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ABSTRACT
We propose a method to minimize the long-term cost of energy

generation while improving grid stability. Currently, the cost of

energy generation is minimized myopically (day by day) via the eco-

nomic dispatch problem, which i) does not internalize the effects of

generation variability, ii) does not account for the long-term effects

of losing too many existing (paid off) conventional plants, and iii)

has the detrimental impact of not systematically maintaining grid

inertia. The current dispatch solution favors low cost but inherently

more variable renewables, which require intermittent back-up from

either conventionals or expensive peakers.

We first propose our Augmented Dispatch for Inertia method

which incorporates the cost of maintaining grid inertia stability

directly in the economic dispatch selection, thus more accurately

capturing the impact of renewable energy growth and conventional

plant retirements. Second, to address the long-term loss of con-

ventional plants due to their underuse, we propose our Balanced

Dispatch algorithm that selects key, future-needed conventional

generators with enough frequency to maintain their viability. We

show via simulation that our methods result in substantially lower

long-term generation cost and a notable increase in grid resilience.
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1 INTRODUCTION
Power generation is currently managed by Independent System

Operators (ISO) in a myopic way (day by day). The goal of ISOs

is to clear the market so that the load is met using the cheapest

available generation while maintaining grid stability. Thus, less

expensive sources of energy like Wind are typically being selected

first. In the longer term, this myopic selection leads to the slow loss

of conventional generation, due to under-use, as more and more

renewables penetrate the system [6]. Additionally, in the short-

term, when the wind forecast is not accurate, system operators

have to either activate reserves or use quick ramping peaker plants.

In both of these cases, conventional sources like Coal and Gas,

that are moderately priced and have longer ramp-up times, are be-

ing selected less often. This reduces their economic viability, slowly

driving them out of business. This reduced use and subsequent

loss of many conventionals pushes the system to the two extremes:

cheap, variable Wind and expensive, quick ramping Peakers, re-

sulting in i) more extreme price fluctuation in the system, ii) lower

overall system inertia stability (without continuous monitoring and

action by the ISO), iii) an increased overall long-term generation

costs. It also results in more frequent cases of scarcity pricing [5, 16].
Moreover, regarding overall system resilience, conventional gen-

eration provides rotation mass in the grid, called Inertia, which
acts as a buffer to slow down the rate of frequency change. As seen

in a number of events in recent years, when there is a dramatic

penetration of renewable generation into a system without ade-

quate inertial rotating mass, the system can be susceptible to poor

power quality and blackouts [24]. Conventional usage, unlike re-

newables’ usage, bolsters electrical Inertia to help maintain a stable

and reliable grid. Additionally, a higher availability of conventional

capacity in the long-term reduces the required need for peaker

plants when renewable generation is low
1
, which keeps overall

generation cost lower.

The goal of this paper is to study the implications of the cur-
rent economic dispatch methods on both the Long-Term Cost
of Generation and on Grid Inertial Stability, and to offer po-

tential solutions. Specifically, we propose two complimentary ap-

proaches, with the first (i) yielding a myopic, short-term solution to

systematically ensure satisfactory grid Inertia, and the second (ii)

presenting a balanced dispatch solution to stabilize long-term gen-

eration cost via a minimum threshold of non-variable generation.

For the former, we address the issue of the continuous violation of

grid Inertia (starting in 2022) under the current economic dispatch

1
These periods of low renewable generation are in reference to day over day operation

periods and not inter-day forecast errors periods.

https://doi.org/10.1145/3396851.3397685
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method ("Economic Dispatch"), and offer a solution to ensure grid

Inertia is always maintained above the minimum Inertia threshold.

For the latter, we propose a threshold algorithm that selects key

conventionals often enough to maintain their viability, even when

they are not among the cheapest generators within that period.

Ultimately, our goal is to offer a systematic approach for finding

the most cost-effective way to produce power in the long term

while still maintaining minimum Inertia and other grid reliability

constraints.

We give the following historic example to illustrate how the

shortage of conventional generation can have devastating conse-

quences. In 2011 two Coal plants in ERCOT shut down for two days

because of a snow storm and the remaining generation could not

meet the load, resulting in rolling blackouts and a sudden rise in

energy price from around $30/MWh to $3,000/MWh (the maximum

allowable at that time by the Texas ISO, The Electric Reliability

Council of Texas, "ERCOT"). Additionally, in the summer of 2011, a

record heat wave pushed the ERCOT load to an all-time high, at

which point there was again no more generation available to meet

the load. Market prices peaked at $3,000/MWh for only 28 of 8760

hours during these two periods, but drove the average price that

year up by 30% (from ∼$38/MWh to ∼$50/MWh). These historic

episodes give a glimpse into the future when too many conven-

tional plants have shut down due to under-use and are not available

during times of need.

To address the shortages in 2011, ERCOT raised the market

price cap from $3,000 to $9,000/MWh. With this move not being

enough to prevent losses of capacity reserves [6, 21], in 2014, ER-

COT additionally implemented a mechanism called scarcity pricing

[5, 16]. These together are proving moderately effective, but i) are

disproportionately promoting high-priced peakers and low-priced

renewables to build new generation over conventionals [19] and ii)

they only start having noticeable effects a few years before larger

issues tend to occur, which does not allow non-peaker convention-

als enough lead time to justify entering the market. This polarizes

the system and leads it to higher long-term generation costs and

lower grid Inertia stability.

ERCOT, and other system operators, thinks pure economic in-

centive and free market forces will drive an optimal generation mix

to the best long-term cost. However, we demonstrate in this paper

that this is not necessarily the case. Consider a simple example

where the system operator is offered the following sources in Fig. 1:

an inexpensive variable source at $25/MWh with capacity 250MW

(green/wind), a moderately priced conventional source at $35/MWh

with capacity 100MW (blue/conventional), and an expensive peaker

source at $150/MWh (red/peaker) with unlimited capacity.

