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ABSTRACT

We propose a method to minimize the long-term cost of energy
generation while improving grid stability. Currently, the cost of
energy generation is minimized myopically (day by day) via the eco-
nomic dispatch problem, which i) does not internalize the effects of
generation variability, ii) does not account for the long-term effects
of losing too many existing (paid off) conventional plants, and iii)
has the detrimental impact of not systematically maintaining grid
inertia. The current dispatch solution favors low cost but inherently
more variable renewables, which require intermittent back-up from
either conventionals or expensive peakers.

We first propose our Augmented Dispatch for Inertia method
which incorporates the cost of maintaining grid inertia stability
directly in the economic dispatch selection, thus more accurately
capturing the impact of renewable energy growth and conventional
plant retirements. Second, to address the long-term loss of con-
ventional plants due to their underuse, we propose our Balanced
Dispatch algorithm that selects key, future-needed conventional
generators with enough frequency to maintain their viability. We
show via simulation that our methods result in substantially lower
long-term generation cost and a notable increase in grid resilience.
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1 INTRODUCTION

Power generation is currently managed by Independent System
Operators (ISO) in a myopic way (day by day). The goal of ISOs
is to clear the market so that the load is met using the cheapest
available generation while maintaining grid stability. Thus, less
expensive sources of energy like Wind are typically being selected
first. In the longer term, this myopic selection leads to the slow loss
of conventional generation, due to under-use, as more and more
renewables penetrate the system [6]. Additionally, in the short-
term, when the wind forecast is not accurate, system operators
have to either activate reserves or use quick ramping peaker plants.

In both of these cases, conventional sources like Coal and Gas,
that are moderately priced and have longer ramp-up times, are be-
ing selected less often. This reduces their economic viability, slowly
driving them out of business. This reduced use and subsequent
loss of many conventionals pushes the system to the two extremes:
cheap, variable Wind and expensive, quick ramping Peakers, re-
sulting in i) more extreme price fluctuation in the system, ii) lower
overall system inertia stability (without continuous monitoring and
action by the ISO), iii) an increased overall long-term generation
costs. It also results in more frequent cases of scarcity pricing [5, 16].

Moreover, regarding overall system resilience, conventional gen-
eration provides rotation mass in the grid, called Inertia, which
acts as a buffer to slow down the rate of frequency change. As seen
in a number of events in recent years, when there is a dramatic
penetration of renewable generation into a system without ade-
quate inertial rotating mass, the system can be susceptible to poor
power quality and blackouts [24]. Conventional usage, unlike re-
newables’ usage, bolsters electrical Inertia to help maintain a stable
and reliable grid. Additionally, a higher availability of conventional
capacity in the long-term reduces the required need for peaker
plants when renewable generation is low!, which keeps overall
generation cost lower.

The goal of this paper is to study the implications of the cur-
rent economic dispatch methods on both the Long-Term Cost
of Generation and on Grid Inertial Stability, and to offer po-
tential solutions. Specifically, we propose two complimentary ap-
proaches, with the first (i) yielding a myopic, short-term solution to
systematically ensure satisfactory grid Inertia, and the second (ii)
presenting a balanced dispatch solution to stabilize long-term gen-
eration cost via a minimum threshold of non-variable generation.
For the former, we address the issue of the continuous violation of
grid Inertia (starting in 2022) under the current economic dispatch

! These periods of low renewable generation are in reference to day over day operation
periods and not inter-day forecast errors periods.
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method ("Economic Dispatch"), and offer a solution to ensure grid
Inertia is always maintained above the minimum Inertia threshold.
For the latter, we propose a threshold algorithm that selects key
conventionals often enough to maintain their viability, even when
they are not among the cheapest generators within that period.
Ultimately, our goal is to offer a systematic approach for finding
the most cost-effective way to produce power in the long term
while still maintaining minimum Inertia and other grid reliability
constraints.

We give the following historic example to illustrate how the
shortage of conventional generation can have devastating conse-
quences. In 2011 two Coal plants in ERCOT shut down for two days
because of a snow storm and the remaining generation could not
meet the load, resulting in rolling blackouts and a sudden rise in
energy price from around $30/MWHh to $3,000/MWh (the maximum
allowable at that time by the Texas ISO, The Electric Reliability
Council of Texas, "ERCOT"). Additionally, in the summer of 2011, a
record heat wave pushed the ERCOT load to an all-time high, at
which point there was again no more generation available to meet
the load. Market prices peaked at $3,000/MWh for only 28 of 8760
hours during these two periods, but drove the average price that
year up by 30% (from ~$38/MWh to ~$50/MWh). These historic
episodes give a glimpse into the future when too many conven-
tional plants have shut down due to under-use and are not available
during times of need.

