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Abstract. Let P be a set of points in general position in the plane. A
halving line of P is a line passing through two points of P and cutting
the remaining n − 2 points in a half (almost half if n is odd). Gener-
alized configurations of points and their representations using allowable
sequences are useful for bounding the number of halving lines.

We study a problem of finding generalized configurations of points
maximizing the number of halving pseudolines. We develop algorithms
for optimizing generalized configurations of points using the new notion
of partial allowable sequence and the problem of computing a partial
allowable sequence maximizing the number of k-transpositions. It can
be viewed as a sorting problem using transpositions of adjacent elements
and maximizing the number of transpositions at position k.

We show that this problem can be solved in O(nkn) time for any
k > 2, and in O(nk) time for k = 1, 2. We develop an approach for opti-
mizing allowable sequences. Using this approach, we find new bounds for
halving pseudolines for even n, n ≤ 100.

1 Introduction

Let S be a set of n points in the plane in general position. A halving line of S is
a line passing through two points of S and

(i) cutting the remaining points in a half, if n is even, or
(ii) having (n − 1)/2 and (n − 3)/2 points of S on each side, if n is odd.

The problem of finding h(n), the maximum number of halving lines for a set of
n points, is one of the important open problems in the field of discrete geometry.
Erdős, Lovász, Simmons Straus [13,19] raised this problem for first time.

This problem is extended from the real plane R
2 to the real projective plane

P
2. A generalized configuration of points consists of n distinct points in the pro-

jective plane and an arrangement of
(
n
2

)
pseudolines crossing from each pair of

points and intersect each other exactly once. Halving lines in R
2 can be sim-

ilarly extended to halving pseudolines [15] for a generalized configuration of
points in P

2 and define h̃(n) is the maximum number of halving pseudolines.
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A part of extensive research on finding bounds on h(n) and h̃(n) can be found in
[1,7,12,24].

Goodman and Pollack [17] introduced allowable sequences of permutations
(allowable sequence for short) which are useful for encoding configurations of
points in P

2. Allowable sequence is a doubly infinite sequence and half-period of
it can be represented by a sequence Π = (π0, π1, . . . , π(n2)) of permutations on n

elements such that:

(1) Any permutation πi, i ≥ 1 can be obtained from the previous permutation
πi−1 by a transposition of two adjacent elements.

(2) Every two elements are transposed exactly one time.

A transposition between elements at positions k and k + 1 is called a k-
transposition. We denote by τ(k,Π) the number of k-transpositions in Π.

Allowable sequences are one of most the important tools in proving bounds for
many problems of discrete geometry including bounds on the number of k-sets,
halving lines, halving pseudolines, also problems of finding rectilinear crossing
number of graph Kn and pseudolinear crossing number of Kn, see [1–3,6,9]. For
example, the number of (≤ k)-sets of a set of n points in the plane in general
position were studied in [11,20] using allowable sequences.

Most known upper bounds for h(n) use the upper bound

h(n) ≤ h̃(n), (1)

where h̃(n) is the maximum number of halving pseudolines. The definition of h̃(n)
is based on generalized configurations of points in P

2. For the sake of simplicity,
we define it using allowable sequences as follows. Let Π be an allowable sequence
of permutations on [n]. In this paper, we denote by [n] the set {1, 2, . . . , n}. First,
we define h̃(Π) using two cases. If n is even then h̃(Π) = τ(n/2,Π). If n ≥ 3 is
odd then h̃(Π) = τ(n−1

2 ,Π) + τ(n+1
2 ,Π). Then h̃(n) is the maximum value of

h̃(Π) over all allowable sequences of permutations on [n].
The bound (1) is used to show the tight bounds for the halving numbers by

proving upper bounds for h̃(n) matching the lower bounds for h(n). The tight
bounds h(n) = h̃(n) are known for all n ≤ 27 [4]. Inequality (1) can be viewed
as the lower bound for h̃(n). Current lower bounds of h̃(n) and h(n), for small n,
are mostly can be attained by point configurations of Aichholzer’s construction
[5]. Can the bound (1) be improved?

