
Docable: Evaluating the Executability of Software Tutorials
Samim Mirhosseini

NC State University

Raleigh, North Carolina, USA

smirhos@ncsu.edu

Chris Parnin

NC State University

Raleigh, North Carolina, USA

cjparnin@ncsu.edu

ABSTRACT

The typical software tutorial includes step-by-step instructions for

installing developer tools, editing files and code, and running com-

mands. When these software tutorials are not executable, either due

to missing instructions, ambiguous steps, or simply broken com-

mands, their value is diminished. Non-executable tutorials impact

developers in several ways, including frustrating learning experi-

ences, and limiting usability of developer tools.

To understand to what extent software tutorials are executable—

and why they may fail—we conduct an empirical study on over

600 tutorials, including nearly 15,000 code blocks. We find a naive

execution strategy achieves an overall executability rate of only

26%. Even a human-annotation-based execution strategy—while

doubling executability—still yields no tutorial that can successfully

execute all steps. We identify several common executability barri-

ers, ranging from potentially innocuous causes, such as interactive

prompts requiring human responses, to insidious errors, such as

missing steps and inaccessible resources. We validate our findings

with major stakeholders in technical documentation and discuss

possible strategies for improving software tutorials, such as pro-

viding accessible alternatives for tutorial takers, and investing in

automated tutorial testing to ensure continuous quality of software

tutorials.

CCS CONCEPTS

• Software and its engineering→ Documentation.

KEYWORDS

software tutorials, documentation, testing, continuous integration

ACM Reference Format:

Samim Mirhosseini and Chris Parnin. 2020. Docable: Evaluating the Exe-

cutability of Software Tutorials. In Proceedings of the 28th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3368089.

3409706

1
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-

application-for-production-on-ubuntu-16-04

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3409706

7/22/2019 How To Set Up a Node.js Application for Production on Ubuntu 16.04 | DigitalOcean

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-application-for-production-on-ubuntu-16-04 3/21

$ sudo apt-get install build-essential

The	Node.js	runtime	is	now	installed,	and	ready	to	run	an	application!	Let's	write	a	Node.js	application.

Note:	When	installing	from	the	NodeSource	PPA,	the	Node.js	executable	is	called	 nodejs ,	rather	than

node .

Create	Node.js	Application

We	will	write	a	Hello	World	application	that	simply	returns	"Hello	World"	to	any	HTTP	requests.	This	is
a	sample	application	that	will	help	you	get	your	Node.js	set	up,	which	you	can	replace	with	your	own
application--just	make	sure	that	you	modify	your	application	to	listen	on	the	appropriate	IP	addresses
and	ports.

Hello	World	Code

First,	create	and	open	your	Node.js	application	for	editing.	For	this	tutorial,	we	will	use	 nano 	to	edit	a
sample	application	called	 hello.js :

$ cd ~

$ nano hello.js

Insert	the	following	code	into	the	file.	If	you	want	to,	you	may	replace	the	highlighted	port,	 8080 ,	in
both	locations	(be	sure	to	use	a	non-admin	port,	i.e.	1024	or	greater):

#!/usr/bin/env nodejs

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/plain'});

 res.end('Hello World\n');

}).listen(8080, 'localhost');

console.log('Server running at http://localhost:8080/');

Now	save	and	exit.

This	Node.js	application	simply	listens	on	the	specified	address	(localhost)	and	port	(8080),	and
returns	"Hello	World"	with	a	 200 	HTTP	success	code.	Since	we're	listening	on	localhost,	remote

clients	won't	be	able	to	connect	to	our	application.

hello.js

SCROLL	TO	TOP×Sign	up	for	our	newsletter.	Get	the	latest	tutorials	on	SysAdmin	and	open	source	topics.

	
Figure 1: an excerpt of the technical software tutorial, “How
To Set Up a Node.js Application for Production on Ubuntu
16.04”. You can see the full instructions

1
, and even give it

a try.

1 INTRODUCTION

Many software tutorials, include step-by-step instructions for in-

stalling, configuring, and using software tools, which are essential

in the software development process. For example, software tuto-

rials hosted by DigitalOcean have been viewed over 409 million

times, including tutorials such as “How To Secure Nginx with Let’s
Encrypt” and “How To Set Up a Node.js Application for Production on
Ubuntu 16.04” as shown in Figure 1. Tutorials are featured promi-

nently in developer-related search results [34], and serve a vari-

ety of purposes, such as integrating with instructional materials

for classrooms [11], supporting documentation efforts [28], and

training underrepresented and professional developers through

community-driven [17] or paid workshops
2
.

The ideal tutorial, as described in DigitalOcean’s guidelines for

tutorial creators [35], should follow several principles. First, tu-

torials should be accessible for all tutorial takers, being “as clear

and detailed as possible without making assumptions about the

reader’s background knowledge.” Furthermore, tutorials should be

executable from start-to-finish: “We explicitly include every com-

mand a reader needs to go from their first SSH connection on a

brand new server to the final, working setup.” Finally, tutorials are

not merely scripts, but should explain and impart knowledge: “We

also provide readers with all of the explanations and background

information they need to understand the tutorial. The goal is for

our readers to learn, not just copy and paste.”

2
https://learnk8s.io/

https://doi.org/10.1145/3368089.3409706
https://doi.org/10.1145/3368089.3409706
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-application-for-production-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-application-for-production-on-ubuntu-16-04
https://doi.org/10.1145/3368089.3409706
https://learnk8s.io/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Samim Mirhosseini and Chris Parnin

Unfortunately, tutorials can fall far from this ideal. Despite their

importance, software tutorials require considerable effort to pro-

duce, test, and maintain in order to ensure a high-quality learning

experience. Tutorial creators face several barriers: supporting dif-

ferent levels and environments of tutorial takers [31], preventing

instructions from becoming stale as tools or environments quickly

evolve [19], and overcoming the expert blind spot effect [26], when
tutorial creators do not anticipate steps where novice tutorial takers

may have difficulty [24]. As a result, undiscovered issues [18] in

software tutorials can lead to frustrating and ineffective learning

experiences [16, 23].

To systematically understand what issues software tutorials

contain—and what tutorial creators can do to avoid them—we inves-

tigate software tutorials through the lens of executability, measuring

to what extent we can follow step-by-step instructions to their “fi-

nal, working setup”. To this end, we conduct an empirical study of

663 tutorials, first by measuring executability with a naive execu-

tion strategy (as one would “just copy and paste”), and finally with

a more sophisticated strategy using human-annotation for inter-

preting and executing instructions. Through a qualitative analysis,

we identified several issues in tutorials that limited executability,

and we validated these issues with 6 informants, who were expert

stakeholders in technical documentation.

Our findings show that with a naive execution strategy, we

achieve overall executability rate of only 26%. Even with a more

sophisticated strategy using annotated tutorials, executability rate

only increases to 52.3%—and even more concerning no tutorial

successfully executed all steps to its “final, working setup”. Our

qualitative analysis revealed several issues, such as inaccessible

resources, missing steps, inconsistency in handling file content, and

documentation rot, which detract from the usability and value of

the tutorials. Our informants, generally agreed with significance

of the results and illustrated scenarios where these problems have

occurred; however, informants had a mixed consensus on the sever-

ity of some problems and how to best address them. Finally, we

provide design implications for technical writers, toolsmiths, and

software engineering researchers for improving tutorials, such as

providing accessible alternatives for tutorial takers, and investing in

automated tutorial testing to ensure continuous quality of software

tutorials.