Assume that the conventional plant has not been picked by the

system operator for a while and it will be replaced by a 100MW

renewable source if not picked in the current round. If the demand

is 200MW in both rounds, economic dispatch will not assign any

generation to the conventional plant in round one (Fig. 1-(top)).

Now, in round two, when renewable generation is lower, the two

variable sources only produce 100MW and 50MW. Therefore, in

the absence of a conventional source, the system operator has to

schedule the remaining 50MW with the peaker source.

On the other hand, if we are aware of the conventional’s situation,

we will select it before the variable source (Fig. 1-(bottom)) in round

200 MW 0 MW 0 MW 100 MW 50 MW 50 MW

100 MW 100 MW 0 MW 100 MW 100 MW 0 MW

Day 1 Day 2

Figure 1: Long-term replacement of conventionals with vari-
able sources: (top) current economic dispatch; (bottom) a
more balanced dispatch.

one. This will increase the generation cost in round one, but the

survival of the conventional will help the system operator avoid

the use of the peaker in round two. The average generation cost

is $40.6 in the first case (myopic economic dispatch), and $30 in

the second case (considering longer-term effects). To conclude, we

are able to reduce the long-term generation cost relative to the

standard economic dispatch solution, by trading off slightly higher

cost now for lower cost in the future.

Therefore, we raise the questions: What if we took a proactive

approach in maintaining the existing needed generation sources in

a system? What if instead of having the market price rise to keep

future-needed conventional generators in business, we choose to

promote their viability in a different way? The system could then

operate with a more balanced mix of cheap renewables, mid-priced

conventionals and high-priced peakers, while providing a lower

long-term generation cost and better stability.

Summary of contributions: First, we propose an Augmented

Dispatch algorithm that incorporates the minimum inertia require-

ment into the economic dispatch solution. Additionally, we propose

a separate Balanced Dispatch algorithm that keeps a certain level of

conventional generation in the system by dispatching key conven-

tional plants in a way to maintain their viability. Third, we consider

the combination of the two algorithms (Augmented Balanced Dis-

patch). All three approaches achieve a lower long-term cost, while

improving the grid inertia but the combined approach achieves the

best results. We examine the effectiveness of our proposed algo-

rithms via simulation over the time horizon of 2019-2055 using the

available data for the ERCOT grid.

2 RELATEDWORK
Our study of the change in generation mix over time is related to

prior work on the effect of Renewable integration [15]. Green and

Vasilakos [3] show that large amounts of intermittent Renewables

in Great Britain would shift the generation mix towards power

stations with lower overhead costs. Traber [25] also studies the

effects of different capacity policies (such as capacity markets or

reserve obligations) in central European electricity markets, and

shows that such changes depend on the existing power plant mix

as well as the elasticity of the demand.
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Several approaches have been proposed [2, 14] to calculate the

cost of wind integration. Hirth et al. [4] define the integration

cost as the system-level cost of wind and solar generators from

their temporal variability, uncertainty, and location constraints;

and show that at a renewable penetration of 30-40%, the integration

cost can be up to 50% of the generation cost. To address these

costs and support the large-scale integration of renewable energy,

several solutions have been proposed for optimal structuring of

reserves [10, 12, 30].

In addition, Lorca and Sun [11] and Wei et al. [26] have proposed
robust optimization techniques for cases of high wind penetration

to tackle the huge reliability concerns.

Another concern regarding the increased penetration of renew-

able generation is the reduced inertia of the system [29]. Several

methods have been proposed to imitate the kinetic inertia of con-

ventionals [1, 31]; however, current wind and solar technologies

cannot compete with conventional generation in offering certain

ancillary services, specifically those related to primary frequency

control [17].

In this paper, we aim to address the aforementioned optimal

generation mix and inertia violations concerns within the economic

dispatch problem. Even though the long-term consequences of wind

integration have been studied in the literature [22, 27, 28], our work

differs from prior literature as it takes a proactive approach to solve

the problem by integrating the costs of maintaining grid inertia

and conventional plant retirement issues into economic dispatch.

3 MODEL AND PRELIMINARIES
We propose a new process for selecting energy generation, which

combines traditional economic dispatch (described next) with an

additional threshold algorithm that maintains a minimal amount

of conventional generation (see Section 5).

The traditional economic dispatch problem ("EconomicDispatch")

aims to minimize the cost of generation subject to transmission and

operational constraints [8]. Each day generators provide the ISO

their maximum capacity and corresponding energy cost function.

Allocating energy generation is then done by solving Economic

Dispatch, and the Locational Marginal Prices (LMP) are derived as

part of the Economic Dispatch solution.

Let 𝑥𝑖 denote the power generated by source 𝑖 , and 𝑓𝑖 (𝑥𝑖 ) be the
associated cost. Then the goal is to solve the following optimization

problem:

min

𝑥 ∈R𝑛

{ 𝑛∑
𝑖=1

𝑓𝑖 (𝑥𝑖 )
���𝑃 ≤ 𝑥 ≤ 𝑃,𝑔(𝑥) = 0, ℎ(𝑥) ≤ ℎ

}
, (1)

where 𝑛 is the number of generators, 𝑥 is the vector of all gen-

eration levels (𝑥𝑖 ’s), 𝑃 and 𝑃 are the vectors of lower and upper

generation limits, 𝑔(𝑥) = 0 captures all equality constraints (e.g.,

meeting the demand), and ℎ(𝑥) ≤ ℎ models the network inequality

constraints (e.g., thermal flow limits). Assuming a linear genera-

tion cost (𝑓𝑖 (𝑥𝑖 ) = 𝑐𝑖𝑥𝑖 ), and employing the DC power flow model,

optimization problem (1) simplifies to a linear program (LP).