To address the shortages in 2011, ERCOT raised the market
price cap from $3,000 to $9,000/MWh. With this move not being
enough to prevent losses of capacity reserves [6, 21], in 2014, ER-
COT additionally implemented a mechanism called scarcity pricing
[5, 16]. These together are proving moderately effective, but i) are
disproportionately promoting high-priced peakers and low-priced
renewables to build new generation over conventionals [19] and ii)
they only start having noticeable effects a few years before larger
issues tend to occur, which does not allow non-peaker convention-
als enough lead time to justify entering the market. This polarizes
the system and leads it to higher long-term generation costs and
lower grid Inertia stability.

ERCOT, and other system operators, thinks pure economic in-
centive and free market forces will drive an optimal generation mix
to the best long-term cost. However, we demonstrate in this paper
that this is not necessarily the case. Consider a simple example
where the system operator is offered the following sources in Fig. 1:
an inexpensive variable source at $25/MWh with capacity 250MW
(green/wind), a moderately priced conventional source at $35/MWh
with capacity 100MW (blue/conventional), and an expensive peaker
source at $150/MWh (red/peaker) with unlimited capacity.

Assume that the conventional plant has not been picked by the
system operator for a while and it will be replaced by a 100MW
renewable source if not picked in the current round. If the demand
is 200MW in both rounds, economic dispatch will not assign any
generation to the conventional plant in round one (Fig. 1-(top)).
Now, in round two, when renewable generation is lower, the two
variable sources only produce 100MW and 50MW. Therefore, in
the absence of a conventional source, the system operator has to
schedule the remaining 50MW with the peaker source.

On the other hand, if we are aware of the conventional’s situation,
we will select it before the variable source (Fig. 1-(bottom)) in round
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Figure 1: Long-term replacement of conventionals with vari-
able sources: (top) current economic dispatch; (bottom) a
more balanced dispatch.

one. This will increase the generation cost in round one, but the
survival of the conventional will help the system operator avoid
the use of the peaker in round two. The average generation cost
is $40.6 in the first case (myopic economic dispatch), and $30 in
the second case (considering longer-term effects). To conclude, we
are able to reduce the long-term generation cost relative to the
standard economic dispatch solution, by trading off slightly higher
cost now for lower cost in the future.

Therefore, we raise the questions: What if we took a proactive
approach in maintaining the existing needed generation sources in
a system? What if instead of having the market price rise to keep
future-needed conventional generators in business, we choose to
promote their viability in a different way? The system could then
operate with a more balanced mix of cheap renewables, mid-priced
conventionals and high-priced peakers, while providing a lower
long-term generation cost and better stability.

Summary of contributions: First, we propose an Augmented
Dispatch algorithm that incorporates the minimum inertia require-
ment into the economic dispatch solution. Additionally, we propose
a separate Balanced Dispatch algorithm that keeps a certain level of
conventional generation in the system by dispatching key conven-
tional plants in a way to maintain their viability. Third, we consider
the combination of the two algorithms (Augmented Balanced Dis-
patch). All three approaches achieve a lower long-term cost, while
improving the grid inertia but the combined approach achieves the
best results. We examine the effectiveness of our proposed algo-
rithms via simulation over the time horizon of 2019-2055 using the
available data for the ERCOT grid.

2 RELATED WORK

Our study of the change in generation mix over time is related to
prior work on the effect of Renewable integration [15]. Green and
Vasilakos [3] show that large amounts of intermittent Renewables
in Great Britain would shift the generation mix towards power
stations with lower overhead costs. Traber [25] also studies the
effects of different capacity policies (such as capacity markets or
reserve obligations) in central European electricity markets, and
shows that such changes depend on the existing power plant mix
as well as the elasticity of the demand.
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Several approaches have been proposed [2, 14] to calculate the
cost of wind integration. Hirth et al. [4] define the integration
cost as the system-level cost of wind and solar generators from
their temporal variability, uncertainty, and location constraints;
and show that at a renewable penetration of 30-40%, the integration
cost can be up to 50% of the generation cost. To address these
costs and support the large-scale integration of renewable energy,
several solutions have been proposed for optimal structuring of
reserves [10, 12, 30].

In addition, Lorca and Sun [11] and Wei et al. [26] have proposed
robust optimization techniques for cases of high wind penetration
to tackle the huge reliability concerns.

Another concern regarding the increased penetration of renew-
able generation is the reduced inertia of the system [29]. Several
methods have been proposed to imitate the kinetic inertia of con-
ventionals [1, 31]; however, current wind and solar technologies
cannot compete with conventional generation in offering certain
ancillary services, specifically those related to primary frequency
control [17].