2 METHODOLOGY

To explore why software tutorials produce execution failures, we

conducted a mixed-methods study through an empirical study on

tutorials collected from various online sources, and through a quali-

tative analysis of tutorials. We do so through the following research

questions:

2.1 Research Questions

• RQ1: Can tutorials be naively executed. If not, why?

Can the average tutorial be run to completion naively, or

will it result in failure? What failures occur when there is

limited knowledge on how to follow instructions?

• RQ2: Can tutorials be executed with limited human-

annotation? What extra human interpretation is needed

to interpret and execute more instructions? What barriers

remain that prevent fully automated testing of a software

tutorial?

2.2 Data Collection

We selected three popular sources of software tutorials: Vultr
3
, Dig-

italOcean
4
, and Linuxize

5
. All tutorials were related to installing

software tools, security, and configuring and operating virtual com-

puting environments, topics frequently important in continuous

deployment processes in software engineering [27]. We used a web-

scraping script to crawl and download all tutorials for the Ubuntu

operating system hosted on the sources, yielding a total of 780

tutorials.

We organized our collected data into target platform specified

by the tutorial (e.g. Ubuntu 18.04), and then removed duplicate tu-

torials with the same content but targeting different platforms. We

also excluded tutorials that targeted a deprecated Linux distro (i.e.

Ubuntu 12.10) for which we could not find a stable base image, and

tutorials that were primarily focused on using GUI interfaces (e.g.

“How To Set Up Continuous Integration Pipelines with Drone on

Ubuntu 16.04”
6
). After filtering, our collected dataset of 780 tutori-

als was reduced to 663 tutorials. In summary, our filtered dataset

included 339 tutorials from Vultr, 224 tutorials from DigitalOcean

and 100 tutorials from Linuxize.

We then drew a stratified random sample of tutorials in our

dataset (6%), in order to facilitate qualitative analysis, as done in Kim

and Ko [16], who inspected a sample of 30 tutorials. Because our

tutorial sources were not uniformly represented in the dataset, we

determined a statistically representative sample size for each source.

To do so, we used a proportionate stratified random sampling [15]

by considering each source as a strata. We used a relaxed confidence

interval (80% ± 10%) to calculate the sample size of each strata,

allowing us to target diversity over representativeness [25]. This

yielded a total of 40 tutorials containing 787 content blocks—20

tutorials from Vultr, 14 tutorials from DigitalOcean, and 6 tutorials

from Linuxize.

2/26/2020 How To Secure Nginx with Let's Encrypt on Ubuntu 16.04 | DigitalOcean

https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-16-04 3/25

up-to-date versions, so we’ll use that repository instead.

First, add the repository.

$ sudo add-apt-repository ppa:certbot/certbot

You’ll need to press ENTER to accept. Then, update the package list to pick up the new
repository’s package information.

$ sudo apt-get update

And finally, install Certbot’s Nginx package with apt-get .

$ sudo apt-get install python-certbot-nginx

Certbot is now ready to use, but in order for it to configure SSL for Nginx, we need to verify
some of Nginx’s configuration.

Step 2 — Setting up Nginx

Certbot can automatically configure SSL for Nginx, but it needs to be able to find the correct
server block in your config. It does this by looking for a server_name directive that matches
the domain you’re requesting a certificate for.

If you’re starting out with a fresh Nginx install, you can update the default config file. Open it
with nano or your favorite text editor.

$ sudo nano /etc/nginx/sites-available/default

Find the existing server_name line and replace the underscore, _ , with your domain name:

. . .
server_name example.com www.example.com;

/etc/nginx/sites-available/default

SCROLL TO TOP

×Sign up for our newsletter.
Get the latest tutorials on SysAdmin and open source topics.

Enter your email address Sign Up

Figure 2: Tutorial fragment with code block. We extract the

command ‘sudo add-apt-repository ppa:certbot/certbot’
for running in our execution harness.

2.3 Execution Harness

To create our execution harness, we initialize a new virtual ma-

chine environment with 4GB of RAM and 2 CPU cores. The virtual

3
https://www.vultr.com/docs/category/ubuntu/

4
https://www.digitalocean.com/community/tutorials

5
https://linuxize.com/tags/ubuntu/

6
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-

integration-pipelines-with-drone-on-ubuntu-16-04

https://www.vultr.com/docs/category/ubuntu/
https://www.digitalocean.com/community/tutorials
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-with-drone-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-with-drone-on-ubuntu-16-04

Docable: Evaluating the Executability of Software Tutorials ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

tutorial_1.html:

steps:

- file: "Let's create a small server using PHP. => server.php"

- serve: "Start it!"

- run:

select: "install unzip"

input: "Do you want to continue? => yes"

user: root

Figure 3: An example steps.yml file

machine base image is selected to match the operating system tag

associated with the tutorial article. Tutorial instructions are exe-

cuted on the headless virtual machines through an SSH connection.

Commands are instrumented to log output, failures, and exit sta-

tus of the operation. A new execution harness is created for every

tutorial.

2.4 Baseline: Naive Execution

To answer RQ1, we implement a baseline technique, we call naive
execution which simply executes text within a content block. The

technique closely mirrors previous studies on executability, where

no interpretation is performed on the code snippets on Stack Over-

flow [37] or gists [12] when measuring executability rates.

We designed a custom CSS selector to extract code blocks from

each source of tutorials (see Figure 2). A code block is defined in

the HTML specification as an element that “represents a fragment

of computer code”, and is marked by the <code></code> tag. After
extraction, we execute the verbatim text as a shell command within

the execution harness. The resulting exit code, the stdout and stderr

streams are also recorded. If the command never terminates after 10

minutes, we record a timeout, and mark the remaining instructions

as unreachable.

To measure executability, we count the number of code block

executions reporting a non-error exit code (indicated by 0). We

do not directly use stderr to determine execution failure, as some

commands print information to stderr, such as python --version.
We discuss the limitations of this approach in Section 5.

To identify why execution fails, we first cluster the commands by

exit code after execution, as done by Horton and Parnin [12]. The

distribution of execution failures provides a high-level overview

of failure causes (e.g. an exit code status of E127 occurs when a

command cannot be found). To understand why a code block cannot

be naively executed, we then perform an open card sort [33], using
similar method used by Begel and Zimmermann [2], to organize

code blocks into descriptive categories. The categories provide

insight into various possible interpretations under which a code

block could be executed.

2.5 Human-Annotation-Based Execution

To answer RQ2, we implement a technique, we call Docable. The

name is derived from a portmanteau of the words documentation

and runnable.

2.5.1 Context. Rather than devising an automatic execution tech-

nique, we wanted to use the opportunity to derive annotations

for instructions based on human classification. This approach has

Figure 4: Docable can generate a report based on the origi-

nal tutorial, which enables inspection of tutorial execution.

In this example, the ‘apt-get install’ command did not ex-

ecute successfully.

several benefits: First, the annotations provide a bounded interpre-

tation of instructions. For example, if we provide an annotation

with an expected response from a command, such as type "yes"

or enter, we can specifically measure how the presence of interac-

tive prompts effects executability. More importantly, we can begin

to model different levels of tutorial reader understanding. For ex-

ample, a complex operation might involve starting a command as

background process, which requiresmore knowledge about shell op-

erations. Finally, automation is ultimately possible in future efforts,

such as techniques which try to automatically infer annotations for

commands.

