Docable: Evaluating the Executability of Software Tutorials

Samim Mirhosseini
NC State University
Raleigh, North Carolina, USA
smirhos@ncsu.edu

ABSTRACT

The typical software tutorial includes step-by-step instructions for
installing developer tools, editing files and code, and running com-
mands. When these software tutorials are not executable, either due
to missing instructions, ambiguous steps, or simply broken com-
mands, their value is diminished. Non-executable tutorials impact
developers in several ways, including frustrating learning experi-
ences, and limiting usability of developer tools.

To understand to what extent software tutorials are executable—
and why they may fail—we conduct an empirical study on over
600 tutorials, including nearly 15,000 code blocks. We find a naive
execution strategy achieves an overall executability rate of only
26%. Even a human-annotation-based execution strategy—while
doubling executability—still yields no tutorial that can successfully
execute all steps. We identify several common executability barri-
ers, ranging from potentially innocuous causes, such as interactive
prompts requiring human responses, to insidious errors, such as
missing steps and inaccessible resources. We validate our findings
with major stakeholders in technical documentation and discuss
possible strategies for improving software tutorials, such as pro-
viding accessible alternatives for tutorial takers, and investing in
automated tutorial testing to ensure continuous quality of software
tutorials.

CCS CONCEPTS

« Software and its engineering — Documentation.

KEYWORDS

software tutorials, documentation, testing, continuous integration

ACM Reference Format:

Samim Mirhosseini and Chris Parnin. 2020. Docable: Evaluating the Exe-
cutability of Software Tutorials. In Proceedings of the 28th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE °20), November 813, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3368089.
3409706

https://www.digitalocean.com/community/tutorials/how- to- set-up-a-node-js-
application-for-production-on-ubuntu-16-04

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409706

Chris Parnin
NC State University
Raleigh, North Carolina, USA
cjparnin@ncsu.edu

Hello World Code

First, create and open your Node.js application for editing. For this tutorial, we will use nano to edita

sample application called hello.js:

$ cd ~
$ nano hello.js

Insert the following code into the file. If you want to, you may replace the highlighted port, 8080, in
both locations (be sure to use a non-admin port, i.e. 1024 or greater):

hellojs

#1/usr/bin/env nodejs

var http = require('http');

http.createServer(function (reg, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});

res.end('Hello World\n');
}).listen(8080, 'localhost');
console.log('Server running at http://localhost:8080/');

Now save and exit.

Figure 1: an excerpt of the technical software tutorial, “How
To Set Up a Node.js Application for Production on Ubuntu
16.04”. You can see the full instructions!, and even give it
a try.

1 INTRODUCTION

Many software tutorials, include step-by-step instructions for in-
stalling, configuring, and using software tools, which are essential
in the software development process. For example, software tuto-
rials hosted by DigitalOcean have been viewed over 409 million
times, including tutorials such as “How To Secure Nginx with Let’s
Encrypt” and “How To Set Up a Node.js Application for Production on
Ubuntu 16.04” as shown in Figure 1. Tutorials are featured promi-
nently in developer-related search results [34], and serve a vari-
ety of purposes, such as integrating with instructional materials
for classrooms [11], supporting documentation efforts [28], and
training underrepresented and professional developers through
community-driven [17] or paid workshops 2.

The ideal tutorial, as described in DigitalOcean’s guidelines for
tutorial creators [35], should follow several principles. First, tu-
torials should be accessible for all tutorial takers, being “as clear
and detailed as possible without making assumptions about the
reader’s background knowledge.” Furthermore, tutorials should be
executable from start-to-finish: “We explicitly include every com-
mand a reader needs to go from their first SSH connection on a
brand new server to the final, working setup.” Finally, tutorials are
not merely scripts, but should explain and impart knowledge: “We
also provide readers with all of the explanations and background
information they need to understand the tutorial. The goal is for
our readers to learn, not just copy and paste”

2https://leaurnkgs.iO/

https://doi.org/10.1145/3368089.3409706
https://doi.org/10.1145/3368089.3409706
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-application-for-production-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-application-for-production-on-ubuntu-16-04
https://doi.org/10.1145/3368089.3409706
https://learnk8s.io/

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Unfortunately, tutorials can fall far from this ideal. Despite their
importance, software tutorials require considerable effort to pro-
duce, test, and maintain in order to ensure a high-quality learning
experience. Tutorial creators face several barriers: supporting dif-
ferent levels and environments of tutorial takers [31], preventing
instructions from becoming stale as tools or environments quickly
evolve [19], and overcoming the expert blind spot effect [26], when
tutorial creators do not anticipate steps where novice tutorial takers
may have difficulty [24]. As a result, undiscovered issues [18] in
software tutorials can lead to frustrating and ineffective learning
experiences [16, 23].

To systematically understand what issues software tutorials
contain—and what tutorial creators can do to avoid them—we inves-
tigate software tutorials through the lens of executability, measuring
to what extent we can follow step-by-step instructions to their “fi-
nal, working setup”. To this end, we conduct an empirical study of
663 tutorials, first by measuring executability with a naive execu-
tion strategy (as one would “just copy and paste”), and finally with
a more sophisticated strategy using human-annotation for inter-
preting and executing instructions. Through a qualitative analysis,
we identified several issues in tutorials that limited executability,
and we validated these issues with 6 informants, who were expert
stakeholders in technical documentation.

Our findings show that with a naive execution strategy, we
achieve overall executability rate of only 26%. Even with a more
sophisticated strategy using annotated tutorials, executability rate
only increases to 52.3%—and even more concerning no tutorial
successfully executed all steps to its “final, working setup”. Our
qualitative analysis revealed several issues, such as inaccessible
resources, missing steps, inconsistency in handling file content, and
documentation rot, which detract from the usability and value of
the tutorials. Our informants, generally agreed with significance
of the results and illustrated scenarios where these problems have
occurred; however, informants had a mixed consensus on the sever-
ity of some problems and how to best address them. Finally, we
provide design implications for technical writers, toolsmiths, and
software engineering researchers for improving tutorials, such as
providing accessible alternatives for tutorial takers, and investing in
automated tutorial testing to ensure continuous quality of software
tutorials.

2 METHODOLOGY

To explore why software tutorials produce execution failures, we
conducted a mixed-methods study through an empirical study on
tutorials collected from various online sources, and through a quali-
tative analysis of tutorials. We do so through the following research
questions:

2.1 Research Questions

e RQ1: Can tutorials be naively executed. If not, why?
Can the average tutorial be run to completion naively, or
will it result in failure? What failures occur when there is
limited knowledge on how to follow instructions?

e RQ2: Can tutorials be executed with limited human-
annotation? What extra human interpretation is needed
to interpret and execute more instructions? What barriers

Samim Mirhosseini and Chris Parnin

remain that prevent fully automated testing of a software
tutorial?

2.2 Data Collection

We selected three popular sources of software tutorials: Vultr?, Dig-
italOcean?, and Linuxize®. All tutorials were related to installing
software tools, security, and configuring and operating virtual com-
puting environments, topics frequently important in continuous
deployment processes in software engineering [27]. We used a web-
scraping script to crawl and download all tutorials for the Ubuntu
operating system hosted on the sources, yielding a total of 780
tutorials.