In this paper, we aim to address the aforementioned optimal
generation mix and inertia violations concerns within the economic
dispatch problem. Even though the long-term consequences of wind
integration have been studied in the literature [22, 27, 28], our work
differs from prior literature as it takes a proactive approach to solve
the problem by integrating the costs of maintaining grid inertia
and conventional plant retirement issues into economic dispatch.

3 MODEL AND PRELIMINARIES

We propose a new process for selecting energy generation, which
combines traditional economic dispatch (described next) with an
additional threshold algorithm that maintains a minimal amount
of conventional generation (see Section 5).

The traditional economic dispatch problem ("Economic Dispatch")
aims to minimize the cost of generation subject to transmission and
operational constraints [8]. Each day generators provide the ISO
their maximum capacity and corresponding energy cost function.
Allocating energy generation is then done by solving Economic
Dispatch, and the Locational Marginal Prices (LMP) are derived as
part of the Economic Dispatch solution.

Let x; denote the power generated by source i, and f;(x;) be the
associated cost. Then the goal is to solve the following optimization
problem:

where n is the number of generators, x is the vector of all gen-

P<x<Pg(x)=0h(x) < Z}, )

eration levels (x;’s), P and P are the vectors of lower and upper
generation limits, g(x) = 0 captures all equality constraints (e.g.,
meeting the demand), and h(x) < h models the network inequality
constraints (e.g., thermal flow limits). Assuming a linear genera-
tion cost (fi(x;) = cix;), and employing the DC power flow model,
optimization problem (1) simplifies to a linear program (LP).

In the absence of network congestion, the optimization problem
(1) reduces to the greedy assignment of power generation from
the least expensive source upwards until the demand is met, as
demonstrated in the following example.
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Example 3.1. Consider a four-bus network as shown in Fig. 2,
where all the lines have the same impedances. Assume there is a
load of Dy = 1000MW at bus 0, and three generators of low, medium,
and high price at buses 1, 2, and 3, respectively. In particular, we
have the following generation costs and capacities:

Py = T700MW P = 800MW

P
DX/ 650MW > DN_/ T00MW

0 1 0 1

350MW
50MW
300MW

3 2 3 2

250MW 300MW
3 2 3

P; =100MW  Pj =200MW P} =0

100MW
&

P} = 200MW

Figure 2: Economic Dispatch with (left) and without net-
work congestion (right).

c1 = $25/MWh, Py € [0,800]
ca = $35/MWh, P, € [0,500]
c3 = $150/MWh, P3 € [0,1000]

Now assume that the line between buses 2 and 3 has a capacity
of 250MW (Fig. 2-(left)). Writing the DC power flow equations,
this requires that 5 + 22 — 23 < 250MW. Minimizing c;P; +
caPy + c3P3 subject to this constraint as well as power balance
constraints and generation limits, we get P;‘ =700, P; =200, and
P; = 100MW. Further, the dual variable corresponding to the power
balance constraint at each bus determines the LMP at that bus. The
LMP at each bus can also be interpreted as the marginal cost of an
extra unit of energy, if we add an infinitesimal load at that bus.

On the other hand, if we do not have any congestion in the net-
work (e.g., when the line limits are higher than the actual power
flows, as in Fig. 2-(right)), solving the above optimization prob-
lem reduces to assigning full generation to sources in the order of
increasing cost, until the demand is met. In this example, P; will
generate at full capacity (800MW) and the remaining 200MW will
be provided by P,. In the absence of congestion, the LMP will be
the same at all nodes and equal to the price of the last assigned
source (c2 = $35/MWh in this case). The greedy assignment of this
Example 3.1 is formally stated in the following proposition.

PROPOSITION 3.2. The Economic Dispatch solution in the absence
of network constraints sorts all energy sources in increasing order of
generation costs c;. Then, it finds the smallest index k such that the
sum of the source capacities Zi.‘:l P; is greater than or equal to the
demand.

In the rest of this paper, we assume a network model with no
congestion; however, we do expect our findings to hold for the
more general case with possible congestion. For example, in many
systems, the good portion of congestion is due to the growth of
renewables near the edges of the system (e.g., far West Texas),
and both of our algorithms in this paper prioritize a subset of
conventionals over renewables. Since conventionals are typically
more centralized within most networks than renewables, finding a
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subset that maintains or even improves congestion is not difficult
in most cases. Therefore, one can solve Economic Dispatch with
or without congestion after our algorithm(s) assigns its necessary
generation to underused conventionals.

We classify the sources of energy into three groups:

o variable sources — renewables, e.g., Wind or Solar;

o conventional sources — fossil fuel energy sources,
e.g., Nuclear, Coal, Gas;

o peaker sources — natural Gas plants that choose to largely op-
erate during higher demand periods and/or that are capable
of rapidly ramping.