In this paper, we propose to study lower bounds for h̃(n) using allowable
sequences. This can be viewed as the problem of finding an allowable sequence
Π maximizing h̃(Π) for a given n. The problem is known to be difficult for
large n. Checking all possible configurations is computationally expensive as the
number of simple arrangements of n pseudolines Bn, grows exponentially in n.
Best upper bound for Bn is found by Felsner and Valtr [16] and best lower bound
of Bn is provided by Dumitrescu and Mandal [10]. (see also [14,18,21])

Ω(20.2053n2
) = Bn = O(20.6571n2

).
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We propose an approach using partial allowable sequences described in Sect. 2.
An interesting problem in our approach is the following sorting problem.

Max-k Sorting Problem. Given a permutation π on [n] and an integer
1 ≤ k < n, sort π using transpositions to (n, n − 1, n − 2, . . . , 1) such that

(1) The number of k-transpositions is maximized, and
(2) Every pair (i, j) can transposed at most one time.

Our Results. In this paper, we show that Max-k sorting problem can be
solved in O(nkn) time for any k and in O(nk) time for k = 1, 2. We develop an
approach for optimizing allowable sequences and use it to find new bounds for
halving pseudolines for even n, n ≤ 100.

2 Transforming Allowable Sequences

Allowable sequences are very flexible and can be modified to increase h̃(Π). For
example, if the transpositions in permutations πi and πi+1 are non-overlapping,
say transpositions at positions j, j + 1 in πi and positions j′, j′ + 1 in πi+1 with
|j − j′| ≥ 2, then the transpositions in πi and in πi+1 can be exchanged.

We define a push operation as follows. Consider a permutation πj of an allow-
able sequence Π = (π0, π1, . . . , π(n2)). Consider two elements πj(i) = a and
πj(i + 1) = b. If a > b then the transposition of a and b is at some permutation
πj′ before πj , i.e. j′ < j. We can push the transposition of a and b down from the
j′th permutation to the jth permutation. Thus, a and b should be exchanged in
all permutations between these two permutations, see an example at Fig. 1. We
call this operation push-down.

1 2 3 4 1 2 3 4
j′ 1 3 2 4 2 1 3 4

3 1 2 4 2 1 4 3
3 1 4 2 2 4 1 3
3 4 1 2 4 2 1 3
4 3 1 2 4 2 3 1

j 4 3 2 1 4 3 2 1

Fig. 1. Pushing down the transposition of 2 and 3 from permutation πj′ to πj .

Now suppose that a < b and the transposition of a and b is at some per-
mutation πj′ after πj , i.e. j′ > j. We can push the transposition of a and b
up from the j′th permutation to the jth permutation. Thus, a and b should be
exchanged in all permutations between these two permutations. We called the
operation push-up.
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Proposition 1. For any two allowable sequences Π,Π ′ of permutations on n
elements, there exists a sequence of push operations transforming Π into Π ′. It
holds even if the operations are restricted to push-down (or push-up) operations.

We describe another tool for transforming allowable sequences. Let Π =
(π0, π1, . . . , π(n2)) be an allowable sequence. A partial allowable sequence Πi,j is
a subsequence of consecutive permutations of Π, i.e. Πi,j = (πi, πi+1, . . . , πj).
One way to optimize h̃(Π) is to choose a partial allowable sequence Πi,j and
find another partial allowable sequence Π ′

i,j = (π′
i, π

′
i+1, . . . , π

′
j) such that

(1) π′
i = πi, π

′
j = πj , and

(2) the partial allowable sequence Πi,j can be transformed to Π ′
i,j using push

operations within Πi,j .

In many cases, the permutations of Πi,j have a common prefix and a common
suffix. By removing them and renumbering the elements of the permutations,
we reduce the size of the problem. Suppose that n is even. Then the halving
transpositions correspond to k-transpositions for some value of k in the reduced
problem. The elements of the reduced partial allowable sequence can be renum-
bered such that the last permutation is (m,m−1, . . . , 2, 1) for some m ≤ n. Then
the problem of optimizing the halving transpositions can be viewed as Max-k
sorting problem. In this paper, we mostly focus on this problem.

For odd n, the problem is to maximize the sum τ(k,Π) + τ(k + 1,Π). This
problem will be discussed in Sect. 7.