We organized our collected data into target platform specified
by the tutorial (e.g. Ubuntu 18.04), and then removed duplicate tu-
torials with the same content but targeting different platforms. We
also excluded tutorials that targeted a deprecated Linux distro (i.e.
Ubuntu 12.10) for which we could not find a stable base image, and
tutorials that were primarily focused on using GUI interfaces (e.g.
“How To Set Up Continuous Integration Pipelines with Drone on
Ubuntu 16.04” 6). After filtering, our collected dataset of 780 tutori-
als was reduced to 663 tutorials. In summary, our filtered dataset
included 339 tutorials from Vultr, 224 tutorials from DigitalOcean
and 100 tutorials from Linuxize.

We then drew a stratified random sample of tutorials in our
dataset (6%), in order to facilitate qualitative analysis, as done in Kim
and Ko [16], who inspected a sample of 30 tutorials. Because our
tutorial sources were not uniformly represented in the dataset, we
determined a statistically representative sample size for each source.
To do so, we used a proportionate stratified random sampling [15]
by considering each source as a strata. We used a relaxed confidence
interval (80% + 10%) to calculate the sample size of each strata,
allowing us to target diversity over representativeness [25]. This
yielded a total of 40 tutorials containing 787 content blocks—20
tutorials from Vultr, 14 tutorials from DigitalOcean, and 6 tutorials
from Linuxize.

First, add the repository.

$ sudo add-apt-repository ppa:certbot/certbot

You'll need to press ENTER to accept. Then, update the package list to pick up the new

repository’s package information.

Figure 2: Tutorial fragment with code block. We extract the
command ‘sudo add-apt-repository ppa:certbot/certbot’
for running in our execution harness.

2.3 Execution Harness

To create our execution harness, we initialize a new virtual ma-
chine environment with 4GB of RAM and 2 CPU cores. The virtual

Shttps://www.vultr.com/docs/category/ubuntu/
*https://www.digitalocean.com/community/tutorials
Shttps://linuxize.com/tags/ubuntu/
Chttps://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-
integration-pipelines-with-drone-on-ubuntu-16-04

https://www.vultr.com/docs/category/ubuntu/
https://www.digitalocean.com/community/tutorials
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-with-drone-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-with-drone-on-ubuntu-16-04

Docable: Evaluating the Executability of Software Tutorials

tutorial_1.html:
steps:
- file: "Let's create a small server using PHP. => server.php"
- serve: "Start it!"
- run:
select: "install unzip"
input: "Do you want to continue? => yes"
user: root

Figure 3: An example steps.yml file

machine base image is selected to match the operating system tag
associated with the tutorial article. Tutorial instructions are exe-
cuted on the headless virtual machines through an SSH connection.
Commands are instrumented to log output, failures, and exit sta-
tus of the operation. A new execution harness is created for every
tutorial.

2.4 Baseline: Naive Execution

To answer RQ1, we implement a baseline technique, we call naive
execution which simply executes text within a content block. The
technique closely mirrors previous studies on executability, where
no interpretation is performed on the code snippets on Stack Over-
flow [37] or gists [12] when measuring executability rates.

We designed a custom CSS selector to extract code blocks from
each source of tutorials (see Figure 2). A code block is defined in
the HTML specification as an element that “represents a fragment
of computer code”, and is marked by the <code></code> tag. After
extraction, we execute the verbatim text as a shell command within
the execution harness. The resulting exit code, the stdout and stderr
streams are also recorded. If the command never terminates after 10
minutes, we record a timeout, and mark the remaining instructions
as unreachable.

To measure executability, we count the number of code block
executions reporting a non-error exit code (indicated by 0). We
do not directly use stderr to determine execution failure, as some
commands print information to stderr, such as python --version.
We discuss the limitations of this approach in Section 5.

To identify why execution fails, we first cluster the commands by
exit code after execution, as done by Horton and Parnin [12]. The
distribution of execution failures provides a high-level overview
of failure causes (e.g. an exit code status of E127 occurs when a
command cannot be found). To understand why a code block cannot
be naively executed, we then perform an open card sort [33], using
similar method used by Begel and Zimmermann [2], to organize
code blocks into descriptive categories. The categories provide
insight into various possible interpretations under which a code
block could be executed.

2.5 Human-Annotation-Based Execution

To answer RQ2, we implement a technique, we call DocaBLE. The
name is derived from a portmanteau of the words documentation
and runnable.

2.5.1 Context. Rather than devising an automatic execution tech-
nique, we wanted to use the opportunity to derive annotations
for instructions based on human classification. This approach has

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Step 1— Installing StrongSwan

First, we'll install StrongSwan, an open-source IPSec daemon which we'll configure as our VPN server.
We'll also install the StrongSwan EAP plugin, which allows password authentication for clients, as

opposed to certificate-based authentication. We'll need to create some special firewall rules as part of
this configuration, so we'll also install a utility which allows us to make our new firewall rules persistent.

Execute the following command to install these components:

$ sudo apt-get install strongswan strongswan-plugin-eap-mschapv2 moreutils \
iptables-persistent

error: exit code = 100
output:
E: Unable to locate package strongswan
E: Unable to locate package strongswan-plugin-eap-mschapv2
E: Unable to locate package moreutils
E: Unable to locate package iptables-persistent
exit code: 100 command output:
Reading package lists...
Building dependency tree...
Reading state information...

Note: While installing iptables-persistent , the installer will ask whether or not to save current IPv4
and IPv6 rules. As we want any previous firewall configurations to stay the same, we'll select yes on both
prompts.

Now that everything's installed, let's move on to creating our certificates:

Step 2 — Creating a Certificate Authority

An IKEV2 server requires a certificate to identify itself to clients. To help us create the certificate
required, StrongSwan comes with a utility to generate a certificate authority and server certificates. To
begin, let's create a directory to store all the stuff we'll be working on.

$ mkdir vpn-certs
$ cd vpn-certs

Figure 4: DocABLE can generate a report based on the origi-
nal tutorial, which enables inspection of tutorial execution.
In this example, the ‘apt-get install’ command did not ex-
ecute successfully.

several benefits: First, the annotations provide a bounded interpre-
tation of instructions. For example, if we provide an annotation
with an expected response from a command, such as type "yes"
or enter, we can specifically measure how the presence of interac-
tive prompts effects executability. More importantly, we can begin
to model different levels of tutorial reader understanding. For ex-
ample, a complex operation might involve starting a command as
background process, which requires more knowledge about shell op-
erations. Finally, automation is ultimately possible in future efforts,
such as techniques which try to automatically infer annotations for
commands.

2.5.2 Design. The design of DocABLE is inspired by behavioral-
driven testing tools, such as Cucumber, which uses an external
stepfile for selecting and asserting expected test behaviors. Here,
we extend this concept by providing capabilities for first selecting a
command from a tutorial, and then providing an annotated step that
describes how to execute the command. Steps select code blocks
by matching text occurring above the block. For example, in the
stepfile shown in Figure 3, the text “Let’s create a small server using
PHP” can be used to select the associated code block. The file
annotation tells DocaBLE that content should be saved as a file
called server.php.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

DocasLE also has the ability to generate an HTML report based
on the original tutorial, which enables inspection of tutorial execu-
tion. In this report, passing code blocks are highlighted in green,
failing code blocks are highlighted in red, and ancillary information
such as error output and exit codes errors are added to the end of
code blocks. An example report is shown in Figure 4.

