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Abstract
We give new lower bounds for M(n, d), for various positive integers n and d with n > d ,
where M(n, d) is the largest number of permutations on n symbols with pairwise Hamming
distance at leastd . Large sets of permutations onn symbolswith pairwiseHammingdistanced
are needed for constructing error correcting permutation codes, which have been proposed for
power-line communications. Our technique, partition and extension, is universally applicable
to constructing such sets for all n and all d , d < n. We describe three new techniques,
sequential partition and extension, parallel partition and extension, and amodifiedKronecker
product operation, which extend the applicability of partition and extension in different
ways. We describe how partition and extension gives improved lower bounds for M(n, n −
1) using mutually orthogonal Latin squares (MOLS). We present efficient algorithms for
computing new partitions: an iterative greedy algorithm and an algorithm based on integer
linear programming. These algorithms yield partitions of positions (or symbols) used as input
to our partition and extension techniques. We report many new lower bounds for M(n, d)

found using these techniques for n up to 600.
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1 Introduction

The use of permutation codes for error correction of communications transmitted over power-
lines has been suggested [17,22]. Due to the extreme noise in such channels, codewords
are sent by frequency modulation rather than by amplitude modulation. Let’s say we use
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frequencies f0, f1, f2, . . . , fn−1, which we view by the index set Zn = {0, 1, 2, · · · , n−1}.
A permutation on Zn , corresponding to a codeword, specifies in which order frequencies are
to be sent.

The Hamming distance between two permutations, σ and τ on Zn , denoted by hd(σ, τ ),
is the number of positions x in Zn such that σ(x) �= τ(x). For example, the permutations on
Z5, σ = 0 4 1 3 2 and τ = 2 4 3 1 2 have hd(σ, τ ) = 3, as they differ in positions 0, 2, and
3. A set A of permutations on Zn (called a permutation array or PA for short) has Hamming
distance d , denoted by hd(A) ≥ d , if, for all σ, τ ∈ A, hd(σ, τ ) ≥ d . The maximum size
of a PA A on Zn with hd(A) ≥ d is denoted by M(n, d). Two PAs A and B have Hamming
distance d , denoted by hd(A, B) ≥ d , if, for all σ ∈ A and τ ∈ B, hd(σ, τ ) ≥ d .

There are known combinatorial upper and lower bounds on M(n, d), specifically the
Gilbert–Varshamov (GV ) bounds, together with some recent improvements to theGV bounds
[11,13,25]. Generally, these bounds are theoretical and are often improved by empirical
techniques. Some exact values are known: (1) for all n, M(n, n) = n, and, (2) for q , a power
of a prime, M(q, q − 1) = q(q − 1) and M(q + 1, q − 1) = (q + 1)q(q − 1). These
exact values come from sharply k-transitive groups, for k = 2 and k = 3, namely the affine
general linear group, denoted by AGL, and the projective general linear group, denoted by
PGL [10,11]. The Mathieu sharply 4-transitive and 5-transitive groups, give exact values for
M(11, 8) = 7920 and M(12, 8) = 95,040 [6,10,12]. It is not feasible to do an exhaustive
search for good permutation arrays when n becomes large. There are n! permutations on Zn ,
so the search space becomes computationally impractical. Some researchers have attempted
tomitigate the problem by considering automorphisms groups and replacing permutations by
sets of permutations. For example, in [19], Janiszczak et al. considered sets of permutations
invariant under isometries to improve several lower bounds for M(n, d), for various choices
of n and d , n ≤ 22. Chu et al. [7] and Smith andMontemanni [23] also provide lower bounds
obtained by the use of automorphism groups, and are also generally limited to small values
of n.

There is also a connection between mutually orthogonal Latin squares (MOLS) and per-
mutation arrays [9]. Specifically, if there are k mutually orthogonal Latin squares of side n,
then M(n, n − 1) ≥ kn. Let N (n) denote the number of mutually orthogonal Latin squares
of side n. Finding better lower bounds for N (n) is an on-going combinatorial problem of
considerable interest world-wide [8,24].

Recently, we described a new technique, called partition and extension [3,4] and we
illustrated how to use this technique to improve several lower bounds for M(n, n − 1) over
those given by MOLS. Partition and extension operates on permutation arrays that can be
decomposed into subsets with certain properties. (A description follows in Sect. 2.) In its
simplest form, partition and extension converts a PA A on n symbols with hd(A) = d − 1,
into a PA A′ on n+1 symbols with hd(A′) = d . That is, when a PA A exhibiting M(n, d−1)
meets the necessary conditions for simple partition and extension, the technique obtains a
lower bound for M(n + 1, d).

The purpose of this paper is to illustrate many new ways to use the partition and exten-
sion technique, and ways to generate appropriate partitions. We describe a method called
sequential partition and extension, an improvement which uses iteration to extend permuta-
tion arrays by two or more symbols. When certain conditions are met, sequential partition
and extension obtains new PAs on n + 2 symbols with Hamming distance d from PAs on n
symbols with Hamming distance d − 1. Another new technique, which we call parallel par-
tition and extension, introduces several new symbols simultaneously. In some cases, parallel
partition and extension on PAs on n symbols with Hamming distance d − r gives new lower
bounds for M(n + r , d). We illustrate how to use partition and extension on blocks defined
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by cosets of the cyclic subgroup of the group AGL(1, q), and on PAs created by a modified
Kronecker product operation. We give new results derived from partition and extension on
blocks defined by mutually orthogonal Latin squares (MOLS). We describe experimental
algorithms and heuristics for creating partitions, including a greedy algorithm and an opti-
mization approach based on integer linear programming. These new techniques improve on
previously reported results [4].

2 Previous results on partition and extension

We briefly describe the technique called partition and extension, which transforms a PA on
Zn with Hamming distance d − 1 into a PA on Zn+1 with Hamming distance d . A detailed
description and several examples appear in [4]. Throughout this paper we will use the phrase
simple partition and extension to refer to this version of partition and extension.

Let s be a positive integer. Let M1, M2, . . . , Ms be an ordered list of s pairwise disjoint
permutation arrays on Zn . Let P = (P1, P2, . . . , Ps) and Q = (Q1, Q2, . . . , Qs) be two
ordered lists of subsets of Zn such that the sets in P and Q are partitions of Zn . For each set
Mi , Pi is the set of locations and Qi is the set of symbols to be replaced by the new symbol
n. When a permutation σ in Mi has a symbol q in Qi appearing in a position p in Pi , σ is
extended (i.e., converted to a permutation σ ′ on n+1 symbols) by moving q to the end of the
permutation and placing the symbol n in position p. That is, the extension of σ by position
k, denoted by extk(σ ) = σ ′, is a permutation on Zn+1 defined by: σ ′(k) = n, σ ′(n) = σ(k),
and for all j (0 ≤ j < n, j �= k), σ ′( j) = σ( j). We refer to this new permutation as ext(σ )

and σ ′ interchangeably.
For each i , let covered(Mi ) be the subset of Mi , defined by covered(Mi ) = {σ ∈

Mi | ∃p ∈ Pi , σ (p) ∈ Qi }. We say that a permutation σ is covered if σ ∈ covered(Mi )

for some i . In order for a permutation σ ′ to be included in the extended set of permutations
on Zn+1, σ must be covered. That is, σ must have one of the named symbols in one of the
named positions. In general, when σ ∈ covered(Mi ), there may be more than one position
p ∈ Pi such that σ(p) ∈ Qi . If so, arbitrarily designate one of these positions to cover σ .

For our construction, we include an additional PA Ms+1, for which there is no correspond-
ing set of positions or symbols. None of the permutations in Ms+1 are in any of the PAs Mi .
The partition and extension operation adds the new symbol n to the end of each permutation
in Ms+1. Every permutation in Ms+1 is used in the construction of our new PA. Thus, we
create the list M = (M1, M2, . . . , Ms+1), which includes this extra set.

A triple� = (M, P, Q) is a distance-d partition system for Zn if it satisfies the following
properties:

(I) ∀Mi ∈ M, hd(Mi ) ≥ d , and
(II) ∀i, j (1 ≤ i < j ≤ s + 1), hd(Mi , Mj ) ≥ d − 1.

Simple partition and extension uses sets Pi and Qi in the two partitions P and Q to
modify the covered permutations in Mi , for 1 ≤ i ≤ s, for the purpose of creating a new PA
on Zn+1 with Hamming distance d . Let � = (M,P,Q) be a distance-d partition system,
where M = (M1, M2, . . . , Ms+1), for some s. We now show how the simple partition and
extension operation creates a new permutation array ext(�) on Zn+1. For all i (1 ≤ i ≤ s),
let ext(Mi ) be the set of permutations defined by

ext(Mi ) = {ext(σ ) | σ ∈ covered(Mi )}.
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Table 1 An example of simple
partition and extension on the
distance-4 partition system
� = (M,P,Q), where
M = (M1, M2, M3), P =
{{0, 2}, {1, 3}} and
Q = {{0, 1}, {2, 3}}

Initial permutations in � Modified permutations in ext(�)

M1 =
⎡
⎢⎣
0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

⎤
⎥⎦

M2 =
⎡
⎢⎣

0 2 3 1
1 3 2 0
2 0 1 3
3 1 0 2

⎤
⎥⎦

M3 =
⎡
⎢⎣
0 3 1 2
1 2 0 3
2 1 3 0
3 0 2 1

⎤
⎥⎦

ext(M1) =
⎡
⎢⎣

4 1 2 3 0
4 0 3 2 1
2 3 4 1 0
3 2 4 0 1

⎤
⎥⎦

ext(M2) =
⎡
⎢⎣
0 4 3 1 2
1 4 2 0 3
2 0 1 4 3
3 1 0 4 2

⎤
⎥⎦

ext(M3) =
⎡
⎢⎣
0 3 1 2 4
1 2 0 3 4
2 1 3 0 4
3 0 2 1 4

⎤
⎥⎦

The column on the left shows the ordered list of PAsM consisting three
PAs, M1, M2 and M3 on Z4 with hd(Mi ) ≥ 4, for i ∈ {1, 2, 3}, and
hd(M) ≥ 3. The column on the right shows the new PAs, ext(M1),
ext(M2) and ext(M3), obtained by simple partition and extension. By
Theorem 1, hd(ext(�)) ≥ 4

For Ms+1, let ext(Ms+1) be the set of permutations on Zn+1 defined by adding the symbol n
to the end of every permutation of Ms+1.

Let ext(�) be the set of permutations on Zn+1 defined by

ext(�) =
s+1⋃
i=1

ext(Mi ).

Note that

|ext(�)| =
s+1∑
i=1

|ext(Mi )|. (1)

Theorem 1 ([4]) Let d be a positive integer. Let � = (M,P,Q) be a distance-d partition
system for Zn, with M = (M1, M2, . . . , Ms+1) for some positive integer s. Let ext(�) be
the PA on Zn+1 created by simple partition and extension. Then, hd(ext(�)) ≥ d.