The output of Max-k sorting problem is a partial allowable sequence Πi,j =
(πi, πi+1, . . . , πj). It can be represented by a transcript which is a sequence of
integers k1, k2, . . . , kj−i such that πs, (1 ≤ s ≤ j − i) is obtained from πs−1 by a
ks-transposition.

3 General Max-k Sorting Problem

Let π a permutation on [n] and k be an integer with 1 ≤ k < n. We associate
a vector v(π) = (v1, v2, . . . , vn−1) with π where vi is the number of elements
π(1), π(2), . . . , π(i − 1) larger than π(i). Now, let i be the largest integer such
that vi ≥ k. Let m = π(i). Consider any sorting of π to the reverse of identity
using adjacent transpositions. Every transposition of m in the sorting will be at
positions j, j + 1 where j ≥ k. Thus, m will never be used in a k-transposition;
therefore, we can remove it from π. By renumbering the permutation elements,
we reduce π to a permutation on [n−1]. If vi < k for all i, we call the permutation
π k-bounded. By repeating the above process, a permutation π can be reduced
to a unique k-bounded permutation, say σ. We called v(σ) a k-vector of π.

Let λk(π) be the maximum number of k-transpositions in a sorting of per-
mutation π. The use of vectors of k-bounded permutations is motivated by the
following proposition.
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Proposition 2. Let π1, and π2 be two permutation on [n]. If the k-vectors of
π1 and π2 are equal then λk(π1) = λk(π2).

Lemma 1. The number of k-bounded permutations on [n] is (k − 1)!kn−k+1.

Theorem 3. Max-k sorting problem can be solved in O(nk!kn−k) time.

Proof. First, we will explain the main idea of the algorithm. Then, we show
the improvement of the algorithm efficiency by changing the indexing process
of storing array. We employ dynamic programming and compute arrays Am for
m = 1, 2, . . . , n. An array Am stores the maximum number of k-transpositions
for all k-bounded permutations of size m. We use km entries in Am since the
number of k-bounded permutations of size m is (k − 1)!km−k+1 ≤ km. A k-
bounded permutation π of size m corresponds to Am[j] where j =

∑m
i=1 vik

i−1

and v = v(π).
For a given vector vπ, the corresponding k-bounded permutation π can be

computed in linear time following the proof of Proposition 1. Then the maximum
number of k-transpositions in a sorting of π can be computed as follows. Apply
one transposition and find the corresponding k-bounded permutation. Its length
is either m or m − 1. So, it is stored in Am or Am−1. There are at most m − 1
possible transposition for π. We find the maximum value for them in O(m) time.
The running time for computing each Am is O(m2km). Then the total running
time is

∑
m≤n cm2km = O(n2kn).

We modify the previous approach to improve both the running time and the
space. The size of each array Am can be reduced using Lemma 1. We change
indexing for k-bounded permutations and introduce a one-to-one map T from
set of k-bounded permutations of size m to {0, 1, . . . , (k − 1)!km−k+1 − 1} 1.
Let π be a k-bounded permutations of size m, and vπ = (v1, v2, . . . , vm) be the
associated vector with π. We define T b

a(π) =
∑b

i=a δk(i)vi where 1 ≤ a ≤ b ≤ m,
and T (π) = Tm

1 (π) where

δk(i) =

⎧
⎪⎨

⎪⎩

1 i = 1
δk(i − 1) · i 1 < i < k

δk(i − 1) · k i ≥ k.

The vector δk = (δk(1), . . . , δk(m) can be computed once at the beginning.
Given an index t = T (π) of a permutation π, π can be computed in O(m)
time. For a permutation π of size m, the values of Tn

t (π), and T t
1(π) for t ∈ [m]

can be computed in O(m) time. Let π′ be the permutation obtained from π
by applying one transposition, say p-transposition. The permutations π and π′

are different only at positions p and p + 1, the vector vπ′ may be different from
vπ only at positions p and p + 1. Specifically, if v = v(π) and u = v(π′), then
up = vp+1, up+1 = vp + 1 and ui = vi, i = 1, . . . , p − 1, p + 2, . . . , m.