2.5.3 Annotations. We derived annotations from the results of our
open card sort analysis (see Section 3.3). For example, we created
the expect annotation based on the Output category derived in
Section 3.3.3. When creating the annotations, we balanced engi-
neering effort with support from tutorials. For example, we did not
implement replacing search and replace operations on files, since
few tutorials used this technique and engineering effort would be
high.
We derived the following annotations:
e run. Run a code block as-is, that is naively.
o file. Select content and store as a file located at the given
path.
o user. Perform command as user. For example, installation
often requires being run as the root user.
e input. Provide input to interactive prompts.
o expect. Code block is expected output of command another
command.
e serve. Run code in a background process.
e persistent. Allocate a terminal shell to run a series of com-
mands. For example, some tutorials are written to be run in
different terminals.

2.5.4 Execution Failures and Peer-Debriefing with Informants. We
conduct a qualitative analysis on the reports produced by DocABLE.
We performed an inductive thematic analysis [4] to organize and
cluster the execution failures observed in the execution reports into
general themes. To further characterize the reports, we performed
an additional purposive sampling, or non-probabilistic sampling,
on tutorials in the entire dataset and composed memos [3]. These
memos, or author annotations on tutorials, capture interesting ex-
changes or properties of the software tutorials, promote depth and
credibility, and frame problems through tutorial takers information
needs. That is, the memos provide a thick description to contextual-
ize the findings [30].

Finally, to address the validity of the thematic analysis, we per-
form a peer debriefing [20] with 6 informants, who are experts in
tutorials, documentation and book authors in DevOps, including
core contributors to Ansible, and documentation leads at DigitalO-
cean. Our informants performed an expert review of our findings
and generated reports that summarized their assessment on the
validity and impact of our results.

3 NAIVE EXECUTION RESULTS

In this section we answer our research question: RQ1: Can tuto-
rials be naively executed? If not, why?

3.1 Executability Rates

Naive execution of code blocks resulted in an execution rate of 13%—
only 1,935 code blocks of 14,876 ran successfully (i.e., non-zero exit
code). We also observed a high-rate of timed-out tutorials (75%).

Samim Mirhosseini and Chris Parnin

Table 1: Executability of tutorials in our different experi-
ments. Naive: running all the code blocks of the tutorials,
Naive++: running naive, but updating apt and apt-get com-
mands to use -y option. T/O stands for timed out.

Unreachable F P

N 9769 (66%)
N++ 5314 (36%)

Blocks T/0

3172 (21%) 1935 (13%) 14876 498 (75%)
5646 (38%) 3916 (26%) 14876 261 (39%)

Table 2: Executed code blocks and corresponding execution
status (exit codes) in naive++ approach. Non-zero exit codes
indicate errors.

Status Blocks Description
- 5314 Unreachable code blocks

EO 3916 Successful execution

E127 2393 command not found error

E1 2032 Catchall for general errors

E100 269 Unable to locate package X as a result of run-

ning apt-get install

ETIME 261 Any command terminated after timeout (10
minutes)

E5 201 Service X not found, no such file or directory
as a result of systemctl commands

E2 134 Cannot open: No such file or directory

E255 88 Couldn’t read packet: Connection reset by peer

and Could not resolve hostname X as a result
of using a template value with sftp and ssh
E3 79 Service X not found, no such file or directory
as a result of systemctl commands
usermod: user "X’ does not exist or curl: (6)
Could not resolve host: example.com as a re-
sult of using template values with usermod
and curl commands
repository ‘your-github-url’ does not exist as
a result of cloning a repository that does not
exist
Unit X.service could not be found. as a result
of running systemctl status X
E7 24 Connection refused as a result of running un-
available URL with curl
E8 15 404: Not Found, server issued an error re-
sponse when using wget
OTHER 47 Misc. errors occurring infrequently

E6 46

E128 30

E4 27

TotaL 14876

Manual inspection revealed many timed-out while awaiting for user
interaction. Often, these commands were early in the tutorial and
typically associated with installation commands, such as "apt-get
install package_X"command was waiting for the user to respond
to "Do you want to continue [y/N]?" prompt. As a result of
timed-out tutorials, many code blocks were simply unreachable.
We devised a small automated naive patch to tutorials to improve
naive execution. We automatically updated the apt and apt-get

Docable: Evaluating the Executability of Software Tutorials

commands within the tutorials to use the -y | --yes option, which
provides an affirmative response to prompts .

We re-ran our experiments with our automated patch, which
was effective in reducing the number of tutorials that timed out and
allowed more code blocks to be executed. However, an overall low
rate of executability persisted: 26% (3,916 out of 14,876 code blocks).
Surprisingly, our results are consistent with naive executability
rates found in other studies of code snippets. For example, a recent
study by Pimentel et al. [29] found that only 24% of Jupyter note-
books could be executed without exceptions. Similarly, only 25-27%
of Python code snippets found in Stack Overflow posts [14, 37] and
GitHub gists [12] are executable.

3.2 Errors and Exit Codes

We categorized exit codes to identify preliminary explanations for
why the code block could not be naively executed (see Table 2).
Naive execution of many code blocks resulted in E127, which occurs
when a command cannot be found. This indicates previous steps
to setup tools did not succeed, or possibly content that was not
a command was being executed. Exit codes, such as E2, E5, and
E128 indicated that commands failed when expected resources,
services, or files were unavailable or inaccessible. Finally, many
commands were still inaccessible, indicated that possibly other
types of commands were still timing out due to interactive prompts.

3.3 Code Block Types

Our open card sort revealed four high-level categories based on the
inspection of 787 code blocks.

3.3.1 Commands (573). Code blocks primarily involved commands
that should be executed in a terminal. However, commands some-
times had specialized execution contexts:

o text editor: Open a text editor.

o template: Incomplete command requiring tutorial taker to
fill in placeholder values.

e interactive program shell: The command opens an interactive
shell to input more commands, such as the MySQL shell.

3.3.2 File Content (111). Code blocks often referred to code snip-
pets and configuration files that needed to be placed inside the file
system. However, frequently the tutorial provided instructions for
manipulating existing file content—and the types of manipulations
varied greatly. We observed the following manipulation operations:

e add: Append content to the end of a file.

e partial: Update part of a file with content.

o search and replace: Substitute existing content with new val-

ues.
e uncomment: Enable content in existing configuration files.
e conditional: Multiple options exist on what to update in file.

3.3.3 Instruction Output (93). Code blocks often contained the
output of a command, that is, the standard output resulting from
executing a command. How the output was displayed varied in
several subtle ways:

e partial: Trimmed output.

o template: Output with placeholder values.

"https://linux.die.net/man/8/apt- get

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

e interactive prompt: Output that also includes responses to
interactive prompts.

e interactive program shell: Results of interactive shell com-
mands, such as results of a SQL query.

3.3.4 Presentation (10). We also found ten code blocks that pre-
sented ancillary information, such as showing a URL. These code
blocks were not directly relevant for execution of the tutorial.

Let's access the new secure website! Open it in your browser:

https://YOUR_SERVER_IP

3.4 Summary

Naive execution yielded a low execution rate. Multiple factors con-
tributed to why naive execution failed. Cascading failures, incom-
plete instructions, missing interactive input and a lack of human
interpretation were just some of the factors. Our inspection of code
blocks further revealed that in addition to there being multiple
types of code blocks, those code blocks also required considerable
nuance in interpretation when executing them.