In the absence of network congestion, the optimization problem

(1) reduces to the greedy assignment of power generation from

the least expensive source upwards until the demand is met, as

demonstrated in the following example.

Example 3.1. Consider a four-bus network as shown in Fig. 2,

where all the lines have the same impedances. Assume there is a

load of𝐷0 = 1000MWat bus 0, and three generators of low, medium,

and high price at buses 1, 2, and 3, respectively. In particular, we

have the following generation costs and capacities:

P1

P2P3

D0

0 1

23

P1

P2P3

D0

0 1

23

P ∗
1 = 800MWP ∗

1 = 700MW

P ∗
2 = 200MWP ∗

3 = 100MW P ∗
3 = 0P ∗

2 = 200MW

650MW

250MW

3
5
0
M
W

5
0
M
W

1
0
0
M
W

3
0
0
M
W

700MW

300MW

Figure 2: Economic Dispatch with (left) and without net-
work congestion (right).

𝑐1 = $25/MWh, 𝑃1 ∈ [0, 800]
𝑐2 = $35/MWh, 𝑃2 ∈ [0, 500]
𝑐3 = $150/MWh, 𝑃3 ∈ [0, 1000]

Now assume that the line between buses 2 and 3 has a capacity

of 250MW (Fig. 2-(left)). Writing the DC power flow equations,

this requires that
𝑃1
4

+ 𝑃2
2

− 𝑃3
4

≤ 250MW. Minimizing 𝑐1𝑃1 +
𝑐2𝑃2 + 𝑐3𝑃3 subject to this constraint as well as power balance

constraints and generation limits, we get 𝑃∗
1
= 700, 𝑃∗

2
= 200, and

𝑃∗
3
= 100MW. Further, the dual variable corresponding to the power

balance constraint at each bus determines the LMP at that bus. The

LMP at each bus can also be interpreted as the marginal cost of an

extra unit of energy, if we add an infinitesimal load at that bus.

On the other hand, if we do not have any congestion in the net-

work (e.g., when the line limits are higher than the actual power

flows, as in Fig. 2-(right)), solving the above optimization prob-

lem reduces to assigning full generation to sources in the order of

increasing cost, until the demand is met. In this example, 𝑃1 will

generate at full capacity (800MW) and the remaining 200MW will

be provided by 𝑃2. In the absence of congestion, the LMP will be

the same at all nodes and equal to the price of the last assigned

source (𝑐2 = $35/MWh in this case). The greedy assignment of this

Example 3.1 is formally stated in the following proposition.

Proposition 3.2. The Economic Dispatch solution in the absence
of network constraints sorts all energy sources in increasing order of
generation costs 𝑐𝑖 . Then, it finds the smallest index 𝑘 such that the
sum of the source capacities

∑𝑘
𝑖=1 𝑃𝑖 is greater than or equal to the

demand.

In the rest of this paper, we assume a network model with no

congestion; however, we do expect our findings to hold for the

more general case with possible congestion. For example, in many

systems, the good portion of congestion is due to the growth of

renewables near the edges of the system (e.g., far West Texas),

and both of our algorithms in this paper prioritize a subset of

conventionals over renewables. Since conventionals are typically

more centralized within most networks than renewables, finding a
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subset that maintains or even improves congestion is not difficult

in most cases. Therefore, one can solve Economic Dispatch with

or without congestion after our algorithm(s) assigns its necessary

generation to underused conventionals.

We classify the sources of energy into three groups:

• variable sources – renewables, e.g., Wind or Solar;

• conventional sources – fossil fuel energy sources,

e.g., Nuclear, Coal, Gas;

• peaker sources – natural Gas plants that choose to largely op-

erate during higher demand periods and/or that are capable

of rapidly ramping.

For the remainder of this paper we refer to conventional sources

as "Convs". Variable sources are typically connected to the grid

through converters, making their operation independent of system

frequency, which results in reduced system inertia [29]. Therefore,

the increased penetration of renewables brings a new challenge to

grid inertia stability, discussed in the next section.

4 INERTIA AND GRID RESILIENCE
4.1 Inertia background
One consequence of high renewable penetration and thus peri-

odic low Convs usage is low system Inertia. Electrical inertia helps

oppose the changes in current and acts as a buffer against rapid

frequency change. In order for a generator to contribute to system

Figure 3: Correlation betweenWind penetration and Inertia
in 2015, 2016, and 2017 [18].

Inertia, it has to have a direct electromagnetic coupling between

the power system and itself, which allows system disturbances to

be translated into mechanical torque that acts on the generator’s

rotor [23]. If frequency is not maintained within its operating band,

part of the network can be forced to shut down. This causes severe

strain on the rest of the system. If not dealt with effectively, cas-

cading outages can quickly lead to a major blackout such as that

experienced in the US Northeast in 2003, when 60 million people

ended up without power [24]. The 2019 major blackouts in New

York City and the U.K. further emphasize the need for greater grid

resilience [24].

It is well-known in the power systems field that there is an impor-

tant connection between system Inertia and grid stability. However,

as recognized by Johnson et al. [7], few studies have explored the

future stability issues that may result from renewables growth and

power plant retirements. ERCOT presents the correlation between

Wind penetration and system Inertia in the ERCOT grid, as seen in

Fig. 3 [18]. In the figure, the data points progress to the right each

year, indicating the increasing renewable penetration. Meanwhile,

the system Inertia slowly drops (y-axis) towards the minimum In-

ertia threshold. This results largely from renewables’ growth in

recent years notably outpacing demand growth [18].

Figure 4: Current Inertia threshold for ERCOT [13].