1 This improves the space by a factor of kk−1/(k − 1)!. For example, if k = 5 this a
factor of 26.041.
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If up+1 < k then permutation π′ is k-bounded and

T (π′) = T (π) + δk(p)vp+1 + δk(p + 1)(vp + 1) − δk(p)vp − δk(p + 1)vp+1.

Suppose that up+1 ≥ k. Then p ≥ k and π′(p + 1) will be deleted and the
elements of π′ will be renumbered. Then π′ corresponds to an entry of array
Am−1 and

T (π′) = T p
1 (π) + Tm

p+2(π)/k.

Notice that the computation of the final π′ takes O(m) time whereas T (π′) can
be computed in O(1) time. We avoid the computation of π′ in this case and use
Am−1[T (π′)] directly.

The runnig time for computing each Am is O(m(k − 1)!km−k+1). Then the
total running time is O(nk!kn−k). ��

4 Max-1 Sorting Problem

We show that Max-1 sorting problem can be solved by a greedy algorithm. Let
π be a permutation on [n]. The following algorithm has two steps. The first step
will maximize the number of 1-transposition and step 2 will complete the sorting
of the permutation.

Step 1. While π(1) �= n, pick the smallest i such that π(i) > π(1) and move
it to the first position, i.e. by swapping π(i) with π(i − 1), π(i − 2), . . . , π(1).

Step 2. While π(i) < π(i + 1) for some i, swap π(i) and π(i + 1).
To compute the maximum number of 1-transpositions for π, one can apply

Step 1 without doing swaps. This can be done by computing the longest increas-
ing sequence in π where start at first position.

Proposition 4. Max-1 sorting problem can be solved in linear time, i.e. the
maximum number of 1-transpositions to sort π can be found in O(n) time and
the corresponding transcript can be found in time O(n + I) where I is the size
of the transcript.

5 Max-2 Sorting Problem

First, we solve Max-2 sorting problem in a special case where the input permu-
tation is 1, 2, . . . , n. Define a function f : Z+ → Z+

f(n) =

{
3n/2 − 3, if n is even,
3(n − 1)/2 − 1, if n is odd.

Theorem 5. For any n ≥ 3, the maximum number of 2-transpositions in a
sorting of 1, 2, . . . , n is f(n).
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Proof. We omit the base case M(3) ≤ 2 and M(4) ≤ 3 due to the lack of space.

Inductive step. First, we show that, for any n ≥ 3, M(n) ≤ f(n) implies M(n +
2) ≤ f(n + 2).

Let Π be an allowable sequence of size n + 2. We transform it by pushing
operators as follows. Consider elements n, n + 1, and n + 2. There are three
transpositions in Π between these elements, and at most two of them are 2-
transpositions. We push them down in the following order: transposition of n
and n + 1, transposition of n and n + 2, and transposition of n + 1 and n + 2.
The number of 2-transpositions in Π will not decrease. This is shown in Fig. 2
(the last four lines).

Now, n + 2 is in third position, and it was never swapped to this position
before. Therefore we can push-down the transpositions of n + 2 with n − 1, n −
2, . . . , 1, see Fig. 2. Similarly, we can push-down the transpositions of n + 1 with
n − 1, n − 2, . . . , 1 as shown in Fig. 2. Let Π ′ be the allowable sequence of the
remaining permutations after removing n + 1 and n + 2 from them. Let t and t′

be the number of 2-transpositions in Π and Π ′, respectively. Then t ≤ t′ + 3.
By induction hypothesis, t′ ≤ f(n). Then t ≤ f(n) + 3 = f(n + 2).

1 2 3 4 · · · n n+ 1 n+ 2
· · · · · ·
n n− 1 n− 2 n− 3 · · · 1 n+ 1 n+ 2
n n− 1 n− 2 n− 3 · · · n+ 1 1 n+ 2

n n− 1 n− 2 n+ 1 · · · 2 1 n+ 2
n n− 1 n+ 1 n− 2 · · · 2 1 n+ 2
n n+ 1 n− 1 n− 2 · · · 2 1 n+ 2
n n+ 1 n− 1 n− 2 · · · 2 n+ 2 1
n n+ 1 n− 1 n− 2 · · · n+ 2 2 1

n n+ 1 n− 1 n+ 2 · · · 3 2 1
n n+ 1 n+ 2 n− 1 · · · 3 2 1
n n+ 2 n+ 1 n− 1 · · · 3 2 1

n+ 2 n n+ 1 n− 1 · · · 3 2 1
n+ 2 n+ 1 n n− 1 · · · 3 2 1

Fig. 2. An allowable sequence of size n + 2.