4 HUMAN-ANNOTATION-BASED
EXECUTION RESULTS

In this section, we answer the research question: RQ2: Can tuto-
rials be executed with limited human-annotation?

4.1 Annotations

We created 771 annotations for the 40 tutorials. The majority of an-
notations corresponded to labeling code blocks as simple commands
(455). However, there were more complex commands which needed
one or more additional annotations, including 38 input annotations,
47 user annotations, and 3 commands that needed to be run in the
background (serve). Finally, 82 commands needed to be associated
with a specific terminal session (persistent). We also created 112
file annotations for creating file content at a specified path and 39
annotations for matching expected output with command output.

We labeled 131 code blocks as skip that we deliberately decided
to not execute, either because another code block would subsume
it, or it was for presentation. For example, some tutorials presented
file content in a stagged manner. That is, they built up the file con-
tent, provided an explanation, and then continued to explain more
fragments of file content. In this case, we implicitly applied skip
annotations for the intermediate content and then annotated the
final and complete code block with the appropriate file annota-
tion. Finally, we explicitly skipped and marked 47 code blocks as
failed, when running a command that would significantly disrupt
the execution harness. We discuss the impact on executability rates
in our limitations (Section 5).

The docable tool, stepfiles, and tutorials are available at:

https://github.com/docable/docable.

https://linux.die.net/man/8/apt-get
https://github.com/docable/docable

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

4.2 Executability Rates

DocABLE execution of annotated code blocks resulted in an execu-
tion rate of 52.3% (343 out of 656 code blocks, when excluding previ-
ously mentioned 131 skipped code blocks). Furthermore, no tutorial
timed-out and thus all code blocks were reachable. But even with
these improvements, no single tutorial completed successfully in its
entirety. Thus, even with limited human annotation, we were
unable to bring any tutorial to its “final, working setup.”

4.3 What Execution Failures Remain?

We present the remaining execution failures as themes based on
our qualitative analysis of DOCABLE reports, and give examples
of tutorials instructions that exhibited this problem. Finally, we
include excerpts of the informants expert review of our findings.
Simplifying assumptions about environment. Tutorials make

simplifying assumptions about the user’s environment. For exam-
ple, some tutorials will assume the package manager’s listing is
up-to-date and do not explicitly mention running the ‘apt-get
update’ command. Unfortunately, omitting this step can result
in intermittent errors (see Figure 5). Another way tutorials make
simplifying assumptions is by requiring prerequisites. Prerequisites
are sometimes listed at the beginning of the tutorial and described
in natural language or reference other tutorials which should be
completed first. In many cases we found there are more than one
link for each prerequisite and it is not clear which one should be
used.

Perform the following steps to install Steam on your Ubuntu desktop:

1. Start by enabling the Multiverse repository which contains software that does not meet the Ubuntu
license policy:

$ sudo add-apt-repository multiverse

‘multiverse' distribution component enabled for all sources
2. Next, install the steam package by typing:

$ sudo apt install steam

error: exit code = 100 output: E: Unable to locate package steam

Figure 5: We observed a problem in the Linuxize tutorial for
installing the package "steam", which omits an explicit apt-
get update command.

Our informants recognized this as a general problem with tu-
torials: “There’s an implicit assumption about the environment”
(I5) and “many tutorials assume you have things like a working
database” (14). If tutorials “were all written with *less* assumptions
and were more comprehensive that would be great, and people
could just skim over the parts they already knew” (14).

Informants believed tutorials became problematic if they use
“too much referral within a tutorial or setup instructions to another
tutorial” (14). Furthermore, “most of tutorials build upon others, and
sometimes that can run multiple levels deep” (I3). For a tutorial taker,
it can be unclear how long the additional setup will take, or whether
those prerequisite tutorials are up-to-date. Even informants can be
frustrated with this as tutorial takers: “Once I was *attempting™ (I

Samim Mirhosseini and Chris Parnin

gave up) to install an application and the first tutorial allowed me
a choice of 6 ways to install something and none worked.” (I4)

Inconsistent file content blocks Tutorials often contain file
content blocks without explicit indication of the expected action
a tutorial taker should make. Sometimes the whole content of the
file is shown, and sometimes only a subset of a file that need to
be updated. Other times the tutorial instruct the tutorial taker to
uncomment part of the existing file or append to the end of file.

There is no standard convention across tutorials for represent-
ing and presenting these differences. For example, some tutorials
indicate omitted content with “.” characters and expect you to add
the new content displayed. Other tutorials display exiting content
and expect you to replace a small part of the file. For example, in
the tutorial below, the code block shows the existing content in the
’settings.py’ for Django.

Inadvertently replacing the whole ’settings.py’ file with this
content would not only introduce syntax errors, but would also
omit essential content. Finally, there is a small part of the file that
needs to be updated: "your-server-ip" should be replaced with
the real IP address of the server, which could be missed by the
tutorial taker.

settings.py

Django settings for testsite project.

Generated by 'django-admin startproject' using Django 2.0.

DEBUG = True

ALLOWED_HOSTS = ['your-server-ip']

Consensus on this topic was mixed. Informants recognized the
inconsistency in dealing with file content, but some believed they
were justified showing truncated content: “Sometimes the configu-
ration can be long” (I5). Another informant believed that “ambiguity
in code blocks are designed to guide a human reader to the right
part of the file, and were never designed to be interpreted by a
machine” (16), and “a code block with non-important bits cut out
with a "[...]" is better for a human reader”. (I6)

Informant (I1) had a different perspective and claimed that sum-
marizing content with "...", “is really not helping people.” Fur-
thermore, the informant recognized their expert blind spot, and
sometimes inappropriately summarized content “because I know
what I'm looking for, but a person who has never used the (tutorial’s
tool)” may not. Tutorial takers may have difficulty “understand-
ing what the summary is showcasing” and may not be able to
locate the relevant information: “you tell them run this and look for
something and there are a lot of things like ip addresses..”. The in-
formant recommends using “something like jq which automatically
filters out the output and give what is needed” in order to reduce
the reader’s confusion. At the same time a shorter output that is
programmatically generated helps with automated execution of
tutorials.

Docable: Evaluating the Executability of Software Tutorials

Missing, contradictory, and volatile instructions. Some tu-
torials have missing steps that are necessary to successfully run the
tutorial. There was no shortage of examples. Several tutorials did
not include steps need for creating users, for example, if the tutorial
does not mention the creation of a required “backup” user, the next
commands that need to run as the “backup” user will fail. Tutorials
often omitted whether or not a tutorial taker should use sudo or not
for a command, resulting in multiple command failures. Tutorials
also did not include steps on how to reach a desirable state: For
example, one tutorial provides a command to check whether ufw,
a firewall tool, is enabled without providing any instructions on
how to enable it. Tutorials also sometimes contain contradictory
instructions. For example, in one tutorial, it asks to install version
0.9.3 of a tool, but later in the tutorial, it shows version 0.9.2 of that
tool is installed.