The example in Table 1 illustrates the application of Theorem 1 to� = (M,P,Q), where
M = (M1, M2, M3), P = {{0, 2}, {1, 3}} and Q = {{0, 1}, {2, 3}}. The column on the left
shows the PAs M1, M2 and M2. M1 is the cyclic subgroup of AGL(1, 4), and M2 and M3

are two of its cosets. The blue symbols are the symbols of Qi that occupy positions in Pi ,
for i ∈ 1, 2. The column on the right shows the new PAs obtained by simple partition and
extension on �. To create ext(M1) and ext(M2), the blue symbols are moved to the end of
the permutations and a new symbol, 4, in red, occupies the positions vacated by the blue
symbols. To create ext(M3), the symbol 4 is simply appended to the end of each permutation.
Note that hd(M1) ≥ 4, hd(M2) ≥ 4 and hd(M1, M2) ≥ 3, so � is a distance-4 partition
system. By Theorem 1, hd(ext(�)) ≥ 4.

3 Sequential partition and extension

LetM = {M1, M2, . . . Mt }, for some t , be a collection of PAs on Zn that satisfy Properties I
and II for a distance-d partition system. The basic idea of sequential partition and extension is
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that we first create several disjoint PA’s by simple partition and extension, each consisting of
permutations on n+1 symbols with internal Hamming distance d . Then, we use partition and
extension again on these PA’s to get a larger PA on n + 2 symbols and Hamming distance d .
Such an iterative application of partition and extension can produce interesting new results.

Let (M1,M2, . . . ,Mm) be an ordered set of subsets of M such that each Mi contains
some number of PAs, such as Mk, . . . , Ml , from M, and for all i, j, (1 ≤ i < j ≤ m), Mi

andM j are pairwise disjoint. Let {�1,�2, . . . , �m}, be a collection of distance-d partition
systems on Zn , where for all i, (1 ≤ i ≤ m), �i = (Mi ,Pi ,Qi ), and Mi ⊆ M. We say
that {�1,�2, . . . , �m} is pairwise disjoint if for all i, j, (1 ≤ i < j ≤ m), Mi and M j

are pairwise disjoint.
For each iteration i , we employ a different distance-d partition system, �i =

(Mi ,Pi ,Qi ), that uses a previously unused set of PAs, Mi ⊆ M, to create a new PA,
ext(�i ), on Zn+1, with Hamming distance d . Hence, by repeated simple partition and exten-
sion, we create a collection of new PAs, ext(�1), ext(�2), . . . , ext(�m), for some m > 1.
As long as the distance-d partition systems �1,�2, . . . , �m are pairwise disjoint, the sets
{ext(�1), ext(�2), . . . , ext(�m)} are pairwise disjoint as well.

In the following, we assume that the distance-d partition systems under consideration are
pairwise disjoint. The partitions Pi and Qi need not be distinct from partitions P j and Q j .

Consider the case of applying simple partition and extension twice in succession using
two distance-d partition systems,�1 = (M1,P1,Q1) and�2 = (M2,P2,Q2). We present
Theorem 2 and Corollary 3, which give results on the Hamming distance and the size of
the resulting PA. Corollary 4 extends these results by induction. These results will be useful
later for describing a new method for creating PAs which we call sequential partition and
extension.

Theorem 2 Let �1 = (M1,P1,Q1) and �2 = (M2,P2,Q2) be pairwise disjoint
distance-d partition systems for Zn, with hd(M1,M2) ≥ d − 1. Then hd(ext(�1)) ≥
d, hd(ext(�2)) ≥ d, and hd(ext(�1), ext(�2)) ≥ d − 1.

Proof By Theorem 1, hd(ext(�1)) ≥ d , hd(ext(�2)) ≥ d . We show that hd(ext(�1),

ext(�2)) ≥ d − 1. Pick two arbitrary permutations σ ′ ∈ ext(�1) and τ ′ ∈ ext(�2),
where for some k and j , σ ′ = extk(σ ) for some σ ∈ �1, and τ ′ = ext j (τ ) for some τ ∈ �2.
We consider two cases to determine the number of new agreements between σ ′ and τ ′ created
by the extension operation:

Case 1: k = j

The extension operation creates a new agreement in position k = j because σ ′(k) =
τ ′(k) = n. Note that since σ ′(n) = σ(k) and τ ′(n) = τ(k), the relationship between
σ ′(n) and τ ′(n) is the same as the relationship between σ(k) and τ(k). Hence, there
is at most one new agreement between σ ′ and τ ′.

Case 2: k �= j

In this case, σ ′(k) = n and τ ′( j) = n, so the new symbol n is in different positions
in σ ′ and τ ′. That is, inserting the symbol n does not, in itself, increase the number
of agreements. Now consider the symbols σ(k) and τ( j). If σ(k) = τ( j), then
σ ′(n) = τ ′(n). In this situation, extension creates a new agreement in position n. On
the other hand, if σ(k) �= τ( j), then σ ′(n) �= τ ′(n), so no new agreement is created
by extension. In either situation, extension creates at most one new agreement
between σ ′ and τ ′.
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By assumption, hd(M1,M2) ≥ d−1, hence hd(σ, τ ) ≥ d−1 as well. That is the number
of disagreements between σ and τ is at least d−1, or equivalently, the number of agreements
between σ and τ is at most n− (d−1). So, the number of agreements between σ ′ and τ ′ is at
most 1+n− (d−1). Since σ ′ = extk(σ ) and τ ′ = extm(τ ), both σ ′ and τ ′ are permutations
on n + 1 (not n) symbols. Hence, hd(σ ′, τ ′) ≥ (n + 1) − (1 + n − (d − 1)) ≥ d − 1, so
hd(ext(�1), ext(�2)) ≥ d − 1. 
�
Corollary 3 Let�1 = (M1,P1,Q1) and�2 = (M2,P2,Q2) be pairwise disjoint distance-
d partition systems for Zn, with hd(M1,M2) ≥ d − 1. Let A = ext(�1) ∪ ext(�2). Then
A is a PA on Zn+1 such that |A| = |ext(�1)| + |ext(�2)| and hd(A) ≥ d − 1.

Proof Since both ext(�1) and ext(�2) are created by simple partition and extension of PAs
on Zn , A is a PA on Zn+1. Given that M1 is disjoint from M2, Equation 1 tells us that
|A| = |ext(�1)| + |ext(�2)|. Lastly, by Theorem 2, hd(A) ≥ d − 1. 
�

Simple partition and extension can be used in a similar way on several more distance-d
partition systems on Zn to create large PAs on Zn+1. This is formalized by Corollary 4.

Corollary 4 Let �1 = (M1,P1,Q1), �2 = (M2,P2,Q2), . . ., �m = (Mm,Pm,Qm)

be a collection of pairwise disjoint distance-d partition systems, for some m > 1, where
hd(Mi ,M j ) ≥ d − 1, for all i, j (1 ≤ i < j ≤ m). Let A = ext(�1) ∪ ext(�2) ∪ . . . ∪
ext(�m). Then

(1) ∀i, j (1 ≤ i < j ≤ m), hd(ext(�i ), ext(� j )) ≥ d − 1,
(2) A is a PA on Zn+1,
(3) |A| = ∑m

i=1 |ext(�i )|, and
(4) hd(A) ≥ d − 1.

Proof The results follow from Theorem 2 and Corollary 3 by induction on m. 
�
A new technique, which we call sequential partition and extension, can be used to

improve bounds for M(n + 2, d). It has two steps. First, simple partition and extension
is used to create the extended PAs ext(�1), ext(�2), . . . , ext(�m), for some m > 1. Let
M = {M1,M2, . . . ,Mm}, where for all i , Mi = ext(�i ). Note that M is a collection of
PAs on Zn+1. Let P and Q be partitions of Zn+1 such that � = (M,P,Q) is a distance-d
partition system on Zn+1. Next, simple partition and extension is again used to create a new
PA, ext(�), on Zn+2.

We show that ext(�) is a PA on n + 2 symbols with Hamming distance d .

Theorem 5 Sequential partition and extension on a collection {�1,�2, . . . , �m}, of pair-
wise disjoint distance-d partition systems on Zn, results in a new PA on Zn+2 with Hamming
distance d.

Proof Let ext(�1), ext(�2), . . . , ext(�m) be the PAs on Zn+1 created the first phase
of sequential partition and extension. By Theorem 1, hd(ext(�i )) ≥ d . By Corollary 4,
∀i, j (1 ≤ i < j ≤ m), hd(ext(�i ), ext(� j )) ≥ d − 1.

Let M = (ext(�1), ext(�2), . . . , ext(�m)), and let P and Q be suitable partitions of
Zn+1, such that � = (M,P,Q) forms a distance-d partition system on Zn+1. Let ext(�) be
the PA created by simple partition and extension on� = (M,P,Q). Since,� is a distance-d
partition system on Zn+1, ext(�) is a PA on Zn+2. By Theorem 1, hd(ext(�)) ≥ d . 
�

We now illustrate sequential partition and extension by means of an example.
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Example 1 Consider the group AGL(1, 37) on 37 symbols with Hamming distance 36, con-
taining 1332 permutations. This gives M(37, 36) ≥ 1332. Using sequential partition and
extension we show that M(39, 37) ≥ 1301.

AGL(1, 37) can be decomposed into 36 Latin squares, where one of the Latin squares is
a cyclic subgroup of AGL(1, 37) consisting of the identity permutation and all cyclic shifts.
This is the set of permutations C1 = {x + b | b ∈ Z37}. The other 35 Latin squares can be
defined as the left cosets of C1, namely, Ci = {i x + b | b ∈ Z37}, for each i (2 ≤ i ≤ 36).

First, we give six distance-37 partition systems for AGL(1, 37), namely, �1 = (M1,P1,

Q1),�2 = (M2,P2,Q2),�3 = (M3,P3,Q3),�4 = (M4,P4,Q4),�5 = (M5,P5,Q5),
�6 = (M6,P6,Q6), where M1 = {C1,C2, . . . ,C7}, M2 = {C8,C9, . . . ,C14},
M3 = {C15,C16, . . . ,C21}, M4 = {C22,C23, . . . ,C28}, M5 = {C29,C30, . . . ,C35},
M6 = {C36} with the partitions Pi , Qi (1 ≤ i ≤ 6) described in Table 2. Note that in
each �i , the last coset is covered by adding the new symbol ’37’ in the 37th position.

Simple partition and extension yields six PAs on Z38, where for all i, (1 ≤ i ≤
6), hd(ext(�i )) ≥ 37, and for all i, j (1 ≤ i < j ≤ 6), hd(ext(�i ), ext(� j )) ≥ 36.
Moreover, |ext(�1)| = 253, |ext(�2)| = 253, |ext(�3)| = 253, |ext(�4)| = 253,
|ext(�5)| = 252, and |ext(�6)| = 37.

Finally, we form a distance-37 partition system � = (M,P,Q), where
M = (ext(�1), ext(�2), . . . , ext(�6)) with suitable partitions P and Q as shown in Table
3. The result is a PA, ext(�), on 39 symbols with Hamming distance 37, which has 1301
permutations. The previous lower bound for M(39, 37), given by the five known MOLS on
39 symbols, was 195.

