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Abstract—Existing rate adaptation protocols have advocated
training to establish the relationship between channel conditions
and the optimum modulation and coding scheme. However,
innate with in-field operation is encountering scenarios that the
rate adaptation mechanism has not yet encountered. Frequently,
protocols are optimally tuned for indoor environments but, when
taken outdoors, perform poorly. Namely, the decision structure
formed by offline training, lacks the ability to adapt to a new
situation on the fly. The changing wireless environment calls
for a rate adaption scheme that can quickly infer the channel
type and adjust accordingly. Typical SNR-based rate adaptation
schemes do not capture the nuance of the performance variable in
different channel types. In this paper, we propose a novel scheme
that allow SNR-based rate selection algorithms to be trained
online in the environment in which they are operating. Inspired
by the idea that, to do well, an athlete must train for the type of
athletic event and environment in which they are competing, we
propose FIT, an on-the-fly, in-situ training mechanism for SNR-
based protocols. To do so, we first propose the FIT framework
which addresses the challenges of making rate decisions with
unpredictable fluctuation and lack of repeatability of real wireless
channels. To distinguish between channel types in the training,
we then characterize wireless channels according to the link-layer
performance and introduce a novel, computationally-efficient,
channel performance manifold matching technique to infer the
channel type given a sequence of throughput measurements
for various link-level parameters. To evaluate our methods, we
implement rate selection which uses FIT for training alongside
channel performance manifold matching. We then perform ex-
tensive experiments on emulated and in-field wireless channels
to evaluate the online learning process, showing that the rate
decision structure can be updated as channel conditions change
using existing traffic flows. The experiments are performed over
multiple frequency bands. The proposed FIT framework can
achieve large throughput gains compared to traditional SNR-
based protocols (8X) and offline-training-based methods (1.3X),
particularly in a dynamic wireless propagation environments that
lack appropriate training.

Index Terms—Rate Adaptation, Online Training, In-situ Mea-
surements, Context Awareness, Channel Performance Manifold
Matching
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I. INTRODUCTION

IEEE 802.11 networks typically use significantly larger
packets and resulting channel access times than cellular net-
works to overcome the overhead of transmitting the packet
header. To overcome channel fading in this context requires
some form of feedback to the transmitter to alert the need for
rate changes as the channel quality fluctuates. Hence, a number
of rate adaptation approaches have been proposed to improve
the spectral efficiency when the channel quality improves and
simply remain connected when channel quality degrades. One
class of rate adaptation mechanism used in practice is loss-
based and suffers from poor rate decisions due to a confusion
between collision-based and channel-based losses [3]–[7]. A
second type of rate adaptation uses channel quality directly
(i.e., SNR-based protocols) and can distinguish between such
losses. However, to perform optimally, SNR-based schemes
need to be trained in each environment in which it is used [8]–
[12]. If the training is done offline, even excessive levels
of training may not cover all scenarios. Further, even with
a comprehensive rate decision structure for all contexts, the
training still may not be similar across device types (i.e., the
decision structure is likely hardware dependent).

Rate adaptation protocols are just beginning to use context
information, considering vehicular or pedestrian speed, or the
direction of motion [13]–[15], and/or channel type informa-
tion. Machine learning techniques can be used to extract
relationships between the context information, the settings
of the transmitter and receiver, and the resulting wireless
performance [16]–[19]. The established rate decision structure
can suggest the potential optimal settings for the transmitter-
receiver pair according to the channel condition efficiently
without adding overhead. Moreover, even with such a com-
prehensive decision structure, the rate adaptation mechanism
still has the challenge of distinguishing between environments
to leverage the training. To recognize these different contexts
in which training has occurred, a mechanism might isolate
training to given geographical regions and/or times of day.
However, such a splitting of training data would require an
extensive database (and extensive training).

To address the aforementioned challenges, in this paper,
we propose on-the-fly, in-situ training (FIT) for SNR-based
rate selection protocols. FIT can leverage an existing decision
structure to look up the optimal transmitter-receiver settings
and simultaneously update the decision structure using the
measured performance of existing data transmissions as train-
ing for the immediately-upcoming rate decisions. In essence,
FIT leverages the no-overhead advantage of loss-based rate

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 02,2020 at 15:35:19 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.3009198, IEEE
Transactions on Vehicular Technology

2

adaptation protocols to adapt the SNR-based rate adaptation
protocol. We implement the FIT training mechanism, and
SNR-based protocol structure on a hardware platform to
experimentally evaluate our approach with emulated and in-
field training. The proposed framework is the first framework
for SNR-based rate adaptation that trains in an online manner,
immediately using in-field data. The main contributions of this
paper are as follows:

• We propose FIT, an online classification-based rate adap-
tation framework. We utilize online machine learning
techniques to make quick and reliable decisions about the
modulation and coding scheme. The decision structure for
rate adaptation is adjusted to the dynamic fluctuations of
wireless channels efficiently when new context informa-
tion is collected using wireless performance information
from existing data transmissions (i.e., no additional over-
head packets to train for rate decisions are needed). To do
so, the training process has been modified from optimal
transmission mode prediction to quantized throughput
prediction to efficiently use training data and due to the
inability of the channel to stay the same while progressing
through all transmission schemes.

• The wireless performance changes with the context set-
ting such as indoor, outdoor, or vehicular environments.
In order to address the potentially infinite different sce-
narios that might be encountered, we define the notion of
channel type. Channel type (details in Section III) is used
to conveniently categorize the channels based on their
measured link-layer performance rather than low-level
channel tap-delay profile/Doppler information. We in-
troduce a computationally-efficient, channel performance
manifold matching framework to infer channel type given
a sequence of throughput measurements for various link-
level parameters. This proposed method succinctly cap-
tures the relationships between the performance of the
various modulation and coding schemes without any
additional overhead on data transmission.

• Based on the channel type inference, we decipher which
online decision structure to contribute to in the knowledge
of the optimal modulation and coding scheme to use in
that particular context. Such an approach removes confu-
sion of the decision structure that occurs when training
the same structure across diverse wireless environments.
This approach also allows previously encountered chan-
nels to pick up the training where it left off and form
new decision structures where there is a lack of training.

• We implement the proposed FIT framework on an off-the-
shelf platform and test its performance to demonstrate the
impact of in-situ training updates on rate selection per-
formance. FIT improves the throughput of rate adaptation
by up to 822.08% over a purely SNR-based method (i.e.,
one that does not use context information) and by 38.64%
over an offline-based method.