Based on the above evidence, we now investigate how the increas-

ing growth of non-Inertia adding renewables and the economically-

forced retirements of Convs impact Inertia. Per a 2019 ERCOT

study, ERCOT’s minimum Inertia for its system to function safely

is 94 GWs. Fig. 4 explains the computation for this critical Inertia

value [13]. The basics behind this are: ERCOT assumes a worst

case scenario that its two largest plants (two 1280 MW Nuclear

plants) could trip offline at exactly the same moment and that its

system has to be able to maintain frequency about 59.7 hertz for

0.42 second to allow time for emergency load shedding actions to

take effect. A major way that most ISOs accomplish frequency sta-

bility is through the use of rotational Inertia. When manufactured,

every generator has an Inertia constant 𝑥 , meaning that the usage

of 1 MW of this generator produces 𝑥 MWs of Inertia. We refer the

reader to Appendix A for the Inertia constants of different types of

power plants. Since we do not have proprietary access to ERCOT

individual plants Inertia constants and since most Convs in our

simulation are Gas combined-cycle (see Appendix B), we assume

an Inertia constant of 5 for all Convs, which is both the weighted

average of all the Convs and the midpoint of the combined-cycle 1.1

to 9 Inertia constant range detailed in Appendix A. With detailed

plant Inertia constant values, our model is able to exactly output

the best Convs to use each day.

Next, we examine via simulation the severe Inertia violations

that are expected to arise in the ERCOT system under the current

Economic Dispatch method, and then introduce our ADi Algorithm

(hereafter defined), a method that enables healthy Inertia grid re-

silience.
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Figure 5: Detailed plant usage with Economic Dispatch and
its worst annual 90 day & 10 day Inertia curves.

4.2 Inertia simulation
Fig. 5 shows the progression of plant usage under Economic Dis-

patch, along with average annual Inertia, the worst 10 days Inertia

average and the 90th worst Inertia day each year. ERCOT’s lowest

Inertia days are above the minimum threshold in Year 2019. How-

ever, based on ERCOT data [21], there are around 14 GWs of Wind

and 7 GWs of Solar planned to be built in years 2019-2021, which

is expected to result in the sudden drop of Inertia starting in year

2022. Both the 90 worst days and the worst 10 days of Inertia under

current Economic Dispatch are expected to remain below the 94

GWs threshold from 2026 onward, which strongly suggests that

the ERCOT system under its current methodology does not have

enough Inertia resilience to counteract this rapid insertion of 20+

GWs of new renewables.

An effective myopic method to prevent falling under the Iner-

tia threshold is to enforce enough Convs usage which we term

Augmented Usage. Since the current method does not have an es-

tablished systematic approach to plan ahead for this needed use of

Convs, and because not every Conv plant desires to be operationally

committed in the Day-Ahead market versus just financially com-

mitted, we propose integrating compensation into selected plants’

payments for their operational commitment of Inertia support. We

thus designate the corresponding unit cost of selecting the needed

Convs as 50% higher
2
than if they were not selected (i.e. not addi-

tionally committed for Inertia support). Example: A plant is chosen

at $36 per MWh, but to additionally designate and use it for Inertia

support, it is paid $54 ($36*1.5) per MWh instead. Further, for days

we have violations, we increase the Inertia requirement to 110 GWs

from the 94 GWs threshold, effectively internalizing a small buffer.

2
This is an amount Convs get only if they are selected for both energy and for Inertia

support. The additional compensation could be whatever the ISO designates and 50%

is just a value that we propose; alternatively the ISO could let Convs bid to provide

Inertia support in a procurement auction.

Algorithm 1: Augmented Dispatch for Inertia (ADi)

Input: a dispatching algorithm DispatchAlg;
Initialize capacity factors & demand for each day;

for each day in the time horizon T do
Run DispatchAlg;
Compute Inertia;

if Inertia < 94 GWs then
Clear the previous plant selection;

while Inertia < 110 GWs do
Randomly select Convs and give them 50%

higher prices;

end
while demand is not met do

Run DispatchAlg with remaining plants;

end
end

We call the the algorithm described above Augmented Dispatch
for Inertia (ADi) and present it as Algorithm 1.

Fig. 6 shows the usage progression after applying the ADi Algo-

rithm with the violet bars representing the Augmented Usage. As

one can see, the worst 10 day ave line is now always kept above

the Inertia threshold. Effectively, a healthy grid Inertia resilience is

maintained by applying the ADi algorithm to the current Economic

Dispatch ("Augmented Economic Dispatch").

Figure 6: Detailed plant usage with Economic Dispatch in-
cluding hard requirement to maintain minimum Inertia.

Moreover, Fig. 7 shows the comparison between the average

annual cost with violations (blue curve, Economic Dispatch) and the

average annual cost with violations fixed (purple curve, Augmented

Economic Dispatch). The average cost with Augmented Economic

Dispatch is slightly higher than Economic Dispatch for the first

15 years, but stays lower after Year 2034. This is largely because

with the forced Augmented Usage, the system is able to save more

initial Convs in the early years, which in turn reduces the need for

some higher priced Peaker and new higher cost Convs usage in the
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later years on days when the variable sources are unable to provide

enough power. This statement is further reinforced in Fig. 8, where

our Augmented Economic Dispatch (in the process of maintaining

minimum Inertia) ends up saving about 15 more initial Convs than

current Economic Dispatch does. These saved initial Convs are the

key reason that the ADi Algorithm is able to save an average of $5

per MWh (or 11%) in the later years of the model.

Figure 7: Average generation cost: current Economic Dis-
patch versus Augmented Economic Dispatch for Inertia.

Figure 8: Initial Conv count: Current EconomicDispatch ver-
sus Augmented Economic Dispatch for Inertia.

Now, consider an alternate approach. If we were able to plan

ahead by maintaining the viability of a selected number of initial

Convs, we could hugely decrease or even avoid these extra costs

associated with Inertia +50% provision incentives discussed above.