$ wget https://github.com/moncho/dry/releases/download/v0.9-beta.3/dry-linux-amd64

You can test that dry is now accessible and working correctly by running the program with

its -v option.
$ dry -v

This will return the version number and build details:

dry version 0.9-beta.2, build d4d7a789

We also observed several instances where tutorials contained
volatile instructions, that is instructions whose behavior would
produce different results. Volatile instructions often involved com-
mands that output dynamic information, such as PID (process ID),
IP addresses, and usernames. As a result, the actual output produced
by the command would not match the expected output in the code
block, when run by any future tutorial taker.

To check if the package is installed run the following Is command:
$ 1s -1 /etc/cloud/cloud.cfg
If the package is installed the output will look like the following:

—rw-r——r-—— 1 root root 3169 Apr 27 09:30 /etc/cloud/cloud.cfg

error: exit code 0 actual output: -rw-r--r-- 1 root root 3612 Oct 4 15:35 /etc/cloud/cloud.cfg

All informants emphasized the importance of consistency in
instructions. Informants noted the importance of executability to
test consistency in tutorials: “If you have a unified set of annotations
it makes it hugely better for everyone. of course now if everyone
adds their own style of annotations it sort of defeats the purpose
because now you have five ways of running code and there is
no uniformity. (For example,) Stackoverflow has a special block
specifically for JavaScript (with an option called run snippet) which
makes it easier for people to run custom code.”

After being introduced to DocaBLE, some informants started
systematically reviewing their own tutorials “From our side, since

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

we started playing with docable we made a few corrections on
how we write tutorials. Overall, what docable has promoted for
us is consistency.” (I5) For example, the informant now ensures
that “Tutorials tend to have similar instructions or structure. In the
example above, all the powershell snippets start with If you're using
Powershell, the command is: which is easy to grep, and lint. As we
develop more material we have the opportunity to standardise our
language which makes it easier for students to understand.” (I5)

Documentation rot. Tutorial instructions, especially if they use
reference external resources, may become unavailable or change
over time. We encountered several instances where a tutorial failed
due to expired resources, such as a url (see Figure 6). For example,
one tutorial references a PGP key for verification of packages, but
that key has since expired, which results in failing installation of
packages and in most of the remaining tutorial also not working.
Another way tutorials can become out-of-date is if the newer ver-
sions of tools or packages are published and no longer work with
the instructions provided in the tutorial.

Informants confirmed their difficulty with maintaining tutorials:
“tutorial maintenance is inherently difficult for us. We don’t cur-
rently have the means to automate tutorial changes, so any time an
update happens we have to make changes manually” (12) Another
informant describes how they have been internally searching for a
way to test tutorials: “we’ve actually thought about a lot of these
problems ourselves. I would love to be able to automatically exe-
cute our tutorials and run some tests as a way to make sure they
don’t break due to updates to our platform, our target OSs, or other
software issues. Alas... it’s a fairly hard problem” (I3)

One informant shared their frustration as a tutorial taker when
tutorials become out-of-date: “another problem I've definitely seen
where docable and others would help is making sure the docs are
up to date. I've tried to learn Rust about 3 or 4 times, and each time
I gave up because the tutorial was not close to being in sync with
current syntax and standard library features.” (I14)

After getting the link, download the file:

$ sudo wget https://sonarsource.bintray.com/Distribution/sonarqube/sonarqube-7.0.zip

Figure 6: The download link referenced in this tutorial is no
longer available.

Inaccessible resources. Some tutorials require having access
to additional resources or services, such as the online services from
DigitalOcean, GitHub, Vultr, domain names, and additional disks. If
these resources are not accessible, tutorials will often fail, and it is
not possible to execute the tutorials. For example, in the screenshot
below, tutorial requires a DigitalOcean storage volume. Other com-
mon examples include domain names, which might involve billing
a credit card to register a domain name, or integration with online
services such as GitHub or Slack which require registration and
credentials.

Informants recognized inaccessible resources as a barrier for tu-
torial takers and described how they attempt to minimize them:“At
DigitalOcean, we aim for our tutorials to be as tech-agnostic as
possible, meaning that any reader should be able to complete the

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

tutorial regardless of whether they’re using a server provisioned
from DigitalOcean or any other provider. This helps make our tu-
torials accessible, but also leads to lots of caveats like "Depending
on your cloud hosting provider, you may need to do [X] or run
[X command]. Occasionally, we’ll even need to provide alternative
instructions to account for different environments. I could see this
adding to the difficulty of developing a tutorial execution tool that
works flawlessly.” (I2)

$ sudo rsync -av /var/www/html /mnt/volume-nycl-01

error: exit code = 23

output:

rsync: change_dir "/var/www" failed: No such file or directory (2)

rsync error: some files/attrs were not transferred (see previous errors) (code 23)
at main.c(1183) [sender=3.1.1]

sending incremental file list

sent 20 bytes received 12 bytes 64.00 bytes/sec
total size is @ speedup is 0.00

4.4 Summary

Executing tutorials with limited human-annotation substantially
improves executability rates of tutorials over a baseline of naive
execution. However, all evaluated tutorials still contained execu-
tion failures, often caused by a multitude of problematic tutorial
writing practices, such as missing and inconsistent information and
documentation rot. Informants offered their insight on the validity
and impact of these findings.

5 LIMITATIONS

Our mixed-methods approach of investigating tutorials introduces
certain trade-offs and limitations.

As explained in the study by Kim et al. [16], tutorials exist in
different genres such as interactive tutorials (ex. Khan Academy®),
web reference (ex. W3Schools”), MOOCs (ex. edX!?), educational
games (ex. Code Combat!!), and creative platforms (ex. Alice!?). In
this study, we focused on web reference genre on topics related to
configuration of tools and computing environments. Other types
of genres and domains may have different kinds of executability
barriers.

There were several trade-offs we made in our implementation of
the execution harness and executability study. For example, because
we remotely executed through ssh, a few commands, such as ufw,
could disrupt the network connection. We also limited our scope
of execution. For example, we did not execute inline code blocks,
which were relatively rare—only 10 instances found in our sample
dataset. Therefore, even higher execution rates could be observed
through additional engineering effort on the execution harness
without necessarily changing tutorials.

Finally, we acknowledge that qualitative research, however rig-
orously conducted, involves not only the qualitative data under
investigation but also a level of subjectivity and interpretation on
the part of the researcher as they frame and synthesize the results

8https://www.khanacademy.org/
https://www.w3schools.com/
Ohttps://www.edx.org/
https://codecombat.com/
Rhttps://www.alice.org/

Samim Mirhosseini and Chris Parnin

of their inquiry. In this study, we focused on validity over reliabil-
ity [21]. To support interpretive validity, we followed the guidelines
set by [20] and performed a peer debriefing with our results. Our
sampling method was parameterized with a higher tolerance for
error. Therefore our study limits our ability to draw precise conclu-
sions for a sample-to-population or statistical generalization when
characterizing the frequency or portion of failures.

6 RELATED WORK

The work by Kim and Ko [16] is the closest related work in terms
of research method and goal. Kim and Ko [16] also performed an
qualitative inspection of 30 tutorials across a variety of domains.
However, their method differed in how they characterized tutorial
content. In the study, the authors made an assessment of whether
tutorials fit best practices in pedagogy, such as connecting to learn-
ers’ prior knowledge, and encouraging meta-cognitive learning.
They found deficiencies in all these categories across a variety
of tutorials and domains. In both Kim and Ko [16] and our work,
an overarching goal is to assess the quality of tutorials; however,
whereas Kim and Ko [16] view quality through a pedagogical lens,
we view quality through an executability lens, with a longer-term
goal of automated and continuous testing.