The remainder of this paper is organized as follows. In
Section II, we first discuss the system model and offline
training method for rate selection using decision tree. Then, we
propose an online learning framework for rate adaptation and

data collection procedure for the online training. In Section
III, we propose a channel performance manifold matching
algorithm to classify an unknown channel into one of the
channel models in the training set. In Section IV, we evaluate
the performance of the online training for rate selection
and channel performance manifold matching strategy with
experiments on emulated and in-the-field channels. Related
work is presented in Section V, and the paper concludes in
Section VI.

II. SYSTEM MODEL

The objective of this paper is to develop a framework
for online learning in adaptive wireless protocol. First, we
introduce the notations used. Let set A = {A1, A2, . . . , AL}
represent the various attributes or contextual information that
are available in a particular system. For instance, SNR, ve-
locity, and channel type are considered as the attributes in
our offline training schemes as we will discuss later. Let
M = {m1,m2, . . . ,mM} represent the set of transmission
modes (i.e., modulation and coding schemes) available in a
given system. For instance, for the Ubiquiti XR2, a mini-
PCI WLAN card [20] employed in our experimental section
for radio communication, MUbiquiti represents the supported
802.11a/g-compliant coding and modulation pairs.

In this paper, the optimization metric of interest is the
measured throughput G. We use the notation G(mi) to denote
the throughput of the i-th transmission mode. This throughput
is calculated as

G(mi) = (1− PER(mi)) · Rth(mi) ·
lpayload(mi)

lpacket(mi)
(1)

where PER(mi) is the measured packet error rate, Rth(mi) is
the physical layer data rate, and lpayload(mi) and lpacket(mi)
are the size of the payload and packet, respectively.

In traditional SNR-based adaptation, the objective is to
select the optimal transmission mode, m∗ as

m∗ = argmax
mi

G(mi), givenA1 ≡ SNR (2)

This problem is typically solved using prior training to
generate a look-up table from the set of attributes to the
optimal mode selected. In case the received SNR is the sole
attribute, the look-up table is efficiently represented by a set
of thresholds on the SNR where each mode is optimal.

The attributes we consider are received SNR, node velocity
and channel type (which is formally defined in Section III).
In short, two different channel conditions are said to belong
to the same channel type if their effective performance (as
measured by the throughput) of the various modes exhibit
similar behavior for all values of the various attributes.

We propose two different approaches to solve the new
optimization problem. In the first method, we use offline
training to generate an appropriate mapping from the set of
attributes to the optimal mode selected. Two different flavors
of this method, which differ in their computational complexity
and amount of training required, are discussed. In the second
method, we use online, in-situ training to continually refine
the mapping from attributes to the optimal mode choice. In
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Fig. 1. A decision tree for rate adaptation.

the sequel, we describe the details of the proposed offline and
online training methods.

A. Offline Training for Attribute Based Rate Selection
Adaptive learning algorithms have been widely investigated

in the literature [21]–[23]. Among classical learning methods,
the decision tree is popular due to its low complexity and
high accuracy of prediction. Such algorithms typically use
training data to derive an empirical relationship between the
desired output (class) and the inputs (attributes). The resulting
relationship is represented using a decision tree as shown in
Figure 1. Once the tree-based classifier is generated, adapting
its structure requires a repetition of the training process with
a newer or enlarged training set.

The offline learning algorithm that we use is the popular
C4.5 algorithm that is based on the entropy gain ratio. During
the offline training phase, the C4.5 algorithm is used to par-
tition the labeled training instances based on the information
entropy metric, until all instances have been assigned to the
leaf node of the tree [24]. Each leaf node has a specified class
label. The ability of the decision tree to handle multiple classes
and missing values makes it suitable for our application.
During the adaptation phase, this tree serves as the look-up
table to decide the optimal transmission mode for each set of
attributes. For instance, when the received SNR is between (15
dB, 32 dB] and the velocity is higher than 45 kmph, Mode 3 is
suggested as the optimal mode. We now describe two different
approaches to generate this decision tree.
Training With Exhaustive Information. In this case, we

consider that the training set includes the knowledge of the
optimum transmission mode to use for each combination of
attribute values. For instance, the training data could include
X records of A = {SNR, velocity, channel-type} values and
the optimal transmission mode in each of these cases.
Training with Partial Information. In this case, the train-

ing set includes knowledge of the throughput (or any desired
performance metric) for only a random subset of modes for
each combination of the attributes. Since there are |M| modes
available in the system, we restrict the amount of training data
for each combination of the attributes to no greater than L|M|.
One key advantage of using this method is that it lends itself
to an immediate online extension.

B. In-Situ Training
We develop an online version of the decision tree based

learning algorithm to adapt the classifier to changing envi-
ronments. Our algorithm is based on the incremental learning
algorithm in [23] and is able to efficiently update the existing
tree with new training data. Since only one rate can be used at

a given time, the optimal transmission mode is not available
on-the-fly. Consequently, we alter the input and the output
of the training so that the algorithm now takes the current
transmission mode as an input and the quantized version of
the throughput as the output (instead of the optimal mode).

Fig. 2. The flow chart of learning a new data.
The classifier resulting from our algorithm is represented as

a binary tree, which means every decision node can lead to two
outcomes. Each branch can be further divided into sub-trees.
The general procedure and example of incorporating new data
into an existing tree is shown in Fig. 2. The merit of efficiently
updating only the sub-tree would become more clear when the
decision structure grows with more training data. As shown
in the example in Fig. 2, a test condition based on one of the
attributes of the training data is saved at each decision node.
Data D1 is learned when the tree is empty. Therefore, the tree
is represented as a leaf node, which indicates the class of data
D1. If new training data is ready when the tree is not empty,
the data is first classified following branches in the existing
tree-like classifier. If the existing tree is not able to classify
the data correctly, the current leaf node will be converted into
a decision node using the test condition based on the attribute
selection metric. In the example, the only leaf node formed in
Step 1, is converted into a decision node to classify data D1
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and data D2 in Step 2. If the classifier can predict the class
label with its attributes correctly, the data will be added to the
set of retained data related to the leaf node. Further, the test
condition as well as the structure of the sub-tree involved in
the classification of the new data, will be adjusted based on
the changed data set using Quinlan’s information gain ratio as
the metric [24]. In Step 3 of the example, data D3 is added
and the test condition is adjusted.