In the next section, we propose a long-term economic dispatch

method that we call Balanced Dispatch (detailed hereafter). By

using a more balanced generation mix, our Balanced Dispatch al-

gorithm substantially solves the above Inertia violation problem

at very minimal cost while concurrently producing a much lower

long-term average generation cost (see Section 7).

5 BALANCED ECONOMIC DISPATCH
We now turn to the long-term implications of the current Economic

Dispatch, with a focus on the economic viability of conventional

generation. Under the current Economic Dispatch, low-cost renew-

able generation is favored over moderately priced Convs. Given

that Convs can have significant overhead in fixed maintenance

requirements, full-time employees, capital cost repayment, etc. [9],

their cost of operation only partially decreases if they are not be-

ing utilized; while their revenues decrease linearly. This results in

Convs closing down [5, 16], which in turn increases the need for

and use of Peakers, ultimately increasing the cost of generation in

the long-run as shown in our simulations in Section 6.

We therefore introduce a more balanced dispatching algorithm

called Balanced Dispatch, which models the process as follows.

We start with a fixed number of generators 𝑛, initialized to three

general types: (i) Renewables, which are cheaper but require some

level of more expensive backup, (ii) Convs, which are moderately

priced, and have a steadier output and iii) Peakers, which are high

priced.

The cost of each plant’s energy production is chosen at the

start of the simulation from a uniform distribution based on the

projected real-world prices for each corresponding generator type

[9]. While the capacity of the Convs is assumed fixed, the capacity

of the renewable sources varies from day to day depending on the

forecast and season. Similarly, the demand 𝑑𝑖 varies from day to day

and is independently drawn from a truncated normal distribution

centered around the average demand forecast. We assume a finite

horizon of𝑇 time periods and are interested in minimizing the sum

of generation costs across all periods.

Among the various power plants, there are specific types that

are designated as base-supply, which means they are selected and

used every day. In our model, Solar and Nuclear power plants are

base-supply. This is because Solar is typically distributed, utility

in-house or under contract, and Nuclear is traditionally used as

base-supply.

Furthermore, we model and monitor the economic viability of

each conventional. We do this by the system operator considering

a Window𝑊 of consecutive periods: If the plant fails to be selected

for 𝛾𝑊 of the periods in any Window𝑊 (where 𝛾 ≤ 1 is an activity

requirement based on each plant’s net revenue needs for the peri-

ods) then it is put on a three-year "probation" with the probability to

go out of business in each year of the probation being 1/3, 2/3, and
1 respectively (simulating a time-frame for the generator to make

a shutdown timing decision). If during the probation, the plant is

selected for more than𝛾𝑊 periods of theWindow𝑊 , then its proba-

tion is cleared. Ultimately, whenever a plant goes out of business, it

is removed and gets replaced by a combination of new variable and

some conventional sources (similarly to current market practices).

Since we have distributional access to future forecasts, we could

calculate the optimal solution using reverse dynamic programming.

This solution though would be computationally expensive and we

are interested in a simpler threshold algorithm instead that keeps a

needed amount of Convs.

In our Balanced Dispatch method, we maintain the total capacity

of Convs above a given percentage threshold (denoted 𝛽) of the

average demand.We do this annually by flagging Convs from lowest

cost up until the 𝛽 threshold is reached. Then, each day, we dispatch

the flagged Convs that are close to their viability requirement (𝛾 )

before dispatching any other sources. We explain how 𝛽 is chosen

in Section 6. This algorithm is summarized as Algorithm 2.
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Algorithm 2: Balanced Dispatch

Initialize capacity factors & demand for each day;

while total flagged Convs capacity < 𝛽*demand do
Flag the current cheapest Conv;

end
for each day in the time horizon T do

while demand is not met do
Use base-supply plants (Nuclear and Solar);

Use less active flagged Convs;

Run Economic Dispatch on remaining plants;

end
if at the beginning of a year then

for each inactive Conv c do
if c is on probation then

Eliminate c with corresponding probability

and add replacement Gas, Renewable

plants;

else
Put c on probation;

end
Add demand growth Gas, Renewable plants;

De-flag all Convs;

while total flagged Convs capacity < 𝛽*demand do
Flag the current cheapest Conv;

end
end

6 SIMULATION
6.1 Simulation setup
We construct our simulation based on real-world existing and

planned plant data provided by ERCOT [21]. Our simulation is

run every day from year 2019 through year 2055. We divide the ex-

isting and planned generators (with their respective capacities) into

specific sub-types: Wind, coastal Wind, Solar, Nuclear, Coal, Gas

and Gas-Peakers. In the year of 2019, there are 𝑛 = 287 generators

in ERCOT, including 96 ‘inland’ Wind, 12 coastal Wind, 38 Solar, 4

Nuclear, 22 Coal, 64 Gas (mostly larger combined-cycles), and 51

Gas Peakers (mostly non-combined-cycles). We refer the reader to

Appendix B for the 2019 list of installed capacities of the different

generator types in ERCOT.

In Table 1, we provide the price ranges we use for each of these

plant types and we further subdivide them by age to account for

the extra income needed to support both capital investment costs

early in a plant’s life and for increased maintenance, operation and

efficiency costs in older plants. The prices of the plants are derived

from a combination of the US levelized cost of energy calculated

and projected by Lazard [9] and one of the author’s inside industry

knowledge of ERCOT pricing (see Appendix C and Fig. 14 for more

details on the price setup). We derived the price ranges in Table 1,

but our model can also utilize any provided price ranges.