2.5.2 Design. The design of Docable is inspired by behavioral-

driven testing tools, such as Cucumber, which uses an external

stepfile for selecting and asserting expected test behaviors. Here,

we extend this concept by providing capabilities for first selecting a

command from a tutorial, and then providing an annotated step that

describes how to execute the command. Steps select code blocks

by matching text occurring above the block. For example, in the

stepfile shown in Figure 3, the text “Let’s create a small server using

PHP” can be used to select the associated code block. The file
annotation tells Docable that content should be saved as a file

called server.php.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Samim Mirhosseini and Chris Parnin

Docable also has the ability to generate an HTML report based

on the original tutorial, which enables inspection of tutorial execu-

tion. In this report, passing code blocks are highlighted in green,

failing code blocks are highlighted in red, and ancillary information

such as error output and exit codes errors are added to the end of

code blocks. An example report is shown in Figure 4.

2.5.3 Annotations. We derived annotations from the results of our

open card sort analysis (see Section 3.3). For example, we created

the expect annotation based on the Output category derived in

Section 3.3.3. When creating the annotations, we balanced engi-

neering effort with support from tutorials. For example, we did not

implement replacing search and replace operations on files, since

few tutorials used this technique and engineering effort would be

high.

We derived the following annotations:

• run. Run a code block as-is, that is naively.
• file. Select content and store as a file located at the given

path.

• user. Perform command as user. For example, installation

often requires being run as the root user.

• input. Provide input to interactive prompts.

• expect. Code block is expected output of command another

command.

• serve. Run code in a background process.

• persistent. Allocate a terminal shell to run a series of com-

mands. For example, some tutorials are written to be run in

different terminals.

2.5.4 Execution Failures and Peer-Debriefing with Informants. We

conduct a qualitative analysis on the reports produced by Docable.

We performed an inductive thematic analysis [4] to organize and

cluster the execution failures observed in the execution reports into

general themes. To further characterize the reports, we performed

an additional purposive sampling, or non-probabilistic sampling,

on tutorials in the entire dataset and composed memos [3]. These
memos, or author annotations on tutorials, capture interesting ex-

changes or properties of the software tutorials, promote depth and

credibility, and frame problems through tutorial takers information

needs. That is, the memos provide a thick description to contextual-

ize the findings [30].

Finally, to address the validity of the thematic analysis, we per-

form a peer debriefing [20] with 6 informants, who are experts in

tutorials, documentation and book authors in DevOps, including

core contributors to Ansible, and documentation leads at DigitalO-

cean. Our informants performed an expert review of our findings

and generated reports that summarized their assessment on the

validity and impact of our results.

3 NAIVE EXECUTION RESULTS

In this section we answer our research question: RQ1: Can tuto-

rials be naively executed? If not, why?

3.1 Executability Rates

Naive execution of code blocks resulted in an execution rate of 13%—

only 1,935 code blocks of 14,876 ran successfully (i.e., non-zero exit

code). We also observed a high-rate of timed-out tutorials (75%).

Table 1: Executability of tutorials in our different experi-

ments. Naive: running all the code blocks of the tutorials,

Naive++: running naive, but updating apt and apt-get com-

mands to use -y option. T/O stands for timed out.

Unreachable F P Blocks T/O

N 9769 (66%) 3172 (21%) 1935 (13%) 14876 498 (75%)

N++ 5314 (36%) 5646 (38%) 3916 (26%) 14876 261 (39%)

Table 2: Executed code blocks and corresponding execution

status (exit codes) in naive++ approach. Non-zero exit codes

indicate errors.

Status Blocks Description

– 5314 Unreachable code blocks

E0 3916 Successful execution

E127 2393 command not found error

E1 2032 Catchall for general errors

E100 269 Unable to locate package X as a result of run-

ning apt-get install
Etime 261 Any command terminated after timeout (10

minutes)

E5 201 Service X not found, no such file or directory
as a result of systemctl commands

E2 134 Cannot open: No such file or directory
E255 88 Couldn’t read packet: Connection reset by peer

and Could not resolve hostname X as a result

of using a template value with sftp and ssh
E3 79 Service X not found, no such file or directory

as a result of systemctl commands

E6 46 usermod: user ’X’ does not exist or curl: (6)
Could not resolve host: example.com as a re-

sult of using template values with usermod
and curl commands

E128 30 repository ‘your-github-url’ does not exist as
a result of cloning a repository that does not

exist

E4 27 Unit X.service could not be found. as a result
of running systemctl status X

E7 24 Connection refused as a result of running un-

available URL with curl
E8 15 404: Not Found, server issued an error re-

sponse when using wget
Other 47 Misc. errors occurring infrequently

Total 14876

Manual inspection revealed many timed-out while awaiting for user

interaction. Often, these commands were early in the tutorial and

typically associated with installation commands, such as "apt-get
install package_X" commandwaswaiting for the user to respond

to "Do you want to continue [y/N]?" prompt. As a result of

timed-out tutorials, many code blocks were simply unreachable.

We devised a small automated naive patch to tutorials to improve

naive execution. We automatically updated the apt and apt-get

Docable: Evaluating the Executability of Software Tutorials ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

commands within the tutorials to use the -y | --yes option, which
provides an affirmative response to prompts

7
.

We re-ran our experiments with our automated patch, which

was effective in reducing the number of tutorials that timed out and

allowed more code blocks to be executed. However, an overall low

rate of executability persisted: 26% (3,916 out of 14,876 code blocks).

Surprisingly, our results are consistent with naive executability

rates found in other studies of code snippets. For example, a recent

study by Pimentel et al. [29] found that only 24% of Jupyter note-

books could be executed without exceptions. Similarly, only 25–27%

of Python code snippets found in Stack Overflow posts [14, 37] and

GitHub gists [12] are executable.

3.2 Errors and Exit Codes

We categorized exit codes to identify preliminary explanations for

why the code block could not be naively executed (see Table 2).

Naive execution of many code blocks resulted in E127, which occurs
when a command cannot be found. This indicates previous steps

to setup tools did not succeed, or possibly content that was not

a command was being executed. Exit codes, such as E2, E5, and
E128 indicated that commands failed when expected resources,

services, or files were unavailable or inaccessible. Finally, many

commands were still inaccessible, indicated that possibly other

types of commands were still timing out due to interactive prompts.

3.3 Code Block Types

Our open card sort revealed four high-level categories based on the

inspection of 787 code blocks.

3.3.1 Commands (573). Code blocks primarily involved commands

that should be executed in a terminal. However, commands some-

times had specialized execution contexts:

• text editor : Open a text editor.

• template: Incomplete command requiring tutorial taker to

fill in placeholder values.

• interactive program shell: The command opens an interactive

shell to input more commands, such as the MySQL shell.

3.3.2 File Content (111). Code blocks often referred to code snip-

pets and configuration files that needed to be placed inside the file

system. However, frequently the tutorial provided instructions for

manipulating existing file content—and the types of manipulations

varied greatly. We observed the following manipulation operations:

• add: Append content to the end of a file.

• partial: Update part of a file with content.

• search and replace: Substitute existing content with new val-

ues.

• uncomment: Enable content in existing configuration files.

• conditional: Multiple options exist on what to update in file.

