4,
Vi,j (1 <i<j=<m), hd(ext(I1;), ext(I1;)) > d — 1.

Let M = (ext(I1y), ext(Ilp), ..., ext(I1,)), and let P and Q be suitable partitions of
Zu+1, such that W = (M, P, Q) forms a distance-d partition system on Z,, 1. Let ext(¥) be
the PA created by simple partition and extension on ¥ = (M, P, Q). Since, W is a distance-d
partition system on Z, 11, ext(V) is a PA on Z,4>. By Theorem 1, hd(ext(¥)) > d. ]

We now illustrate sequential partition and extension by means of an example.
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Example 1 Consider the group AGL(1, 37) on 37 symbols with Hamming distance 36, con-
taining 1332 permutations. This gives M (37,36) > 1332. Using sequential partition and
extension we show that M (39, 37) > 1301.

AGL(1, 37) can be decomposed into 36 Latin squares, where one of the Latin squares is
a cyclic subgroup of AGL(1, 37) consisting of the identity permutation and all cyclic shifts.
This is the set of permutations C; = {x + b | b € Z37}. The other 35 Latin squares can be
defined as the left cosets of C1, namely, C; = {ix + b | b € Z37}, foreachi (2 <i < 36).

First, we give six distance-37 partition systems for AGL(1, 37), namely, [1; = (M, P,
Q1), Iy = (M2, P2, Q2), I3 = (M3, P3, Q3),T1g = (M4, Pa, Q4), 15 = (M5, Ps, Qs),
Ilg = (M, Pe, Qp), where M ={Cy,Co, ..., C7}, Mo ={Cs, Co, ..., Ca},
Mz ={Ci5,Ci6, ..., Ca1}, My ={Cx, Co3,...,C8}, Ms5={Cag,C3,...,Css},
Mg = {C3z6} with the partitions P;, Q; (1 < i < 6) described in Table 2. Note that in
each IT;, the last coset is covered by adding the new symbol *37° in the 37" position.

Simple partition and extension yields six PAs on Z3g, where for all i, (1 < i <
6), hd(ext(I1;)) > 37, and for all i, j (1 <i < j < 6), hd(ext(Il;), ext(I1;)) > 36.
Moreover, |ext(I11)| = 253, |ext(I1x)| = 253, |ext(I13)] = 253, |ext(Il4)| = 253,
lext(IT5)| = 252, and |ext(ITg)| = 37.

Finally, we form a distance-37 partition system W = (M,P,Q), where
M = (ext(I1y), ext(I1y), ..., ext(I1g)) with suitable partitions P and QQ as shown in Table
3. The result is a PA, ext(¥), on 39 symbols with Hamming distance 37, which has 1301
permutations. The previous lower bound for M (39, 37), given by the five known MOLS on
39 symbols, was 195.

Sequential partition and extension also results in the lower bounds M (34, 32) > 945
and M (66, 64) > 4029. Table 4 shows additional improved lower bounds on M (n,n — 2)
obtained by sequential partition and extension.

In fact, sequential partition and extension can be applied an arbitrary number of times,
provided that suitable distance-d partitions systems can be found at each stage. That is,
sequential partition and extension on a sequence of r distance-d partitions systems could
result in new lower bounds for M (n + r, d), for arbitrary r.

4 Parallel partition and extension

In Sect. 3, we described a new technique, based on simple partition and extension, called
sequential partition and extension. We now present another new technique, called parallel
partition and extension which introduces multiple new symbols simultaneously. As previ-
ously described, simple partition and extension extends a permutation array by replacing
one existing symbol in a carefully selected position in each permutation with the symbol
n, and appending the displaced symbol to the end of the permutation. Sequential parti-
tion and extension allows additional symbols to be introduced one at a time by applying
simple partition and extension sequentially. In contrast, parallel partition and extension
on a PA A on Z, creates a PA A’ on Z,;, by introducing, to each permutation in A,
r new symbols simultaneously. Table 6 shows new bounds obtained using Theorems 6
and 7 for parallel partition and extension. These theorems are proved in Sects. 4.1 and
4.2.
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Table 2 Step 1 of sequential partition and extension on AGL(1, 37), which gives M (38, 36) > 1301

I; Set of cosets, M; P; Q; lext(IT;)]

m, (x+b|be Zy) {4, 11, 18, 25, 31, 34 {0,1,2,3,4,5,6) 253
2x+b|be Zy) (5,8, 10, 13, 16, 19, 21} {7,8,9, 10, 11, 12}
Bx+b|beZy) (14,20, 22, 24, 28, 30} (13, 14, 15, 16, 17, 18}
(4x+b|be Zy) (9,12, 15,26, 29, 32} (19,20, 21, 22,23, 24}
{S5x+0b|be Z37} {6,7,17,23,27,33} {25, 26, 27, 28, 29, 30}

{6x +b|b e Z37} {0, 1,2, 3, 35,36} {31, 32, 33, 34, 35, 36}
{Ix+b|be Z37} (37} {37}

M, (8x+b|be Z3) (1,12,23,25, 36} {0,1,2,3, 4,5, 6) 253
Ox +b|be Z37) {0, 11, 13,22, 24, 35) {7,8,9, 10, 11, 12}
(10x+b|beZy)  (8,9,10,17, 18, 26,27) (13, 14, 15, 16, 17, 18}
(lx+blbeZy) {4567, 19,20,28) (19,20, 21, 22,23, 24}

{12x +b | b € Z37} {14, 15, 16, 32, 33, 34} {25, 26, 27,28, 29, 30}
{13x +b | b € Z37} {2,3,21, 29, 30,31} {31, 32, 33, 34, 35, 36}
(4x+blbezy)  (37) 37)

;s (5x+blbeZy)  (2,3,4,6,15,27) {0,1,2,3, 4,5, 6} 253

(16x+b|bezy)  {(12,13,14,16,17,18,22)  (7.8,9,10, 11,12}
(Tx+blbezy)  (0,21,25,28,29,33) (13, 14, 15, 16, 17, 18}
{18x +b | b € Z37} {7,8,19,20,31, 32} {19, 20, 21, 22, 23, 24}
{19x +b | b € Z37} {10, 11, 23, 24, 35, 36} {25, 26, 27, 28, 29, 30}
{20x + b | b € Z37} {1,5,9, 26, 30, 34} {31, 32, 33, 34, 35, 36}
QRlx+blbezy)  (37) 37)

My  (2x+b|beZy)  (2.3,5,9,21,33) {0,1,2,3, 4,5, 6) 253

(23x+blbeZy) (48 11,22,23,34) {7,8,9,10, 11, 12}
Q4x+blbezy)  (7.16,17,25,26,35) (13, 14, 15, 16, 17, 18}
{25x +b | b € Z37} {12, 13, 14, 30, 31, 32} {19, 20, 21, 22, 23, 24}
{26x +b | b € Z37} {1,6,10, 15, 24,29} {25, 26, 27, 28, 29, 30}
{(27x +b | b € Z37} {0, 18, 19, 20, 27, 28, 36} {31, 32, 33, 34, 35, 36}
(28x +b | b€ Zy7) 37) (37)

e (29x+b|beZy) (2,5, 13,18,26,29) {0,1,2,3, 4,5, 6) 252
(B0x+b|bezy)  {12,19,21,27,34,36) {7,8,9,10, 11, 12}
Blx+blbezy)  {6,7,8,9,10,11) (13, 14, 15, 16, 17, 18}
{(32x+b | b € Z37} {4, 14, 15, 25, 31, 35} {19, 20, 21, 22, 23, 24}
{(33x+b | b € Z37} {0, 3, 16, 17, 20, 23, 33} {25, 26, 27, 28, 29, 30}
{34x +b | b € Z37} {1,22,24, 28, 30, 32} {31, 32, 33, 34, 35, 36}
B5x+blbezy)  (37) 37}