For the remainder of this paper we refer to conventional sources
as "Convs". Variable sources are typically connected to the grid
through converters, making their operation independent of system
frequency, which results in reduced system inertia [29]. Therefore,
the increased penetration of renewables brings a new challenge to
grid inertia stability, discussed in the next section.

4 INERTIA AND GRID RESILIENCE
4.1 Inertia background

One consequence of high renewable penetration and thus peri-
odic low Convs usage is low system Inertia. Electrical inertia helps
oppose the changes in current and acts as a buffer against rapid
frequency change. In order for a generator to contribute to system

2015 = 2016 e 2017
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200,000

150,000
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Figure 3: Correlation between Wind penetration and Inertia
in 2015, 2016, and 2017 [18].

Inertia, it has to have a direct electromagnetic coupling between
the power system and itself, which allows system disturbances to
be translated into mechanical torque that acts on the generator’s
rotor [23]. If frequency is not maintained within its operating band,
part of the network can be forced to shut down. This causes severe
strain on the rest of the system. If not dealt with effectively, cas-
cading outages can quickly lead to a major blackout such as that
experienced in the US Northeast in 2003, when 60 million people
ended up without power [24]. The 2019 major blackouts in New
York City and the UK. further emphasize the need for greater grid
resilience [24].

It is well-known in the power systems field that there is an impor-
tant connection between system Inertia and grid stability. However,
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as recognized by Johnson et al. [7], few studies have explored the
future stability issues that may result from renewables growth and
power plant retirements. ERCOT presents the correlation between
Wind penetration and system Inertia in the ERCOT grid, as seen in
Fig. 3 [18]. In the figure, the data points progress to the right each
year, indicating the increasing renewable penetration. Meanwhile,
the system Inertia slowly drops (y-axis) towards the minimum In-
ertia threshold. This results largely from renewables’ growth in
recent years notably outpacing demand growth [18].

Frequency Traveling time (From LR setting to ULFS setting) vs. Inertia

25
T = f (Inertia)
2 =3x107° x Inertia® +0.0016 x Inertia + 0.0048 )
...
.
218 Critical Inertja: 94 GW*s —
8 o
3
n
1
LR Response .
Time 0.5
0425
0 e
0 50 100 150 200 250

Inertia (GW*s)

Figure 4: Current Inertia threshold for ERCOT [13].

Based on the above evidence, we now investigate how the increas-
ing growth of non-Inertia adding renewables and the economically-
forced retirements of Convs impact Inertia. Per a 2019 ERCOT
study, ERCOT’s minimum Inertia for its system to function safely
is 94 GWs. Fig. 4 explains the computation for this critical Inertia
value [13]. The basics behind this are: ERCOT assumes a worst
case scenario that its two largest plants (two 1280 MW Nuclear
plants) could trip offline at exactly the same moment and that its
system has to be able to maintain frequency about 59.7 hertz for
0.42 second to allow time for emergency load shedding actions to
take effect. A major way that most ISOs accomplish frequency sta-
bility is through the use of rotational Inertia. When manufactured,
every generator has an Inertia constant x, meaning that the usage
of 1 MW of this generator produces x MWs of Inertia. We refer the
reader to Appendix A for the Inertia constants of different types of
power plants. Since we do not have proprietary access to ERCOT
individual plants Inertia constants and since most Convs in our
simulation are Gas combined-cycle (see Appendix B), we assume
an Inertia constant of 5 for all Convs, which is both the weighted
average of all the Convs and the midpoint of the combined-cycle 1.1
to 9 Inertia constant range detailed in Appendix A. With detailed
plant Inertia constant values, our model is able to exactly output
the best Convs to use each day.

Next, we examine via simulation the severe Inertia violations
that are expected to arise in the ERCOT system under the current
Economic Dispatch method, and then introduce our ADi Algorithm
(hereafter defined), a method that enables healthy Inertia grid re-
silience.
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Figure 5: Detailed plant usage with Economic Dispatch and
its worst annual 90 day & 10 day Inertia curves.

4.2 Inertia simulation

Fig. 5 shows the progression of plant usage under Economic Dis-
patch, along with average annual Inertia, the worst 10 days Inertia
average and the 90th worst Inertia day each year. ERCOT’s lowest
Inertia days are above the minimum threshold in Year 2019. How-
ever, based on ERCOT data [21], there are around 14 GWs of Wind
and 7 GWs of Solar planned to be built in years 2019-2021, which
is expected to result in the sudden drop of Inertia starting in year
2022. Both the 90 worst days and the worst 10 days of Inertia under
current Economic Dispatch are expected to remain below the 94
GWs threshold from 2026 onward, which strongly suggests that
the ERCOT system under its current methodology does not have
enough Inertia resilience to counteract this rapid insertion of 20+
GWs of new renewables.