The above argument can be used to construct an allowable sequence with
f(n) 2-transpositions for any n ≥ 5, see Fig. 3 for an example. ��

We show how to solve Max-2 sorting problem for a given permutation π
on n elements. As in Sect. 3, consider the vector vπ = (v1, v2, . . . , vn−1) where
vi is the number of elements π(1), π(2), . . . , π(i − 1) larger than π(i). First, we
observe that an element π(i) can be removed from π if vi ≥ 2. We remove all
elements π(i) from π with π if vi ≥ 2. Without loss of generality, we assume that
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1

2

3

4

3

2

1

4

5

5

Fig. 3. The inductive step. The wiring diagrams for n = 5 constructed from the wiring
diagrams for n = 3. The corresponding transcript of it is (2, 1, 2, 3, 2, 4, 3, 2, 1, 2).

all vi < 2 in the vector v for π. Then vector v is simply a binary sequence. We
define an i-block, i = 0, 1, as a maximal subsequence of v of consecutive i. Then
vector v is a sequence of alternating blocks

v = B0
1B

1
1B

0
2B

1
2 . . . B0

kB1
k, (2)

where Bi
j is an i-block and block B1

k may be not present. Note that the first block
of vector v must be a 0-block since v1 = 0. Thus, the first block in (2) is B0

1 .
We employ dynamic programming and compute mi

j , i = 0, 1, j = 1, 2, . . . , k, the
maximum number of 2-transpositions in a sorting of π(1), π(2), . . . , π(l) where
l = |B0

1 | + |B1
1 | + |B0

2 | + |B1
2 | + · · · + |Bi

j |. Initially m0
1 = f(|B0

1 |) if |B0
1 | ≥ 3;

otherwise m0
1 = 0. If |B0

1 | = 1 then m1
1 = |B1

1 | − 1; otherwise m1
1 = m0

j + |B1
1 |.

To make a recursive formula we consider a pair (j′, j) such that 1 ≤ j′ < j ≤ k.
Let α be the permutation obtained from sequence π(1), π(2), . . . , π(l) by

(i) sorting first |B0
1 | + |B1

1 | + · · · + |B1
j′ | elements, and then

(ii) deleting elements of π corresponding to blocks B1
j′+1, B

1
j′+2, . . . , B

1
j−1.

Let g(j′, j) be the maximum number of 2-transpositions in a sorting of permu-
tation α. Then,

m0
j = max(f(lj), max

1≤j′<j
(m1

j′ + g(j′, j))), (3)

m1
j =

{
m0

j + |B1
j |, if j > 1 or (j = 1 and |B0

1 | > 1)
|B1

j | − 1, otherwise.
(4)

where lj = |B0
1 | + |B0

2 | + · · · + |B0
j |.

Computing g(j′, j). Let a be the total length of blocks B0
1 , B

1
1 , . . . , B

1
j′ and let b be

the total length of blocks B0
j′+1, B

0
j′+2, . . . , B

0
j . Then vector α (after relabeling)

is
α = a, a − 1, . . . , 1, a + 1, a + 2, . . . , a + b

and g(j′, j) can be computed as

g(j′, j) =

{
3b/2, if b is even,

3(b − 1)/2 + 1, if b is odd.
(5)
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This can be shown similar to the proof of Theorem 5. In the base case, b = 1, 2
and α can be sorted using one and three 2-transpositions, respectively. The
inductive case is similar to Fig. 3 and three 2-transpositions can be added.