Mg  (B6x+blbeZy)  (37) 37) 37

4.1 Rudimentary parallel partition and extension
In its rudimentary form, parallel partition and extension operates on 2r blocks (i.e., sets)

of permutations, for some integer r. Specifically, suppose a PA A, on Z,, is partitioned
into k = 2r blocks of permutations By, By, ..., Bx—1, where, for all i, (0 < i < k),
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Table 3 Step 2 of sequential partition and extension on AGL(1, 37) for M (39, 37) > 1301

M P; el Qi €Q |ext(M; )|
My =ext(ITy) {4, 11, 18,25, 31, 34} {0,1,2,3,4,5,6} 253
Mp=ext(ITp) {5, 8,10, 13, 16, 19, 21} {7,8,9,10, 11, 12} 253
Mz =ext(IT3) {14, 20, 22, 24, 28, 30} {13, 14,15, 16, 17, 18} 253
My=ext(I14) {9, 12, 15, 26, 29, 32} {19, 20, 21, 22, 23, 24} 253
Ms=ext(I5) {38} {38} 252
Mg=ext(ITg) {0,1,2,3,6,7,17, 23,27, {25, 26, 27, 28, 29, 30, 31

33,35, 36, 37} 32,33, 34, 35, 36, 37} 37
Total 1301
Table4 M (n,n — 2) lower bounds
n PREV NEW n PREV NEW n PREV NEW
34 192 945 159 2051 16,666 291 5202 80,385
39 255 1301 165 2185 17,632 295 5088 54,572
45 270 1726 171 2354 27,330 309 5539 60,715
51 392 2308 175 2354 19,792 315 5634 60,952
55 423 2461 183 2533 21,994 319 5793 67,379
63 1,514 3306 195 2758 25,022 333 6091 70,696
66 576 4029 201 2867 25,427 339 6280 69,485
69 594 3965 213 3170 30,288 345 5205 89,272
75 667 4747 225 3421 32,728 351 6642 76,195
85 812 6116 231 3548 33,779 355 6746 77,215
91 902 6709 235 3625 35,001 363 7220 125,709
99 1,017 8206 245 3475 43,717 369 7108 83,418
105 1,119 9239 253 4075 40,094 375 7298 87,434
111 1,187 9990 259 4222 43,268 385 7428 90,213
115 1,277 11,142 265 4342 44,733 391 7690 90,991
123 1,452 13,996 273 4548 46,268 411 8240 104,098
133 1,554 11,604 279 4701 49,243 514 11,264 197,859
141 1,723 13,522 285 4868 51,571 531 12,696 271,043

153 1,923 16,118

PREV denotes the previous bound and NEW denotes the new bound obtained using sequential partition and
extension

hd(B;) > d, for some d, and foralli, j (0 <i # j < k), hd(B;, Bj) > d —r. In particular,
hd(A) > d — r. We create a new PA A’ on Z,,, such that hd(A’) > d, by inserting a
sequence of new symbols from the set {n,n + 1,...,n + r — 1} into the permutations in
each block. Each block uses a different sequence.

Define SHIFT(y, 0) to be the sequence (n,n + 1,n +2,...,n+r — 1), and for each
integer ¢, denote by SHIFT(y, t) the left cyclic shift of the sequence by ¢ (mod r) positions.
For example, SHIFT(y, 1) is the sequence (n+1,n+2, ..., n+r —1,n), and SHIFT(y, 2)
is the sequence (n +2,...,n+r —1,n,n+ 1), and so on.
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The creation of the new PA A’ takes place in two steps. The first step modifies the blocks
By, By,...,B,_1.Foralll, (0 <[ < r),anew block Bl’ of permutations on Z,,, is created
from the block B; as follows: the first » symbols in each permutation of B;, are replaced
by SHIFT(y, /), and the r replaced symbols are put in their original order at the end of the
permutation in positionsn,n+1,...,n+r — 1.

In the second step, a new block of permutations B,’n is created from each block B,,, for
all m, (r < m < 2r), by appending the sequence, SHIFT(y, m) to each permutation in
positions n,n + 1,...,n 4+ r — 1. The blocks B[’, (0 < I < r) together with the blocks
B],, (r <m < 2r) comprise the new PA A" on Z, ;.

It is known that the Hamming distance between two permutations does not change when
the order of the symbols in both permutations is altered in a fixed manner. Consequently,
the Hamming distance between permutations in the same block, or between permutations in
different blocks is not altered by the movement of the first » symbols in each permutation to
positionsn, n+1, ..., n+r—1. Since the ordering of the new symbolsn, n+1, ..., n+r—1
in any block is a cyclic shift of sequence of new symbols in any other block, rudimentary
parallel partition and extension does not create any new agreements between permuta-
tions in different blocks. For the original permutation array A, hd(A) > d — r. For the
new permutation array A’, the permutations in each block have been extended by r sym-
bols in a way that ensures that the inter-block Hamming distance is at least d. That is,
forall i,j (0 < i # j < k), hd(B], B}) > d, and the length of the permutations
has increased by r. Within each new block, the r new symbols are put in a fixed order
into fixed positions, creating r new agreements in addition to the (n — d) agreements that
existed in the unaltered blocks. For the new blocks Bl’ forall / (O < I < r), the dis-
placed symbols are moved to the end of each permutation. For the new blocks B, , for all
m (r < m < 2r), no symbols are displaced because the r new symbols are appended at
the end of the permutations. Thus the intra-block Hamming distance for the new permu-
tations is (n +r — (r + n — d))) = d. That is, for all i, (0 < i < k), hd(Blf) > d.
Hence, hd(A’") > d. The size of the PA A’ is given by Theorem 6. The proof is described in
[21].

Theorem 6 ([21]) Let A be a PA on Z,, comprising 2r blocks for some r. Denote the blocks
by By, By, ..., By—1, sothat A = U%;Bl B;. If each block B; has Hamming distance at least
d and the Hamming distance of the entire set A is at least d — r, then rudimentary parallel

partition and extension on A results in a new PA A" on Z,, that exhibits M(n +r,d) >
2r—1
Z,’:() |Bi |

Table 5 illustrates rudimentary parallel partition and extension for n = 9,d = 9 and
r = 3 using a PA A on Zg. We provide k = 2r = 6 blocks such that for each block
Bi, (0 <i <5), hd(B;) > d =9andforalli, j (0 <i # j <5), hd(B;, Bj) >d—r =6.
These blocks comprise the PA A and are shown in the column on the left of Table 5. The
symbols to be relocated by rudimentary parallel partition and extension are shown in blue.
Note that hd(A) > 6. Rudimentary parallel partition and extension on A results in the PA A’
on Zjp with hd(A’) > 6. The permutations comprising A" are shown in the column on the
right of Table 5, with the displaced symbols shown in blue and the new symbols shown in
red.