3.3.3 Instruction Output (93). Code blocks often contained the

output of a command, that is, the standard output resulting from

executing a command. How the output was displayed varied in

several subtle ways:

• partial: Trimmed output.

• template: Output with placeholder values.

7
https://linux.die.net/man/8/apt-get

• interactive prompt: Output that also includes responses to

interactive prompts.

• interactive program shell: Results of interactive shell com-

mands, such as results of a SQL query.

3.3.4 Presentation (10). We also found ten code blocks that pre-

sented ancillary information, such as showing a URL. These code

blocks were not directly relevant for execution of the tutorial.

4. Save and close the �le.

Step 4: Enabling Apache SSL module

Let's access the new secure website! Open it in your browser:

https://YOUR_SERVER_IP

1. Enable the SSL module by typing:

sudo a2enmod ssl

2. Now enable the site we have just edited:

sudo a2ensite default-ssl.conf

3. Restart Apache:

sudo service apache2 restart

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log c

 SSLEngine on

 SSLCertificateFile /etc/apache2/ssl/a

 SSLCertificateKeyFile /etc/apache2/ssl/a

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars

 </FilesMatch>

 <Directory /usr/lib/cgi-bin>

 SSLOptions +StdEnvVars

 </Directory>

 </VirtualHost>

</IfModule>

Con�gure Apache With Se…Categories Linux Guides

3.4 Summary

Naive execution yielded a low execution rate. Multiple factors con-

tributed to why naive execution failed. Cascading failures, incom-

plete instructions, missing interactive input and a lack of human

interpretation were just some of the factors. Our inspection of code

blocks further revealed that in addition to there being multiple

types of code blocks, those code blocks also required considerable

nuance in interpretation when executing them.

4 HUMAN-ANNOTATION-BASED

EXECUTION RESULTS

In this section, we answer the research question: RQ2: Can tuto-

rials be executed with limited human-annotation?

4.1 Annotations

We created 771 annotations for the 40 tutorials. The majority of an-

notations corresponded to labeling code blocks as simple commands

(455). However, there were more complex commands which needed

one or more additional annotations, including 38 input annotations,

47 user annotations, and 3 commands that needed to be run in the

background (serve). Finally, 82 commands needed to be associated

with a specific terminal session (persistent). We also created 112

file annotations for creating file content at a specified path and 39

annotations for matching expected output with command output.

We labeled 131 code blocks as skip that we deliberately decided

to not execute, either because another code block would subsume

it, or it was for presentation. For example, some tutorials presented

file content in a stagged manner. That is, they built up the file con-

tent, provided an explanation, and then continued to explain more

fragments of file content. In this case, we implicitly applied skip
annotations for the intermediate content and then annotated the

final and complete code block with the appropriate file annota-
tion. Finally, we explicitly skipped and marked 47 code blocks as

failed, when running a command that would significantly disrupt

the execution harness. We discuss the impact on executability rates

in our limitations (Section 5).

The docable tool, stepfiles, and tutorials are available at:

https://github.com/docable/docable.

https://linux.die.net/man/8/apt-get
https://github.com/docable/docable

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Samim Mirhosseini and Chris Parnin

4.2 Executability Rates

Docable execution of annotated code blocks resulted in an execu-

tion rate of 52.3% (343 out of 656 code blocks, when excluding previ-

ously mentioned 131 skipped code blocks). Furthermore, no tutorial

timed-out and thus all code blocks were reachable. But even with

these improvements, no single tutorial completed successfully in its

entirety.Thus, evenwith limited human annotation, wewere

unable to bring any tutorial to its “final, working setup.”

4.3 What Execution Failures Remain?

We present the remaining execution failures as themes based on

our qualitative analysis of Docable reports, and give examples

of tutorials instructions that exhibited this problem. Finally, we

include excerpts of the informants expert review of our findings.

Simplifying assumptions about environment.Tutorialsmake

simplifying assumptions about the user’s environment. For exam-

ple, some tutorials will assume the package manager’s listing is

up-to-date and do not explicitly mention running the ‘apt-get
update’ command. Unfortunately, omitting this step can result

in intermittent errors (see Figure 5). Another way tutorials make

simplifying assumptions is by requiring prerequisites. Prerequisites

are sometimes listed at the beginning of the tutorial and described

in natural language or reference other tutorials which should be

completed first. In many cases we found there are more than one

link for each prerequisite and it is not clear which one should be

used.

Figure 5: We observed a problem in the Linuxize tutorial for

installing the package "steam", which omits an explicit apt-

get update command.

Our informants recognized this as a general problem with tu-

torials: “There’s an implicit assumption about the environment”

(I5) and “many tutorials assume you have things like a working

database” (I4). If tutorials “were all written with *less* assumptions

and were more comprehensive that would be great, and people

could just skim over the parts they already knew” (I4).

Informants believed tutorials became problematic if they use

“too much referral within a tutorial or setup instructions to another

tutorial” (I4). Furthermore, “most of tutorials build upon others, and

sometimes that can runmultiple levels deep” (I3). For a tutorial taker,

it can be unclear how long the additional setup will take, or whether

those prerequisite tutorials are up-to-date. Even informants can be

frustrated with this as tutorial takers: “Once I was *attempting* (I

gave up) to install an application and the first tutorial allowed me

a choice of 6 ways to install something and none worked.” (I4)

Inconsistent file content blocks Tutorials often contain file

content blocks without explicit indication of the expected action

a tutorial taker should make. Sometimes the whole content of the

file is shown, and sometimes only a subset of a file that need to

be updated. Other times the tutorial instruct the tutorial taker to

uncomment part of the existing file or append to the end of file.

There is no standard convention across tutorials for represent-

ing and presenting these differences. For example, some tutorials

indicate omitted content with “...” characters and expect you to add

the new content displayed. Other tutorials display exiting content

and expect you to replace a small part of the file. For example, in

the tutorial below, the code block shows the existing content in the

’settings.py’ for Django.

Inadvertently replacing the whole ’settings.py’ file with this

content would not only introduce syntax errors, but would also

omit essential content. Finally, there is a small part of the file that

needs to be updated: "your-server-ip" should be replaced with

the real IP address of the server, which could be missed by the

tutorial taker.

Consensus on this topic was mixed. Informants recognized the

inconsistency in dealing with file content, but some believed they

were justified showing truncated content: “Sometimes the configu-

ration can be long” (I5). Another informant believed that “ambiguity

in code blocks are designed to guide a human reader to the right

part of the file, and were never designed to be interpreted by a

machine” (I6), and “a code block with non-important bits cut out

with a "[...]" is better for a human reader”. (I6)

Informant (I1) had a different perspective and claimed that sum-

marizing content with "...", “is really not helping people.” Fur-

thermore, the informant recognized their expert blind spot, and
sometimes inappropriately summarized content “because I know

what I’m looking for, but a person who has never used the (tutorial’s

tool)” may not. Tutorial takers may have difficulty “understand-

ing what the summary is showcasing” and may not be able to

locate the relevant information: “you tell them run this and look for

something and there are a lot of things like ip addresses...”. The in-

formant recommends using “something like jq which automatically

filters out the output and give what is needed” in order to reduce

the reader’s confusion. At the same time a shorter output that is

programmatically generated helps with automated execution of

tutorials.