An effective myopic method to prevent falling under the Iner-
tia threshold is to enforce enough Convs usage which we term
Augmented Usage. Since the current method does not have an es-
tablished systematic approach to plan ahead for this needed use of
Convs, and because not every Conv plant desires to be operationally
committed in the Day-Ahead market versus just financially com-
mitted, we propose integrating compensation into selected plants’
payments for their operational commitment of Inertia support. We
thus designate the corresponding unit cost of selecting the needed
Convs as 50% higher? than if they were not selected (i.e. not addi-
tionally committed for Inertia support). Example: A plant is chosen
at $36 per MWh, but to additionally designate and use it for Inertia
support, it is paid $54 ($36"1.5) per MWh instead. Further, for days
we have violations, we increase the Inertia requirement to 110 GWs
from the 94 GWs threshold, effectively internalizing a small buffer.

2This is an amount Convs get only if they are selected for both energy and for Inertia
support. The additional compensation could be whatever the ISO designates and 50%
is just a value that we propose; alternatively the ISO could let Convs bid to provide
Inertia support in a procurement auction.
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Algorithm 1: Augmented Dispatch for Inertia (ADi)

Input: a dispatching algorithm DispatchAlg;
Initialize capacity factors & demand for each day;
for each day in the time horizon T do
Run DispatchAlg;
Compute Inertia;
if Inertia < 94 GWs then
Clear the previous plant selection;
while Inertia < 110 GWs do
Randomly select Convs and give them 50%
higher prices;
end
while demand is not met do
‘ Run DispatchAlg with remaining plants;
end

end

We call the the algorithm described above Augmented Dispatch
for Inertia (ADi) and present it as Algorithm 1.

Fig. 6 shows the usage progression after applying the ADi Algo-
rithm with the violet bars representing the Augmented Usage. As
one can see, the worst 10 day ave line is now always kept above
the Inertia threshold. Effectively, a healthy grid Inertia resilience is
maintained by applying the ADi algorithm to the current Economic
Dispatch ("Augmented Economic Dispatch").

Augmented Economic Dispatch

350
— Inertia - annual ave
701 ===~ Inertia - worst 10 days ave L 300
n — ia - w
% 604 Inertia - threshold %
S 250 ¢
g 50 'E
@ 200 G
; 401 w i
K] 150 E
s g
o 1 R 100 ©
g 201 g
< L4
10 0
2020 2025 2030 2035 2040 2045 2050 2055
Year
Peakers Augmented Usage

New Convs (active / less active) New Renews (active / less active)

Initial Convs (active / less active) Initial Renews

Figure 6: Detailed plant usage with Economic Dispatch in-
cluding hard requirement to maintain minimum Inertia.

Moreover, Fig. 7 shows the comparison between the average
annual cost with violations (blue curve, Economic Dispatch) and the
average annual cost with violations fixed (purple curve, Augmented
Economic Dispatch). The average cost with Augmented Economic
Dispatch is slightly higher than Economic Dispatch for the first
15 years, but stays lower after Year 2034. This is largely because
with the forced Augmented Usage, the system is able to save more
initial Convs in the early years, which in turn reduces the need for
some higher priced Peaker and new higher cost Convs usage in the
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later years on days when the variable sources are unable to provide
enough power. This statement is further reinforced in Fig. 8, where
our Augmented Economic Dispatch (in the process of maintaining
minimum Inertia) ends up saving about 15 more initial Convs than
current Economic Dispatch does. These saved initial Convs are the
key reason that the ADi Algorithm is able to save an average of $5
per MWh (or 11%) in the later years of the model.

N
o

—— Economic Dispatch
—— Augmented Economic Dispatch

w w w B S S
IS o o o N ES
L L L L L L

Average generation cost ($/MWh)

w
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L

30 &= T T T T T T T
2020 2025 2030 2035 2040 2045 2050 2055
Time (year)

Figure 7: Average generation cost: current Economic Dis-
patch versus Augmented Economic Dispatch for Inertia.
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Figure 8: Initial Conv count: Current Economic Dispatch ver-
sus Augmented Economic Dispatch for Inertia.

Now, consider an alternate approach. If we were able to plan
ahead by maintaining the viability of a selected number of initial
Convs, we could hugely decrease or even avoid these extra costs
associated with Inertia +50% provision incentives discussed above.
In the next section, we propose a long-term economic dispatch
method that we call Balanced Dispatch (detailed hereafter). By
using a more balanced generation mix, our Balanced Dispatch al-
gorithm substantially solves the above Inertia violation problem
at very minimal cost while concurrently producing a much lower
long-term average generation cost (see Section 7).