More results based on Theorem 6 are shown in Table 6. For example, for n = 42,d =
39, r = 4,take PGL(2, 41), which contains 40-41-42 = 68880 permutations on 42 symbols,
with hamming distance at least 39. We found 2r = 8 cosets of PGL(2,41) with d = 35.
Then by Theorem 6, M (46, 39) > 8 - 68,880 = 551,040 using 8§ cosets.
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Initial permutations in the PA A Modified permutations in the PA A’

rudimentary parallel partition and
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Table 5 continued Initial permutations in the PA AModified permutations in the PA A’

11
11
11

10 7
10
10

OO WN— O
O = WO WO R
WA ONWV— O 0N
N0 —= WA W
— N R 00O W
NN WO 0N =
AW N = O RN
N O =W
A= DO WVWI
OO kW~ O
O = WO A
WA OJWU— O N
NP —= LA O W
_— N R 00O W
NN WO 0N =
AW N = O RN
LNnO oA I~ W
A= DO WVW
=
A= - - -
=

The column on the left shows a PA A consisting of six blocks of permu-
tations on Zg with hd(A) > 6. The column on the right shows the new
PA A’ on Zy5 with hd(A") > 6

Table6 M (n, d) lower bounds obtained using parallel partition and extension (Theorem 6 and 7)

n d r NEW Origin of blocks (see Table 8)

30 26 2 58,968 PT'L(2,27) and 2 cosets

40 34 2 287,437 p PGL(2,37) and 2 cosets (see M (38,32))
44 38 2 397,198 p PGL(2,41) and 2 cosets (see M (42,36))
45 39 3 413,280 PGL(2,41) and 3 cosets (see M (42,36))
46 39 4 551,040 PGL(2,41) and 4 cosets (see M (42,35))
52 46 2 470,397 g PGL(2,49) and 2 cosets (see M (50,44))
53 47 3 470,400 PGL(2,49) and 3 cosets (see M (50,44))
56 50 2 446,472 PGL(2,53) and 2 cosets (see M (54,48))
70 63 2 1,503,462 p PGL(2,67) and 2 cosets (see M (68,61))

The blocks used by these theorems were obtained by the coset method [5] (see Table 8). Columns: r denotes
the number of new symbols, NEW denotes the new new bound. New bounds computed using rudimentary
parallel partition and extension (Theorem 6) and general parallel partition and extension (Theorem 7) are
denoted with a subscript R and P, respectively

4.2 General parallel partition with r symbols

As described in Sect. 4.1, rudimentary parallel partition and extension with r = 2 allows
extension of at most 2r = 4 blocks. We describe a new technique, called general parallel
partition and extension with r symbols, that allows a larger number of blocks to be extended.

We start with the simplest form of general parallel partition and extension, for r = 2
symbols. It expands on the simple partition and extension technique described in Sect. 2 by
introducing an additional pair of partitions of Z,, denoted by R and S in the description that
follows.

Let s be a positive integer, and let M1, M, ..., Mg be an ordered list of s pairwise disjoint
PAson Z,.LetP = (P, P2, ..., P),Q=(01,02,...,05),R=(R1, Ry, ..., Ry),and
S = (81,95, ...,8s),befour partitions of Z,, such that, foralli, ,NR; = #and Q;NS; = 0.
The sets P; and R; are sets of locations for replacing symbols in the PA M;, and the sets Q;
and S; are sets of symbols to be replaced. For each i, let 2-covered(M;) be defined by

2 —covered(M;) ={oc e M; |Ap € P;, Ir #p € R; (o(p) € Q;, a(r) € Si)}.
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We say that a permutation o is 2-covered if o € 2-covered(M;) for some i. In general,
when o is 2-covered, there may be multiple pairs (p,r) € P; x R; such that o(p) € Q;
and o (r) € §;. If so, arbitrarily designate one of these pairs to cover o. We use the notation
(p, r) to refer to the designated pair.

The parallel extension of o by the pair (p, r), denoted by 2-ext (o) = o”, is a permutation
on Z,; defined by

n ifx=p
o(p) ifx=n
2-ext(c(x)) =0’ (X)) =1n+1 ifx=r ()

o(r) ifx=n+1
o(j) Vj, O=j<nnjé¢ip,r).

We will always extend o at the designated pair of positions (p, r) and refer to this new
permutation as 2-ext(o’) or ¢’ interchangeably. Note that in order for a permutation o’ to
be included in the extended set of permutations on n + 2 symbols, o must be 2-covered. In
other words, o must have two of the named symbols in two of the named positions.

For our construction, we include two additional PAs, M1, M7, for which there are no
corresponding sets of positions or symbols. None of the permutations in M4 or M, are
in any of the sets M; (1 <i < s). In a manner similar to rudimentary parallel partition and
extension, parallel partition and extension extends M| and M, by appending the two
new symbols n and n + 1, to the end of each permutation. For M, the sequence (n, n + 1)
is appended to the end of each permutation. Similarly, for M, the sequence (n + 1, n) is
appended to the end of each permutation. Every permutation in M1 and My, is used in
the construction of our new PA. We create the list M = (M, M2, ..., Ms+1, Mg42), which
includes the extra sets My and M.

A partition system I[1 = (M, P, Q, R, S) is a (d, 2)-partition system for Z,, if it satisfies
the following properties:

I YM; e M, hd(M;) > d, and
() Vi, j (1 <i<j<s+2), hd(M;, Mj)=d —2.

Parallel partition and extension uses sets P;, Q;, R;, and S; from the partitions P, Q, R,
and S, respectively, to modify the 2-covered permutations in M;, for 1 < i < s, for the
purpose of creating a new PA on Z,,, with Hamming distance d. Let IT = (M, P, Q, R, S)
be a (d, 2)-partition system, where M = (M1, M>, ..., Msy7), for some s. We now show
how parallel partition and extension operation creates a new permutation array 2-ext(IT) on
Zyyop.Foralli (1 <i <), let2-ext(M;) be the set of permutations defined by

2-ext(M;) = {2-ext(0) | 0 € 2-covered(M;)}.

For M1, let 2-ext (M) be the set of permutations on Z,, 1, defined by adding the symbols
n and n+ 1, in that order, to the end of every permutation of M 1. For M5, let2-ext(M;42)
be the set of permutations on Z, 1 defined by adding the symbols n + 1 and #n, in that order,
to the end of every permutation of M.

Let 2-ext(IT) be defined by

s+2
2-ext(IT) = ) 2-ext(M)).

i=1
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Note that

s+2
2-ext(I)| = Y [2-ext(M)].

i=1

Theorem 7 Let d be a positive integer, let T1 = (M, P, Q, R, S) be a (d, 2)-partition system
for Z,,, with M = (M1, M3, ..., Mgy>) for some positive integer s. Let 2-ext(I1) be the PA
on Z, 7 created by parallel partition and extension. Then, hd(2-ext(I1)) > d.

Proof Our proof has three steps. We first use simple partition and extension to create a PA
ext(T1"), on Z, 41, that exhibits hd(ext(I1")) > d — 1. Next, using simple partition and exten-
sion again, we create a PA ext(T1”), on Z,, 15, that exhibits hd(ext(IT")) > d. Finally, we show
that the PA 2-ext(IT) = ext(I1")U2-ext (M) U2-ext (M) exhibits hd(2-ext (IT)) > d.

Consider M' = (M1, M», ..., My). First, observe that [1" = (M’, P, R) can be viewed
as a distance-(d — 1) partition system for Z,, since hd(M;) > d > d — 1 foralli,(1 <i <)
and hd(M;, M;) > d —2foralli, j,(1 <i < j <s).Simple partition and extension on I
results in the PA ext(IT") on Z,,11. By Theorem 1, hd(ext(I1')) > d — 1. In particular, for all
i, jl<i,j<s,i#j),hdlext(M;), ext(M;)) > d — 1.