At the start of each simulation, each plant’s unit price is chosen

from a uniform distribution with bounds specified in the ‘Price’

column of Table 1. We also add an infinity Peaker with unit cost

Plant Type Year Built Price ($/MWh)

Nuclear (base) All [32, 36]
Solar - new (base) pre-2021 [41, 60]
Solar - future (base) post-2021 [36, 42]

Wind - mid pre–2008 [15, 25]
Wind - new 2008–2021 [20, 29]
Coastal Wind All [20, 29]
Gas - mid 1987–2008 [29, 34]

Wind - future post-2021 [30, 34]
Gas - new-old pre-1987 or post-2008 [34, 39]

Coal All [34, 39]
Gas - future post-2021 [38, 44]
Peaker - mid 1987–2008 165

Peaker - new-old pre-1987 or post-2008 180

Table 1: Unit cost of each generator type.

$195 for when there are no other remaining plants available, thus

mimicking the real-world when systems are near their limits [6, 21].

In that near-limits situation, the average market price would move

towards the price cap (e.g. $9,000 MWh in ERCOT) and mechanisms

like scarcity pricing [5, 16] would kick in more often, thus enticing

new plants such as fast- and easy-to-construct Peakers to be built.

For variable sources, the capacity factors determine their actual

daily capacity. In our model, there are three random capacity fac-

tors: ‘inland’ Wind factor, Coastal Wind factor, and Solar factor.

Wind factor and Coastal Wind factor follow empirical distributions

modelled after a real-world north-ERCOT wind farm (see Appen-

dix D for details on capacity factor distributions). Additionally, we

utilize a Wind seasonal factor also based on the same North Texas

wind farm to mimic real-world weather patterns, with 1.333 for

spring, 0.667 for summer, and 1.0 for the fall and winter. Our So-

lar factor follows a truncated normal distribution centered at 0.5

with a seasonal factor of 1.0 for spring and fall, 1.333 for summer,

and 0.667 for winter. These random capacity and seasonal factors

scale Wind and Solar productions daily, capturing in this way the

variability of Renewables.

For demand values, ERCOTprovides the average and peakmonthly

demand forecasts for years 2019 through 2028. In our model, the

demand for each day is drawn according to a truncated normal

distribution that is centered at the corresponding ERCOT-provided

average monthly demand for that year [20]. For details of the de-

mand setup, we refer the reader to Appendix D.

Finally, at the beginning of each year, our model adds new plants

to support demand increase. The demand growth is defined as the

maximum monthly demand increase between the current year and

the previous year. Our model builds three types of new plants to

share the growth demand: Gas, Wind and Solar, with Gas plants

built with a total capacity of 70% of demand growth, Wind built

with a total capacity of 60% and new Solar with a total capacity of

10%. These together equate to ∼100% new plant coverage of demand

growth (0.7 + 0.6 ∗ 0.38 + 0.1 ∗ 0.5). The average 0.38 Wind and 0.5

Solar capacity factors are detailed in Appendix D.
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6.2 Simulation results
Fig. 9 shows the evolution of the initial Convs over time, for the

Economic Dispatch as well as our Balanced Dispatch with different

threshold percentages 𝛽 . We set the viability Window𝑊 = 3 years,

Figure 9: Long-term loss of Convs: Current Economic Dis-
patch versus Balanced Dispatch at different 𝛽 settings.

and also 𝛾 = 0.5,3 meaning that if a Conv generator is not chosen

by the ISO in at least half of the days in a 3-year Window, it will be

put on a three-year-long "probation" to determine if it will retire

permanently or not (as described in Section 5). When a Conv plant

retires, it is replaced with three new generators: Wind with 60%

of the retired plant’s capacity, Solar with 10% of retired capacity,

and Gas with 30% of retired capacity. As one can see in Fig. 9, only

around one-third of the initial 97 Convs survive under the current

Economic Dispatch method. In contrast, Balanced Dispatch stops

the loss of Convs when the total Conventional capacity drops to

the chosen threshold 𝛽 , by dispatching the Convs whose viability is

threatened, even if they are not the cheapest dispatchable sources

at that time.

Fig. 10 shows for average generation cost, in the short-term,

Balanced Dispatch matches and in the long-term, Balanced Dis-
patch strongly outperforms current Economic Dispatch.We

have plotted the annual averages to get smoother curves for better

visual comparison. In Fig. 5, we see that the system uses an increas-

ing amount of Peakers (the top red bars) to meet the daily demands,

which is the major reason for the current Economic Dispatch’s no-

tably higher average generation cost (blue curve) in Fig. 10. Mean-

while, if we save more Convs than we need (purple and red curves),

the cost also goes up, but it is still cheaper than when we do not

save enough Convs (orange and blue curves). The optimal threshold

(𝛽) can be found via binary search, as shown in Appendix E, and is

around 85% in our modelled case (i.e., the green curve in Fig. 10).

As indicated in Fig. 11, 𝛽 = 85% leads to a healthy mix of variable

and conventional sources, which results in both a lower average

generation cost and a more predictable supply of power.

We understand the concern that with Balanced Dispatch artifi-

cially selecting a number of Convs to use each year, the competition

3
We assume the price ranges for generators in Table 1 already take 𝛾 values into

account, meaning that the LCOE values (detailed in Appendix C) already internalize

plant usage frequencies.

Figure 10: Average generation cost: Current Economic Dis-
patch versus Balanced Dispatch at different values of 𝛽 .

in energy generation may become more restricted. Our method

though minimally interferes with the overall dispatch selection

by saving only a small percentage of Convs each year. We define

"saved" Convs as the plants: i) that would have retired under the

current Economic Dispatch method and/or ii) that are selected for

use by Balanced Dispatch prior to other sources. It is important

to note that under Balanced Dispatch, we do not fix any plants to

be permanently saved. When saved, a plant is only saved for that

single year and is available to retire the next year.

It turns out in Balanced Dispatch at 𝛽 = 85%, we only artificially

select ∼12 initial Convs each year. This shows that a small artificial

selection of 12 (of 287) plants can have a huge impact on system

performance in terms of both cost and embedded Inertia resilience

(as detailed in Fig. 10 & Table 2).