Studies have characterized the pain points of both tutorial takers
and tutorial creators. Tutorial takers stumble when tutorials con-
tain missing dependencies or steps [23], do not explain unexpected
errors or side effects, and have unclear adaption paths for tailor-
ing content to different goals [18]. Head et al. [10] interviewed 12
tutorial creators and discovered pain points related to duplicate
instructions and composing and reusing code fragments from a
working example. Furthermore, the authors created an interactive
tutorial author tool, Torii, which allowed authors to split, annotate,
and link tutorial content. Our study provides empirical evidence
validating several of these concerns, and provides additional tech-
niques for allowing continuous testing of tutorials.

More broadly speaking, our study relates to other studies that
have examined the executability of code artifacts. For example, a
recent study by Pimental et al. found that only 24% of Jupyter note-
books could be executed, and only 4% had reproducible results [29].
Similarly, only 25-27% of Python code snippets found in Stack
Overflow posts [14, 37] GitHub gists [12] are executable. In these
empirical studies, a common factor for low rates of executability in-
clude missing configuration information, such as dependencies, and
software decay due to reliance on older versions (e.g., the code only
works with older versions of APIs). Our observation of documenta-
tion rot is closely related to other forms of software decay, such as
unavailable urls in source code [9]. In summary, executability is a
useful property for understanding the quality and replicability of
software artifacts, including those found in software tutorials.

7 DISCUSSION

Our findings demonstrate numerous ways in which tutorials con-
tain instructions that are not directly executable. When naively
executed, we found only 26% of code blocks inside tutorials ran
successfully, consistent with other experiments on executability
of other software artifacts [12, 14, 29, 37]. Human annotation was
necessary in order to identify responses to interactive input, supply

https://www.khanacademy.org/
https://www.w3schools.com/
https://www.edx.org/
https://codecombat.com/
https://www.alice.org/

Docable: Evaluating the Executability of Software Tutorials

missing implicit information such as those that need to be executed
with privileges, and perform actions such as saving content as a file
on a particular path. Although executing annotated tutorials with
DocaBLE substantially improved executability, numerous issues
which could not be simply resolved by annotation persisted, reveal-
ing underlying issues with quality and accessibility of instructions.

In the remainder of this section, we present design implica-
tions for technical writers, toolsmiths, and software engineering
researchers that can help reduce some executability difficulties in
software tutorials.

7.1 Implication I-Provide Accessible
Alternatives for Tutorial Takers

We observed several accessibility barriers that limit who can fully
take advantage of the learning experiences offered by tutorials, such
as inaccessible resources (Section 4.3) and interactive prompts (Sec-
tion 3.1), which can increase the difficulty of successfully executing
a tutorial (Section 4.2).

Not every tutorial taker will have readily available access to
costly infrastructure resources. Several tutorials required resources
such as registered domain names and extra features, such as addi-
tional disk volumes, object-stores, and clusters—all expenses that
can quickly exclude disadvantaged and non-traditional learners
who do not have the resources necessary to obtain them. Profes-
sionals can be impacted as well. A tutorial taker may be working
on a prototype or investigating possible platforms for a product,
and may be weary of making large investments in order to follow
a tutorial that may not even work.

Tutorials can inadvertently exclude novice learners by omit-
ting details that are important for shepherding cautious learners
through their first learning experience. Research in computer edu-
cation has found that learners with lower self-efficacy have more
difficulty handling unexpected and exploratory behaviors [1], such
as interactive prompts [18]. Interactive prompts can be difficult for
learners who do not know how to response exactly, especially if
they are first learning a new tool or command. For example, com-
mands such as ‘mysql_secure_installation’ or ‘1xd init’ can
ask up-to dozens of prompts, including complicated configuration
options such as bridge networking. We found many instances of
tutorials which simply asked the reader to answer the prompts or
follow the rest of the prompts without giving details for what should
be the response to each prompt. When unguided, such prompts can
be frustrating and overwhelming for novices.

Learners desire more accessible resources that leverage their
background [32] and providing alternative formats for flexibility
in learning [5]. Surprisingly, simple steps can provide improve ac-
cessibility for tutorial takers. For example, many tutorials required
prerequisites, such as having a registered domain name, before the
reader can follow the steps of the tutorial. However, we found a few
tutorials that offered a simple alternative if this was currently un-
obtainable for the tutorial taker. The tutorials instruct the reader to
update their /etc/hosts file, which allows routing the requests of
the domain name to a local IP address, therefore eliminating the re-
quirement for a registered domain name. Similarly, commands with
interactive prompts may not always be asking for configuration
options relevant to the tutorial. When possible, interactive prompts

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

can be reduced by using default values, or providing command flags,
such as -y or —-q. As a result, tutorials can reduce uncertainty for tu-
torial takers, and improve the ability for learners of all backgrounds
to learn.

Step 1: Setup the FQDN (fully qualified domain name)

As required by Zammad, you need to properly setup the FQDN on your
server instance before you can remotely access the Zammad site.

Usethe vi texteditorto openthe /etc/hosts file.

sudo vi /etc/hosts

Insert the following line before any existing lines.

203.0.113.1 helpdesk.example.com helpdesk

7.2 Implication II-Invest in Automated
Tutorial Testing

We observed several issues that impact the quality of tutorials, such
as documentation rot, missing and volatile instructions (Section 4.3)
which resulted in lower execution rates (Section 3.1 and 4.2). “Tuto-
rial maintenance is inherently difficult...our tutorials are written
by and for humans, so there’s always a chance that there will be
errors (even with all the work we do to minimize them” (12).

Automated tutorial testing can help if tutorial creators are willing
to make minimal investments. For example, tutorials at LEARNK8s!3
uses annotations on their code blocks for rendering output. These
can be extended to support annotations that assist with automated
execution:

Start the service.
**‘bash|user=root|prompt="$"
systemctl start roti13

NESN

Test the service by typing in ‘Hello, world!®
“*‘bash|input="Hello, world!'|expect=1
client$ nc -w 1 -u 127.0.0.1 10000

Uryyb, jbeyq!

L Y ST CR

Another place to invest in improving executability of tutorials is
summarizing, updating, and presenting file content (Section 3.3.2).
Tutorials can show intermediate steps of updating a file, but should
include a final content block, or offer programmatic methods of
displaying and updating content, such as “jq which automatically
filters out the output and give what is needed” (I1).

Finally, tutorial testing can be complemented with other sources
of testing and feedback. For example, Drosos et al. [7] deployed
pain-scale surveys in an online learning environment to automati-
cally determine which programming features were frustrating to
learners, and Mysore and Guo [24] explored using tutorial profiling
to identify problematic instructions. These measures can be com-
bined with “using data such as page bounce rates, shares, whether

Bhttps://github.com/learnk8s/learnk8s.io/

https://github.com/learnk8s/learnk8s.io/

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

the user bookmarks a tutorial, whether the tutorial is ‘ripped-oft’
or translated into other languages, etc” (I6).