Notice that, for all i (1 <i <'s), hd(ext(M;)) > d since hd(M;) > d. (As shown in [4],
this follows from case 1 in the proof of Theorem 1. For two permutations o and t from the
same set M;, at most one new agreement appears between ext(o) and ext(t). Since ext(o)
and ext(t) are in Z,41, hd(ext(o), ext(t)) = hd(o, 1) > d. See [4] for the full proof of
Theorem 1.)

Let M” = (ext(My), ext(M>), ..., ext(My)). Then I1" = (M”, R, S) is a distance-d
partition system for Z, . Simple partition and extension on I1” results in the PA ext(IT”)
on Z, 7. By Theorem 1, hd(ext(I1")) > d.

By assumption, ITis a (d, 2)-partition system, so, by property I of (d, 2) partition systems,
hd(Mg11) > d and hd(M,4>) > d. By definition, every permutation 7’ in 2-ext (M) is
built from a permutation t in M| by appending the sequence (n, n 4 1) to the end. This
increases the length of each permutation by 2, and number of agreements between every pair
of permutations in 2-ext(Msy1) by 2. So hd(2-ext(Ms41)) =n+2 —((n —d)+2) > d.
Similar reasoning applies to every permutation in 2-ext (M7 ) using the appended sequence
(n + 1,n), so hd(2-ext(Mg13)) > d. Let t/ € 2-ext(Mg+1) and p’ € 2-ext(Myy2) be
arbitrary permutations. The appended sequences (n,n + 1) and (n + 1, n) create no new
agreements between t” and p’. By property Il of (d, 2) partition systems, Vi, j (1 <i < j <
s +2), hd(M;, M;) > d — 2. In particular, hd(Myy1, Msy2) > d — 2. So it follows that
hd(2-ext(Mgy1),2-ext(Mg42)) > n+2—(n—(d—2)) =d.

To see that hd(ext(T1"), 2-ext(Ms41)) > d, let 0" € ext(I1”). Extending the original
permutation o to create o” merely replaces designated symbols in designated positions with
the symbols n and n+-1, and moves the displaced symbols to positions n and n+1, respectively.
On the other hand, for any permutation t/ € 2-ext(M;, 1), the symbols n and n + 1 are in
positions n and n+ 1. In both cases, no other symbols are moved. So the symbols n and n+1 in
o are not in the same locations as they are in " and neither are the displaced symbols. That is,
no new agreements are created. Hence, hd(ext(I1"), 2-ext(Ms41)) > n+2—(n—(d—2)) =
d. Similarly, hd(ext(T1"), 2-ext(Ms42)) > n+2 — (n — (d — 2)) = d.

Finally, observe that 2-ext(IT) = ext(IT") U 2-ext(Myy1) U 2-ext(M,;2). We showed
above that the pairwise Hamming distance between all PAs in 2-ext(I1) is at least d, so it
follows that hd(2-ext(IT)) > d. O
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Example 2 This example illustrates the use of Theorem 7 to construct a PA for n = 40
and d = 34. We start with PGL(2, 37) is a PA on Zsg. It contains 38 - 37 - 36 = 50,616
permutations with Hamming distance at least 36, giving M (38, 36) > 50, 616. Using the
coset method [5], we found five cosets of PGL(2,37) in S3g, with Hamming distance 34
from PGL(2, 37) (see Table 8). The cosets are defined by the coset representatives «, 8, y, §
and 6:

a=27123025153735222936101 1333243 2816268 1917230
1134205 316 211418327 9 2 4

p=1622356 4 30372623110 2018248 7 15131 29362717333
9 10143225121928212 315 34

y=1226213237242 9 23270 30181620116 34332915225 10174
3513281 14257 36193 318

6=17 282237269 8 12184 3233315 2 1 34290 3 216 101623 36
2015143511301924257 1327

0=9 30126 361331111 1727265 2414352510237 3418202 160
8 19291537334 212232283

Let M = {M, My, M3, M4, M5, Mg} where
My = PGL(2,37) My, =oaM, M3z=M; My=yM, Ms=36M Msc=0M,.

Note that forall i, j, (1 <i < j <6), hd(M;) = 36 and hd(M;, M) > 34.
Let X = {X1, X2, X3, X4} be the partition of Z3g given by

X1 =1{0,4,8,13,19,22,26,30,35} X3 =1{2,6,10, 12, 16, 21, 24, 28, 33, 37}
X, =1{1,5,9,15,18,23,27,31,34} X4 ={3,7,11, 14,17, 20, 25, 29, 32, 36}.

The two partitions of positions, P and R, are based on X. That is, P = {Py, P2, P3, P4},
where Pl = Xl, P2 = Xz, P3 = X3, and P4 = X4 and R = {Rl,Rz, R3,R4}, where
Ry = X2, Ry = X3, Ry = X4, and R4 = X.

Let Y = {Y1, Y2, Y3, Y4} be the partition of Z3g given by

Y1 =1{0,1,2,3,4,5,6,7,8,9} Y; = {20, 21, 22, 23, 24, 25, 26, 27, 28}
Y, = {10, 11,12, 13, 14,15, 16, 17, 18, 19} Y4 = {29, 30, 31, 32, 33, 34, 35, 36, 37}.

The two partitions of symbols, Q and S, are based on Y. That is, Q = {Q1, O», 03, Q4}
where Q1 = Y1,02 = Y2,03 = Y3,04 = Y4 and S = {51, 52, 3, S4} where S| =
Y2,8 =Y3,83=Yy4,5: =Y.

Let T = (M, P,Q,R,S). It can be verified that IT is a (d, 2)-partition system for
Z3g where d = 34. Parallel partition and extension on I results in 2-exz(IT), where
|2-ext(IT)| = 287, 437. Theorem 7 for n = 38 and d = 34 implies M (40, 34) > 287,437
which is a new lower bound. See Table 6.

Theorem 7 applies to general parallel partition and extension using » = 2 symbols. This
result can be generalized to arbitrary » provided that a sufficient number of blocks with
appropriate Hamming distance properties can be found, along with a corresponding number
of partitions of positions and symbols. Table 6 shows new bounds obtained using parallel
partition and extension (Theorems 6 and 7).

The general parallel partition and extension technique does not put restrictions on the
partitions of positions P, R, . . ., and partitions of symbols Q, S, . . ., making the search space
for good partitions very large. Because of this, we have experimented with several ways of
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creating partitions. For example, given a partition of positions P = {Py, Py, ... Pr_1}, a
family of partitions {PP;} can be derived from P as follows. For all i, (i < 0 < k), define P;,
the i'h partition of positions, to be P; = {P(i+j) (mod k), V(0 < j < k)}. Using this notation,
the partitions P and R of Example 2 are correspond to Py and P;. In other words, P; is
obtained by a cyclic shift of the sets in Pp. In this way, each partition P; comprises a different
partition of the set of positions. Define a similar family of partitions of symbols {Q;} using
a partition of symbols Q = {Qo, O1, ... Qk—1} as a starting point. Clearly, each pair of
partitions (P;, Q;) satisfies the conditions of the parallel partition and extension technique.
To create the initial partitions 7P and Q, we have used several techniques, including a greedy
technique and a technique based on integer linear programming. These are described in
Sects. 6.1 and 6.2.