7 BALANCED DISPATCHWITH INERTIA
CONSIDERATION

In this section, we examine the system Inertia under Balanced Dis-

patch. We show that by using Balanced Dispatch, the severe Inertia

problem present under the current Economic Dispatch (in Fig. 5)

dramatically improves. Fig. 11 shows the plant usage progression

for Balanced Dispatch with the optimal 𝛽 = 85%. The black dashed

line (average annual 10 worst days of Inertia) is only below the

minimum threshold between years 2022 and 2030, and is always

above the threshold after year 2035. This is in firm contrast to cur-

rent Economic Dispatch that has major Inertia threshold violations

throughout the entire model in all years between 2022 and 2055 as

shown in Fig. 5. Alternately after year 2035, under Balanced Dis-
patch, the system is resilient enough to continuously main-
tain required Inertia without any additional inertial support (as

described in Section 4). In Table 2, we count the total number of

days where the Inertia falls under the 94 GWs required minimum

threshold (from Section 4), and divide it by the number of simu-

lation years. We can see that on average, the current Economic

Dispatch has a grid Inertia below the threshold for almost 1/3 of

each year (114 out of 365 days). Larger 𝛽’s have zero days below

the threshold and Balanced Dispatch at the optimal 𝛽 = 85% only

has an average of 7 violation days per year.
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Figure 11: Detailed plant usage at 𝛽 = 85% with proposed
Balanced Dispatch and worst 10 days ave Inertia curve.

Ave annual violation days

Current economic dispatch 114.2

Balanced dispatch (𝛽 = 50%) 60.8

Balanced dispatch (𝛽 = 85%) 7.2

Balanced dispatch (𝛽 = 115%) 0.2

Balanced dispatch (𝛽 = 150%) 0.1

Table 2: Average annual violation days for different 𝛽’s.

If we go a step further and apply the ADi Algorithm (from Section

4) to Balanced Dispatch ("Augmented Balanced Dispatch"), we
are able to completely resolve the Inertia issue at minimal additional

cost. In other words, by replacing current Economic Dispatch with

our Balanced Dispatch, not only is the average generation cost

largely reduced, but as an added bonus, the system inertia is also

maintained at almost no additional cost.

Fig. 12 shows the average generation costs for four simulation

settings we run in this paper:

Set. 1: current Economic Dispatch with no action to fix major

Inertia violation (blue curve);

Set. 2: Economic Dispatch with our Augmented Dispatch for Iner-

tia (ADi) Algorithm, paying a premium to select Convs to maintain

system Inertia (purple curve);

Set. 3: our Balanced Dispatch with no other action, which pro-

duces only minor Inertia violations (olive curve); and

Set. 4: our Balanced Dispatch with our ADi Algorithm that pre-

vents all Inertia violations (gold curve).

Economic Dispatch without Augmented Usage (Set. 1) has the

highest average generation cost and also results in the least stable

Inertia condition. Without external action, it often does not prevent

Inertia violations.

In comparing the purple and olive curves (Set. 2 & 3), we can

see that even though Economic Dispatch with Augmented Usage

produces a lower average cost than without it, the cost is still much

higher than if we planned ahead and saved some Convs using

Balanced Dispatch.

Figure 12: Average generation cost: Current Economic Dis-
patch (with / without Augmented Usage) versus Balanced
Dispatch (with / without Augmented Usage).

The olive and gold curves (Set. 3 & 4) almost overlap, indicating

the extra cost to ensure Inertia for Balanced Dispatch at 𝛽 = 85%

is negligible. With only a few violation days to fix under Balanced

Dispatch, this is in alignment with the results in Table 2 and Fig. 11.

The detailed plant progression for Set. 4 is displayed in Fig. 13.

The Augmented Usage (violet bars between the orange and blue

bars) is barely visible. By comparing to the cost of Balanced Dis-

patch without Augmented Usage in Fig. 12, we can see that there

is almost no additional cost for applying the ADi Algorithm to

Balanced Dispatch at 𝛽 = 85%. It proves the ADi (Alg. 1) used with

current Economic Dispatch benefits the system with both cheaper

long-term costs and fixed grid Inertia. Also, Balanced Dispatch

(Alg. 2) alone near-optimally ensures both cheap long-term cost

and consistent grid Inertial resilience, but together Alg. 1 and Alg. 2

(Augmented Balanced Dispatch) produce the best results.

Figure 13: Detailed plant usage at 𝛽 = 85% with Augmented
Balanced Dispatch.

In summary, the ADi method leads to a visible improvement over

the current Economic Dispatch. Balanced Dispatch though goes

even further, achieving the lowest average long-term generation

cost of all themethodswhile at the same time largely improving grid

resilience. Furthermore, the ADi method coupled with Balanced

Dispatch, yields yet another improvement as the system is able to
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both minimize its generation cost and guarantee itself stable system

Inertia.

In future work, it would be interesting to investigate the effects of

large solar penetration, as well as conduct simulations with datasets

from other regions.

8 CONCLUSION
This paper has investigated the consequences of current Economic

Dispatch on the long-term generation cost and on grid Inertia

stability. Current Economic Dispatch largely operates under the

assumption that a free market will discover the best generation

mix at the best price. We have shown this base assumption to be

incorrect with the current Economic Dispatch method actually

unnecessarily leading to both notably escalated generation cost and

severely inadequate grid Inertia stability.

On the other hand, our proposed Balanced Dispatch and ADi

solutions have demonstrated that a more systematic approach via a

healthy generation mix is very effective in achieving both a notable

reduction in long-term generation cost and a systematic improve-

ment in grid resilience.
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Inertia constant range

Nuclear 3.8–4.34

Coal 2.9–4.5

Combustion Turbine 1–12.5

Gas Steam 1–5.4

Combined Cycle 1.1–9

Hydro 2–3

Wind 0

Solar 0

Table 3: Inertia constant ranges by resource type [18].