7.3 Implication III—Provide Self-Contained
Tutorials.

We observed tutorials that made simplifying assumptions about
environment and tutorials that required running other tutorials
that sometimes could“run multiple levels deep” (I3). Furthermore,
when tutorials do not explicitly control their dependencies, docu-
mentation rot could lead to breaking changes within the tutorial
(Section 4.3). Many tutorials that we analyzed included multiple
links to other tutorials which explain how to setup a prerequisite
but it is not clear which link should be used by the user, or if those
tutorials will also have their own prerequisites.

One informant mentioned their effort to flatten dependencies “in
recent tutorials they’ve tried to pull all dependencies up and "flatten
out the dependency tree" so that it’s clear up-front each step you
need to take first” (I3). We observed several Vultr tutorials, where
all dependencies could be installed in a single tutorial'*. Another
informant described their efforts to better packaging tutorials: “If
the tutorial is using a VM, we package all dependent files and arti-
facts such as Docker images within the VM. When we depend on
an external script, we fork the script and host it alongside the doc-
umentation. This is similar to your finding to avoid use of external
services as much as possible” (I5).

Other interesting approach would involve automatic inference
and construction base images for running tutorials. For example,
DockEeRIZEME [13] is a technique that given a Python code snippet,
can automatically infer system and transitive dependencies required
to successfully execute a code snippet. Such a technique could
be adopted to determine the dependencies necessary for running
a tutorial. Similarly, a tool such as opuNIT [22] could provide a
simple mechanism for determining whether or not prerequisites
were appropriately satisfied before starting a tutorial.

7.4 Implication IV—Be Intentional on Whether
Instructions are Human-Readable or
Machine-Readable

We observed several executability barriers, such as placeholders
in commands (Section 3.3.1), conditional logic in file content (Sec-
tion 3.3.2, interactive prompts (Section 3.1), and “template values
are inconsistent between tutorials and rarely machine readable” (I6),
which needed extensive human interpretation (Section 4.1) to over-
come. These executability barriers often involves, human-readable
steps, “commands and file contents with placeholder values that
should be changed by the reader, all for the purpose of providing
additional information and context” (I12), such fill in a password or
replace this IP or MAC address. One tutorial even asks the reader
to go to a website, locate a download link, and use it in a curl
command. Tutorial creators need to consider whether these human
readable steps are intended to be truly educational or an unwanted
learning barrier that reduces the accessibility of the tutorial.
Mirhosseini and Parnin [22] reported their experiences teach-
ing over 400 students skills related to automatically configuring

https://www.vultr.com/docs/how-to-install-bookstack-on-ubuntu-16-04

Samim Mirhosseini and Chris Parnin

computing environments in a graduate university course. When
following step-by-step tutorials, such as the instructions for con-
figuring a mattermost server 1, students often struggled to detect
errors related to incorrectly executed commands, or malformed
configuration files and lacked the appropriate debugging skills to
diagnosis them. For example, it was common to update the wrong
section of a configuration file, especially when the option was re-
peated across multiple areas. Professionals also struggle to reuse
material from online resources, due to configuration and docu-
mentation issues [8], being uncertain on whether the material is
up-to-date [5, 36], and determining what portion might require
manual adaption [6, 36].

Machine-readable instructions can have several benefits for learn-
ers. They can ensure learners are more likely to reach a desired state
regardless of skill level. Furthermore, readers can more quickly and
confidently execute instructions, providing them to safe foundation
to experiment and adapt instructions to their learning goals. There
are several steps that tutorial creators can take to ensure a better
experience for tutorial takers while maintaining machine-readable
steps. Tutorials can “make it possible for users to fill out the variable
values and have it flow into the tutorial code” (I3). For example, if
the tutorial needs to replace the text sammy@openvpn_server_ip
inside commands, there can be an interactive component in the
tutorial that allows the user specify the desired value for this pa-
rameter, which is then automatically propagated throughout the
tutorial instructions. Finally, “it would be interesting if there were
a standardised format for storing tutorial data, which would allow
one piece of structured data to both be rendered into a human-
friendly page, but also interpreted by a machine and automatically
executed” (I6).

8 CONCLUSION

In this study, we conducted a mixed-methods study through an
empirical study on tutorials collected from various online sources,
and through a qualitative analysis of tutorials. We first used a naive
execution strategy to determine a baseline level of executability.
We then inspected code blocks in tutorials and devised a set of
annotations that could be applied to improve their executability. By
executing these annotated tutorials with DocABLE, we were able to
obtain a higher rate of executability, but still observed a significant
amount of failures in overall tutorial execution. A qualitative inspec-
tion of tutorial failures and peer debriefing with tutorial creators
revealed various issues which prevented successful execution and
impact the accessibility and quality of tutorials. We discuss possible
strategies for improving software tutorials, such as providing ac-
cessible alternatives for tutorial takers, and introducing automated
tutorial testing to ensure continuous quality of software tutorials.

ACKNOWLEDGMENTS

This material is based in part upon work supported by the National
Science Foundation under grant number 1814798.

Bhttps://docs.mattermost.com/install/install-ubuntu-1604.html

https://www.vultr.com/docs/how-to-install-bookstack-on-ubuntu-16-04
https://docs.mattermost.com/install/install-ubuntu-1604.html

Docable: Evaluating the Executability of Software Tutorials

REFERENCES

[1] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph

[9

[10

[12

[13

[14

(15

[16

(17

=

]

]

]

]

Lawrance, Alan Blackwell, and Curtis Cook. 2006. Tinkering and Gender in End-
User Programmers’ Debugging. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI "06). Association for Computing Machinery,
New York, NY, USA, 231-240. https://doi.org/10.1145/1124772.1124808
Andrew Begel and Thomas Zimmermann. 2014. Analyze This! 145 Questions for
Data Scientists in Software Engineering. In Proceedings of the 36th International
Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 12-23. https://doi.org/10.1145/
2568225.2568233

Melanie Birks, Ysanne Chapman, and Karen Francis. 2008. Memoing in qualitative
research: Probing data and processes. Journal of Research in Nursing 13, 1 (jan
2008), 68-75. https://doi.org/10.1177/1744987107081254

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77-101.

Jennifer Brill and Yeonjeong Park. 2011. Evaluating Online Tutorials for Uni-
versity Faculty, Staff, and Students: The Contribution of Just-in-Time Online
Resources to Learning and Performance. International Journal on E-Learning 10,
1 (January 2011), 5-26. https://www.learntechlib.org/p/33278

Rylan Cottrell, Robert J. Walker, and Jorg Denzinger. 2008. Semi-Automating
Small-Scale Source Code Reuse via Structural Correspondence. In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (Atlanta, Georgia) (SIGSOFT ’08/FSE-16). Association for Computing Ma-
chinery, New York, NY, USA, 214-225. https://doi.org/10.1145/1453101.1453130
1. Drosos, P. J. Guo, and C. Parnin. 2017. HappyFace: Identifying and predicting
frustrating obstacles for learning programming at scale. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 171-179. https:
//doi.org/10.1109/VLHCC.2017.8103465

Denae Ford and Chris Parnin. 2015. Exploring Causes of Frustration for Software
Developers. In Proceedings of the Eighth International Workshop on Cooperative
and Human Aspects of Software Engineering (Florence, Italy) (CHASE ’15). IEEE
Press, 115-116.

Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.
9.6 Million Links in Source Code Comments: Purpose, Evolution, and Decay. In
Proceedings of the 41st International Conference on Software Engineering (Montreal,
Quebec, Canada) (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1211-1221. https:
//doi.org/10.1109/ICSE.2019.00123

Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Bjorn Hartmann.
2020. Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source
Code, Snippets, and Outputs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI 20). Association for
Computing Machinery, New York, NY, USA, Article 669, 12 pages. https://doi.
org/3313831.3376798

Sarah Heckman, Kathryn T. Stolee, and Christopher Parnin. 2018. 10+ Years of
Teaching Software Engineering with Itrust: The Good, the Bad, and the Ugly. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training (Gothenburg, Sweden) (ICSE-SEET ’18). ACM,
New York, NY, USA, 1-4. https://doi.org/10.1145/3183377.3183393

E. Horton and C. Parnin. 2018. Gistable: Evaluating the Executability of Python
Code Snippets on GitHub. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 217-227. https://doi.org/10.1109/
ICSME.2018.00031

Eric Horton and Chris Parnin. 2019. DockerizeMe: Automatic Inference of
Environment Dependencies for Python Code Snippets. In Proceedings of the 41st
International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE °19). IEEE Press, 328-338. https://doi.org/10.1109/ICSE.2019.00047

Md Monir Hossain, Nima Mahmoudi, Changyuan Lin, Hamzeh Khazaei, and
Abram Hindle. 2019. Executability of Python Snippets in Stack Overflow. arXiv
preprint arXiv:1907.04908 (2019).

Glenn D Israel. 1992. Sampling the evidence of extension program impact. Citeseer.
Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Analysis of Online Coding Tuto-
rials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (Seattle, Washington, USA) (SIGCSE °17). ACM, New York, NY,
USA, 321-326. https://doi.org/10.1145/3017680.3017728

Sean Kross and Philip J. Guo. 2019. End-User Programmers Repurposing End-
User Programming Tools to Foster Diversity in Adult End-User Programming
Education. In Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (VL/HCC 19).

(18

[19

[20

[21

[22

[23

[24]

[25

[26

[27

&~
20,

=
fla

(36]

[37

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Benjamin Lafreniere, Tovi Grossman, and George Fitzmaurice. 2013. Com-
munity Enhanced Tutorials: Improving Tutorials with Multiple Demonstra-
tions. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 1779-1788.
https://doi.org/10.1145/2470654.2466235

T. C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use
documentation: the state of the practice. IEEE Software 20, 6 (Nov 2003), 35-39.
https://doi.org/10.1109/MS.2003.1241364

Yvonna .S. Lincoln and Egon G. Guba. 1985. Naturalistic Inquiry. Sage Publications,
Newbury Park, CA.

Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (Nov.
2019), 23 pages. https://doi.org/10.1145/3359174

Samim Mirhosseini and Chris Parnin. 2020. Opunit: Sanity Checks for Computing
Environments. In Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment, Jean-Michel Bruel, Manuel
Mazzara, and Bertrand Meyer (Eds.). Springer International Publishing, Cham,
167-180.

Alok Mysore and Philip J. Guo. 2017. Torta: Generating Mixed-Media GUI and
Command-Line App Tutorials Using Operating-System-Wide Activity Tracing.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). ACM, New York, NY,
USA, 703-714. https://doi.org/10.1145/3126594.3126628

Alok Mysore and Philip J. Guo. 2018. Porta: Profiling Software Tutorials Using
Operating-System-Wide Activity Tracing. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18).
ACM, New York, NY, USA, 201-212. https://doi.org/10.1145/3242587.3242633
Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in Software Engineering Research. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE
2013). Association for Computing Machinery, New York, NY, USA, 466-476.
https://doi.org/10.1145/2491411.2491415

Mitchell J. Nathan, Kenneth R. Koedinger, and Martha W. Alibali. 2001. Expert
Blind Spot : When Content Knowledge Eclipses Pedagogical Content Knowledge.
C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman,
J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and L. Williams. 2017.
The Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (May 2017),
86-95. https://doi.org/10.1109/MS.2017.86

C. Parnin, C. Treude, and M. A. Storey. 2013. Blogging developer knowledge: Mo-
tivations, challenges, and future directions. In 2013 21st International Conference
on Program Comprehension (ICPC). 211-214. https://doi.org/10.1109/ICPC.2013.
6613850

Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-scale Study about Quality and Reproducibility of Jupyter Note-
books. In Proceedings of the 16th International Conference on Mining Software
Repositories (Montreal, Canada) (MSR ’19).

Joseph Ponterotto. 2006. Brief note on the origins, evolution, and meaning of
the qualitative research concept thick description. The Qualitative Report 11, 3
(2006).

Daniele Procida. 2017. What nobody tells you about documentation.
//www.divio.com/blog/documentation/

Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. [n.d.]. Here We
Go Again: Why Is It Difficult for Developers to Learn Another Programming
Language? ([n.d.]).

Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
Christoph Treude and Mauricio Aniche. 2018. Where does Google find API
documentation?. In Proceedings of the 2nd International Workshop on API Usage
and Evolution. ACM, 19-22.

Hazel Virdd and Brian Hogan. 2020. Technical Writing Guidelines.
https://www.digitalocean.com/community/tutorials/digitalocean-s-technical-
writing-guidelines

Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2018. How
do developers utilize source code from stack overflow? Empirical Software
Engineering (2018), 1-37.

Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From Query to Usable
Code: An Analysis of Stack Overflow Code Snippets. In Proceedings of the 13th
International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16).
ACM, New York, NY, USA, 391-402. https://doi.org/10.1145/2901739.2901767

https:

https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1177/1744987107081254
https://www.learntechlib.org/p/33278
https://doi.org/10.1145/1453101.1453130
https://doi.org/10.1109/VLHCC.2017.8103465
https://doi.org/10.1109/VLHCC.2017.8103465
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/3313831.3376798
https://doi.org/3313831.3376798
https://doi.org/10.1145/3183377.3183393
https://doi.org/10.1109/ICSME.2018.00031
https://doi.org/10.1109/ICSME.2018.00031
https://doi.org/10.1109/ICSE.2019.00047
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.1145/2470654.2466235
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3126594.3126628
https://doi.org/10.1145/3242587.3242633
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1109/MS.2017.86
https://doi.org/10.1109/ICPC.2013.6613850
https://doi.org/10.1109/ICPC.2013.6613850
https://www.divio.com/blog/documentation/
https://www.divio.com/blog/documentation/
https://www.digitalocean.com/community/tutorials/digitalocean-s-technical-writing-guidelines
https://www.digitalocean.com/community/tutorials/digitalocean-s-technical-writing-guidelines
https://doi.org/10.1145/2901739.2901767

	Abstract
	Introduction
	Methodology
	Research Questions
	Data Collection
	Execution Harness
	Baseline: Naive Execution
	Human-Annotation-Based Execution

	Naive Execution Results
	Executability Rates
	Errors and Exit Codes
	Code Block Types
	Summary

	Human-annotation-based execution results
	Annotations
	Executability Rates
	What Execution Failures Remain?
	Summary

	Limitations
	Related Work
	Discussion
	Implication I—Provide Accessible Alternatives for Tutorial Takers
	Implication II—Invest in Automated Tutorial Testing
	Implication III—Provide Self-Contained Tutorials.
	Implication IV—Be Intentional on Whether Instructions are Human-Readable or Machine-Readable

	Conclusion
	Acknowledgments
	References