Results obtained by parallel partition and extension can be compared with results from
the coset method [5] and the contraction method [5]. The coset method starts with a group
X exhibiting M (n, d’), for some d’ > d and searches for cosets of X at Hamming distance
d. The PA A, formed from X together with its cosets, exhibits Hamming distance d. If X
is a good PA for M (n, d’), the PA A could represent a new lower bound for M (n, d). The
operation of contraction on a PA Y on Z,,; with Hamming distance d + 1 results in new PA
Y’ on Z,. As with the coset method, if Y is a good PA for M(n + 1, d), Y’ could exhibit a
new lower bound for either M (n, d — 2) or M (n, d — 3), depending on conditions described
in [5].

To be competitive, the groups that serve as the starting point for any of these methods
must be large. We have used AGL(1, g) and PGL(2, r) for various powers of primes ¢ and r.
The coset method and the contraction method are quite fruitful, but there are instances where
parallel partition and extension gives better results for M (n, d).

We have also experimented with several methods for generating blocks of permutations
with a desired Hamming distance. For example, to search for new PAs that exhibit improved
lower bounds for M (n, d), one technique looks for cosets at Hamming distance d from a group
G on Z,_, that exhibits M(n — r,d’'), where d’ > d. Let M consist of G and the cosets.
Using parallel partition and extension, the permutations in M are extended by r symbols
to create a new PA on Z,, exhibiting M (n, d). Our coset search techniques are discussed in
Sect. 6.3.

5 Partition and extension of modified Kronecker product

Kronecker product is a well known operation in linear algebra, combinatorics, and other areas
of mathematics [15,16]. A modification of the Kronecker product operation on PAs can be
used to create larger PAs suitable for simple partition and extension.

Let X and Y be PAs defined by X = {«1, a2, ..., o} where each «; is a permutation on
[ symbols, and Y = {f1, B2, ..., Bn} Where each §; is a permutation on m symbols. The
notation ¢; (j) denotes the symbol in permutation ¢; at position j. Let («;(j), Y) denote a
modified copy of the PA Y such that each symbol in each permutation of Y has an offset
m - «;(j) added to it. Clearly |(«; (j), Y)| = |Y|. Moreover, like Y, (¢;(j), Y) isa PA on m
symbols, however, the symbol set of (¢;(j), ¥) is offset by the value m - «; (j). Hence the
PAs Y and (¢;(j), Y) have no symbols in common.

Let (X®Y); be the PA definedby (X®Y); = [(«;(0), Y), (i (1), Y), ..., (;((—1),Y)].
That is, if B, is the permutation in Y, there is a corresponding permutation y on /m symbols
in(X®Y); ofthe formy = (m-o; (0)+ B,(0), ..., (m-o;(0)+ By(m — 1)), (m-a; (1) +
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Fig.1 The PA (X ® ), the
modified Kronecker product of (a1(1),Y) (1(2),Y) o] (a(D),Y)
PA’s X and Y
(az2(1),Y) | (@2(2),Y) | ... | (a2(D),Y)
((D),Y) | ((2),Y) | ... | («),Y)

Br0), ..., (m-oi(D)+B(m—=1)), ..., (m-o; ({=1)+p-(0)), ..., (m-o; (I =1)+pr(m—1)).
In other words, y can be viewed as the concatenation of / copies of B, with an appropriate
offset added to the symbols in each copy. The offsets ensure that each of the |Y| rows in the
sub-array (X ® Y); is a permutation on the /m symbols {0, 1,2...Im — 1}.

Define the modified Kronecker product [2] of PAs X and Y, denoted by (X ® Y), to be
the PA on /m symbols defined by (X ® V) = ngl (X ® Y);. This is illustrated in Fig. 1.

Define the block decomposition of a PA' A on n symbols as a collection of sub-arrays
(i.e., blocks), say AV, A® .  A™ such that forall i (1 < i < m), hd(AV) = n. A
detailed discussion of block decomposition appears in [2], along with several examples using
AGL(1, g) and PGL(2, q), where ¢ is a prime or a prime power. We use block decompositions
of PAs and the modified Kronecker product to produce new PAs, which in some cases give
new lower bounds for M (n + 1, n). Corollaries 10 and 11 below describe our results. Our
block decompositions have a property that the blocks are full, i.e., |A®)| = n. We need two
lemmas describing properties of PAs produced by modified Kronecker product to establish
Corollaries 10 and 11.

Lemma8 ([2]) Ler AV, AD .. AD pe a block decomposition of a PA A on | symbols
with hd(A) = [ — a Let BV, B®, e B(k)‘ be a block decomposition of PA B on m symbols
with hd(B) = m — b. Let M; = AY) ® B Then

k
hd (U M,-) =1Im — ab.
i=1

Lemma9 Let AV, A@ ... A® pe a block decomposition of a PA A on | symbols with
hd(A) =1—1. Let BY, B .. B® pe a block decomposition of PA B on m symbols with
hd(B) =m — 1. Then M(n + 1, n) > kn, where n = Ilm.

Proof First, we set M = {My, M>, ..., M} where for all i, (i = 1,2,...,k),M; =
AD @ BO That is, M; is the modified Kronecker product of the blocks A® and BO . The
PA M; can be viewed as an [ x [ table of blocks. In particular, the columns of this table are
columns of blocks, and the rows of the table are rows of blocks. We will refer to the rows
and columns as block rows and block columns, respectively. Let C1, Ca, ..., C; be the block
columns of the table. For each block column C;, (j = 1,2,...,1) we select the (i — 1)%¢
position in C}, keeping in mind that positions are numbered starting at 0. Let P; be the set
of selected positions. Thatis, P, = {i — 1, — 1)+, @ -1 +2,...,G — 1)+ kl}.
We choose the symbols for Q; as 0,1,...,m — 1 with added offset (i — 1)m. That is,
Qi ={0+G@—1Dm,1+@G—1)m,..., (m—1)4+ (i — 1)m}. Note that each block row of the
table contains a block column such that all symbols in it have offset (i — 1)m. Therefore all
permutations in this block row are covered. The lemma follows since all k/m permutations
of the modified Kronecker product are covered. O
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Corollary 10 Let p and q be prime powers. Let n = pq and k = min{p — 1, q — 1}. Then
M(n+1,n) > kn.

Proof Tt follows from Lemma 9 if we take the affine general linear groups A = AGL(1, p)
and B = AGL(1, g). O

Corollary 11 Letn > 2 and m > 2 be integers. Let N, be the maximum number of MOLS of
order n. Let k = min{N,,, N,;}. Then M (nm + 1, nm) > knm.

Proof Colbourn et al. [9] proved that a set of kK MOLS of order n can be transformed into a
permutation array A of size kn on Z,. Each Latin square Cj is transformed into a block Dj
of n permutations with pairwise Hamming distance n. The transformation changes triples
(i, j, k) € Cy to triples (k, j, i) € Dy. In other words, for all i, j, k € Z, the symbol k in
row i and column j in the Latin square Cy becomes the symbol i in row k and column j in
the block Dy.

Suppose there are k MOLS of order n. Denote the Latin squares by A, Aj, ..., Ax. The
transformation creates k blocks, say By, Ba, ..., By of permutations on n symbols. Moreover,
the pairwise Hamming distance between blocks B;, Bj foralli, j, (1 <i,j, <k, i # j)is
n—1. We repeat this transformation for k MOLS of order m to create the block decomposition
Ey, E,, ..., E; of permutations on Z,,, with pairwise Hamming distance m — 1. By Lemma 9,
Mmm + 1, nm) > knm. ]

Example 3 shows several new bounds obtained by Corollary 10. Additional new results
obtained by Corollaries 10 and 11 are listed in Tables 10 and 11.