Docable: Evaluating the Executability of Software Tutorials ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Missing, contradictory, and volatile instructions. Some tu-

torials have missing steps that are necessary to successfully run the

tutorial. There was no shortage of examples. Several tutorials did

not include steps need for creating users, for example, if the tutorial

does not mention the creation of a required “backup” user, the next

commands that need to run as the “backup” user will fail. Tutorials

often omitted whether or not a tutorial taker should use sudo or not

for a command, resulting in multiple command failures. Tutorials

also did not include steps on how to reach a desirable state: For

example, one tutorial provides a command to check whether ufw,
a firewall tool, is enabled without providing any instructions on

how to enable it. Tutorials also sometimes contain contradictory

instructions. For example, in one tutorial, it asks to install version

0.9.3 of a tool, but later in the tutorial, it shows version 0.9.2 of that

tool is installed.

We also observed several instances where tutorials contained

volatile instructions, that is instructions whose behavior would

produce different results. Volatile instructions often involved com-

mands that output dynamic information, such as PID (process ID),

IP addresses, and usernames. As a result, the actual output produced

by the command would not match the expected output in the code

block, when run by any future tutorial taker.

All informants emphasized the importance of consistency in

instructions. Informants noted the importance of executability to

test consistency in tutorials: “If you have a unified set of annotations

it makes it hugely better for everyone. of course now if everyone

adds their own style of annotations it sort of defeats the purpose

because now you have five ways of running code and there is

no uniformity. (For example,) Stackoverflow has a special block

specifically for JavaScript (with an option called run snippet) which

makes it easier for people to run custom code.”

After being introduced to Docable, some informants started

systematically reviewing their own tutorials “From our side, since

we started playing with docable we made a few corrections on

how we write tutorials. Overall, what docable has promoted for

us is consistency.” (I5) For example, the informant now ensures

that “Tutorials tend to have similar instructions or structure. In the

example above, all the powershell snippets start with If you’re using
Powershell, the command is: which is easy to grep, and lint. As we

develop more material we have the opportunity to standardise our

language which makes it easier for students to understand.” (I5)

Documentation rot. Tutorial instructions, especially if they use

reference external resources, may become unavailable or change

over time. We encountered several instances where a tutorial failed

due to expired resources, such as a url (see Figure 6). For example,

one tutorial references a PGP key for verification of packages, but

that key has since expired, which results in failing installation of

packages and in most of the remaining tutorial also not working.

Another way tutorials can become out-of-date is if the newer ver-

sions of tools or packages are published and no longer work with

the instructions provided in the tutorial.

Informants confirmed their difficulty with maintaining tutorials:

“tutorial maintenance is inherently difficult for us. We don’t cur-

rently have the means to automate tutorial changes, so any time an

update happens we have to make changes manually.” (I2) Another

informant describes how they have been internally searching for a

way to test tutorials: “we’ve actually thought about a lot of these

problems ourselves. I would love to be able to automatically exe-

cute our tutorials and run some tests as a way to make sure they

don’t break due to updates to our platform, our target OSs, or other

software issues. Alas... it’s a fairly hard problem.” (I3)

One informant shared their frustration as a tutorial taker when

tutorials become out-of-date: “another problem I’ve definitely seen

where docable and others would help is making sure the docs are

up to date. I’ve tried to learn Rust about 3 or 4 times, and each time

I gave up because the tutorial was not close to being in sync with

current syntax and standard library features.” (I4)

Figure 6: The download link referenced in this tutorial is no

longer available.

Inaccessible resources. Some tutorials require having access

to additional resources or services, such as the online services from

DigitalOcean, GitHub, Vultr, domain names, and additional disks. If

these resources are not accessible, tutorials will often fail, and it is

not possible to execute the tutorials. For example, in the screenshot

below, tutorial requires a DigitalOcean storage volume. Other com-

mon examples include domain names, which might involve billing

a credit card to register a domain name, or integration with online

services such as GitHub or Slack which require registration and

credentials.

Informants recognized inaccessible resources as a barrier for tu-

torial takers and described how they attempt to minimize them:“At

DigitalOcean, we aim for our tutorials to be as tech-agnostic as

possible, meaning that any reader should be able to complete the

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Samim Mirhosseini and Chris Parnin

tutorial regardless of whether they’re using a server provisioned

from DigitalOcean or any other provider. This helps make our tu-

torials accessible, but also leads to lots of caveats like "Depending

on your cloud hosting provider, you may need to do [X] or run

[X command]. Occasionally, we’ll even need to provide alternative

instructions to account for different environments. I could see this

adding to the difficulty of developing a tutorial execution tool that

works flawlessly.” (I2)

4.4 Summary

Executing tutorials with limited human-annotation substantially

improves executability rates of tutorials over a baseline of naive

execution. However, all evaluated tutorials still contained execu-

tion failures, often caused by a multitude of problematic tutorial

writing practices, such as missing and inconsistent information and

documentation rot. Informants offered their insight on the validity

and impact of these findings.

5 LIMITATIONS

Our mixed-methods approach of investigating tutorials introduces

certain trade-offs and limitations.

As explained in the study by Kim et al. [16], tutorials exist in

different genres such as interactive tutorials (ex. Khan Academy
8
),

web reference (ex. W3Schools
9
), MOOCs (ex. edX

10
), educational

games (ex. Code Combat
11
), and creative platforms (ex. Alice

12
). In

this study, we focused on web reference genre on topics related to

configuration of tools and computing environments. Other types

of genres and domains may have different kinds of executability

barriers.

There were several trade-offs we made in our implementation of

the execution harness and executability study. For example, because

we remotely executed through ssh, a few commands, such as ufw,
could disrupt the network connection. We also limited our scope

of execution. For example, we did not execute inline code blocks,

which were relatively rare—only 10 instances found in our sample

dataset. Therefore, even higher execution rates could be observed

through additional engineering effort on the execution harness

without necessarily changing tutorials.

Finally, we acknowledge that qualitative research, however rig-

orously conducted, involves not only the qualitative data under

investigation but also a level of subjectivity and interpretation on

the part of the researcher as they frame and synthesize the results

8
https://www.khanacademy.org/

9
https://www.w3schools.com/

10
https://www.edx.org/

11
https://codecombat.com/

12
https://www.alice.org/

of their inquiry. In this study, we focused on validity over reliabil-

ity [21]. To support interpretive validity, we followed the guidelines

set by [20] and performed a peer debriefing with our results. Our

sampling method was parameterized with a higher tolerance for

error. Therefore our study limits our ability to draw precise conclu-

sions for a sample-to-population or statistical generalization when

characterizing the frequency or portion of failures.

6 RELATEDWORK

The work by Kim and Ko [16] is the closest related work in terms

of research method and goal. Kim and Ko [16] also performed an

qualitative inspection of 30 tutorials across a variety of domains.

However, their method differed in how they characterized tutorial

content. In the study, the authors made an assessment of whether

tutorials fit best practices in pedagogy, such as connecting to learn-

ers’ prior knowledge, and encouraging meta-cognitive learning.

They found deficiencies in all these categories across a variety

of tutorials and domains. In both Kim and Ko [16] and our work,

an overarching goal is to assess the quality of tutorials; however,

whereas Kim and Ko [16] view quality through a pedagogical lens,

we view quality through an executability lens, with a longer-term

goal of automated and continuous testing.