5 BALANCED ECONOMIC DISPATCH

We now turn to the long-term implications of the current Economic
Dispatch, with a focus on the economic viability of conventional
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generation. Under the current Economic Dispatch, low-cost renew-
able generation is favored over moderately priced Convs. Given
that Convs can have significant overhead in fixed maintenance
requirements, full-time employees, capital cost repayment, etc. [9],
their cost of operation only partially decreases if they are not be-
ing utilized; while their revenues decrease linearly. This results in
Convs closing down [5, 16], which in turn increases the need for
and use of Peakers, ultimately increasing the cost of generation in
the long-run as shown in our simulations in Section 6.

We therefore introduce a more balanced dispatching algorithm
called Balanced Dispatch, which models the process as follows.
We start with a fixed number of generators n, initialized to three
general types: (i) Renewables, which are cheaper but require some
level of more expensive backup, (ii) Convs, which are moderately
priced, and have a steadier output and iii) Peakers, which are high
priced.

The cost of each plant’s energy production is chosen at the
start of the simulation from a uniform distribution based on the
projected real-world prices for each corresponding generator type
[9]. While the capacity of the Convs is assumed fixed, the capacity
of the renewable sources varies from day to day depending on the
forecast and season. Similarly, the demand d* varies from day to day
and is independently drawn from a truncated normal distribution
centered around the average demand forecast. We assume a finite
horizon of T time periods and are interested in minimizing the sum
of generation costs across all periods.

Among the various power plants, there are specific types that
are designated as base-supply, which means they are selected and
used every day. In our model, Solar and Nuclear power plants are
base-supply. This is because Solar is typically distributed, utility
in-house or under contract, and Nuclear is traditionally used as
base-supply.

Furthermore, we model and monitor the economic viability of
each conventional. We do this by the system operator considering
a Window W of consecutive periods: If the plant fails to be selected
for yW of the periods in any Window W (where y < 1 is an activity
requirement based on each plant’s net revenue needs for the peri-
ods) then it is put on a three-year "probation” with the probability to
go out of business in each year of the probation being 1/3, 2/3, and
1 respectively (simulating a time-frame for the generator to make
a shutdown timing decision). If during the probation, the plant is
selected for more than yW periods of the Window W, then its proba-
tion is cleared. Ultimately, whenever a plant goes out of business, it
is removed and gets replaced by a combination of new variable and
some conventional sources (similarly to current market practices).
Since we have distributional access to future forecasts, we could
calculate the optimal solution using reverse dynamic programming,.
This solution though would be computationally expensive and we
are interested in a simpler threshold algorithm instead that keeps a
needed amount of Convs.

In our Balanced Dispatch method, we maintain the total capacity
of Convs above a given percentage threshold (denoted f) of the
average demand. We do this annually by flagging Convs from lowest
cost up until the f threshold is reached. Then, each day, we dispatch
the flagged Convs that are close to their viability requirement (y)
before dispatching any other sources. We explain how f is chosen
in Section 6. This algorithm is summarized as Algorithm 2.
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Algorithm 2: Balanced Dispatch

Initialize capacity factors & demand for each day;
while total flagged Convs capacity < *demand do
‘ Flag the current cheapest Conv;
end
for each day in the time horizon T do
while demand is not met do
Use base-supply plants (Nuclear and Solar);
Use less active flagged Convs;
Run Economic Dispatch on remaining plants;
end
if at the beginning of a year then
for each inactive Conv c do
if c is on probation then
Eliminate ¢ with corresponding probability
and add replacement Gas, Renewable
plants;
else
‘ Put ¢ on probation;
end
Add demand growth Gas, Renewable plants;
De-flag all Convs;
while total flagged Convs capacity < f*demand do
‘ Flag the current cheapest Conv;
end

end

6 SIMULATION

6.1 Simulation setup

We construct our simulation based on real-world existing and
planned plant data provided by ERCOT [21]. Our simulation is
run every day from year 2019 through year 2055. We divide the ex-
isting and planned generators (with their respective capacities) into
specific sub-types: Wind, coastal Wind, Solar, Nuclear, Coal, Gas
and Gas-Peakers. In the year of 2019, there are n = 287 generators
in ERCOT, including 96 ‘inland’ Wind, 12 coastal Wind, 38 Solar, 4
Nuclear, 22 Coal, 64 Gas (mostly larger combined-cycles), and 51
Gas Peakers (mostly non-combined-cycles). We refer the reader to
Appendix B for the 2019 list of installed capacities of the different
generator types in ERCOT.