Example 3 A sample of results from Corollary 10withA = AGL(1, p)and B = AGL(1, g).

(a) M(117,116) > 8- 117 = 936 by using p = 9 and ¢ = 13. So M (118,117) > 936.

(b) M(171,170) > 8- 171 = 1368 by using p = 9 and ¢ = 19. So M (172,171) > 1, 368.

(c) M(187,186) > 10-187 = 1870 by using p = 11 and ¢ = 17. So M (188,187) > 1870.

(d) M(299,298) > 12-299 = 3588 by using p = 13 and ¢ = 23. So M (300,299) > 3588.

(e) M(575,574) > 22 -575 = 12,650 by using p = 23 and ¢ = 25. So M(576,575) >
12,650.

6 Algorithms for selecting partitions

In Sects. 3, 4 and 5, we described three new enhancements of the partition and extension
operation which are used for transforming a distance-d partition system IT = (M, P, Q)
on Z,, for some positive integer d, into a new PA on Z,,, for positive integers r, such
that the Hamming distance of the new PA is at least d’ for some d’ > d. The size of a PA
resulting from the application of any of these techniques to a particular distance-d partition
system, IT = (M, P, Q), is of course entirely dependent on the choice of M, P, and Q.
Exhaustive search for high yield partitions P and Q amounts to trying all possible partitions
of Z,. Similarly, selecting a productive set of PAs to include in M involves selecting sets
from partitions of S,,, the symmetric group of permutations on n symbols. Clearly, any sort
of exhaustive search is infeasible.

This leads to a natural question: how to select the sets M, P, and Q. We now describe
several techniques we have found useful for selecting partitions for the set P (or, equivalently,
0), and finding PAs for the set M.
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In Sects. 6.1 and 6.2, we turn our attention to methods for finding partitions of Z,. Such
partitions can be fruitful candidates for either for P or Q. We describe two approaches.
Both approaches start with a given partition of symbols Q and a given collection of PAs
M = (M1, M, ..., Miy1) on Z,, for some positive integer k, that satisfies Property I of the
definition of a distance-d partition system. Section 6.1 describes a greedy algorithm that uses
a fixed partition of symbols Q and greedily creates a partition of positions, P. Section 6.2
describes an optimization approach that uses integer linear programming to find a fruitful
partition of positions, P. To describe the techniques, we focus on creating a partition of
positions P, however, the same techniques can be used for creating a partition of symbols Q
instead. We have experimented with both methods and have obtained new lower bounds for
M (n, d) which are included in Section 7.

Section 6.3 describes methods we have used for searching for fruitful PAs to include in
M. New lower bounds obtained by this method are included in Sect. 7.

6.1 A greedy approach to partition selection

We have developed a greedy algorithm for finding a partition of positions P, which approaches
an intractable search problem by fixing both the partition of symbols, Q, and the collection
of PAs, M, then greedily creating P, a partition of positions. In this way, the search space is
restricted, at the cost of possibly missing an optimum solution.

Our algorithm creates a partition positions P, of Z,, that maximizes covered(M;) for
all i. The input for the algorithm is a fixed partition of symbols Q of Z,, and a collection
of PAs on Z,, M = (M1, M, ..., My), that satisfies properties I and II of a distance-d

partition system for some d < n. We fix Q = (Q1, Q», ..., Q) for some k < /n where
01={0,1,....k=1}, Qs =1{k,....2k =1}, ... Qp ={k* —k, ..., k2 = 1}.
The algorithm starts with a set of subsets of positions { P, Ps, ..., Px} where P; = { for

alli (0 <i < k—1). The algorithm then iterates to find a partition of positions P that repre-
sents a local maximum for the number of covered permutations. At each iteration, an unused
position, r, is selected. Let M; = M; \ covered(M;). That is, Ml.’ is the set of permutations
{o} in M; for which there is no position p € P; such that o (p) = ¢ for some ¢ € Q;. For
each i (1 <i < k), we count the number of covered permutations for (Mi’ , P u{r}, 0)).
If the number of covered permutations is maximized for some i = i*, then we add r to P;«.
The algorithm stops when there are no more unused positions.

The resulting partition P, together with Q@ and M form a distance-d partition system
for Z,, I1 = (M, P, Q). So, by Theorem 1, hd(ext(IT)) > d. There are several instances
for which our greedy approach results in a partition system I1 that provides full coverage,
that is, for all i (1 < i < k), covered(M;) = M;. When Il is derived from large PAs
such as AGL(1, g), for g, a power of a prime, improved lower bounds can be achieved for
M(q + 1,d). A list of results is included in Tables 9, 10 and 11.

6.2 An optimization approach to partition selection

We describe another approach for finding a partition of positions P, which casts the search
for P as an optimization problem. Like the greedy method, our optimization approach starts
with a given partition Q of symbols, and a collection M of PAs that satisfies properties I and
II of a distance-d partition system for some d < n. We encode the search for P as an integer
linear program (ILP) and use an off-the-shelf solver to explore the entire search space of
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partitions for P. There are several commercial solvers [14,18] capable of solving large ILP
problems efficiently. We have chosen the Gurobi optimizer [14] for our computations.

We now describe our ILP encoding. The input is a partition of symbols Q and a collection
M of blocks (PAs) on n symbols. Let k be the number of blocks. Let ¢; ; be a binary variable
indicating that permutation j of block i is covered. Let u(i) be a function that maps the
block index i to the number of permutations in it. Let b; ,, be a binary variable indicating that
position p is assigned to block i.

An integer linear program for selecting partitions

k—1u@)—1

ma)gliglizez Z Ci,j 3)

i=0 j=0
subject to
k—1
> bip =1 Vp; @)
i=0
Z]lap,y'b[,pzci,j; Vi, j, p; and ©)
yeQi
k—1n—1
DY bip=n; (6)
i=0 p=0
1 ifolpl=y
where 1 = 7
7.y {0 otherwise M

Equation (3) is the objective function to be maximized, that is, the total number of covered
permutations in all blocks in M. The optimization is subject to three constraints:

e Constraint (4) assures that the resulting partition P assigns a position to exactly one
block.

e Constraint (5) establishes that permutation j in block i is covered when at least one of
its symbols listed in Q; appears in position p, and p is assigned to this block i.

e Constraint (6) assures that every position has been assigned to some block.

Constraints (4) and (6) effectively ensure that the solution is a partition. Equation (7) defines
an indicator function that states whether or not a permutation o is covered by checking if
symbol y appears at position p.

Our integer linear program has provided many new lower bounds for M (n, d), and has
has outperformed our greedy approach in several instances. See Tables 9, 10 and 11.

6.3 Methods for coset search

We have used several methods for coset search, including the coset method [5] and Integer
Linear Programming.