The maximum number of 2-transpositions in a sorting of π is m0
k or m1

k if
block B1

k exists. The corresponding transcript can be computed as follows. First,
we modify the dynamic program and, for each j = 1, 2, . . . , k, we store the value
of j′ that is used in computing m0

j . If m0
j is computed as f(lj) in Eq. (3) then

we store j′ = −1. We denote by tij the transcript corresponding to mi
j , i.e. the

transcript for sorting π(1), π(2), . . . , π(l) where l = |B0
1 |+|B1

1 |+|B0
2 |+|B1

2 |+· · ·+
|Bi

j |. Then transcript t1j is the transcript t0j followed by inserting the elements
of π corresponding to B1

j as in the insertion sort.
The transcript t0j can be computed as follows. If m0

j = f(lj) then the tran-
script t0j is obtained by using Theorem 5, see Fig. 3 for an example. Suppose that
m0

j = m1
j′ + g(j′, j) for some 1 ≤ j′ < j. Then the transcript t0j is the transcript

t1j′ followed by the transcript obtained using the proof of Eq. 5.

Theorem 6. For any permutation π on [n], n ≥ 3, a transcript maximizing
Max-2 sorting problem can be solved in O(n2) time.

6 Improving Lower Bounds for h̃(n)

In this section we use algorithms developed in previous sections to improve lower
bounds for h̃(n) for even n. Since n is even, we use allowable sequences maximiz-
ing the number of n

2 -transpositions. We can directly apply the Max-k sorting
algorithm from Theorem 3 for k = n

2 but this is infeasible for large n. Instead,
we devise a heuristic approach to the problem using a local optimization by

(i) creating a block and an allowable sequence and
(ii) solving the corresponding Max-k sorting problem for small k.

Let Π = (π0, π1, . . . , π(n2)) be an allowable sequence. We define a (l, r)-
window or simply a window for a permutation πi of Π as the sequence
πi(l), πi(l + 1), . . . , πi(r), (see Fig. 4(a)). In general, we define a block2 of Π
as a sequence of (l, r)-windows in consecutive permutations πi, πi+1, . . . , πj of Π
such that each window of the block has the same set of elements and every two
consecutive windows are different, see Fig. 4 for examples. For a permutation in
an allowable sequence, we call the n

2 -th position of the permutation, the halving
position.

Let B be a block in Π which consists of (l, r)-windows of length r−l+1 = t on
permutations πi, πi+1, . . . , πj . Suppose that there is at least one l-transposition
and at least one (r − 1)-transposition in the block. We also assume that block B
overlaps with the halving position in Π. Consider the partial allowable sequence
Πi,j . Note that the optimization of this partial allowable sequence (as described
in Sect. 2) corresponds to Max-k sorting problem derived from the block B as
2 The blocks in this section are different from alternating blocks used in the proof of

Theorem 6.



472 S. Bereg and M. Haghpanah

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 5 4 6
1 3 5 2 4 6
1 5 3 2 4 6
1 5 3 2 6 4
1 5 3 6 2 4
1 5 3 6 4 2
1 5 6 3 4 2
1 6 5 3 4 2
1 6 5 4 3 2

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 5 4 6
1 3 5 2 4 6
1 3 5 2 6 4
1 3 5 6 2 4
1 3 5 6 4 2
1 3 6 5 4 2
1 6 3 5 4 2
1 6 5 3 4 2
1 6 5 4 3 2

1 2 3 4 5 6
1 3 2 4 5 6
1 3 4 2 5 6
1 3 4 2 6 5
1 3 4 6 2 5
1 3 4 6 5 2
1 3 6 4 5 2
1 6 3 4 5 2
1 6 3 5 4 2
1 6 5 3 4 2
1 6 5 4 3 2

1 2 3 4 5 6
1 3 2 4 5 6
1 3 4 2 5 6
1 3 4 2 6 5
1 3 4 6 2 5
1 3 4 6 5 2
1 3 6 4 5 2
1 6 3 4 5 2
1 6 4 3 5 2
1 6 4 5 3 2
1 6 5 4 3 2

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 5 4 6
1 3 5 2 4 6
1 3 5 2 6 4
1 3 5 6 2 4
1 3 5 6 4 2
1 3 6 5 4 2
1 6 3 5 4 2
1 6 5 3 4 2
1 6 5 4 3 2

(a) (b) (c)

(d) (e)

Fig. 4. (a) Initial window. (b–d) Extension of the window using push-up/push-down.
(e) Applying the Max-1 sorting algorithm.

follows. There is a bijection α : {πj(l), πj(l + 1), . . . , πj(r)} → [t] such that
α(πj(x)) = t − (x − l), l ≤ x ≤ r. This map transforms the last window of B
into sequence (t, t − 1, t − 2, . . . , 1). Then the permutation for Max-k sorting
problem is α(πi(l)), α(πi(l + 1)), . . . , α(πi(r)) and the value of k corresponds to
the halving position in the block. The solution of an algorithm for Max-k sorting
problem can be used to increase τ(n

2 ,Π) if the block in Π is replaced by α−1(Π ′)
where Π ′ is the output of the algorithm (a sequence of permutations).