Sequential partition and extension also results in the lower bounds M(34, 32) ≥ 945
and M(66, 64) ≥ 4029. Table 4 shows additional improved lower bounds on M(n, n − 2)
obtained by sequential partition and extension.

In fact, sequential partition and extension can be applied an arbitrary number of times,
provided that suitable distance-d partitions systems can be found at each stage. That is,
sequential partition and extension on a sequence of r distance-d partitions systems could
result in new lower bounds for M(n + r , d), for arbitrary r .

4 Parallel partition and extension

In Sect. 3, we described a new technique, based on simple partition and extension, called
sequential partition and extension. We now present another new technique, called parallel
partition and extension which introduces multiple new symbols simultaneously. As previ-
ously described, simple partition and extension extends a permutation array by replacing
one existing symbol in a carefully selected position in each permutation with the symbol
n, and appending the displaced symbol to the end of the permutation. Sequential parti-
tion and extension allows additional symbols to be introduced one at a time by applying
simple partition and extension sequentially. In contrast, parallel partition and extension
on a PA A on Zn creates a PA A′ on Zn+r by introducing, to each permutation in A,
r new symbols simultaneously. Table 6 shows new bounds obtained using Theorems 6
and 7 for parallel partition and extension. These theorems are proved in Sects. 4.1 and
4.2.
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Table 2 Step 1 of sequential partition and extension on AGL(1, 37), which gives M(38, 36) ≥ 1301

�i Set of cosets, Mi Pi Qi |ext(�i )|
�1 {x + b | b ∈ Z37} {4, 11, 18, 25, 31, 34} {0, 1, 2, 3, 4, 5, 6} 253

{2x + b | b ∈ Z37} {5, 8, 10, 13, 16, 19, 21} {7, 8, 9, 10, 11, 12}
{3x + b | b ∈ Z37} {14, 20, 22, 24, 28, 30} {13, 14, 15, 16, 17, 18}
{4x + b | b ∈ Z37} {9, 12, 15, 26, 29, 32} {19, 20, 21, 22, 23, 24}
{5x + b | b ∈ Z37} {6, 7, 17, 23, 27, 33} {25, 26, 27, 28, 29, 30}
{6x + b | b ∈ Z37} {0, 1, 2, 3, 35, 36} {31, 32, 33, 34, 35, 36}
{7x + b | b ∈ Z37} {37} {37}

�2 {8x + b | b ∈ Z37} {1, 12, 23, 25, 36} {0, 1, 2, 3, 4, 5, 6} 253

{9x + b | b ∈ Z37} {0, 11, 13, 22, 24, 35} {7, 8, 9, 10, 11, 12}
{10x + b | b ∈ Z37} {8, 9, 10, 17, 18, 26, 27} {13, 14, 15, 16, 17, 18}
{11x + b | b ∈ Z37} {4, 5, 6, 7, 19, 20, 28} {19, 20, 21, 22, 23, 24}
{12x + b | b ∈ Z37} {14, 15, 16, 32, 33, 34} {25, 26, 27, 28, 29, 30}
{13x + b | b ∈ Z37} {2, 3, 21, 29, 30, 31} {31, 32, 33, 34, 35, 36}
{14x + b | b ∈ Z37} {37} {37}

�3 {15x + b | b ∈ Z37} {2, 3, 4, 6, 15, 27} {0, 1, 2, 3, 4, 5, 6} 253

{16x + b | b ∈ Z37} {12, 13, 14, 16, 17, 18, 22} {7, 8, 9, 10, 11, 12}
{17x + b | b ∈ Z37} {0, 21, 25, 28, 29, 33} {13, 14, 15, 16, 17, 18}
{18x + b | b ∈ Z37} {7, 8, 19, 20, 31, 32} {19, 20, 21, 22, 23, 24}
{19x + b | b ∈ Z37} {10, 11, 23, 24, 35, 36} {25, 26, 27, 28, 29, 30}
{20x + b | b ∈ Z37} {1, 5, 9, 26, 30, 34} {31, 32, 33, 34, 35, 36}
{21x + b | b ∈ Z37} {37} {37}

�4 {22x + b | b ∈ Z37} {2, 3, 5, 9, 21, 33} {0, 1, 2, 3, 4, 5, 6} 253

{23x + b | b ∈ Z37} {4, 8, 11, 22, 23, 34} {7, 8, 9, 10, 11, 12}
{24x + b | b ∈ Z37} {7, 16, 17, 25, 26, 35} {13, 14, 15, 16, 17, 18}
{25x + b | b ∈ Z37} {12, 13, 14, 30, 31, 32} {19, 20, 21, 22, 23, 24}
{26x + b | b ∈ Z37} {1, 6, 10, 15, 24, 29} {25, 26, 27, 28, 29, 30}
{27x + b | b ∈ Z37} {0, 18, 19, 20, 27, 28, 36} {31, 32, 33, 34, 35, 36}
{28x + b | b ∈ Z37} {37} {37}

�5 {29x + b | b ∈ Z37} {2, 5, 13, 18, 26, 29} {0, 1, 2, 3, 4, 5, 6} 252

{30x + b | b ∈ Z37} {12, 19, 21, 27, 34, 36} {7, 8, 9, 10, 11, 12}
{31x + b | b ∈ Z37} {6, 7, 8, 9, 10, 11} {13, 14, 15, 16, 17, 18}
{32x + b | b ∈ Z37} {4, 14, 15, 25, 31, 35} {19, 20, 21, 22, 23, 24}
{33x + b | b ∈ Z37} {0, 3, 16, 17, 20, 23, 33} {25, 26, 27, 28, 29, 30}
{34x + b | b ∈ Z37} {1, 22, 24, 28, 30, 32} {31, 32, 33, 34, 35, 36}
{35x + b | b ∈ Z37} {37} {37}

�6 {36x + b | b ∈ Z37} {37} {37} 37

4.1 Rudimentary parallel partition and extension

In its rudimentary form, parallel partition and extension operates on 2r blocks (i.e., sets)
of permutations, for some integer r . Specifically, suppose a PA A, on Zn , is partitioned
into k = 2r blocks of permutations B0, B1, . . . , Bk−1, where, for all i, (0 ≤ i < k),
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Table 3 Step 2 of sequential partition and extension on AGL(1, 37) for M(39, 37) ≥ 1301

M Pi ∈ P Qi ∈ Q |ext(Mi )|
M1=ext(�1) {4, 11, 18, 25, 31, 34} {0, 1, 2, 3, 4, 5, 6} 253

M2=ext(�2) {5, 8, 10, 13, 16, 19, 21} {7, 8, 9, 10, 11, 12} 253

M3=ext(�3) {14, 20, 22, 24, 28, 30} {13, 14, 15, 16, 17, 18} 253

M4=ext(�4) {9, 12, 15, 26, 29, 32} {19, 20, 21, 22, 23, 24} 253

M5=ext(�5) {38} {38} 252

M6=ext(�6) {0, 1, 2, 3, 6, 7, 17, 23, 27, {25, 26, 27, 28, 29, 30, 31
33, 35, 36, 37} 32, 33, 34, 35, 36, 37} 37

Total 1301

Table 4 M(n, n − 2) lower bounds

n PREV NEW n PREV NEW n PREV NEW

34 192 945 159 2051 16,666 291 5202 80,385

39 255 1301 165 2185 17,632 295 5088 54,572

45 270 1726 171 2354 27,330 309 5539 60,715

51 392 2308 175 2354 19,792 315 5634 60,952

55 423 2461 183 2533 21,994 319 5793 67,379

63 1,514 3306 195 2758 25,022 333 6091 70,696

66 576 4029 201 2867 25,427 339 6280 69,485

69 594 3965 213 3170 30,288 345 5205 89,272

75 667 4747 225 3421 32,728 351 6642 76,195

85 812 6116 231 3548 33,779 355 6746 77,215

91 902 6709 235 3625 35,001 363 7220 125,709

99 1,017 8206 245 3475 43,717 369 7108 83,418

105 1,119 9239 253 4075 40,094 375 7298 87,434

111 1,187 9990 259 4222 43,268 385 7428 90,213

115 1,277 11,142 265 4342 44,733 391 7690 90,991

123 1,452 13,996 273 4548 46,268 411 8240 104,098

133 1,554 11,604 279 4701 49,243 514 11,264 197,859

141 1,723 13,522 285 4868 51,571 531 12,696 271,043

153 1,923 16,118

PREV denotes the previous bound and NEW denotes the new bound obtained using sequential partition and
extension

hd(Bi ) ≥ d , for some d , and for all i, j (0 ≤ i �= j < k), hd(Bi , Bj ) ≥ d − r . In particular,
hd(A) ≥ d − r . We create a new PA A′ on Zn+r , such that hd(A′) ≥ d , by inserting a
sequence of new symbols from the set {n, n + 1, . . . , n + r − 1} into the permutations in
each block. Each block uses a different sequence.

Define SHIFT(γ, 0) to be the sequence (n, n + 1, n + 2, . . . , n + r − 1), and for each
integer t , denote by SHIFT(γ, t) the left cyclic shift of the sequence by t (mod r ) positions.
For example, SHIFT(γ, 1) is the sequence (n+1, n+2, . . . , n+r −1, n), and SHIFT(γ, 2)
is the sequence (n + 2, . . . , n + r − 1, n, n + 1), and so on.
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The creation of the new PA A′ takes place in two steps. The first step modifies the blocks
B0, B1, . . . , Br−1. For all l, (0 ≤ l < r), a new block B ′

l of permutations on Zn+r is created
from the block Bl as follows: the first r symbols in each permutation of Bl , are replaced
by SHIFT(γ, l), and the r replaced symbols are put in their original order at the end of the
permutation in positions n, n + 1, . . . , n + r − 1.

In the second step, a new block of permutations B ′
m is created from each block Bm , for

all m, (r ≤ m < 2r), by appending the sequence, SHIFT(γ,m) to each permutation in
positions n, n + 1, . . . , n + r − 1. The blocks B ′

l , (0 ≤ l < r) together with the blocks
B ′
m, (r ≤ m < 2r) comprise the new PA A′ on Zn+r .
It is known that the Hamming distance between two permutations does not change when

the order of the symbols in both permutations is altered in a fixed manner. Consequently,
the Hamming distance between permutations in the same block, or between permutations in
different blocks is not altered by the movement of the first r symbols in each permutation to
positions n, n+1, . . . , n+r−1. Since the ordering of the new symbols n, n+1, . . . , n+r−1
in any block is a cyclic shift of sequence of new symbols in any other block, rudimentary
parallel partition and extension does not create any new agreements between permuta-
tions in different blocks. For the original permutation array A, hd(A) ≥ d − r . For the
new permutation array A′, the permutations in each block have been extended by r sym-
bols in a way that ensures that the inter-block Hamming distance is at least d . That is,
for all i, j (0 ≤ i �= j < k), hd(B ′

i , B
′
j ) ≥ d , and the length of the permutations

has increased by r . Within each new block, the r new symbols are put in a fixed order
into fixed positions, creating r new agreements in addition to the (n − d) agreements that
existed in the unaltered blocks. For the new blocks B ′

l for all l (0 ≤ l < r), the dis-
placed symbols are moved to the end of each permutation. For the new blocks B ′

m , for all
m (r ≤ m < 2r), no symbols are displaced because the r new symbols are appended at
the end of the permutations. Thus the intra-block Hamming distance for the new permu-
tations is (n + r − (r + (n − d))) = d . That is, for all i, (0 ≤ i < k), hd(B ′

i ) ≥ d .
Hence, hd(A′) ≥ d . The size of the PA A′ is given by Theorem 6. The proof is described in
[21].