If the value for one of the attributes is missing, the data
will be passed down the branch that does not satisfy the test
condition. If any operations change a data group, the algorithm
will check if test condition based on the data group is the
optimal condition. The order for checking the optimality is
from the root node to its sub-trees. The updating process can
be paused and resumed, and the tree-like classifier can be
saved at any time.

C. Training Data Collection
Let R = {r1, r2, . . . , rR}, V = {v1, v2, . . . , vV }, and

S = {s1, s2, . . . , sS} represent, respectively, the sets of
channel types, velocities, and SNR values in the training set.
In the training phase, we measure the throughput Gm,s,v,r

that the system can achieve using mode m in the channel
type r with the velocity v and SNR s. For each model r, the
V · S · M throughput values constitute the performance data
pr. A complete training set P = {p1, p2, . . . , pR} contains
R · V · S ·M throughput values, which describes the system
performance in these R channels.

The decision structure in the offline method models the rela-
tionship between the contextual information and the optimum
mode. To derive the decision structure, the offline-training-
based method requires the knowledge of the best mode m∗ in
the training data which can be obtained as,

m∗ = argmax
mi

G(mi)

givenA1 ≡ SNR,A2 ≡ velocity, A3 ≡ ch-type (3)

One major challenge for in-situ training is that the optimal
mode is unknown in practical situation. Typically, only the
performance of one or at best a subset of modes is available in
each dynamically changing context. Our solution is to directly
learn the relationship between the context information and the
throughput of each mode. Each training data is just the raw
measured data which is represented as,

{SNR, velocity, channel type,mc, G(mc)} (4)

where mc is the mode used in current scenario. The ac-
cumulative training process will result in a trained decision
structure, with which the throughput for all modulation and
coding schemes under a certain scenario can be predicted.

D. In-Situ-Training for SNR-based Rate Selection
Based on our solutions, we propose, FIT, our in-situ training

framework for SNR-based rate selection. Instead of directly
deriving the function of link adaptation by learning algorithm
as

foffline : {si, vi, ri} → m∗, (5)

Fig. 3. FIT framework.

first, we derive the function below using online learning
algorithm as

fonline : {si, vi, ri,mi} → G(mi), (6)

Then, given the collected context information, (6) is able to
predict the throughput for all the modes. Subsequently, the best
mode m∗ is selected by comparing the predicted throughput
values of all modes.

The framework of FIT is depicted in Fig. 3. With
the collected context information {A1, A2, . . . , AL},
the decision tree predicts all the throughput values
{G(m1), G(m2), . . . , G(mM )} corresponding to the
transmission modes. After comparing those values, the
mode m∗ with the highest throughput is employed by the
transmitter/receiver. Finally, the binary decision tree partially
updates the decision structure with the new training data,
{si, vi, ri,m

∗, G(m∗)}.
For the proposed FIT, we add the mode index as one

attribute and directly predict the throughput. This strategy
makes the in-situ training data collection possible and also
substantially distinguishes our proposed framework from the
existing link adaptation framework based on offline training.
Compared to the existing offline methods, the advantages of
FIT are clearly evident. First, FIT can save computational
resources both for the initial training data collection and
subsequent periodic retraining. Further, through incrementally
learning from the newly collected data, our proposed frame-
work adapts to the dynamic environment.

We observe that, given a particular environment, all training
data points based on the context information, SNR, velocity,
and mode are equally important to model the throughput
performance. Hence, the proposed FIT based rate decision
structure equally weights data points for each observed envi-
ronment. In the next section, we propose a mechanism, which
is useful to detect a new environment, such that a new rate
decision structure is constructed based on new data points in
that environment.

III. CHANNEL PERFORMANCE MANIFOLD MATCHING

As noted in Section II, the proposed FIT framework re-
quires knowledge of the channel type to distinguish various
environments as well as knowledge of SNR and velocity
for the rate decision training. Channel type is a simpler
way to represent the main characteristics of the infinitely
varied propagation environment, such as fading, multipath,
and doppler. In a wireless system, SNR can be measured
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by the channel estimation module. Additionally, many mobile
devices can now obtain velocity using an on-board GPS
module. However, the channel type information cannot be
directly obtained. In this section, we introduce a channel
performance manifold matching algorithm that leverages the
geometrical structure of the performance curves and classifies
an unknown channel into one of the channel models in the
training set. The algorithm also provides a confidence level for
this classification, and if a minimum desired confidence level
is not obtained, the algorithm flags the current measurement
location as a new channel type that has not been previously
encountered. Subsequently, an additional decision tree or sub-
tree for the new channel type is trained.

A. Proposed Algorithm
In practical system, depending on available memory, only

the most frequently used channel types can be stored. Let
C denote the countably infinite set of all possible channel
realizations in the real world. Let P contain the performance
data pci for each ci ∈ C. Each pci is a vector of size |V ·S ·M |
that represents the transceiver’s performance using different
transmission parameters in channel ci. Let T represent the set
of all possible tree structures introduced in Section II. Each
t ∈ T can be regarded as the outcome of the following map-
pings: c 7→ p 7→ t. If pci and pcj (i 6= j) always have identical
transmission modes that achieve maximum throughput, then
they are mapped onto the same tree structure. Our channel
performance manifold matching algorithm is designed to solve
the problem of classifying a random channel c into the subset
Ck ⊂ C, within which all the channels are mapped to the
same sub-tree structure tk. All such channels Ck are defined
as belonging to a particular channel type.

We use the throughput as the performance metric and
consider the same training set as described in Section II. The
channel performance manifold matching relates the throughput
of different transmission modes to the context information.
Meanwhile, it also searches for the throughput of all the
channel models in the training set, which have the same
context information. Finally, it calculates the similarity of the
geometric shape of the throughput points measured in a test
case with those of different channel models in the training set.
The algorithm selects the most similar model as the channel
model for the current test channel and uses this result along
with other context information for optimal mode selection
using the decision tree.