Given a group G on Z, for some n, the coset method creates a collection of PAs M to
be used for partition and extension by randomly searching for cosets of G at a specified
pairwise Hamming distance d. The group G = M|, with its cosets, M»>, M3, ..., comprise
M = (M, My, M3, ...,) in a distance-d partition system IT. When the starting group G is
large, the coset method often produces a productive collection of PAs for M.
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Table7 New M (n, d) lower

bounds obtained by applying " d PREV NEW
Theorem 1 to PAs generated by 43 37 176,988 369,948
the coset method [5] ’
49 43 207,552 415,062
51 44 235,200 687,903
51 45 235,200 470,347
61 54 410,640 1,181,794
69 62 601,392 1,500,426

Column PREV shows previously known bounds (obtained from rudi-
mentary parallel partition and extension, by applying Theorem 6).
Column NEW shows new bounds obtained through Theorem 1

Table 7 shows the lower bounds obtained by applying Theorem 1 to new permutation arrays
computed using the coset method. For example, for our new lower bound for M (43, 37), we
start with the projective general linear group G = PGL(2, 41), which has 68,880 permuta-
tions on Z43, and looked for cosets of G at Hamming distance 36. We were able to find five
cosets, My, M3, M4, M5, Mg, which together with the group G = M) gives a collection of
6 blocks with 68,800 permutations each, giving a total of 413,280 permutations at Hamming
distance 36. This gives M = (M1, M», ..., Ms). We were also able to find a partition of posi-
tions P and a partition of symbols Q, which, together with M forms a distance-37 partition
system IT = (M, P, Q) for Z4;. Using simple partition and extension on IT, we obtained
369,948 permutations on 43 symbols with Hamming distance 37. That is, we show that
M (43,37) > 369, 948, which is an improvement over the previous lower bound of 176,988.

We have also searched for fruitful PAs by formulating the coset search problem as a
constraint satisfaction problem, implemented as an integer linear program. Given a group G
on Z,,, where hd(G) > d,letd’ be the target Hamming distance between a coset representative
w € Syandthe group G.Let X = Z, x Z,, = {(0,0), (0, 1), ..., (, j),...,(n—1,n—1)}.
The set X represents all possible pairs of positions and symbols assignable to the coset
representative .

Create a binary variable x; ; for each element in the set X indicating that if the variable
x;,j is true, then 7w (i) = j. The integer linear program is:

n—1n—1

ma)gvrjl_nze Z Z Xi,j (8)
i=0 j=0

subject to

n—1

Y xij=1;Viez, )
j=0
n—1

> xij=1:Vj € Z, and (10)
i=0

Y do,-xij<n—d; Vo €G, (11)

1 ifo()=j

12
0 otherwise (12
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E?’If 3) T;Zg%xzrgb;g:fegogy n d Group Num cosets ~ PREV NEW

the coset method [S] and by ILP 18 13 pGL(2,17) 6 24,480 29,376,

approximation described in

Sect. 6.3 24 19  PGL(2,23) 3 24,288 36,432
26 20 PGL(2,25) 15 202,800 234,000,
26 21 PGL(2,25) 3 31,200 46,800
28 22 PGL(2,27) 14 235,872 275,184
30 24  PGL(2,29) 12 170,520 292,320,
32 25 PGL(2,31) 44 372,992 1,309,440,
33 27 PIL(2,32) 2 97,440 327,360
34 27 PT'L(2,32) 15 2,127,840 2,455,200,
38 32 PGL(2,37) 6 202,464 303,696
38 30 PGL(2,37) 129 1,265,400 6,529,464,
42 34 PGL(2,41) 73 888,729 5,028,240,
42 35 PGL(2,41) 28 206,640 1,928,640,
42 36  PGL(2,41) 6 206,640 413,280;
44 37  PGL(2,43) 25 413,280 1,986,600
48 42 PGL(2,47) 4 207,552 415,104,
49 42 PGL(2,47) 14 207,552 1,452,864,
50 42  PGL(2,49) 43 207,552 5,056,800,
50 43  PGL(2,49) 18 207,552 2,116,800,
50 44  PGL(2,49) 4 103,776 470,400
54 47  PGL(2,53) 16 1,339,416 2,381,184;
54 48 PGL(2,53) 3 297,648 446,472
55 48 PGL(2,53) 10 297,648 1,488,240,
55 49  PGL(2,53) 3 297,648 446,472
62 54  PGL(2,61) 38 821,280 8,622,960,
62 55 PGL(2,61) 6 821,280 1,361,520,
68 60 PGL(2,67) 29 821,280 8,720,184,
68 61  PGL(2,67) 5 524,160 1,503,480,
68 62  PGL(2,67) 524,160 601,392
72 64  PGL(2,71) 17 888,729 6,083,280,
72 65  PGL(2,71) 357,840 1,431,360,

Columns: Group denotes starting group, Num Cosets denotes the number
of cosets, PREV denotes the previously known bound, and NEW denotes
the new bound. ¢ coset method (random coset search) [5]; j ILP coset
search (see Sect. 6.3)

The objective function (8) is designed to make the ILP solver assign as many binary
variables x; ; true as possible. This objective function alone would produce a solution that
is not a permutation. For this reason constraints (9) and (10) ensure that exactly one symbol
J is assigned to every position i and that every symbol j is assigned to exactly one position
i, respectively, so the solution is indeed a permutation on Z,. Constraint (11) requires the
solution to be at Hamming distance at least d’ from every permutation in G. This is encoded
by limiting the number of agreements, n — d’, between a candidate solution and each of the

permutations in G.
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Table 10 New lower bounds for M (n,n — 1), n < 300

n Prev New n Prev New n Prev New
26 133p 150, 132 1508 p 1572, 212 3026p 3172;
28 140, 144; 134 804 ), 931, 214 1284 4 1491,
30 170p 1734 138 1614p 1696, 218 1308, 17364
33 183p 192, 140 1640p 1726; 220 1320y 2190,
34 136 165, 142 852m 987, 222 1332y 26524
38 254p 2554 145 1015, 1429; 224 3260p 3475;
42 282p 2864 146 876 1015, 225 1800y, 2902;
44 296 p 307 148 888, 1029, 226 1356 1800¢
46 184, 270, 150 1818p 1905, 228 3380p 3482;
50 300, 392, 152 1832p 1946, 230 3512p 3567,
51 255 300, 155 1085, 1232, 234 3602 p 3673;
54 408 p 423, 156 936 1085, 236 1416y, 1645,
58 361p 399; 158 1922p 2052, 238 1428 1659,
60 481 p 493, 159 954 11064 240 3656 p 3803;
62 478 p 519, 161 1377p 1440; 242 3716p 3864,
65 455y 5764 162 92m 1127, 244 1464 54 3483,
66 380p 455, 164 2042 p 2185, 246 14761 17154
68 568 p 594, 166 1153p 1155, 248 1736 2964,
72 588p 637, 168 2070 p 2267, 250 1500, 1743,
74 620p 6674 170 1020y, 2366, 252 3932p 4075,
76 4567 5254 172 1032y, 1368 254 2286 3027;
80 720 7554 174 2316p 2358; 255 1785 22864
82 656, 810, 177 1593 2214; 258 4066 37 4222,
84 776 p 812, 178 1068 p 1593, 260 1560,/ 31084
90 866 p 902, 180 2404 p 25004 264 4228p 4351;
92 552m 637, 182 1092p 2533, 266 1862y, 21204
98 956 p 1017, 186 1619p 1665 268 1876 26704
102 1030p 1101 188 1128 1870 270 4318y 4521;
104 1070p 1119, 190 1140y 1512, 272 4408 s 4575;
106 636, 7354 192 2638 p 2767; 274 1644, 3873;
108 1090 p 11754 194 2680 p 2803; 276 2760, 35754
110 1130p 1199, 196 1176 1365, 278 4574 4767;
114 1192p 1277, 198 2786 p 28704 280 1960y, 2511,
116 696, 805, 200 2842 p 2867, 282 4684 ), 4863;
118 708 1 936y 202 1212, 1407; 284 4706 p 4916;
122 732 1452, 204 1224y, 1421; 286 1716 3420,
126 756 1 1221, 206 1236 1640, 290 1740, 5202,
129 9031 1472, 209 2299y 2912, 294 506837 5088,
130 780 903, 210 2100y, 2299,