Studies have characterized the pain points of both tutorial takers

and tutorial creators. Tutorial takers stumble when tutorials con-

tain missing dependencies or steps [23], do not explain unexpected

errors or side effects, and have unclear adaption paths for tailor-

ing content to different goals [18]. Head et al. [10] interviewed 12

tutorial creators and discovered pain points related to duplicate

instructions and composing and reusing code fragments from a

working example. Furthermore, the authors created an interactive

tutorial author tool, Torii, which allowed authors to split, annotate,

and link tutorial content. Our study provides empirical evidence

validating several of these concerns, and provides additional tech-

niques for allowing continuous testing of tutorials.

More broadly speaking, our study relates to other studies that

have examined the executability of code artifacts. For example, a

recent study by Pimental et al. found that only 24% of Jupyter note-

books could be executed, and only 4% had reproducible results [29].

Similarly, only 25–27% of Python code snippets found in Stack

Overflow posts [14, 37] GitHub gists [12] are executable. In these

empirical studies, a common factor for low rates of executability in-

clude missing configuration information, such as dependencies, and

software decay due to reliance on older versions (e.g., the code only

works with older versions of APIs). Our observation of documenta-

tion rot is closely related to other forms of software decay, such as

unavailable urls in source code [9]. In summary, executability is a

useful property for understanding the quality and replicability of

software artifacts, including those found in software tutorials.

7 DISCUSSION

Our findings demonstrate numerous ways in which tutorials con-

tain instructions that are not directly executable. When naively

executed, we found only 26% of code blocks inside tutorials ran

successfully, consistent with other experiments on executability

of other software artifacts [12, 14, 29, 37]. Human annotation was

necessary in order to identify responses to interactive input, supply

https://www.khanacademy.org/
https://www.w3schools.com/
https://www.edx.org/
https://codecombat.com/
https://www.alice.org/

Docable: Evaluating the Executability of Software Tutorials ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

missing implicit information such as those that need to be executed

with privileges, and perform actions such as saving content as a file

on a particular path. Although executing annotated tutorials with

Docable substantially improved executability, numerous issues

which could not be simply resolved by annotation persisted, reveal-

ing underlying issues with quality and accessibility of instructions.

In the remainder of this section, we present design implica-

tions for technical writers, toolsmiths, and software engineering

researchers that can help reduce some executability difficulties in

software tutorials.

7.1 Implication I—Provide Accessible

Alternatives for Tutorial Takers

We observed several accessibility barriers that limit who can fully

take advantage of the learning experiences offered by tutorials, such

as inaccessible resources (Section 4.3) and interactive prompts (Sec-

tion 3.1), which can increase the difficulty of successfully executing

a tutorial (Section 4.2).

Not every tutorial taker will have readily available access to

costly infrastructure resources. Several tutorials required resources

such as registered domain names and extra features, such as addi-

tional disk volumes, object-stores, and clusters—all expenses that

can quickly exclude disadvantaged and non-traditional learners

who do not have the resources necessary to obtain them. Profes-

sionals can be impacted as well. A tutorial taker may be working

on a prototype or investigating possible platforms for a product,

and may be weary of making large investments in order to follow

a tutorial that may not even work.

Tutorials can inadvertently exclude novice learners by omit-

ting details that are important for shepherding cautious learners

through their first learning experience. Research in computer edu-

cation has found that learners with lower self-efficacy have more

difficulty handling unexpected and exploratory behaviors [1], such

as interactive prompts [18]. Interactive prompts can be difficult for

learners who do not know how to response exactly, especially if

they are first learning a new tool or command. For example, com-

mands such as ‘mysql_secure_installation’ or ‘lxd init’ can
ask up-to dozens of prompts, including complicated configuration

options such as bridge networking. We found many instances of

tutorials which simply asked the reader to answer the prompts or
follow the rest of the prompts without giving details for what should
be the response to each prompt. When unguided, such prompts can

be frustrating and overwhelming for novices.

Learners desire more accessible resources that leverage their

background [32] and providing alternative formats for flexibility

in learning [5]. Surprisingly, simple steps can provide improve ac-

cessibility for tutorial takers. For example, many tutorials required

prerequisites, such as having a registered domain name, before the

reader can follow the steps of the tutorial. However, we found a few

tutorials that offered a simple alternative if this was currently un-

obtainable for the tutorial taker. The tutorials instruct the reader to

update their /etc/hosts file, which allows routing the requests of

the domain name to a local IP address, therefore eliminating the re-

quirement for a registered domain name. Similarly, commands with

interactive prompts may not always be asking for configuration

options relevant to the tutorial. When possible, interactive prompts

can be reduced by using default values, or providing command flags,

such as -y or -q. As a result, tutorials can reduce uncertainty for tu-

torial takers, and improve the ability for learners of all backgrounds

to learn.

How to Install Zammad 2.0 on…Categories Business

Prerequisites

Step 1: Setup the FQDN (fully quali�ed domain name)

As required by Zammad, you need to properly setup the FQDN on your
server instance before you can remotely access the Zammad site.

Use the vi text editor to open the /etc/hosts �le.

sudo vi /etc/hosts

Insert the following line before any existing lines.

203.0.113.1 helpdesk.example.com helpdesk

Save and quit.

:wq!

Use the hostname -f command to con�rm the result, which will

look like this.

helpdesk.example.com

Step 2: Install OpenJDK 8 packages

A domain helpdesk.example.com con�gured to point to the

server instance mentioned above. You can learn more details
about this in another Vultr tutorial.

...

7.2 Implication II—Invest in Automated

Tutorial Testing

We observed several issues that impact the quality of tutorials, such

as documentation rot, missing and volatile instructions (Section 4.3)

which resulted in lower execution rates (Section 3.1 and 4.2). “Tuto-

rial maintenance is inherently difficult...our tutorials are written

by and for humans, so there’s always a chance that there will be

errors (even with all the work we do to minimize them” (I2).

Automated tutorial testing can help if tutorial creators are willing

to make minimal investments. For example, tutorials at learnk8s
13

uses annotations on their code blocks for rendering output. These

can be extended to support annotations that assist with automated

execution:

1 Start the service.
2 ```bash|user=root|prompt='$'
3 systemctl start rot13
4 ```
5

6 Test the service by typing in `Hello, world!`.
7 ```bash|input='Hello, world!'|expect=1
8 client$ nc -w 1 -u 127.0.0.1 10000
9 Uryyb, jbeyq!
10 ```

Another place to invest in improving executability of tutorials is

summarizing, updating, and presenting file content (Section 3.3.2).

Tutorials can show intermediate steps of updating a file, but should

include a final content block, or offer programmatic methods of

displaying and updating content, such as “jq which automatically

filters out the output and give what is needed” (I1).

Finally, tutorial testing can be complemented with other sources

of testing and feedback. For example, Drosos et al. [7] deployed

pain-scale surveys in an online learning environment to automati-

cally determine which programming features were frustrating to

learners, and Mysore and Guo [24] explored using tutorial profiling

to identify problematic instructions. These measures can be com-

bined with “using data such as page bounce rates, shares, whether

13
https://github.com/learnk8s/learnk8s.io/

https://github.com/learnk8s/learnk8s.io/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Samim Mirhosseini and Chris Parnin

the user bookmarks a tutorial, whether the tutorial is ’ripped-off’

or translated into other languages, etc” (I6).

7.3 Implication III—Provide Self-Contained

Tutorials.