Using the same training set P as in Section II, we now
use NI(NI ≥ 2) throughput values measured in the real
channel, whose channel type is unknown, and their related
context information to classify the channel into one of the
R channels. For each i(i = 1, . . . , NI), Ĝ(mi) denotes the
measured throughput, using mode m̂i, and ŝi, v̂i represent the
corresponding SNR and velocity, respectively. Then, we search
the training set and find the throughput of all the channel
models with the same context information and transmission
mode. In other words, we look for Gr,v̂i,ŝi,m̂i

of all r ∈ R
channel models. It is possible that v̂i is not in V (same for
ŝi). In this case, a linearly interpolated throughput G̃r,v̂i,ŝi,m̂i

Fig. 4. Plot of the throughput versus SNR and Velocity for different channels.

is calculated based on the throughput of the nearest velocity
and SNR values.

The training set for a particular channel (pr) is a family of
3-D meshes, where each mesh represents the throughput of a
certain transmission mode with respect to SNR and velocity.
With interpolation, the meshes can be filled and turned into
surfaces. By labeling all the G̃r,v̂i,ŝi,m̂i

, we can draw R curves
as shown in Fig. 4, indicating the throughput variation trend in
the order of i from 1 to NI . Similarly, we plot the throughput
for the unknown test channel. The training set vector and the
measured vector can be expressed as

TSVm =
(

(ŝi+1, v̂i+1, G̃r,v̂i+1,ŝi+1,m̂i+1
), (ŝi, v̂i, G̃r,v̂i,ŝi,m̂i

)
)

MVm =
(

(ŝi+1, v̂i+1, Ĝr,v̂i+1,ŝi+1,m̂i+1
), (ŝi, v̂i, Ĝr,v̂i,ŝi,m̂i

)
)

,

respectively, and let γr,i be the angle between TSVm and
MVm. The similarity index γr is defined as

γr =

NI−1
∑

i=1

γr,i (7)

There are numerous metrics that can be used to measure
such similarities. However, the proposed metric is simple
and demonstrates good performance. The channel performance
manifold matching algorithm computes the channel model γrj0
that most likely has the same performance as the unknown
channel. Formally, we have

j0 = argj min γrj (8)

Subsequently, the decision tree for channel model rj0 can be
used for the unknown channel.

Fig. 4 is a representative 3-D plot for R = 4 and N = 5.
We can see that the throughput of the channel model 1 follows
the trend of that of the unknown channel, which results in the
minimum γr compared with other channel models. When NI

grows, more features are provided by {Ĝi} and the resulting
matching is more accurate. Thus, there is a natural trade
off between computation complexity and estimation accuracy,
which is quantified in Fig. 5 and discussed in the next Section.
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TABLE I
CHANNEL PERFORMANCE MANIFOLD MATCHING IN KNOWN CHANNELS

NI 2 3 4 5 6 7
Accuracy 74.8% 81.9% 87.5% 90% 91.7% 94.3%

B. Algorithm evaluation

Using a channel emulator, we can reproduce the same chan-
nel in multiple tests, providing a useful method to verify the
channel performance manifold matching algorithm. We have
implemented two tests to validate our channel performance
manifold matching algorithm. In the first test, we select NI

sets of (ri, vi, si,mi) where ri = r0, for some fixed r0 ∈ R
for all i = 1, . . . , NI , mi ∈ M but vi /∈ V , si /∈ S. We
measure the throughput Gi = Gri,vi,si,mi

, and using {Gi}
and the corresponding {vi}, {si} , {m0} as the input to the
algorithm, and check if the inferred value equals r0.

The second verification test is to generate a new channel
cnew /∈ R with a randomly generated power-delay profile,
select N sets of (cnew, si, vi,mi), measure the resulting
throughput {ηi}, and check if the algorithm can choose the
model rfit ∈ R which is most similar to cnew . As stated
in Section II, we seek to select the transmission mode that
maximizes throughput. Therefore, the definition of rfit is the
channel model that, once fed into the decision tree along
with the context information, outputs the transmission mode
m∗ ∈ M that achieves the maximum throughput in cnew.
Next, we will introduce the proposed method to determine
rfit and then discuss the evaluation results.

To determine rfit, we first find m∗ by measuring the
throughput of all the mk ∈ M in the unknown channel
with the same context information. In other words, m∗ =
argmaxmk

Gcnew,vi,si,mk
, k = 1, . . . , R. Then, we consider

R scenarios such that rfit = rj , j = 1, . . . , R. For each
scenario, we input (rj , vi, si) into the decision tree and check
if the output transmission mode mj equals m∗. We repeat
the procedure by choosing different v and s and find the
mj which has the most matching instances. We will call
this scheme the exhaustive search algorithm and compare it
with the performance of the channel performance manifold
matching algorithm.

We use the same training set and the decision tree in
Section II where four channel models are involved, i.e., R = 4
in both evaluations. In the first type of evaluation, for the
exhaustive search algorithm, we choose NI = 16 records to
investigate the effectiveness of the algorithm. The matching
accuracy on average is 40%. Since our manifold matching
algorithm can work with NI(NI ≥ 2) records and it has better
performance with more records, we have done a progressive
evaluation while increasing the record number. Table I shows
the result of the evaluation. The superiority of the proposed
channel performance manifold matching algorithm is clearly
evident from the high accuracy of 74.8% with only 2 test
points and over 94% accuracy with just 7 test points.

In the second evaluation, among 24 results that are given by
the exhaustive search algorithm, 66.7% select channel model
3 in R as rfit. For our manifold matching algorithm, we
have done the progressive evaluation as shown in Fig. 5. The
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Fig. 5. Confidence of the Channel Performance Manifold Matching with
Various Number of Samples

confidence of selecting channel model 3 is the highest out of
all channels with just 2 records and a monotonically increasing
confidence with additional records. On the other hand, for the
other channel models the confidence is low with 7 records.

Our experimental evaluation demonstrates several tests
where the proposed channel performance manifold matching
method leads to significant increase in throughput. It should
also be noted that incorrect channel matching does not neces-
sarily mean lower system throughput. Classifying an unknown
channel into other channel models than rfit may not result in
the highest throughput, but feeding this result into the decision
tree may still increase the throughput over an purely SNR-
based rate adaptation scheme.