M—previous result from MOLS; P—previous result from simple partition and extension [4]; a—methods
described in [1]; g—partition of positions P from greedy partition selection algorithm (see Sect. 6.1); i—
partition of positions PP from ILP partition selection algorithm (see Section 6.2); k—PA M from modified
Kronecker product (see Sect. 5)
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Table 11 New lower bounds for M (n, n — 1), (300 < n < 600)

n Prev New n Prev New n Prev New
300 2100y, 3588 406 2842 3240 494 2964 7888
306 1836 4575; 408 4070y, 6105; 498 2988y 7455,
308 5360, 5524; 410 2870 8389; 500 3500, 11373;
312 5436 5660; 412 3296 5343, 504 3527 11416;
314 2198 5723; 414 4140y 4956, 506 3036, 7575;
316 2212y 31504 415 3735 41404 508 3556 7605;
318 2226 5793, 417 6255 7481; 510 3060, 11661;
322 1932y, 4815, 418 2926 6255; 513 9234, 11264,
324 2592 5168 420 2940, 8744, 516 4128 77254
326 19564 3900% 422 2954 8822; 518 5170y 6204,
330 1980y, 2961, 424 3384y, 6345; 520 4160, 77854
332 2324 6105; 426 25561 6800% 522 5220 11983;
334 2338 2664} 430 2580, 30034 524 6288, 12029;
335 2010y 23384 432 6480, 9051; 526 42087 78754
338 2028 7 6349; 434 2608 s 9093; 528 7920, 8432
340 2040y, 2373 436 2616, 6525; 530 3710y 12696,
344 2408y 60764 438 3066, 7866 532 4256 7965;
346 2076 24154 440 3159y 9219; 534 3738y 6396
348 20881 6658; 442 3528 6615; 536 4288 8025;
350 2800y, 6714; 444 3108, 9069, 538 5380, 8055;
354 2124 6746, 446 3122y 5785; 540 6480, 8085,
356 2492y 3195, 450 3220 9429, 542 3794 12443;
358 2148 3213, 452 4510, 6765; 545 8704y, 9792
360 2520 6965; 456 3192y 6825; 548 3836 12581;
362 2172y 7220, 458 3206, 9644, 550 3850, 4392
366 2196, 2555¢ 460 3220 7334y 552 5220 9918
368 5520 71084 462 3234y 10,061; 558 3906, 13,329;
370 2952 5535; 464 6960, 10,162; 561 3927y 8400;
372 2604 5, 5565; 466 3262y 6975; 564 3948 1 13,500;
374 2618y, 7381; 468 3744 10,253; 566 3396 3955,
376 2632y 5625; 470 3290, 37524 570 3420 13,654;
378 4524y 4901; 472 3304 ), 7065; 572 4004y, 13,699;
380 2660y, 7556; 474 4740, 7095 576 4608 37 12,650
382 2674 4572; 476 3332y 8550; 578 4046, 13,848;
384 5760y, 7692; 478 3816 7155; 582 4074 7 4648,
386 2702y 5775; 480 7200, 10,538; 584 4088 7 5830;
388 3096, 5805; 482 5772y 7215; 586 4102, 4680,
390 2730 7897; 484 3872 7245; 588 4116y, 14,088;
392 2744 6256y, 485 3395y 38724 590 10,030, 10,602
398 2786 7940; 486 2916, 3395, 591 4137y 10,030;
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Table 11 continued

n Prev New n Prev New n Prev New
402 2814, 8020, 488 3416 10,714; 594 4752 14,232;
404 4836 6045, 490 2940, 7335, 596 4172 8925;
405 3240, 4444, 492 2952 10,802; 600 8400, 14828;

Refer to Table 10 for an explanation of the subscripts

Table 8 gives a detailed view of new lower bounds for M (n, d), resulting from our coset
search techniques. For each new result, the group, G and the number of cosets is shown. The
subscript j in the column labeled NEW indicates that the cosets were found by the integer
linear program described in Sect. 6.3 [20]. The subscript ¢ indicates that the cosets were
found by the coset method [5].

7 Summary of new results

We have computed many new lower bounds for M (n, d) for various n and d using our new
techniques for partition and extension, namely: sequential partition and extension (Corollary
4 and Theorem 5), parallel partition and extension (Theorem 6, 7), and modified Kronecker
product (Corollaries 10, and 11). These techniques are described in Sects. 3, 4, and 5. We
have also used our earlier technique of simple partition and extension (see Theorem 1 [4]) to
generate new lower bounds. The use of partition and extension requires, as input, a partition
of positions and a separate partition of symbols. We have used our greedy and ILP algorithms,
(described in Sect. 6.1 and 6.2), to obtain fruitful partitions of positions for many n. We have
described methods for generating good collections of PAs for our partition and extension
techniques (see Sect. 6.3).

We summarize all of our new lower bounds for M (n, d), ford < n — 1, in Table 9 for the
sake of easy referencing. We also report experimental results and provide new tables of lower
bounds for M (n, n — 1), for many integers n < 600. Due to the large number of results, we
show these separately from our results for M (n, d), ford < n—1. Tables 10 and 11 show new
lower bounds for M (n, n — 1) computed by our partition and extension techniques. Columns
PREV and NEW in Tables 10 and 11 denote the previous and the new bound, respectively.
The previous lower bounds are either from an earlier use of simple partition and extension
[4], and are denoted with a subscript P, or are derived from known numbers of mutually
orthogonal squares (MOLS) [8], and are denoted with a subscript M. It should be noted that
there are other known lower bounds for M (n, n — 1), for integers n not listed in Tables 10
and 11. They have been previously reported in [4,8], and [19]. The subscripts in the NEW
column indicate the method for generating either the partition of positions P or the collection
of PAs M. Subscript g indicates that 7P was computed using the greedy partition selection
algorithm (see Sect. 6.1). Subscript i indicates that P was computed using the integer linear
program for partition selection (see Sect. 6.2). Subscript a indicates new bounds described in
[1]. Subscript k indicates the collection of PAs M is obtained by modified Kronecker product
(see Sect. 5).

In conclusion, we offer the following conjecture about the relationship between N (1), the
known lower bound on the number of MOLS of side n and M(n, n — 1):

Conjecture: M(n,n — 1) > (n — 1) - min(|vn — 1], N(n — 1)). (13)
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Table 12 A comparison of experimentally computed M (n, n — 1) lower bounds to conjectured lower bounds
for four cases that (so far) do not agree with the conjecture. Column Computed shows known bounds obtained
from techniques described in this paper. Column Conjectured shows conjectured bounds from Equation 13

n d Computed Conjectured
145 144 1429 1440
177 176 2214 2288
225 224 2902 2912
254 253 3027 3036

This conjecture is based on our computational results. We verified that the conjecture is true
for all n < 600, except the four cases listed in Table 12. Although these may seem to be
counterexamples for the conjecture, we believe the computed values can be improved, and
therefore, the conjecture validated for all n < 600.

8 Conclusion

We have presented new computational methods for the partition and extension technique that
produce several competitive new lower bounds on M (n, d) for various integers n and d. We
described sequential partition and extension, which is very useful for improving lower bounds.
The techniques of rudimentary and general parallel partition and extension introduce sev-
eral new symbols simultaneously. They are different extension strategies that provide many
improved lower bounds for M (n, d). We have given several new techniques and experimental
results that provide new lower bounds for M (n, n — 1), for many integers n < 600.
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