B 2019 INSTALLED CAPACITIES
Table 4 shows the baseline energy mix of ERCOT in 2019. We

added the capacities of newly installed plants in 2018 and 2019 from

ERCOT [19] to the already summarized 2017 baseline statistics [7].

As one can see, most gas generators are combined-cycle.

Generator type Installed capacities (MW)

Nuclear 4,960

Coal 14,225

Gas Comb. Turbine 5,901

Gas Steam 6,200

Gas Combined-Cycle 32,572

Gas Engine 700

Hydropower 557

Biomass 186

Wind (inland) 19,228

Wind (coastal) 2,821

Solar 1,861

Table 4: The installed capacity of each generator type in ER-
COT for the 2019 baseline scenario [7, 19].

C LEVELIZED COSTS FOR DIFFERENT
PLANT TYPES

Lazard conducted an LCOE (levelized cost of energy) analysis in

2019. Fig.14 shows a table from this report comparing the LCOE

of newly-built Renewable generation (onshore Wind and utility

Solar) to the marginal cost of existing Conventional generation

(Coal and Nuclear) [9]. LCOE Tax Subsidies, LCOE Low End and

LCOE High End in this Lazard report were also utilized as a basis

to derive the prices in Table 1. Note that: i) from writer’s inside

industry knowledge, ERCOT plants are usually on average priced a

bit cheaper than the rest of the country and ii) for the most part,

plant prices in Table 1 are set around $5 above their marginal costs,

due to plants need to make some profit to justify staying in business.

Example: We derive the Coal cost range in Table 1 by taking

the Lazard number of $26-$41 from Fig. 14 and tighten the band to

get rid of outliers, resulting in $29-$37. Then we drop the top 1/4

due to ERCOT being overall a bit cheaper than other US regions,

which comes to $29-$35. Lastly, we add $5 assuming that generators

would want to make some profit above their marginal cost. This

gives us $34-$39. For Nuclear, following a similar method, we start

with $27-$31 and add $5 above marginal cost, coming to $32-$36.

Figure 14: Levelized cost comparison: Renewables v.s. Convs
[9].

D CAPACITY FACTORS AND DEMAND
We create two empirical distributions for ‘inland’ Wind and Coastal

Wind capacity factors to reflect the variable capacity of wind gen-

eration. Both distributions are generalized from the Wind factor

distribution of a wind farm located in North Texas (purple curve in

Fig.15). For the inland Wind factor, we use a mean of 0.38 and for

coastal a mean of 0.42.

Figure 15: Distributions of Wind and Coastal Wind.

For Solar generation, the capacity factor follows a truncated

normal distribution centered at 0.5 with a standard deviation of

0.2. Additionally, all capacity factors are bounded below by 0.1 and

above by 0.75. This being due to the fact that in large geographical

areas (i.e. ERCOT), cumulative Wind or Solar production never

stops, nor does it ever reach 100% on all plants at the same time.

For demand, we use ERCOT’s monthly peak demand as the up-

per bound and since ERCOT does not specify lower demands, we

assume the lower bound of the demand is at 80% of the provided

average monthly demands [20]. We justify this with the fact (based

on ERCOT 24 hour demand data) that within a given day, the min-

imum demand is approximately 60% of the same day’s peak on
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Figure 17: Detailed plant usage Balanced Dispatch for 𝛽 =

50%.

Figure 18: Detailed plant usage Balanced Dispatch for 𝛽 =

115%.

Figure 19: Detailed plant usage Balanced Dispatch for 𝛽 =

150%.

average throughout the year and second, that average monthly

demand is relatively centered between the peak and lower values.

Further, with no ERCOT demand data after year 2029, we assume

the demand increase to be at the rate of 1% for each year after 2029.

We select the later years growth value from the expectation that the

current 2+% growth rate, mainly from industry (largely oil devel-

opment) and population growth, is unsustainable and second, from

the expectation that energy efficiency within modern construction

practices will also help subdue future demand growth.

E OPTIMAL CHOICE OF 𝛽

To find the optimal threshold of Balanced Dispatch, we calculate

the average generation cost (over the entire time horizon 𝑇 ) for

different values of 𝛽 . For our simulation setting, the result is shown

in Fig. 16. As one can see, there is a significant reduction in the

average generation cost compared to the standard Economic Dis-

patch when 𝛽 is chosen appropriately. In general, the optimal value

of 𝛽 can be efficiently found by binary search.

Figure 16: Average generation costs at different threshold pa-
rameter 𝛽’s for Balanced Dispatch.

F MORE PLOTS ON PLANT USAGE
PROGRESSION

The detailed plant use with Balanced Dispatch for various additional

𝛽’s is shown in Fig. 17-19. As 𝛽 increases from 0% to 150% (in Fig. 5,

17, 11 (optimal), 18, 19), Peaker use is reduced, mainly due to the

lower use of Renewables, and Convs use increases. The red, yellow,

blue, orange and green bars in the Figures are Peakers, new Convs,

initial Convs, new Renewables and initial Renewables respectively.

While these larger 𝛽 scenarios (> 100%) in Fig. 18-19 save more

Convs and aremore resistant to variability factors, they fail to utilize

a healthy balance of cheaper Renewables and therefore result in a

higher average generation cost than the optimal 𝛽 = 85%.

It is also worth noting in Fig. 17-19 that: i) "less active" Convs (the

light blue & light yellow bars) are much more common in higher

𝛽’s (> 100%) than in lower ones (< 80%) and ii) Renewables are

extremely and unnecessarily suppressed in higher 𝛽’s (> 100%).
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