C. Complexity Analysis

Here, we provide the worst case computational complex-
ity of the proposed channel performance manifold matching
mechanism integrated with the decision tree structure. In big-
O notation, O(·) is used to evaluate the worst-case time
complexity of the proposed strategy [25]. Let the channel
performance manifold matching algorithm detect a total of R
different channel types during the overall procedure, and the
training data at each channel type r ∈ R, be Dr. Therefore,
the total number of training data points is D =

∑

r∈RDr.
The computation requirement for classifying an unknown

channel with NI data points to one of the R channels is on
the order of NIR, which can be explained as follows: For each
channel r ∈ R, calculation of γr,i for all i ∈ NI , as well as the
calculation of γr, has time complexity O(NI), and this process
is repeated for all r ∈ R channels. The channel performance
manifold matching mechanism runs a total of D

NI
times and

therefore requires O(DR) time. The time complexity of each
decision tree r ∈ R is O(Dr logDr) [23], and the overall time
complexity of computing all the decision trees for R channels
is O (maxr∈R(Dr logDr)). Therefore, the time complexity of
the overall procedure is O(DR) +O (maxr∈R(Dr logDr)).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of FIT with
experiments on emulated and in-the-field channels. Through
experiments, we demonstrate the following key results re-
garding FIT: (i) it uses fewer data points to perform almost
as well as methods that use extensive offline training, (ii)
it can incrementally update the decision structure effectively
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and efficiently, and (iii) it outperforms both the static offline-
training-based and SNR-based methods. To experimentally
show these results, we use an off-the-shelf, 802.11-based
Gateworks 2358 platform and Ubiquiti XR-2 radios as wireless
nodes in our experiments.

A. Comparison of Different Classification-based Link Adap-
tation Frameworks with Emulated Data

To collect data for analyzing and comparing the perfor-
mance of link adaptation frameworks, we use repeatable and
controllable emulated channels. We generate emulated chan-
nels using the Azimuth ACE-MX channel emulator to which
we connect our transmit and receive nodes.We compare the
link adaptation frameworks in four channel models specified
by International Telecommunication Union (ITU). We use
Channels 1, 2, 3 and 4 to represent the ITU Pedestrian A and B
and ITU Vehicular A and B channel models, respectively [26].
Channel 1 represents a channel that lacks a strong multipath
component (e.g., an environment that lacks tall buildings or
structures). Channel 2 represents an environment where there
are some multipath components. Channel 3 has multiple strong
multipath reflections (e.g., a downtown environment with a
line-of-sight component), while Channel 4 has a multipath
component that is stronger than the line-of-sight component.

For simplicity, we assume that the SNR is available at the
transmitter; in practice this information could be obtained via
a feedback link from the receiver or directly measured at the
transmitter using the channel reciprocity property. A computer
captures the SNR and throughput from the transmitter and
the velocity from the channel emulator. The throughput is
calculated using (1) based on the received ACKs at the
transmitter side to find the PER. Note that different context
information from the transmitter side or the receiver side can
also be used in the proposed framework depending on the
users’ need.

The emulator allows us to test the performance of all avail-
able modes under each scenario (the combination of one SNR
and one velocity) to determine the best mode. This exhaustive
measurement technique allows calculation of benchmarks for
the performance of any adaptive scheme. Consequently, we use
prediction accuracy, throughput improvement over a purely-
SNR based rate adaptation method and the throughput gap
from maximum achievable performance as the performance
metrics.

Our hardware supports the following 8 transmission rates
for link adaptation: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps. In
each type of channel, we collect the training data under 40
different scenarios, which are combinations of 8 attenuation
values: 0, 6, 12, 18, 24, 30, 36, 42 dB and 5 velocities: 0,
30, 60, 90, 120 kmph. The testing data (i.e., the data used to
measure effectiveness of the training) is collected with random
velocities and attenuation values that are different from the
training data.

Under each scenario, we consider the channel type, SNR,
velocity, and throughput for all 8 modes as the raw data. We
generate the training data in two ways based on collected raw
data. First, we determine the best mode for each training data

TABLE II
UTILIZED CONTEXT INFORMATION AND DATA STRUCTURE

Context information Class
Data structure 1 channel type, velocity, SNR best mode

Data structure 2 channel type, velocity,
SNR, mode index throughput

point and prepare the data in structure 1 as shown in Table II to
input to the learning algorithm. Data structure 1 is desirable for
training the decision structure for offline-training-based link
adaptation. Then, to evaluate the proposed structure of the
training data, we prepare the data as structure 2 shown in
Table II.

To test the feasibility of the proposed structure of the train-
ing data, we train the classifiers with the C4.5 algorithm [27]–
[29]. We compare and evaluate the link adaptation frameworks
with different structures of the training data in 4 different
channels. We also evaluate the frameworks in the situation
when combining the 4 training sets and the 4 testing sets for
the 4 channels as a pair of training and testing sets. Channel
1 and channel 2 have similar properties, but channel 2 has a
larger propagation delay. Channel 4 is similar to channel 3,
but has a larger propagation delay.

We investigate the accuracy of the rate prediction and the
throughput gap from the maximum achievable throughput. The
results are shown in Table III. We compare their performances
with an SNR-only method, which chooses the rate based
on only SNR information. We then show the throughput
improvement over the SNR-only method in the 3rd and 6th

columns of Table III.

From Table III, we first notice that for channel 1, the
two link adaptation frameworks based on different structures
of training data both perform comparably to the SNR-only
method, with a small gap to the maximum achievable through-
put performance. The SNR-only method achieves a smaller
gap than the classification-only methods in this channel. Since
channel 1 is a slow-fading channel with a small propagation
delay, a purely-SNR based method performs effectively in
this situation. While the propagation environment grows to be
more complicated, the performance of the SNR-based method
degrades. Thus, from channel 2 to channel 4, the classification-
based methods gain significant improvement over the SNR-
based method. For example, the offline-training-based frame-
work with training data in structure 1 and in structure 2
obtain 1675% and 1506% relative improvement in channel
2, respectively

Without the best mode in the training data (i.e., with data
structure 2), the offline-training-based framework obtains com-
parable throughput with the framework using data structure 1.
Furthermore, the framework using the training data in structure
2 still obtains higher throughput over the SNR-only method.
These results demonstrate that data structure 2 can maintain
the high accuracy achieved by data structure 1 while also being
more suited for online training.
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TABLE III
PERFORMANCE OF LINK ADAPTATION

Channel

Using Knowledge of Best Mode Only Using Quantized Throughput
Accuracy of Throughput Gap from Maximum Accuracy of Throughput Gap from Maximum