Theorem 6 ([21]) Let A be a PA on Zn comprising 2r blocks for some r. Denote the blocks
by B0, B1, . . . , B2r−1, so that A = ∪2r−1

i=0 Bi . If each block Bi has Hamming distance at least
d and the Hamming distance of the entire set A is at least d − r , then rudimentary parallel
partition and extension on A results in a new PA A′ on Zn+r that exhibits M(n + r , d) ≥∑2r−1

i=0 |Bi |.

Table 5 illustrates rudimentary parallel partition and extension for n = 9, d = 9 and
r = 3 using a PA A on Z9. We provide k = 2r = 6 blocks such that for each block
Bi , (0 ≤ i ≤ 5), hd(Bi ) ≥ d = 9 and for all i, j (0 ≤ i �= j ≤ 5), hd(Bi , Bj ) ≥ d−r = 6.
These blocks comprise the PA A and are shown in the column on the left of Table 5. The
symbols to be relocated by rudimentary parallel partition and extension are shown in blue.
Note that hd(A) ≥ 6. Rudimentary parallel partition and extension on A results in the PA A′
on Z12 with hd(A′) ≥ 6. The permutations comprising A′ are shown in the column on the
right of Table 5, with the displaced symbols shown in blue and the new symbols shown in
red.

More results based on Theorem 6 are shown in Table 6. For example, for n = 42, d =
39, r = 4, takePGL(2, 41), which contains 40 ·41·42 = 68880 permutations on 42 symbols,
with hamming distance at least 39. We found 2r = 8 cosets of PGL(2, 41) with d = 35.
Then by Theorem 6, M(46, 39) ≥ 8 · 68,880 = 551,040 using 8 cosets.
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Table 5 An example of
rudimentary parallel partition and
extension, with
n = 9, d = 9, r = 3

Initial permutations in the PA A Modified permutations in the PA A′
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 7 8
1 5 8 4 6 0 3 2 7
2 8 6 1 5 7 0 4 3
3 4 1 7 2 6 8 0 5
4 6 5 2 8 3 7 1 0
5 0 7 6 3 1 4 8 2
6 3 0 8 7 4 2 5 1
7 2 4 0 1 8 5 3 6
8 7 3 5 0 2 1 6 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 10 11 3 4 5 6 7 8 0 1 2
9 10 11 4 6 0 3 2 7 1 5 8
9 10 11 1 5 7 0 4 3 2 8 6
9 10 11 7 2 6 8 0 5 3 4 1
9 10 11 2 8 3 7 1 0 4 6 5
9 10 11 6 3 1 4 8 2 5 0 7
9 10 11 8 7 4 2 5 1 6 3 0
9 10 11 0 1 8 5 3 6 7 2 4
9 10 11 5 0 2 1 6 4 8 7 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 6 7 5 8 2 4 0
5 4 3 2 0 7 8 6 1
8 1 0 4 7 3 6 5 2
4 7 8 0 6 5 1 2 3
6 2 7 1 3 0 5 8 4
0 6 4 8 1 2 7 3 5
3 8 2 5 4 1 0 7 6
2 0 5 3 8 6 4 1 7
7 5 1 6 2 4 3 0 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 11 9 7 5 8 2 4 0 1 3 6
10 11 9 2 0 7 8 6 1 5 4 3
10 11 9 4 7 3 6 5 2 8 1 0
10 11 9 0 6 5 1 2 3 4 7 8
10 11 9 1 3 0 5 8 4 6 2 7
10 11 9 8 1 2 7 3 5 0 6 4
10 11 9 5 4 1 0 7 6 3 8 2
10 11 9 3 8 6 4 1 7 2 0 5
10 11 9 6 2 4 3 0 8 7 5 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 7 2 6 0 8 4 1
4 0 2 8 3 1 7 6 5
1 7 4 6 0 2 3 5 8
7 6 0 1 8 3 5 2 4
2 3 1 5 7 4 0 8 6
6 1 8 7 4 5 2 3 0
8 4 5 0 2 6 1 7 3
0 8 3 4 5 7 6 1 2
5 2 6 3 1 8 4 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 9 10 2 6 0 8 4 1 3 5 7
11 9 10 8 3 1 7 6 5 4 0 2
11 9 10 6 0 2 3 5 8 1 7 4
11 9 10 1 8 3 5 2 4 7 6 0
11 9 10 5 7 4 0 8 6 2 3 1
11 9 10 7 4 5 2 3 0 6 1 8
11 9 10 0 2 6 1 7 3 8 4 5
11 9 10 4 5 7 6 1 2 0 8 3
11 9 10 3 1 8 4 0 7 5 2 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 7 8 0 1 3 5 6
6 8 2 7 1 5 4 0 3
5 6 4 3 2 8 1 7 0
2 1 0 5 3 4 7 6 8
8 5 1 0 4 6 2 3 7
3 7 8 2 5 0 6 1 4
7 0 5 1 6 3 8 4 2
1 4 3 6 7 2 0 8 5
0 3 6 4 8 7 5 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 7 8 0 1 3 5 6 9 10 11
6 8 2 7 1 5 4 0 3 9 10 11
5 6 4 3 2 8 1 7 0 9 10 11
2 1 0 5 3 4 7 6 8 9 10 11
8 5 1 0 4 6 2 3 7 9 10 11
3 7 8 2 5 0 6 1 4 9 10 11
7 0 5 1 6 3 8 4 2 9 10 11
1 4 3 6 7 2 0 8 5 9 10 11
0 3 6 4 8 7 5 2 1 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 7 8 4 6 0 1 2
4 0 2 7 6 3 1 5 8
1 7 4 3 5 0 2 8 6
7 6 0 5 2 8 3 4 1
2 3 1 0 8 7 4 6 5
6 1 8 2 3 4 5 0 7
8 4 5 1 7 2 6 3 0
0 8 3 6 1 5 7 2 4
5 2 6 4 0 1 8 7 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 7 8 4 6 0 1 2 10 11 9
4 0 2 7 6 3 1 5 8 10 11 9
1 7 4 3 5 0 2 8 6 10 11 9
7 6 0 5 2 8 3 4 1 10 11 9
2 3 1 0 8 7 4 6 5 10 11 9
6 1 8 2 3 4 5 0 7 10 11 9
8 4 5 1 7 2 6 3 0 10 11 9
0 8 3 6 1 5 7 2 4 10 11 9
5 2 6 4 0 1 8 7 3 10 11 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 5 continued Initial permutations in the PA AModified permutations in the PA A′
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 2 5 6 1 7 3 8
1 6 8 0 3 5 2 4 7
2 5 6 7 0 8 4 1 3
3 2 1 6 8 4 0 7 5
4 8 5 3 7 6 1 2 0
5 3 7 1 4 0 8 6 2
6 7 0 4 2 3 5 8 1
7 1 4 8 5 2 3 0 6
8 0 3 2 1 7 6 5 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 2 5 6 1 7 3 8 11 9 10
1 6 8 0 3 5 2 4 7 11 9 10
2 5 6 7 0 8 4 1 3 11 9 10
3 2 1 6 8 4 0 7 5 11 9 10
4 8 5 3 7 6 1 2 0 11 9 10
5 3 7 1 4 0 8 6 2 11 9 10
6 7 0 4 2 3 5 8 1 11 9 10
7 1 4 8 5 2 3 0 6 11 9 10
8 0 3 2 1 7 6 5 4 11 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The column on the left shows a PA A consisting of six blocks of permu-
tations on Z9 with hd(A) ≥ 6. The column on the right shows the new
PA A′ on Z12 with hd(A′) ≥ 6

Table 6 M(n, d) lower bounds obtained using parallel partition and extension (Theorem 6 and 7)

n d r NEW Origin of blocks (see Table 8)

30 26 2 58,968R P�L(2,27) and 2 cosets

40 34 2 287,437P PGL(2,37) and 2 cosets (see M(38,32))

44 38 2 397,198P PGL(2,41) and 2 cosets (see M(42,36))

45 39 3 413,280R PGL(2,41) and 3 cosets (see M(42,36))

46 39 4 551,040R PGL(2,41) and 4 cosets (see M(42,35))

52 46 2 470,397R PGL(2,49) and 2 cosets (see M(50,44))

53 47 3 470,400R PGL(2,49) and 3 cosets (see M(50,44))

56 50 2 446,472R PGL(2,53) and 2 cosets (see M(54,48))

70 63 2 1,503,462P PGL(2,67) and 2 cosets (see M(68,61))

The blocks used by these theorems were obtained by the coset method [5] (see Table 8). Columns: r denotes
the number of new symbols, NEW denotes the new new bound. New bounds computed using rudimentary
parallel partition and extension (Theorem 6) and general parallel partition and extension (Theorem 7) are
denoted with a subscript R and P , respectively

4.2 General parallel partition with r symbols

As described in Sect. 4.1, rudimentary parallel partition and extension with r = 2 allows
extension of at most 2r = 4 blocks. We describe a new technique, called general parallel
partition and extension with r symbols, that allows a larger number of blocks to be extended.

We start with the simplest form of general parallel partition and extension, for r = 2
symbols. It expands on the simple partition and extension technique described in Sect. 2 by
introducing an additional pair of partitions of Zn , denoted byR and S in the description that
follows.

Let s be a positive integer, and let M1, M2, . . . , Ms be an ordered list of s pairwise disjoint
PAs on Zn . Let P = (P1, P2, . . . , Ps),Q = (Q1, Q2, . . . , Qs),R = (R1, R2, . . . , Rs), and
S = (S1, S2, . . . , Ss), be four partitions of Zn such that, for all i , Pi∩Ri = ∅ and Qi∩Si = ∅.
The sets Pi and Ri are sets of locations for replacing symbols in the PA Mi , and the sets Qi

and Si are sets of symbols to be replaced. For each i , let 2-covered(Mi ) be defined by

2 − covered(Mi ) = {σ ∈ Mi | ∃p ∈ Pi , ∃r �= p ∈ Ri (σ (p) ∈ Qi , σ (r) ∈ Si )}.
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We say that a permutation σ is 2-covered if σ ∈ 2-covered(Mi ) for some i . In general,
when σ is 2-covered , there may be multiple pairs (p, r) ∈ Pi × Ri such that σ(p) ∈ Qi

and σ(r) ∈ Si . If so, arbitrarily designate one of these pairs to cover σ . We use the notation
(p, r) to refer to the designated pair.