We observed tutorials that made simplifying assumptions about

environment and tutorials that required running other tutorials

that sometimes could“run multiple levels deep” (I3). Furthermore,

when tutorials do not explicitly control their dependencies, docu-

mentation rot could lead to breaking changes within the tutorial

(Section 4.3). Many tutorials that we analyzed included multiple

links to other tutorials which explain how to setup a prerequisite

but it is not clear which link should be used by the user, or if those

tutorials will also have their own prerequisites.

One informant mentioned their effort to flatten dependencies “in
recent tutorials they’ve tried to pull all dependencies up and "flatten

out the dependency tree" so that it’s clear up-front each step you

need to take first” (I3). We observed several Vultr tutorials, where

all dependencies could be installed in a single tutorial
14
. Another

informant described their efforts to better packaging tutorials: “If

the tutorial is using a VM, we package all dependent files and arti-

facts such as Docker images within the VM. When we depend on

an external script, we fork the script and host it alongside the doc-

umentation. This is similar to your finding to avoid use of external
services as much as possible” (I5).

Other interesting approach would involve automatic inference

and construction base images for running tutorials. For example,

DockerizeMe [13] is a technique that given a Python code snippet,

can automatically infer system and transitive dependencies required

to successfully execute a code snippet. Such a technique could

be adopted to determine the dependencies necessary for running

a tutorial. Similarly, a tool such as opunit [22] could provide a

simple mechanism for determining whether or not prerequisites

were appropriately satisfied before starting a tutorial.

7.4 Implication IV—Be Intentional on Whether

Instructions are Human-Readable or

Machine-Readable

We observed several executability barriers, such as placeholders

in commands (Section 3.3.1), conditional logic in file content (Sec-

tion 3.3.2, interactive prompts (Section 3.1), and “template values

are inconsistent between tutorials and rarely machine readable” (I6),

which needed extensive human interpretation (Section 4.1) to over-

come. These executability barriers often involves, human-readable

steps, “commands and file contents with placeholder values that

should be changed by the reader, all for the purpose of providing

additional information and context” (I2), such fill in a password or

replace this IP or MAC address. One tutorial even asks the reader

to go to a website, locate a download link, and use it in a curl
command. Tutorial creators need to consider whether these human

readable steps are intended to be truly educational or an unwanted

learning barrier that reduces the accessibility of the tutorial.

Mirhosseini and Parnin [22] reported their experiences teach-

ing over 400 students skills related to automatically configuring

14
https://www.vultr.com/docs/how-to-install-bookstack-on-ubuntu-16-04

computing environments in a graduate university course. When

following step-by-step tutorials, such as the instructions for con-

figuring a mattermost server
15
, students often struggled to detect

errors related to incorrectly executed commands, or malformed

configuration files and lacked the appropriate debugging skills to

diagnosis them. For example, it was common to update the wrong

section of a configuration file, especially when the option was re-

peated across multiple areas. Professionals also struggle to reuse

material from online resources, due to configuration and docu-

mentation issues [8], being uncertain on whether the material is

up-to-date [5, 36], and determining what portion might require

manual adaption [6, 36].

Machine-readable instructions can have several benefits for learn-

ers. They can ensure learners are more likely to reach a desired state

regardless of skill level. Furthermore, readers can more quickly and

confidently execute instructions, providing them to safe foundation

to experiment and adapt instructions to their learning goals. There

are several steps that tutorial creators can take to ensure a better

experience for tutorial takers while maintaining machine-readable

steps. Tutorials can “make it possible for users to fill out the variable

values and have it flow into the tutorial code” (I3). For example, if

the tutorial needs to replace the text sammy@openvpn_server_ip
inside commands, there can be an interactive component in the

tutorial that allows the user specify the desired value for this pa-

rameter, which is then automatically propagated throughout the

tutorial instructions. Finally, “it would be interesting if there were

a standardised format for storing tutorial data, which would allow

one piece of structured data to both be rendered into a human-

friendly page, but also interpreted by a machine and automatically

executed” (I6).

8 CONCLUSION

In this study, we conducted a mixed-methods study through an

empirical study on tutorials collected from various online sources,

and through a qualitative analysis of tutorials. We first used a naive

execution strategy to determine a baseline level of executability.

We then inspected code blocks in tutorials and devised a set of

annotations that could be applied to improve their executability. By

executing these annotated tutorials with Docable, we were able to

obtain a higher rate of executability, but still observed a significant

amount of failures in overall tutorial execution. A qualitative inspec-

tion of tutorial failures and peer debriefing with tutorial creators

revealed various issues which prevented successful execution and

impact the accessibility and quality of tutorials. We discuss possible

strategies for improving software tutorials, such as providing ac-

cessible alternatives for tutorial takers, and introducing automated

tutorial testing to ensure continuous quality of software tutorials.

ACKNOWLEDGMENTS

This material is based in part upon work supported by the National

Science Foundation under grant number 1814798.

15
https://docs.mattermost.com/install/install-ubuntu-1604.html

https://www.vultr.com/docs/how-to-install-bookstack-on-ubuntu-16-04
https://docs.mattermost.com/install/install-ubuntu-1604.html

Docable: Evaluating the Executability of Software Tutorials ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES

[1] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph

Lawrance, Alan Blackwell, and Curtis Cook. 2006. Tinkering and Gender in End-

User Programmers’ Debugging. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06). Association for Computing Machinery,

New York, NY, USA, 231–240. https://doi.org/10.1145/1124772.1124808

[2] Andrew Begel and Thomas Zimmermann. 2014. Analyze This! 145 Questions for

Data Scientists in Software Engineering. In Proceedings of the 36th International
Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 12–23. https://doi.org/10.1145/

2568225.2568233

[3] Melanie Birks, Ysanne Chapman, and Karen Francis. 2008. Memoing in qualitative

research: Probing data and processes. Journal of Research in Nursing 13, 1 (jan

2008), 68–75. https://doi.org/10.1177/1744987107081254

[4] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative research in psychology 3, 2 (2006), 77–101.

[5] Jennifer Brill and Yeonjeong Park. 2011. Evaluating Online Tutorials for Uni-

versity Faculty, Staff, and Students: The Contribution of Just-in-Time Online

Resources to Learning and Performance. International Journal on E-Learning 10,

1 (January 2011), 5–26. https://www.learntechlib.org/p/33278

[6] Rylan Cottrell, Robert J. Walker, and Jörg Denzinger. 2008. Semi-Automating

Small-Scale Source Code Reuse via Structural Correspondence. In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (Atlanta, Georgia) (SIGSOFT ’08/FSE-16). Association for Computing Ma-

chinery, New York, NY, USA, 214–225. https://doi.org/10.1145/1453101.1453130

[7] I. Drosos, P. J. Guo, and C. Parnin. 2017. HappyFace: Identifying and predicting

frustrating obstacles for learning programming at scale. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 171–179. https:

//doi.org/10.1109/VLHCC.2017.8103465

[8] Denae Ford and Chris Parnin. 2015. Exploring Causes of Frustration for Software

Developers. In Proceedings of the Eighth International Workshop on Cooperative
and Human Aspects of Software Engineering (Florence, Italy) (CHASE ’15). IEEE
Press, 115–116.

[9] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.

9.6 Million Links in Source Code Comments: Purpose, Evolution, and Decay. In

Proceedings of the 41st International Conference on Software Engineering (Montreal,

Quebec, Canada) (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1211–1221. https:

//doi.org/10.1109/ICSE.2019.00123

[10] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann.