In Table 1, we provide the price ranges we use for each of these
plant types and we further subdivide them by age to account for
the extra income needed to support both capital investment costs
early in a plant’s life and for increased maintenance, operation and
efficiency costs in older plants. The prices of the plants are derived
from a combination of the US levelized cost of energy calculated
and projected by Lazard [9] and one of the author’s inside industry
knowledge of ERCOT pricing (see Appendix C and Fig. 14 for more
details on the price setup). We derived the price ranges in Table 1,
but our model can also utilize any provided price ranges.

At the start of each simulation, each plant’s unit price is chosen
from a uniform distribution with bounds specified in the ‘Price’
column of Table 1. We also add an infinity Peaker with unit cost
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Plant Type l Year Built l Price ($/MWh)
Nuclear (base) All [32,36]
Solar - new (base) pre-2021 [41, 60]
Solar - future (base) post-2021 [36,42]
Wind - mid pre—2008 [15, 25]
Wind - new 2008-2021 [20,29]
Coastal Wind All [20,29]
Gas - mid 1987-2008 [29,34]
Wind - future post-2021 [30,34]
Gas - new-old pre-1987 or post-2008 [34,39]
Coal All [34,39]
Gas - future post-2021 [38,44]
Peaker - mid 1987-2008 165
Peaker - new-old | pre-1987 or post-2008 180

Table 1: Unit cost of each generator type.

$195 for when there are no other remaining plants available, thus
mimicking the real-world when systems are near their limits [6, 21].
In that near-limits situation, the average market price would move
towards the price cap (e.g. $9,000 MWh in ERCOT) and mechanisms
like scarcity pricing [5, 16] would kick in more often, thus enticing
new plants such as fast- and easy-to-construct Peakers to be built.

For variable sources, the capacity factors determine their actual
daily capacity. In our model, there are three random capacity fac-
tors: ‘inland’ Wind factor, Coastal Wind factor, and Solar factor.
Wind factor and Coastal Wind factor follow empirical distributions
modelled after a real-world north-ERCOT wind farm (see Appen-
dix D for details on capacity factor distributions). Additionally, we
utilize a Wind seasonal factor also based on the same North Texas
wind farm to mimic real-world weather patterns, with 1.333 for
spring, 0.667 for summer, and 1.0 for the fall and winter. Our So-
lar factor follows a truncated normal distribution centered at 0.5
with a seasonal factor of 1.0 for spring and fall, 1.333 for summer,
and 0.667 for winter. These random capacity and seasonal factors
scale Wind and Solar productions daily, capturing in this way the
variability of Renewables.

For demand values, ERCOT provides the average and peak monthly
demand forecasts for years 2019 through 2028. In our model, the
demand for each day is drawn according to a truncated normal
distribution that is centered at the corresponding ERCOT-provided
average monthly demand for that year [20]. For details of the de-
mand setup, we refer the reader to Appendix D.

Finally, at the beginning of each year, our model adds new plants
to support demand increase. The demand growth is defined as the
maximum monthly demand increase between the current year and
the previous year. Our model builds three types of new plants to
share the growth demand: Gas, Wind and Solar, with Gas plants
built with a total capacity of 70% of demand growth, Wind built
with a total capacity of 60% and new Solar with a total capacity of
10%. These together equate to ~100% new plant coverage of demand
growth (0.7 + 0.6 * 0.38 + 0.1 * 0.5). The average 0.38 Wind and 0.5
Solar capacity factors are detailed in Appendix D.
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6.2 Simulation results

Fig. 9 shows the evolution of the initial Convs over time, for the
Economic Dispatch as well as our Balanced Dispatch with different
threshold percentages . We set the viability Window W = 3 years,
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Figure 9: Long-term loss of Convs: Current Economic Dis-
patch versus Balanced Dispatch at different j settings.

and also y = 0.5, meaning that if a Conv generator is not chosen
by the ISO in at least half of the days in a 3-year Window, it will be
put on a three-year-long "probation” to determine if it will retire
permanently or not (as described in Section 5). When a Conv plant
retires, it is replaced with three new generators: Wind with 60%
of the retired plant’s capacity, Solar with 10% of retired capacity,
and Gas with 30% of retired capacity. As one can see in Fig. 9, only
around one-third of the initial 97 Convs survive under the current
Economic Dispatch method. In contrast, Balanced Dispatch stops
the loss of Convs when the total Conventional capacity drops to
the chosen threshold f, by dispatching the Convs whose viability is
threatened, even if they are not the cheapest dispatchable sources
at that time.