The parallel extension of σ by the pair (p, r), denoted by 2-ext(σ ) = σ ′, is a permutation
on Zn+2 defined by

2-ext(σ (x)) = σ ′(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n if x = p

σ(p) if x = n

n + 1 if x = r

σ(r) if x = n + 1

σ( j) ∀ j, (0 ≤ j < n ∧ j /∈ {p, r}).

(2)

We will always extend σ at the designated pair of positions (p, r) and refer to this new
permutation as 2-ext(σ ) or σ ′ interchangeably. Note that in order for a permutation σ ′ to
be included in the extended set of permutations on n + 2 symbols, σ must be 2-covered. In
other words, σ must have two of the named symbols in two of the named positions.

For our construction, we include two additional PAs, Ms+1, Ms+2, for which there are no
corresponding sets of positions or symbols. None of the permutations in Ms+1 or Ms+2 are
in any of the sets Mi (1 ≤ i ≤ s). In a manner similar to rudimentary parallel partition and
extension, parallel partition and extension extends Ms+1 and Ms+2 by appending the two
new symbols n and n+ 1, to the end of each permutation. For Ms+1, the sequence (n, n+ 1)
is appended to the end of each permutation. Similarly, for Ms+2, the sequence (n + 1, n) is
appended to the end of each permutation. Every permutation in Ms+1 and Ms+2 is used in
the construction of our new PA. We create the listM = (M1, M2, . . . , Ms+1, Ms+2), which
includes the extra sets Ms+1 and Ms+2.

A partition system � = (M,P,Q,R,S) is a (d, 2)-partition system for Zn if it satisfies
the following properties:

(I) ∀Mi ∈ M, hd(Mi ) ≥ d , and
(II) ∀i, j (1 ≤ i < j ≤ s + 2), hd(Mi , Mj ) ≥ d − 2.

Parallel partition and extension uses sets Pi , Qi , Ri , and Si from the partitions P,Q,R,

and S, respectively, to modify the 2-covered permutations in Mi , for 1 ≤ i ≤ s, for the
purpose of creating a new PA on Zn+2 with Hamming distance d . Let� = (M,P,Q,R, S)

be a (d, 2)-partition system, where M = (M1, M2, . . . , Ms+2), for some s. We now show
how parallel partition and extension operation creates a new permutation array 2-ext(�) on
Zn+2. For all i (1 ≤ i ≤ s), let 2-ext(Mi ) be the set of permutations defined by

2-ext(Mi ) = {2-ext(σ ) | σ ∈ 2-covered(Mi )}.
ForMs+1, let 2-ext(Ms+1) be the set of permutations on Zn+2 defined by adding the symbols
n and n+1, in that order, to the end of every permutation ofMs+1. ForMs+2, let 2-ext(Ms+2)

be the set of permutations on Zn+2 defined by adding the symbols n + 1 and n, in that order,
to the end of every permutation of Ms+2.

Let 2-ext(�) be defined by

2-ext(�) =
s+2⋃
i=1

2-ext(Mi ).
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Note that

|2-ext(�)| =
s+2∑
i=1

|2-ext(Mi )|.

Theorem 7 Let d be a positive integer, let� = (M,P,Q,R,S) be a (d, 2)-partition system
for Zn, withM = (M1, M2, . . . , Ms+2) for some positive integer s. Let 2-ext(�) be the PA
on Zn+2 created by parallel partition and extension. Then, hd(2-ext(�)) ≥ d.

Proof Our proof has three steps. We first use simple partition and extension to create a PA
ext(�′), on Zn+1, that exhibits hd(ext(�′)) ≥ d − 1. Next, using simple partition and exten-
sion again, we create a PA ext(�′′), on Zn+2, that exhibits hd(ext(�′′)) ≥ d . Finally, we show
that the PA 2-ext(�) = ext(�′′)∪2-ext(Ms+1)∪2-ext(Ms+2) exhibits hd(2-ext(�)) ≥ d .

Consider M′ = (M1, M2, . . . , Ms). First, observe that �′ = (M′,P,R) can be viewed
as a distance-(d −1) partition system for Zn since hd(Mi ) ≥ d ≥ d −1 for all i , (1 ≤ i ≤ s)
and hd(Mi , Mj ) ≥ d − 2 for all i, j , (1 ≤ i < j ≤ s). Simple partition and extension on �′
results in the PA ext(�′) on Zn+1. By Theorem 1, hd(ext(�′)) ≥ d − 1. In particular, for all
i, j (1 ≤ i, j ≤ s, i �= j), hd(ext(Mi ), ext(Mj )) ≥ d − 1.

Notice that, for all i (1 ≤ i ≤ s), hd(ext(Mi )) ≥ d since hd(Mi ) ≥ d . (As shown in [4],
this follows from case 1 in the proof of Theorem 1. For two permutations σ and τ from the
same set Mi , at most one new agreement appears between ext(σ ) and ext(τ ). Since ext(σ )

and ext(τ ) are in Zn+1, hd(ext(σ ), ext(τ )) = hd(σ, τ ) ≥ d . See [4] for the full proof of
Theorem 1.)

Let M′′ = (ext(M1), ext(M2), . . . , ext(Ms)). Then �′′ = (M′′,R,S) is a distance-d
partition system for Zn+1. Simple partition and extension on �′′ results in the PA ext(�′′)
on Zn+2. By Theorem 1, hd(ext(�′′)) ≥ d .

By assumption,� is a (d, 2)-partition system, so, by property I of (d, 2) partition systems,
hd(Ms+1) ≥ d and hd(Ms+2) ≥ d . By definition, every permutation τ ′ in 2-ext(Ms+1) is
built from a permutation τ in Ms+1 by appending the sequence (n, n + 1) to the end. This
increases the length of each permutation by 2, and number of agreements between every pair
of permutations in 2-ext(Ms+1) by 2. So hd(2-ext(Ms+1)) = n + 2 − ((n − d) + 2) ≥ d .
Similar reasoning applies to every permutation in 2-ext(Ms+2) using the appended sequence
(n + 1, n), so hd(2-ext(Ms+2)) ≥ d . Let τ ′ ∈ 2-ext(Ms+1) and ρ′ ∈ 2-ext(Ms+2) be
arbitrary permutations. The appended sequences (n, n + 1) and (n + 1, n) create no new
agreements between τ ′ and ρ′. By property II of (d, 2) partition systems, ∀i, j (1 ≤ i < j ≤
s + 2), hd(Mi , Mj ) ≥ d − 2. In particular, hd(Ms+1, Ms+2) ≥ d − 2. So it follows that
hd(2-ext(Ms+1), 2-ext(Ms+2)) ≥ n + 2 − (n − (d − 2)) = d .

To see that hd(ext(�′′), 2-ext(Ms+1)) ≥ d , let σ ′′ ∈ ext(�′′). Extending the original
permutation σ to create σ ′′ merely replaces designated symbols in designated positions with
the symbolsn andn+1, andmoves the displaced symbols to positionsn andn+1, respectively.
On the other hand, for any permutation τ ′ ∈ 2-ext(Ms+1), the symbols n and n + 1 are in
positions n and n+1. In both cases, no other symbols aremoved. So the symbols n and n+1 in
σ ′′ are not in the same locations as they are in τ ′ and neither are the displaced symbols. That is,
no new agreements are created. Hence, hd(ext(�′′), 2-ext(Ms+1)) ≥ n+2−(n−(d−2)) =
d . Similarly, hd(ext(�′′), 2-ext(Ms+2)) ≥ n + 2 − (n − (d − 2)) = d .

Finally, observe that 2-ext(�) = ext(�′′) ∪ 2-ext(Ms+1) ∪ 2-ext(Ms+2). We showed
above that the pairwise Hamming distance between all PAs in 2-ext(�) is at least d , so it
follows that hd(2-ext(�)) ≥ d . 
�
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Example 2 This example illustrates the use of Theorem 7 to construct a PA for n = 40
and d = 34. We start with PGL(2, 37) is a PA on Z38. It contains 38 · 37 · 36 = 50, 616
permutations with Hamming distance at least 36, giving M(38, 36) ≥ 50, 616. Using the
coset method [5], we found five cosets of PGL(2, 37) in S38, with Hamming distance 34
from PGL(2, 37) (see Table 8). The cosets are defined by the coset representatives α, β, γ, δ

and θ :

α = 27 12 30 25 15 37 35 22 29 36 10 1 13 33 24 3 28 16 26 8 19 17 23 0
11 34 20 5 31 6 21 14 18 32 7 9 2 4

β = 16 22 35 6 4 30 37 26 23 11 0 20 18 24 8 7 15 13 1 29 36 27 17 33 3
9 10 14 32 25 12 19 28 21 2 31 5 34

γ = 12 26 21 32 37 24 2 9 23 27 0 30 18 16 20 11 6 34 33 29 15 22 5 10 17 4
35 13 28 1 14 25 7 36 19 3 31 8

δ = 17 28 22 37 26 9 8 12 18 4 32 33 31 5 2 1 34 29 0 3 21 6 10 16 23 36
20 15 14 35 11 30 19 24 25 7 13 27

θ = 9 30 12 6 36 13 31 11 1 17 27 26 5 24 14 35 25 10 23 7 34 18 20 2 16 0
8 19 29 15 37 33 4 21 22 32 28 3

Let M = {M1, M2, M3, M4, M5, M6} where
M1 = PGL(2, 37) M2 = αM1 M3 = βM1 M4 = γ M1 M5 = δM1 M6 = θM1.

Note that for all i, j, (1 ≤ i < j ≤ 6), hd(Mi ) = 36 and hd(Mi , Mj ) ≥ 34.
Let X = {X1, X2, X3, X4} be the partition of Z38 given by

X1 = {0, 4, 8, 13, 19, 22, 26, 30, 35} X3 = {2, 6, 10, 12, 16, 21, 24, 28, 33, 37}
X2 = {1, 5, 9, 15, 18, 23, 27, 31, 34} X4 = {3, 7, 11, 14, 17, 20, 25, 29, 32, 36}.

The two partitions of positions, P and R, are based on X. That is, P = {P1, P2, P3, P4},
where P1 = X1, P2 = X2, P3 = X3, and P4 = X4 and R = {R1, R2, R3, R4}, where
R1 = X2, R2 = X3, R3 = X4, and R4 = X1.
Let Y = {Y1, Y2, Y3, Y4} be the partition of Z38 given by

Y1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Y3 = {20, 21, 22, 23, 24, 25, 26, 27, 28}
Y2 = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19} Y4 = {29, 30, 31, 32, 33, 34, 35, 36, 37}.