2020. Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source

Code, Snippets, and Outputs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for

Computing Machinery, New York, NY, USA, Article 669, 12 pages. https://doi.

org/3313831.3376798

[11] Sarah Heckman, Kathryn T. Stolee, and Christopher Parnin. 2018. 10+ Years of

Teaching Software Engineering with Itrust: The Good, the Bad, and the Ugly. In

Proceedings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training (Gothenburg, Sweden) (ICSE-SEET ’18). ACM,

New York, NY, USA, 1–4. https://doi.org/10.1145/3183377.3183393

[12] E. Horton and C. Parnin. 2018. Gistable: Evaluating the Executability of Python

Code Snippets on GitHub. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 217–227. https://doi.org/10.1109/

ICSME.2018.00031

[13] Eric Horton and Chris Parnin. 2019. DockerizeMe: Automatic Inference of

Environment Dependencies for Python Code Snippets. In Proceedings of the 41st
International Conference on Software Engineering (Montreal, Quebec, Canada)

(ICSE ’19). IEEE Press, 328–338. https://doi.org/10.1109/ICSE.2019.00047

[14] Md Monir Hossain, Nima Mahmoudi, Changyuan Lin, Hamzeh Khazaei, and

Abram Hindle. 2019. Executability of Python Snippets in Stack Overflow. arXiv
preprint arXiv:1907.04908 (2019).

[15] Glenn D Israel. 1992. Sampling the evidence of extension program impact. Citeseer.
[16] Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Analysis of Online Coding Tuto-

rials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (Seattle, Washington, USA) (SIGCSE ’17). ACM, New York, NY,

USA, 321–326. https://doi.org/10.1145/3017680.3017728

[17] Sean Kross and Philip J. Guo. 2019. End-User Programmers Repurposing End-

User Programming Tools to Foster Diversity in Adult End-User Programming

Education. In Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (VL/HCC ’19).

[18] Benjamin Lafreniere, Tovi Grossman, and George Fitzmaurice. 2013. Com-

munity Enhanced Tutorials: Improving Tutorials with Multiple Demonstra-

tions. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 1779–1788.

https://doi.org/10.1145/2470654.2466235

[19] T. C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use

documentation: the state of the practice. IEEE Software 20, 6 (Nov 2003), 35–39.
https://doi.org/10.1109/MS.2003.1241364

[20] Yvonna .S. Lincoln and EgonG. Guba. 1985. Naturalistic Inquiry. Sage Publications,
Newbury Park, CA.

[21] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and

Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW

and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (Nov.

2019), 23 pages. https://doi.org/10.1145/3359174

[22] SamimMirhosseini and Chris Parnin. 2020. Opunit: Sanity Checks for Computing

Environments. In Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment, Jean-Michel Bruel, Manuel

Mazzara, and Bertrand Meyer (Eds.). Springer International Publishing, Cham,

167–180.

[23] Alok Mysore and Philip J. Guo. 2017. Torta: Generating Mixed-Media GUI and

Command-Line App Tutorials Using Operating-System-Wide Activity Tracing.

In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). ACM, New York, NY,

USA, 703–714. https://doi.org/10.1145/3126594.3126628

[24] Alok Mysore and Philip J. Guo. 2018. Porta: Profiling Software Tutorials Using

Operating-System-Wide Activity Tracing. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18).
ACM, New York, NY, USA, 201–212. https://doi.org/10.1145/3242587.3242633

[25] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity

in Software Engineering Research. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE
2013). Association for Computing Machinery, New York, NY, USA, 466–476.

https://doi.org/10.1145/2491411.2491415

[26] Mitchell J. Nathan, Kenneth R. Koedinger, and Martha W. Alibali. 2001. Expert

Blind Spot : When Content Knowledge Eclipses Pedagogical Content Knowledge.

[27] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman,

J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and L. Williams. 2017.

The Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (May 2017),

86–95. https://doi.org/10.1109/MS.2017.86

[28] C. Parnin, C. Treude, and M. A. Storey. 2013. Blogging developer knowledge: Mo-

tivations, challenges, and future directions. In 2013 21st International Conference
on Program Comprehension (ICPC). 211–214. https://doi.org/10.1109/ICPC.2013.

6613850

[29] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.

2019. A Large-scale Study about Quality and Reproducibility of Jupyter Note-

books. In Proceedings of the 16th International Conference on Mining Software
Repositories (Montreal, Canada) (MSR ’19).

[30] Joseph Ponterotto. 2006. Brief note on the origins, evolution, and meaning of

the qualitative research concept thick description. The Qualitative Report 11, 3
(2006).

[31] Daniele Procida. 2017. What nobody tells you about documentation. https:

//www.divio.com/blog/documentation/

[32] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. [n.d.]. Here We

Go Again: Why Is It Difficult for Developers to Learn Another Programming

Language? ([n. d.]).

[33] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[34] Christoph Treude and Maurício Aniche. 2018. Where does Google find API

documentation?. In Proceedings of the 2nd International Workshop on API Usage
and Evolution. ACM, 19–22.

[35] Hazel Virdó and Brian Hogan. 2020. Technical Writing Guidelines.

https://www.digitalocean.com/community/tutorials/digitalocean-s-technical-

writing-guidelines

[36] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2018. How

do developers utilize source code from stack overflow? Empirical Software
Engineering (2018), 1–37.

[37] Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From Query to Usable

Code: An Analysis of Stack Overflow Code Snippets. In Proceedings of the 13th
International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16).
ACM, New York, NY, USA, 391–402. https://doi.org/10.1145/2901739.2901767

https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1177/1744987107081254
https://www.learntechlib.org/p/33278
https://doi.org/10.1145/1453101.1453130
https://doi.org/10.1109/VLHCC.2017.8103465
https://doi.org/10.1109/VLHCC.2017.8103465
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/3313831.3376798
https://doi.org/3313831.3376798
https://doi.org/10.1145/3183377.3183393
https://doi.org/10.1109/ICSME.2018.00031
https://doi.org/10.1109/ICSME.2018.00031
https://doi.org/10.1109/ICSE.2019.00047
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.1145/2470654.2466235
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3126594.3126628
https://doi.org/10.1145/3242587.3242633
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1109/MS.2017.86
https://doi.org/10.1109/ICPC.2013.6613850
https://doi.org/10.1109/ICPC.2013.6613850
https://www.divio.com/blog/documentation/
https://www.divio.com/blog/documentation/
https://www.digitalocean.com/community/tutorials/digitalocean-s-technical-writing-guidelines
https://www.digitalocean.com/community/tutorials/digitalocean-s-technical-writing-guidelines
https://doi.org/10.1145/2901739.2901767

	Abstract
	Introduction
	Methodology
	Research Questions
	Data Collection
	Execution Harness
	Baseline: Naive Execution
	Human-Annotation-Based Execution

	Naive Execution Results
	Executability Rates
	Errors and Exit Codes
	Code Block Types
	Summary

	Human-annotation-based execution results
	Annotations
	Executability Rates
	What Execution Failures Remain?
	Summary

	Limitations
	Related Work
	Discussion
	Implication I—Provide Accessible Alternatives for Tutorial Takers
	Implication II—Invest in Automated Tutorial Testing
	Implication III—Provide Self-Contained Tutorials.
	Implication IV—Be Intentional on Whether Instructions are Human-Readable or Machine-Readable

	Conclusion
	Acknowledgments
	References