Rate Prediction Improvement over Achievable Rate Prediction Improvement over Achievable
SNR-only Scheme Throughput SNR-only Scheme Throughput

1 53.85% -3.81% 9.74% 61.54% -3.29% 9.25%
2 84.62% 1675.27% 8.46% 69.23% 1506.22% 17.18%
3 64.62% 623.90% 0.80% 57.69% 527.74% 14.00%
4 46.15% 671.91% 18.70% 50% 707.38% 14.96%

All 4 67.31% 73.58% 9.08% 58.65% 64.83% 13.66%

B. Investigation of the Granularity of Quantized Throughput
and the Performance of Adaptive Tree

In order to treat the continuous values of throughput as
the class label in the proposed framework, we quantize the
throughput into NQ discrete values. In Table III, we set NQ

to 1000. With a small NQ, the granularity of the quantization is
large, and the classifier can not distinguish between throughput
values close to one another. While a large NQ can improve the
resolution, it leads to a complicated structure of the classifier,
which can deteriorate the efficiency of the in-situ adaptation
process. Thus, to investigate the effect of the granularity of
this quantization process on the performance of the proposed
framework, we test it with different values of NQ. To test the
performance of the adaptive-learning algorithm in parallel, we
employ it to derive the decision structure in this subsection.

32 63 125 250 500 1000
35

40

45

50

55

60

65

70

NQ

A
cc

ur
ac

y 
of

 ra
te

 p
re

di
ct

io
n 

(%
)

 

 
Channel 1
Channel 2
Channel 3
Channel 4

Fig. 6. Accuracy of rate prediction with various NQ.

We vary NQ over the values in the set
{32, 63, 125, 150, 175, 200, 225, 250, 300,
350, 400, 450, 500, 1000} and do experiments on 4 frequency
bands: 700 MHz, 900 MHz, 2.4 GHz and 5.8 GHz. The
accuracy of rate prediction and the throughput performance
are averaged across different bands for each channel, as
shown in Fig. 6 and Table IV respectively. It can be observed
that:

• The classification-based rate adaptation framework with
the proposed training data structure outperforms SNR-
only method with varying NQ in most cases. On average,
the classification-based framework with the proposed
data structure obtains 147.59% relative improvement in
throughput.

• As NQ increases, the accuracy of rate prediction first
increases and then decreases. For small values of NQ,

increasing the granularity of the quantization can help the
decision tree to distinguish between roughly equivalent
throughput values. Increasing NQ beyond a certain value
leads to a reduction in accuracy of rate prediction. As
mentioned above, our proposed framework will generate
a binary decision tree. Thus, too many class labels would
results in a complex structure of the binary decision tree.

• To achieve the best performance, we should find a trade-
off between the granularity of the quantization and the
complexity of the decision tree.

• A higher improvement in accuracy does not strictly result
in corresponding improvement in throughput. Since the
throughput of each mode as well as the maximum achiev-
able throughput is different between different scenarios,
the throughput improvement of each data point varies.

• In simplistic settings, e.g., for Channel 1, which is a slow-
fading channel with a small propagation delay, FIT may
encounter marginal performance deterioration compared
to the SNR-only method. This is because performance of
the SNR-only method is close to the maximum achievable
throughput for such a channel, and FIT requires training
before it performs close to the maximum achievable
throughput. For all other channel types, the SNR-only
method is significantly further away from the maximum
achievable throughput, and our proposed FIT framework
performs close to the maximum achievable throughput.

C. Evaluation of FIT with Emulated Data

In this subsection, we test the performance of FIT based
on emulated data. To prepare the training and testing sets, we
model the natural changing process of the context information.
We gradually decrease the SNR by increasing the attenuation
and randomly vary the velocity between 0 and 120 kmph.
The training data set contains 40 data points with the lowest
velocities. The testing data set contains 26 data points with
the highest velocities. We prepare the training and testing set
as data structure 2 in Table II , which means there are 40 ∗ 8
= 320 and 26 ∗ 8 = 208 data points in the generated training
set and testing set, respectively.

We evaluate and compare the offline-based method and FIT
in two kinds of trials. In the first trial, we train the classifier
with the training set and test the performance of the link
adaptation framework with the testing set. In the second trial,
we initially train the classifier using the training set. During
testing phase, for each 8 testing points from one raw data in
the testing set we first test them and then use them as newly
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TABLE IV
THROUGHPUT PERFORMANCE COMPARED TO SNR-ONLY METHOD AND THE MAXIMUM ACHIEVABLE THROUGHPUT WITH VARIOUS NQ . NOTE THAT IN

THE TABLE, “I” REPRESENTS IMPROVEMENT OVER SNR-ONLY METHOD AND “G” DENOTES GAP FROM MAXIMUM ACHIEVABLE THROUGHPUT.

NQ 32 63 125 250 500 1000

Channel 1 I: -16.81% I: -18.34% I: -21.15% I: -13.85% I: -12.99% I:-17.20%
G: 25.79% G: 27.22% G: 29.68% G: 23.25% G: 22.35% G: 25.91%

Channel 2 I: 433.00% I: 429.66% I: 460.74% I: 434.02% I: 407.35% I: 415.04%
G: 22.18% G: 22.83% G: 17.41% G: 19.15% G: 27.76% G: 28.22%

Channel 3 I: 171.61% I: 139.79% I: 167.59% I: 160.80% I: 157.42% I: 164.66%
G: 22.23% G: 27.80% G: 23.92% G: 26.40% G: 29.68% G: 22.63%

Channel 4 I: 171.25% I: 177.48% I: 163.88% I: 167.97% I: 161.29% I: 159.59%
G: 28.47% G: 24.54% G: 33.03% G: 31.94% G: 35.06% G: 32.80%

collected data to incrementally train the existing decision tree.
In these experiments, the testing data is learned as the newly
collected data from the regular communication.

In practice, the propagation property of wireless channels
would change due to the variation of the environment, e.g.
seasonal variations, weather variations. To evaluate the case of
changing wireless channels, we implement two kinds of trials:
(1) training and testing in the same channel type; (2) training
and testing in different channel types. We collect training set
in channel type 3 and 4 testing sets in 4 different channel
types.