The two partitions of symbols, Q and S, are based on Y. That is, Q = {Q1, Q2, Q3, Q4}
where Q1 = Y1, Q2 = Y2, Q3 = Y3, Q4 = Y4 and S = {S1, S2, S3, S4} where S1 =
Y2, S2 = Y3, S3 = Y4, S4 = Y1.
Let � = (M,P,Q,R,S). It can be verified that � is a (d, 2)-partition system for
Z38 where d = 34. Parallel partition and extension on � results in 2-ext(�), where
|2-ext(�)| = 287, 437. Theorem 7 for n = 38 and d = 34 implies M(40, 34) ≥ 287, 437
which is a new lower bound. See Table 6.

Theorem 7 applies to general parallel partition and extension using r = 2 symbols. This
result can be generalized to arbitrary r provided that a sufficient number of blocks with
appropriate Hamming distance properties can be found, along with a corresponding number
of partitions of positions and symbols. Table 6 shows new bounds obtained using parallel
partition and extension (Theorems 6 and 7).

The general parallel partition and extension technique does not put restrictions on the
partitions of positionsP,R, . . ., and partitions of symbolsQ,S, . . ., making the search space
for good partitions very large. Because of this, we have experimented with several ways of
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creating partitions. For example, given a partition of positions P = {P0, P1, . . . Pk−1}, a
family of partitions {Pi } can be derived from P as follows. For all i, (i ≤ 0 < k), define Pi ,
the i th partition of positions, to be Pi = {P(i+ j) (mod k), ∀(0 ≤ j < k)}. Using this notation,
the partitions P and R of Example 2 are correspond to P0 and P1. In other words, P1 is
obtained by a cyclic shift of the sets inP0. In this way, each partitionPi comprises a different
partition of the set of positions. Define a similar family of partitions of symbols {Qi } using
a partition of symbols Q = {Q0, Q1, . . . Qk−1} as a starting point. Clearly, each pair of
partitions (Pi ,Qi ) satisfies the conditions of the parallel partition and extension technique.
To create the initial partitions P andQ, we have used several techniques, including a greedy
technique and a technique based on integer linear programming. These are described in
Sects. 6.1 and 6.2.

Results obtained by parallel partition and extension can be compared with results from
the coset method [5] and the contraction method [5]. The coset method starts with a group
X exhibiting M(n, d ′), for some d ′ > d and searches for cosets of X at Hamming distance
d . The PA A, formed from X together with its cosets, exhibits Hamming distance d . If X
is a good PA for M(n, d ′), the PA A could represent a new lower bound for M(n, d). The
operation of contraction on a PA Y on Zn+1 with Hamming distance d + 1 results in new PA
Y ′ on Zn . As with the coset method, if Y is a good PA for M(n + 1, d), Y ′ could exhibit a
new lower bound for either M(n, d − 2) or M(n, d − 3), depending on conditions described
in [5].

To be competitive, the groups that serve as the starting point for any of these methods
must be large. We have used AGL(1, q) and PGL(2, r) for various powers of primes q and r .
The coset method and the contraction method are quite fruitful, but there are instances where
parallel partition and extension gives better results for M(n, d).

We have also experimented with several methods for generating blocks of permutations
with a desired Hamming distance. For example, to search for new PAs that exhibit improved
lower bounds forM(n, d), one technique looks for cosets atHamming distance d froma group
G on Zn−r that exhibits M(n − r , d ′), where d ′ > d . Let M consist of G and the cosets.
Using parallel partition and extension, the permutations in M are extended by r symbols
to create a new PA on Zn exhibiting M(n, d). Our coset search techniques are discussed in
Sect. 6.3.

5 Partition and extension of modified Kronecker product

Kronecker product is a well known operation in linear algebra, combinatorics, and other areas
of mathematics [15,16]. A modification of the Kronecker product operation on PAs can be
used to create larger PAs suitable for simple partition and extension.

Let X and Y be PAs defined by X = {α1, α2, . . . , αl} where each αi is a permutation on
l symbols, and Y = {β1, β2, . . . , βm} where each βi is a permutation on m symbols. The
notation αi ( j) denotes the symbol in permutation αi at position j . Let (αi ( j), Y ) denote a
modified copy of the PA Y such that each symbol in each permutation of Y has an offset
m · αi ( j) added to it. Clearly |(αi ( j), Y )| = |Y |. Moreover, like Y , (αi ( j), Y ) is a PA on m
symbols, however, the symbol set of (αi ( j), Y ) is offset by the value m · αi ( j). Hence the
PAs Y and (αi ( j), Y ) have no symbols in common.

Let (X⊗Y )i be the PA defined by (X⊗Y )i = [(αi (0), Y ), (αi (1), Y ), . . . , (αi (l−1), Y )].
That is, if βr is the permutation in Y , there is a corresponding permutation γ on lm symbols
in (X ⊗ Y )i of the form γ = (m · αi (0) + βr (0)), . . . , (m · αi (0) + βr (m − 1)), (m · αi (1) +
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Fig. 1 The PA (X ⊗ Y ), the
modified Kronecker product of
PA’s X and Y

(α1(1), Y ) (α1(2), Y ) (α1(l), Y )

(α2(1), Y ) (α2(2), Y ) (α2(l), Y )

(αl(1), Y ) (αl(2), Y ) (αl(l), Y )

. . .

. . .

. . .

. . .

βr (0)), . . . , (m ·αi (1)+βr (m−1)), . . . , (m·αi (l−1)+βr (0)), . . . , (m·αi (l−1)+βr (m−1)).
In other words, γ can be viewed as the concatenation of l copies of βr with an appropriate
offset added to the symbols in each copy. The offsets ensure that each of the |Y | rows in the
sub-array (X ⊗ Y )i is a permutation on the lm symbols {0, 1, 2 . . . lm − 1}.

Define the modified Kronecker product [2] of PAs X and Y , denoted by (X ⊗ Y ), to be
the PA on lm symbols defined by (X ⊗ Y ) = ⋃l

i=1(X ⊗ Y )i . This is illustrated in Fig. 1.
Define the block decomposition of a PA A on n symbols as a collection of sub-arrays

(i.e., blocks), say A(1), A(2), . . . , A(m), such that for all i (1 ≤ i ≤ m), hd(A(i)) = n. A
detailed discussion of block decomposition appears in [2], along with several examples using
AGL(1, q) andPGL(2, q), where q is a prime or a prime power.We use block decompositions
of PAs and the modified Kronecker product to produce new PAs, which in some cases give
new lower bounds for M(n + 1, n). Corollaries 10 and 11 below describe our results. Our
block decompositions have a property that the blocks are full, i.e., |A(i)| = n. We need two
lemmas describing properties of PAs produced by modified Kronecker product to establish
Corollaries 10 and 11.

Lemma 8 ([2]) Let A(1), A(2), . . . , A(k) be a block decomposition of a PA A on l symbols
with hd(A) = l − a Let B(1), B(2), . . . B(k) be a block decomposition of PA B on m symbols
with hd(B) = m − b. Let Mi = A(i) ⊗ B(i) Then

hd

(
k⋃

i=1

Mi

)
= lm − ab.

Lemma 9 Let A(1), A(2), . . . , A(k) be a block decomposition of a PA A on l symbols with
hd(A) = l − 1. Let B(1), B(2), . . . B(k) be a block decomposition of PA B on m symbols with
hd(B) = m − 1. Then M(n + 1, n) ≥ kn, where n = lm.

Proof First, we set M = {M1, M2, . . . , Mk} where for all i, (i = 1, 2, . . . , k), Mi =
A(i) ⊗ B(i). That is, Mi is the modified Kronecker product of the blocks A(i) and B(i). The
PA Mi can be viewed as an l × l table of blocks. In particular, the columns of this table are
columns of blocks, and the rows of the table are rows of blocks. We will refer to the rows
and columns as block rows and block columns, respectively. Let C1,C2, . . . ,Cl be the block
columns of the table. For each block column C j , ( j = 1, 2, . . . , l) we select the (i − 1)st

position in C j , keeping in mind that positions are numbered starting at 0. Let Pi be the set
of selected positions. That is, Pi = {i − 1, (i − 1) + l, (i − 1) + 2l, . . . , (i − 1) + kl}.
We choose the symbols for Qi as 0, 1, . . . ,m − 1 with added offset (i − 1)m. That is,
Qi = {0+ (i −1)m, 1+ (i −1)m, . . . , (m−1)+ (i −1)m}. Note that each block row of the
table contains a block column such that all symbols in it have offset (i − 1)m. Therefore all
permutations in this block row are covered. The lemma follows since all klm permutations
of the modified Kronecker product are covered. 
�
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Corollary 10 Let p and q be prime powers. Let n = pq and k = min{p − 1, q − 1}. Then
M(n + 1, n) ≥ kn.

Proof It follows from Lemma 9 if we take the affine general linear groups A = AGL(1, p)
and B = AGL(1, q). 
�
Corollary 11 Let n ≥ 2 and m ≥ 2 be integers. Let Nn be the maximum number of MOLS of
order n. Let k = min{Nn, Nm}. Then M(nm + 1, nm) ≥ knm.

Proof Colbourn et al. [9] proved that a set of k MOLS of order n can be transformed into a
permutation array A of size kn on Zn . Each Latin square Cs is transformed into a block Ds

of n permutations with pairwise Hamming distance n. The transformation changes triples
(i, j, k) ∈ Cs to triples (k, j, i) ∈ Ds . In other words, for all i, j, k ∈ Zn the symbol k in
row i and column j in the Latin square Cs becomes the symbol i in row k and column j in
the block Ds .

Suppose there are k MOLS of order n. Denote the Latin squares by A1, A2, . . . , Ak . The
transformation creates k blocks, say B1, B2, . . . , Bk of permutations on n symbols.Moreover,
the pairwise Hamming distance between blocks Bi , Bj for all i, j, (1 ≤ i, j,≤ k, i �= j) is
n−1.We repeat this transformation for kMOLS of orderm to create the block decomposition
E1, E2, . . . , Ek of permutations on Zm , with pairwiseHamming distancem−1.ByLemma9,
M(nm + 1, nm) ≥ knm. 
�
Example 3 shows several new bounds obtained by Corollary 10. Additional new results
obtained by Corollaries 10 and 11 are listed in Tables 10 and 11.

Example 3 Asample of results fromCorollary 10with A = AGL(1, p) and B = AGL(1, q).

(a) M(117,116) ≥ 8 · 117 = 936 by using p = 9 and q = 13. So M(118,117) ≥ 936.
(b) M(171,170) ≥ 8 · 171 = 1368 by using p = 9 and q = 19. So M(172,171) ≥ 1, 368.
(c) M(187,186) ≥ 10 · 187 = 1870 by using p = 11 and q = 17. So M(188,187) ≥ 1870.
(d) M(299,298) ≥ 12 · 299 = 3588 by using p = 13 and q = 23. So M(300,299) ≥ 3588.
(e) M(575,574) ≥ 22 · 575 = 12,650 by using p = 23 and q = 25. So M(576,575) ≥

12,650.