A block B that allows to increase τ(n
2 ,Π) may not exist in the allowable

sequence Π. We create new blocks using push operations as follows. First, we
choose a (l, r)-window in a permutation of Π such that it includes the halving
position We consider it as the initial block B0. To construct a new block Bi, i > 0,
we consider the permutation πj containing the lower window wj of Bi−1. Take
two adjacent elements πj(t) and πj(t + 1) in wj such that πj(t) < πj(t + 1)
and the corresponding transposition of πj(t) and πj(t + 1) in Π is not a n

2 -
transposition. Apply the push operation (push-up) to this transposition such
that it is a transposition between πj and πj+1. Then the block Bi is the extension
of Bi−1 using the (l, r)-window in permutation πj+1. Note that this extension
preserves the block property that every two consecutive windows are different.
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The same process can be done to extend the block upward by pushing down
transpositions (see Fig. 4(b)).

Let B be the block constructed by the above procedure. The block contains
the halving position, say at its k-th position. By applying a Max-k sorting
algorithm for block B we may increase τ(k,B). This will increase τ(n

2 ,Π), see
Fig. 4(e)) for an example. We run this algorithm all even n up to 100 for k = 1.
The running time for each n is between two hours and two days. The results
are shown in Table 1. Many of them improve known lower bounds for h̃. The
transcripts of these allowable sequences are available at http://www.utdallas.
edu/∼besp/soft/pseudo/halving/even.zip.

7 Future Work

In this paper, we used the algorithm discussed in Sect. 6 combined with the Max-
1 sorting algorithm from Sect. 4 on allowable sequences of even length to achieve
the results shown in Table 1. For odd n, the problem of maximizing h̃(Π) for an

Table 1. Bounds for the ˜h(n). LB/UB denotes the current lower bound/upper bound

for ˜h(n). The bounds in bold are obtained in this paper. Prev denotes the previous
lower bound for h(n) if they are improved in this paper. The numbers in this column
are from [5,24].

n LB UB Prev n LB UB Prev

28 63 64 - 66 202 236 197

30 69 72 - 68 207 246 203

32 74 79 - 70 226 257 211

34 81 86 79 72 229 268 211

36 88 94 84 74 237 279 228

38 97 102 94 76 253 291 237

40 104 110 103 78 262 303 242

42 111 119 - 80 265 315 250

44 117 127 112 82 268 327 261

46 126 136 122 84 282 339 264

48 133 146 129 86 292 351 276

50 141 155 139 88 297 363 282

52 146 164 143 90 312 376 290

54 153 174 152 92 317 388 300

56 163 183 158 94 326 401 309

58 169 193 165 96 345 414 308

60 177 204 172 98 338 427 320

62 187 214 180 100 366 440 328

64 195 225 187

http://www.utdallas.edu/~besp/soft/pseudo/halving/even.zip
http://www.utdallas.edu/~besp/soft/pseudo/halving/even.zip
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allowable sequence Π uses two halving positions. A heuristic solution is to use
a Max-k sorting algorithm on a block for each of halving positions separately.
Another approach is to provide an algorithm for the problem of maximizing total
number of k-transpositions and (k+1)-transpositions in sorting of a permutation.
We will explore this approach for odd values of n in the future.

Every allowable sequence from Table 1 corresponds to an arrangement of
pseudolines. If an arrangement of n pseudolines is stretchable, i.e., is isomorphic
to an arrangement of n straight lines, then one can find a set of n points in the
plane providing a new bound for h(n). The problem of determining whether a
pseudoline arrangement is stretchable is NP-hard, see [22,23,25]. It would be
interesting to explore the stretchability of the pseudoline arrangements from
Table 1, perhaps using the heuristic method by Bokowski [8].

References
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