The results are shown in Table V. With the offline-based
method, the link adaptation framework is embedded in the
classifier derived from the training set and tested on the testing
set. FIT updates the link adaptation decision structure during
the testing phase after testing each 8 testing points from one
raw data. It can be observed that the accuracy of rate selection
of the proposed FIT is higher compared to the offline-based
method, particularly, when training and testing in different
channel types. The proposed framework improves the accuracy
of rate prediction by up to 65.38%.

The FIT and offline schemes achieve significant throughput
improvement (upto 592% and 822%, respectively) compared
to the SNR-only method. This result suggests that considering
all context information (e.g., velocity, SNR, and channel type)
for rate adaptation can make significant improvement com-
pared to the rate adaptation based only on SNR information,
signaling the SNR-to-rate relationship does not strictly hold
due to the latency in the feedback mechanism. Context infor-
mation helps to anticipate changes made to channel quality,
even when the feedback duration forces a mismatch in the
SNR reported and that actually experienced when the data
packet is received. Compared to the offline-based method, FIT
improves the throughput performance by 33% when training
and testing in the same channel and by up to 28% when
training in channel 3 and testing in channel 2. These results
demonstrate the necessity and effectiveness of in-situ training.

D. Evaluation of FIT with In-Field Training

In order to evaluate FIT with in-field data, we set up a
measurement system with two wireless nodes communicating
over the air. One of the nodes is located on a car and the other
is set on top of a building in town. We collect the throughput
data with context information. Based on the location and
surroundings where the data is collected, we divide the region

around the building into several sub-regions and assume dif-
ferent sub-regions represent different channel types. To verity
the performance of FIT, we first pick the tuple of channel
type, SNR, and velocity values as the testing scenarios and
interpolate the throughput values for a certain mode based on
the records collected in the same channel type that have similar
SNR and velocity values. With the interpolated throughput
values of different modes in one scenario, we can determine
the transmission mode that can provide the best performance.
In parallel, we feed the context information of the scenario
into the decision tree updated by in-situ training to evaluate if
the output agrees with the best mode we previously inferred.

We collect the source data in data structure 2 directly for
training at sub-region 1 and the source data for testing set at
sub-region 2. The two sub-regions are close to one another.
When the decision structure is not adaptive to the testing
data, the accuracy of rate prediction is 20%. The throughput
improvement over SNR-only method and gap from maximum
achievable throughput is −33.86% and 46.88%, respectively.
When we embed the online adaptive function and the decision
structure is adaptive to each testing data after testing it (i.e.,
the testing data is then used as training), the accuracy is 60%,
an increase of 200% compared to the non-adaptive framework.
The throughput improvement and gap from the maximum are
6.64% and 14.35%, respectively.

E. FIT Implementation and Performance
1) Experiment Setup: A Linux computer acts as the back-

haul of the FIT system, which runs the in-situ training and the
channel performance manifold matching based on the received
training data. We build a special version of the Atheros Linux
wireless driver - ath5k, in which the rate control module has
been redesigned to act as an agent between the backhaul and
wireless transmission module. The driver is designed to pass
the performance data to the backhaul and to update the tree
structure along with the inferred channel type generated by
the backhaul. We burn the modified driver onto the Gate-
works 2358 board, essentially changing the functionality of
the kernel space. By comparison, the applications running in
the user space are impervious to this change. We use iperf as
the tool to measure the throughput. The node with this special
version of wireless driver is used as the transmitter, and the
receiver node is unchanged.

Fig. 7(a) shows the key elements of the transmitter men-
tioned above. Our system setup is shown in Fig. 7(b). Note that
the computer in Fig. 7(b) only functions as a controller of the
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TABLE V
PERFORMANCE OF FIT AND OFFLINE-BASED METHOD ON EMULATED DATA. NOTE THAT IN THE TABLE, “A” REPRESENTS THE ACCURACY OF RATE

PREDICTION, “I” REPRESENTS IMPROVEMENT OVER SNR-ONLY METHOD AND “G” DENOTES GAP FROM MAXIMUM ACHIEVABLE THROUGHPUT.

Channel Testing: 1 Testing: 2 Testing: 3 Testing: 4
Offline FIT Offline FIT Offline FIT Offline FIT

Training: 3
A 11.54% 46.15% 19.23% 46.15% 38.46% 65.38% 15.79% 47.37%
I -31.16% -27.94% 313.59% 428.81% 592.96% 822.08% 538.39% 677.97%
G 36.64% 33.43 46.06% 31.03% 33.92% 12.07% 33.86% 20.48%
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Fig. 7. Experiment Setup.

channel emulator to ensure the consistency of each experiment
and it does not exchange any information with the wireless
nodes.
2) Unintentional Channel Transition: As discussed in Sec-

tion III, the training sets for different channel types represent
their various characteristics. In other words, if the system
is only trained with the training set from one channel type,
without in-situ training, the accuracy of the rate prediction will
be degraded when the system encounters a different channel
type. In contrast, if in-situ training is employed in such a case,
the system will adapt to the varying channel type and get better
performance.

To show the performance improvement of the in-situ train-
ing over the offline training, we have created several sce-
narios on the channel emulator which involve channel type
transitions. By using the channel emulator, we expose both
in-situ training and online training in the same channel-type
transitions to show that the former has a higher adaptability
to the environment variation than the latter.

In this particular experiment (Unintentional Channel Tran-
sition), for each channel transition, the system is only trained
with the training set of the first channel type so that it knows
nothing about its performance in the second channel type.

Fig. 8 plots the throughput (in i second increments) obtained
using iperf in one transition using both training methods.
The transition happens at approximately 35 second. It can
be seen that the offline training can (at most) achieve simi-
lar performance as the in-situ training before the transition.
However, its performance falls below that of the scheme with
in-situ training after the transition. Table VI shows that in-
situ training tends to provide throughput gains over offline
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Fig. 8. Performance with channel transitions.

training. Once a channel transition occurs, none of the methods
ensure finding the optimal rate decision initially. Therefore, it
is possible that the offline scheme achieves higher throughput
initially. However, once a sufficient amount of training data in
the new channel is received, FIT achieves higher throughput
performance. Such a phenomenon can be observed for the
transition from Channel 1 to 2. In the case of the Channel 3
to 4 transition, we expect to observe a higher throughput gain
for FIT over the offline method if the experiment is continued
for a longer duration and more time is given for the rewards
of the training to be leveraged.
3) Awareness of the Channel Transition: In this experiment,

we continue to compare the performance difference between
in-situ and offline training with the channel performance
manifold matching. With the channel performance manifold
matching, the system is able to detect the channel transitions
and adapt. To demonstrate the performance gain brought by
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TABLE VI
THROUGHPUT COMPARISON FOR DIFFERENT CHANNEL TRANSITIONS

Transition Offline In-situ Improvement
Channel 1 to Channel 2 8245 9452 14.6%
Channel 2 to Channel 1 8992 13664 52.0%
Channel 3 to Channel 4 7736 7220 -6.7%
Channel 4 to Channel 3 6274 7932 26.4%

channel performance manifold matching, we design two other
strategies. With the same channel transition as the last exper-
iment, we first assume that a genie-based channel inference
exists in which a genie can notify the system with the change
in real time. The other strategy is the in-situ training with the
aforementioned channel performance manifold matching.