6 Algorithms for selecting partitions

In Sects. 3, 4 and 5, we described three new enhancements of the partition and extension
operation which are used for transforming a distance-d partition system � = (M,P,Q)

on Zn , for some positive integer d , into a new PA on Zn+r for positive integers r , such
that the Hamming distance of the new PA is at least d ′ for some d ′ ≥ d . The size of a PA
resulting from the application of any of these techniques to a particular distance-d partition
system, � = (M,P,Q), is of course entirely dependent on the choice of M, P , and Q.
Exhaustive search for high yield partitions P andQ amounts to trying all possible partitions
of Zn . Similarly, selecting a productive set of PAs to include in M involves selecting sets
from partitions of Sn , the symmetric group of permutations on n symbols. Clearly, any sort
of exhaustive search is infeasible.

This leads to a natural question: how to select the sets M, P , and Q. We now describe
several techniques we have found useful for selecting partitions for the setP (or, equivalently,
Q), and finding PAs for the set M.
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In Sects. 6.1 and 6.2, we turn our attention to methods for finding partitions of Zn . Such
partitions can be fruitful candidates for either for P or Q. We describe two approaches.
Both approaches start with a given partition of symbols Q and a given collection of PAs
M = (M1, M2, . . . , Mk+1) on Zn , for some positive integer k, that satisfies Property I of the
definition of a distance-d partition system. Section 6.1 describes a greedy algorithm that uses
a fixed partition of symbols Q and greedily creates a partition of positions, P . Section 6.2
describes an optimization approach that uses integer linear programming to find a fruitful
partition of positions, P . To describe the techniques, we focus on creating a partition of
positions P , however, the same techniques can be used for creating a partition of symbolsQ
instead. We have experimented with both methods and have obtained new lower bounds for
M(n, d) which are included in Section 7.

Section 6.3 describes methods we have used for searching for fruitful PAs to include in
M. New lower bounds obtained by this method are included in Sect. 7.

6.1 A greedy approach to partition selection

Wehavedeveloped a greedy algorithm forfinding a partition of positionsP ,which approaches
an intractable search problem by fixing both the partition of symbols, Q, and the collection
of PAs,M, then greedily creating P , a partition of positions. In this way, the search space is
restricted, at the cost of possibly missing an optimum solution.

Our algorithm creates a partition positions P , of Zn , that maximizes covered(Mi ) for
all i . The input for the algorithm is a fixed partition of symbols Q of Zn , and a collection
of PAs on Zn , M = (M1, M2, . . . , Mk), that satisfies properties I and II of a distance-d
partition system for some d < n. We fix Q = (Q1, Q2, . . . , Qk) for some k ≤ √

n where
Q1 = {0, 1, . . . , k − 1}, Q2 = {k, . . . , 2k − 1}, . . . Qk = {k2 − k, . . . , k2 − 1}.

The algorithm starts with a set of subsets of positions {P1, P2, . . . , Pk} where Pi = ∅ for
all i (0 ≤ i ≤ k − 1). The algorithm then iterates to find a partition of positions P that repre-
sents a local maximum for the number of covered permutations. At each iteration, an unused
position, r , is selected. Let M ′

i = Mi \ covered(Mi ). That is, M ′
i is the set of permutations

{σ } in Mi for which there is no position p ∈ Pi such that σ(p) = q for some q ∈ Qi . For
each i (1 ≤ i ≤ k), we count the number of covered permutations for (M ′

i , Pi ∪ {r}, Qi ).
If the number of covered permutations is maximized for some i = i∗, then we add r to Pi∗ .
The algorithm stops when there are no more unused positions.

The resulting partition P , together with Q and M form a distance-d partition system
for Zn , � = (M,P,Q). So, by Theorem 1, hd(ext(�)) ≥ d . There are several instances
for which our greedy approach results in a partition system � that provides full coverage,
that is, for all i (1 ≤ i ≤ k), covered(Mi ) = Mi . When � is derived from large PAs
such as AGL(1, q), for q , a power of a prime, improved lower bounds can be achieved for
M(q + 1, d). A list of results is included in Tables 9, 10 and 11.

6.2 An optimization approach to partition selection

We describe another approach for finding a partition of positions P , which casts the search
for P as an optimization problem. Like the greedy method, our optimization approach starts
with a given partitionQ of symbols, and a collectionM of PAs that satisfies properties I and
II of a distance-d partition system for some d < n. We encode the search for P as an integer
linear program (ILP) and use an off-the-shelf solver to explore the entire search space of
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partitions for P . There are several commercial solvers [14,18] capable of solving large ILP
problems efficiently. We have chosen the Gurobi optimizer [14] for our computations.

We now describe our ILP encoding. The input is a partition of symbolsQ and a collection
M of blocks (PAs) on n symbols. Let k be the number of blocks. Let ci, j be a binary variable
indicating that permutation j of block i is covered. Let u(i) be a function that maps the
block index i to the number of permutations in it. Let bi,p be a binary variable indicating that
position p is assigned to block i .

An integer linear program for selecting partitions

maximize
ci, j

k−1∑
i=0

u(i)−1∑
j=0

ci, j (3)

subject to

k−1∑
i=0

bi,p = 1; ∀p; (4)

∑
y∈Qi

1σ p,y · bi,p ≥ ci, j ; ∀i, j, p; and (5)

k−1∑
i=0

n−1∑
p=0

bi,p = n; (6)

where 1σp,y =
{
1 if σ [p] = y

0 otherwise
(7)

Equation (3) is the objective function to be maximized, that is, the total number of covered
permutations in all blocks in M. The optimization is subject to three constraints:

• Constraint (4) assures that the resulting partition P assigns a position to exactly one
block.

• Constraint (5) establishes that permutation j in block i is covered when at least one of
its symbols listed in Qi appears in position p, and p is assigned to this block i .

• Constraint (6) assures that every position has been assigned to some block.

Constraints (4) and (6) effectively ensure that the solution is a partition. Equation (7) defines
an indicator function that states whether or not a permutation σ is covered by checking if
symbol y appears at position p.

Our integer linear program has provided many new lower bounds for M(n, d), and has
has outperformed our greedy approach in several instances. See Tables 9, 10 and 11.

6.3 Methods for coset search

We have used several methods for coset search, including the coset method [5] and Integer
Linear Programming.

Given a group G on Zn for some n, the coset method creates a collection of PAs M to
be used for partition and extension by randomly searching for cosets of G at a specified
pairwise Hamming distance d . The group G = M1, with its cosets, M2, M3, . . . , comprise
M = (M1, M2, M3, . . . , ) in a distance-d partition system �. When the starting group G is
large, the coset method often produces a productive collection of PAs for M.
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Table 7 New M(n, d) lower
bounds obtained by applying
Theorem 1 to PAs generated by
the coset method [5]

n d PREV NEW

43 37 176,988 369,948

49 43 207,552 415,062

51 44 235,200 687,903

51 45 235,200 470,347

61 54 410,640 1,181,794

69 62 601,392 1,500,426

Column PREV shows previously known bounds (obtained from rudi-
mentary parallel partition and extension, by applying Theorem 6).
Column NEW shows new bounds obtained through Theorem 1

Table 7 shows the lower bounds obtained by applyingTheorem1 to newpermutation arrays
computed using the coset method. For example, for our new lower bound for M(43, 37), we
start with the projective general linear group G = PGL(2, 41), which has 68,880 permuta-
tions on Z42, and looked for cosets of G at Hamming distance 36. We were able to find five
cosets, M2, M3, M4, M5, M6, which together with the group G = M1 gives a collection of
6 blocks with 68,800 permutations each, giving a total of 413,280 permutations at Hamming
distance 36. This givesM = (M1, M2, . . . , M6).Wewere also able to find a partition of posi-
tions P and a partition of symbols Q, which, together with M forms a distance-37 partition
system � = (M,P,Q) for Z42. Using simple partition and extension on �, we obtained
369,948 permutations on 43 symbols with Hamming distance 37. That is, we show that
M(43, 37) ≥ 369, 948, which is an improvement over the previous lower bound of 176,988.

We have also searched for fruitful PAs by formulating the coset search problem as a
constraint satisfaction problem, implemented as an integer linear program. Given a group G
on Zn , wherehd(G) ≥ d , letd ′ be the targetHammingdistance between a coset representative
π ∈ Sn and the group G. Let X = Zn × Zn = {(0, 0), (0, 1), . . . , (i, j), . . . , (n−1, n−1)}.
The set X represents all possible pairs of positions and symbols assignable to the coset
representative π .

Create a binary variable xi, j for each element in the set X indicating that if the variable
xi, j is true, then π(i) = j . The integer linear program is:

maximize
xi, j

n−1∑
i=0

n−1∑
j=0

xi, j (8)

subject to

n−1∑
j=0

xi, j = 1; ∀i ∈ Zn, (9)

n−1∑
i=0

xi, j = 1; ∀ j ∈ Zn, and (10)

n−1∑
i=0

n−1∑
j=0

1σi, j · xi, j ≤ n − d; ∀σ ∈ G, (11)

where 1σi, j =
{
1 if σ(i) = j

0 otherwise
(12)
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Table 8 New lower bounds for
M(n, d) using PAs generated by
the coset method [5] and by ILP
approximation described in
Sect. 6.3

n d Group Num cosets PREV NEW

18 13 PGL(2,17) 6 24,480 29,376 j
24 19 PGL(2,23) 3 24,288 36,432 j
26 20 PGL(2,25) 15 202,800 234,000 j
26 21 PGL(2,25) 3 31,200 46,800 j
28 22 PGL(2,27) 14 235,872 275,184 j
30 24 PGL(2,29) 12 170,520 292,320 j
32 25 PGL(2,31) 44 372,992 1,309,440 j
33 27 P�L(2,32) 2 97,440 327,360 j
34 27 P�L(2,32) 15 2,127,840 2,455,200c
38 32 PGL(2,37) 6 202,464 303,696 j
38 30 PGL(2,37) 129 1,265,400 6,529,464c
42 34 PGL(2,41) 73 888,729 5,028,240c
42 35 PGL(2,41) 28 206,640 1,928,640 j
42 36 PGL(2,41) 6 206,640 413,280 j
44 37 PGL(2,43) 25 413,280 1,986,600 j
48 42 PGL(2,47) 4 207,552 415,104 j
49 42 PGL(2,47) 14 207,552 1,452,864c
50 42 PGL(2,49) 43 207,552 5,056,800c
50 43 PGL(2,49) 18 207,552 2,116,800 j
50 44 PGL(2,49) 4 103,776 470,400 j
54 47 PGL(2,53) 16 1,339,416 2,381,184 j
54 48 PGL(2,53) 3 297,648 446,472 j
55 48 PGL(2,53) 10 297,648 1,488,240c
55 49 PGL(2,53) 3 297,648 446,472 j
62 54 PGL(2,61) 38 821,280 8,622,960c
62 55 PGL(2,61) 6 821,280 1,361,520c
68 60 PGL(2,67) 29 821,280 8,720,184c
68 61 PGL(2,67) 5 524,160 1,503,480c
68 62 PGL(2,67) 2 524,160 601,392 j
72 64 PGL(2,71) 17 888,729 6,083,280c
72 65 PGL(2,71) 4 357,840 1,431,360c