The impact of Table VII is two-fold. First, each scheme
achieves throughput gains from in-situ training because in-situ
training would adjust the tree structure in real time so that the
decision tree for rate prediction is according to the current real-
ization of the channel. Second, channel performance manifold
matching can have a positive impact in terms of throughput
improvement. Theoretically, the throughput achieved by the
genie-based strategy is the outer bound of that of the channel
performance manifold matching because the former can al-
ways infer the channel type perfectly. From the table, we can
see that the throughput achieved by the channel performance
manifold matching is close to the genie-based case, and it is
higher than the strategy of not known channel transitions.

V. RELATED WORK

Many works have considered rate adaptation via loss statis-
tics [4]–[7], [30] or SNR-based probing [8], [9], [11], [12].
Moreover, other works have used a notion of context informa-
tion to aid rate selection with knowledge of vehicular speed,
pedestrian speed, or the direction of motion [13]–[15], [31]
and/or channel type information. For the former, historical data
is used with a lack of overhead needed, but in the absence of
channel quality or context information. For work related to the
latter mechanisms, training is offline in nature and is subject to
poor performance in scenarios distinct from their training [10].
In contrast to both types, we allow training on-the-fly in the
environment in which the rate adaptation mechanism will be
operating with knowledge of the channel type, quality, and
context information.

Machine learning algorithms have been widely used to
optimize wireless system performance. In particular, the re-
sulting decision structure has been used in cognitive radios
for dynamic spectrum access and capacity maximization in
cognitive radios [17], [32]. Conversely, genetic algorithms
have been used to optimize physical layer parameters [33].
In [34], a deep learning technique is proposed for routing
computation and traffic control in a software-defined com-
munication system. To solve the power allocation problem
for the downlink transmission in a spectrum sharing multi-
tier 5G environment, an online learning based approach is
employed in [35]. In [36], deep learning was adopted for
direction-of-arrival estimation and channel estimation in multi-
antenna systems, which depends upon a large amount of offline
training. The works which most closely resemble our works
are [16], [37], [38]. In [16], [37], the authors put constraints

on the wireless performance metric to achieve performance
optimization rather than seeking the optimal realization di-
rectly. Moreover, [37] does not implement a decision structure
which can be updated on-the-fly in the field on newly-observed
performance data. These limitations highlight the need for
more effective online learning algorithms for rate adaptation.
In [38], a rate adaptation strategy based on a deep learning
architecture is proposed for unmanned aerial vehicle (UAV)
network, which can adapt in a new environment. However,
unlike our proposed scheme, offline learning with a large
amount of training data is required to create the decision
structure for the rate adaptation. Furthermore, in [38], the
online learning is employed each time a new environment is
detected. Our channel performance manifold matching algo-
rithm categorize the wide expanse of an infinite number of
possible environments into a countable set of channel types.
Then, the online learning mechanism is activated only if a
new channel type is encountered, and therefore has a lower
computational requirement.

VI. CONCLUSION

In this paper, we discuss the two challenges posed on online
adaptive link adaptation due to the fluctuating wireless chan-
nel. We present our solutions to these challenges by modifying
the data structure for training and applying the online adaptive
infrastructure. Based on our solutions, we propose an online
adaptive link adaptation framework which can conserve the
manpower and resources for preparing infrastructure offline.
A novel channel performance manifold matching strategy
is introduced which synergistically integrate with the online
link adaptation framework to achieve efficient link adaptation
with low computational requirement. The proposed strategy
improves the accuracy of rate prediction by up to 65.38%.
Compared to the SNR-only method and offline-based method,
our proposed framework achieves 822.08% and 33% improve-
ment, respectively. The experiments show that the adaptive
framework can adapt the decision structure to the changing
propagation environment and improve its performance on rate
prediction.

We considered a Ubiquiti family of radios to evaluate
performance of our proposed channel performance manifold
matching integrated with a rate decision structure. As dis-
cussed in this work, an online mechanism is inherently running
on the device and training on the fly when new channels are
experienced, or an insufficient level of training is observed. We
have also observed through other measurements via crowd-
sourcing that users and thereby devices have a bimodal or
trimodal location distribution [39]. We show in this paper,
extremely high levels of gain can be experienced in less than a
minute after transitioning to a new location. Considering all of
these factors, we provide a framework for any type of device
to spend an infinitesimal amount of time making suboptimal
decisions (while still sending data) in exchange for a very large
majority of time that near optimality will be achieved. Our
proposed framework is flexible to support additional attributes
in the future, if necessary.

Lastly, we have used two decision tree algorithms from
the ID3/C4.5 family, C4.5 and ITI [23], since these are

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 02,2020 at 15:35:19 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.3009198, IEEE
Transactions on Vehicular Technology

12

TABLE VII
THROUGHPUT’S COMPARISON OF DIFFERENT STRATEGIES

Unintentional Manifold Matching Genie
Offline In-situ Impr Offline In-situ Impr Offline In-situ Impr
8992 13664 52.0% 9254 15293 65.3% 9023 15976 77.1%

well-established algorithms, provide high training accuracy,
and have been applied to many research fields [40]–[43].
Furthermore, the C4.5 algorithm has been applied to many
research fields. Across all these applications where a time-
varying environment is experienced, our channel performance
manifold matching algorithm could be used. In other words,
detecting the environment for C4.5 based decision trees has
applicability beyond just the field of wireless communications
and networking. Our proposed framework can be extended
with other incremental decision tree based algorithms if the
proper conditions hold. Namely, these conditions have to do
with the ability of the decision tree to handle multiple classes
and missing values.
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