Columns:Group denotes starting group,NumCosets denotes the number
of cosets,PREV denotes the previously known bound, andNEW denotes
the new bound. c coset method (random coset search) [5]; j ILP coset
search (see Sect. 6.3)

The objective function (8) is designed to make the ILP solver assign as many binary
variables xi, j true as possible. This objective function alone would produce a solution that
is not a permutation. For this reason constraints (9) and (10) ensure that exactly one symbol
j is assigned to every position i and that every symbol j is assigned to exactly one position
i , respectively, so the solution is indeed a permutation on Zn . Constraint (11) requires the
solution to be at Hamming distance at least d ′ from every permutation in G. This is encoded
by limiting the number of agreements, n − d ′, between a candidate solution and each of the
permutations in G.
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Table 10 New lower bounds for M(n, n − 1), n < 300

n Prev New n Prev New n Prev New

26 133P 150a 132 1508P 1572g 212 3026P 3172i
28 140M 144i 134 804M 931g 214 1284M 1491g
30 170P 173g 138 1614P 1696g 218 1308M 1736g
33 183P 192a 140 1640P 1726i 220 1320M 2190g
34 136M 165g 142 852M 987g 222 1332M 2652g
38 254P 255g 145 1015M 1429i 224 3260P 3475i
42 282P 286g 146 876M 1015g 225 1800M 2902i
44 296P 307g 148 888M 1029g 226 1356M 1800k
46 184M 270g 150 1818P 1905g 228 3380P 3482i
50 300M 392a 152 1832P 1946g 230 3512P 3567g
51 255M 300g 155 1085M 1232g 234 3602P 3673i
54 408P 423g 156 936M 1085g 236 1416M 1645g
58 361P 399i 158 1922P 2052g 238 1428M 1659g
60 481P 493g 159 954M 1106g 240 3656P 3803i
62 478P 519g 161 1377P 1440i 242 3716P 3864g
65 455M 576a 162 972M 1127g 244 1464M 3483a
66 380P 455g 164 2042P 2185g 246 1476M 1715g
68 568P 594g 166 1153P 1155g 248 1736M 2964g
72 588P 637g 168 2070P 2267g 250 1500M 1743g
74 620P 667g 170 1020M 2366a 252 3932P 4075g
76 456M 525g 172 1032M 1368k 254 2286M 3027i
80 720M 755g 174 2316P 2358i 255 1785M 2286g
82 656M 810a 177 1593M 2214i 258 4066M 4222g
84 776P 812g 178 1068P 1593g 260 1560M 3108g
90 866P 902g 180 2404P 2500g 264 4228P 4351i
92 552M 637g 182 1092P 2533g 266 1862M 2120g
98 956P 1017g 186 1619P 1665g 268 1876M 2670g
102 1030P 1101g 188 1128M 1870k 270 4318M 4521i
104 1070P 1119g 190 1140M 1512g 272 4408M 4575i
106 636M 735g 192 2638P 2767i 274 1644M 3873i
108 1090P 1175g 194 2680P 2803i 276 2760M 3575g
110 1130P 1199g 196 1176M 1365g 278 4574M 4767i
114 1192P 1277g 198 2786P 2870g 280 1960M 2511g
116 696M 805g 200 2842P 2867g 282 4684M 4863i
118 708M 936k 202 1212M 1407i 284 4706P 4916i
122 732M 1452a 204 1224M 1421i 286 1716M 3420g
126 756M 1221a 206 1236M 1640g 290 1740M 5202a
129 903M 1472a 209 2299M 2912g 294 5068M 5088g
130 780M 903g 210 2100M 2299g

M—previous result from MOLS; P—previous result from simple partition and extension [4]; a—methods
described in [1]; g—partition of positions P from greedy partition selection algorithm (see Sect. 6.1); i—
partition of positions P from ILP partition selection algorithm (see Section 6.2); k—PA M from modified
Kronecker product (see Sect. 5)
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Table 11 New lower bounds for M(n, n − 1), (300 ≤ n ≤ 600)

n Prev New n Prev New n Prev New

300 2100M 3588k 406 2842M 3240k 494 2964M 7888k
306 1836M 4575i 408 4070M 6105i 498 2988M 7455k
308 5360M 5524i 410 2870M 8389i 500 3500M 11373i
312 5436M 5660i 412 3296M 5343g 504 3527M 11416i
314 2198M 5723i 414 4140M 4956g 506 3036M 7575i
316 2212M 3150g 415 3735M 4140g 508 3556M 7605i
318 2226M 5793g 417 6255M 7481i 510 3060M 11661i
322 1932M 4815g 418 2926M 6255i 513 9234M 11264a
324 2592M 5168k 420 2940M 8744i 516 4128M 7725g
326 1956M 3900k 422 2954M 8822i 518 5170M 6204g
330 1980M 2961g 424 3384M 6345i 520 4160M 7785g
332 2324M 6105i 426 2556M 6800k 522 5220M 11983i
334 2338M 2664k 430 2580M 3003g 524 6288M 12029i
335 2010M 2338g 432 6480M 9051i 526 4208M 7875g
338 2028M 6349i 434 2608M 9093i 528 7920M 8432k
340 2040M 2373g 436 2616M 6525i 530 3710M 12696a
344 2408M 6076a 438 3066M 7866k 532 4256M 7965i
346 2076M 2415g 440 3159M 9219i 534 3738M 6396k
348 2088M 6658i 442 3528M 6615i 536 4288M 8025i
350 2800M 6714i 444 3108M 9069g 538 5380M 8055i
354 2124M 6746g 446 3122M 5785i 540 6480M 8085k
356 2492M 3195g 450 3220M 9429g 542 3794M 12443i
358 2148M 3213g 452 4510M 6765i 545 8704M 9792k
360 2520M 6965i 456 3192M 6825i 548 3836M 12581i
362 2172M 7220a 458 3206M 9644g 550 3850M 4392k
366 2196M 2555g 460 3220M 7334k 552 5220M 9918k
368 5520M 7108g 462 3234M 10,061i 558 3906M 13,329i
370 2952M 5535i 464 6960M 10,162i 561 3927M 8400i
372 2604M 5565i 466 3262M 6975i 564 3948M 13,500i
374 2618M 7381i 468 3744M 10,253i 566 3396M 3955g
376 2632M 5625i 470 3290M 3752g 570 3420M 13,654i
378 4524M 4901i 472 3304M 7065i 572 4004M 13,699i
380 2660M 7556i 474 4740M 7095k 576 4608M 12,650k
382 2674M 4572i 476 3332M 8550k 578 4046M 13,848i
384 5760M 7692i 478 3816M 7155i 582 4074M 4648g
386 2702M 5775i 480 7200M 10,538i 584 4088M 5830i
388 3096M 5805i 482 5772M 7215i 586 4102M 4680g
390 2730M 7897i 484 3872M 7245i 588 4116M 14,088i
392 2744M 6256k 485 3395M 3872g 590 10,030M 10,602k
398 2786M 7940i 486 2916M 3395g 591 4137M 10,030i
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Table 11 continued

n Prev New n Prev New n Prev New

402 2814M 8020i 488 3416M 10,714i 594 4752M 14,232i
404 4836M 6045k 490 2940M 7335g 596 4172M 8925i
405 3240M 4444g 492 2952M 10,802i 600 8400M 14828i

Refer to Table 10 for an explanation of the subscripts

Table 8 gives a detailed view of new lower bounds for M(n, d), resulting from our coset
search techniques. For each new result, the group, G and the number of cosets is shown. The
subscript j in the column labeled NEW indicates that the cosets were found by the integer
linear program described in Sect. 6.3 [20]. The subscript c indicates that the cosets were
found by the coset method [5].

7 Summary of new results

We have computed many new lower bounds for M(n, d) for various n and d using our new
techniques for partition and extension, namely: sequential partition and extension (Corollary
4 and Theorem 5), parallel partition and extension (Theorem 6, 7), and modified Kronecker
product (Corollaries 10, and 11). These techniques are described in Sects. 3, 4, and 5. We
have also used our earlier technique of simple partition and extension (see Theorem 1 [4]) to
generate new lower bounds. The use of partition and extension requires, as input, a partition
of positions and a separate partition of symbols.We have used our greedy and ILP algorithms,
(described in Sect. 6.1 and 6.2), to obtain fruitful partitions of positions for many n. We have
described methods for generating good collections of PAs for our partition and extension
techniques (see Sect. 6.3).

We summarize all of our new lower bounds for M(n, d), for d < n − 1, in Table 9 for the
sake of easy referencing.We also report experimental results and provide new tables of lower
bounds for M(n, n − 1), for many integers n < 600. Due to the large number of results, we
show these separately from our results forM(n, d), for d < n−1. Tables 10 and 11 show new
lower bounds for M(n, n−1) computed by our partition and extension techniques. Columns
PREV and NEW in Tables 10 and 11 denote the previous and the new bound, respectively.
The previous lower bounds are either from an earlier use of simple partition and extension
[4], and are denoted with a subscript P , or are derived from known numbers of mutually
orthogonal squares (MOLS) [8], and are denoted with a subscript M . It should be noted that
there are other known lower bounds for M(n, n − 1), for integers n not listed in Tables 10
and 11. They have been previously reported in [4,8], and [19]. The subscripts in the NEW
column indicate the method for generating either the partition of positionsP or the collection
of PAs M. Subscript g indicates that P was computed using the greedy partition selection
algorithm (see Sect. 6.1). Subscript i indicates that P was computed using the integer linear
program for partition selection (see Sect. 6.2). Subscript a indicates new bounds described in
[1]. Subscript k indicates the collection of PAsM is obtained bymodified Kronecker product
(see Sect. 5).

In conclusion, we offer the following conjecture about the relationship between N (n), the
known lower bound on the number of MOLS of side n and M(n, n − 1):

Conjecture: M(n, n − 1) ≥ (n − 1) · min(�√n − 1�, N (n − 1)). (13)
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Table 12 A comparison of experimentally computed M(n, n − 1) lower bounds to conjectured lower bounds
for four cases that (so far) do not agree with the conjecture. Column Computed shows known bounds obtained
from techniques described in this paper. Column Conjectured shows conjectured bounds from Equation 13

n d Computed Conjectured

145 144 1429 1440

177 176 2214 2288

225 224 2902 2912

254 253 3027 3036

This conjecture is based on our computational results. We verified that the conjecture is true
for all n ≤ 600, except the four cases listed in Table 12. Although these may seem to be
counterexamples for the conjecture, we believe the computed values can be improved, and
therefore, the conjecture validated for all n ≤ 600.

8 Conclusion

We have presented new computational methods for the partition and extension technique that
produce several competitive new lower bounds on M(n, d) for various integers n and d . We
described sequential partition and extension,which is very useful for improving lower bounds.
The techniques of rudimentary and general parallel partition and extension introduce sev-
eral new symbols simultaneously. They are different extension strategies that provide many
improved lower bounds forM(n, d).We have given several new techniques and experimental
results that provide new lower bounds for M(n, n − 1), for many integers n < 600.
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