Fig. 10 shows for average generation cost, in the short-term,
Balanced Dispatch matches and in the long-term, Balanced Dis-
patch strongly outperforms current Economic Dispatch. We
have plotted the annual averages to get smoother curves for better
visual comparison. In Fig. 5, we see that the system uses an increas-
ing amount of Peakers (the top red bars) to meet the daily demands,
which is the major reason for the current Economic Dispatch’s no-
tably higher average generation cost (blue curve) in Fig. 10. Mean-
while, if we save more Convs than we need (purple and red curves),
the cost also goes up, but it is still cheaper than when we do not
save enough Convs (orange and blue curves). The optimal threshold
(B) can be found via binary search, as shown in Appendix E, and is
around 85% in our modelled case (i.e., the green curve in Fig. 10).
As indicated in Fig. 11, f = 85% leads to a healthy mix of variable
and conventional sources, which results in both a lower average
generation cost and a more predictable supply of power.

We understand the concern that with Balanced Dispatch artifi-
cially selecting a number of Convs to use each year, the competition

3We assume the price ranges for generators in Table 1 already take y values into
account, meaning that the LCOE values (detailed in Appendix C) already internalize
plant usage frequencies.
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Figure 10: Average generation cost: Current Economic Dis-
patch versus Balanced Dispatch at different values of f.

in energy generation may become more restricted. Our method
though minimally interferes with the overall dispatch selection
by saving only a small percentage of Convs each year. We define
"saved" Convs as the plants: i) that would have retired under the
current Economic Dispatch method and/or ii) that are selected for
use by Balanced Dispatch prior to other sources. It is important
to note that under Balanced Dispatch, we do not fix any plants to
be permanently saved. When saved, a plant is only saved for that
single year and is available to retire the next year.

It turns out in Balanced Dispatch at f = 85%, we only artificially
select ~12 initial Convs each year. This shows that a small artificial
selection of 12 (of 287) plants can have a huge impact on system
performance in terms of both cost and embedded Inertia resilience
(as detailed in Fig. 10 & Table 2).

7 BALANCED DISPATCH WITH INERTIA
CONSIDERATION

In this section, we examine the system Inertia under Balanced Dis-
patch. We show that by using Balanced Dispatch, the severe Inertia
problem present under the current Economic Dispatch (in Fig. 5)
dramatically improves. Fig. 11 shows the plant usage progression
for Balanced Dispatch with the optimal § = 85%. The black dashed
line (average annual 10 worst days of Inertia) is only below the
minimum threshold between years 2022 and 2030, and is always
above the threshold after year 2035. This is in firm contrast to cur-
rent Economic Dispatch that has major Inertia threshold violations
throughout the entire model in all years between 2022 and 2055 as
shown in Fig. 5. Alternately after year 2035, under Balanced Dis-
patch, the system is resilient enough to continuously main-
tain required Inertia without any additional inertial support (as
described in Section 4). In Table 2, we count the total number of
days where the Inertia falls under the 94 GWs required minimum
threshold (from Section 4), and divide it by the number of simu-
lation years. We can see that on average, the current Economic
Dispatch has a grid Inertia below the threshold for almost 1/3 of
each year (114 out of 365 days). Larger f’s have zero days below
the threshold and Balanced Dispatch at the optimal = 85% only
has an average of 7 violation days per year.
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Balanced Dispatch (B=85%)

w
@
=}

—— lInertia - annual ave
7 === Inertia - worst 10 days ave
—-= Inertia - threshold

-
o
w
1=}
S

o
o
N
u
o

-
u
o

w
o

D
=
T
\
3
N
!
i
i
i
i
i
i
i
i
i
i

Average daily usage in GWs
S wu
o o
v \
1
\
T T N
o
o
Average daily inertia in GWs

=
o
T,
[
i<}

T T T T T T T T
2020 2025 2030 2035 2040 2045 2050 2055
Year

Peakers New Renews (active / less active)
New Convs (active / less active) Initial Renews

Initial Convs (active / less active)

Figure 11: Detailed plant usage at f = 85% with proposed
Balanced Dispatch and worst 10 days ave Inertia curve.

‘ Ave annual violation days

Current economic dispatch 114.2
Balanced dispatch (f = 50%) 60.8
Balanced dispatch (f = 85%) 7.2
Balanced dispatch (f = 115%) 0.2
Balanced dispatch (f = 150%) 0.1

Table 2: Average annual violation days for different f’s.

If we go a step further and apply the ADi Algorithm (from Section
4) to Balanced Dispatch ("Augmented Balanced Dispatch"), we
are able to completely resolve the Inertia issue at minimal additional
cost. In other words, by replacing current Economic Dispatch with
our Balanced Dispatch, not only is the average generation cost
largely reduced, but as an added bonus, the system inertia is also
maintained at almost no additional cost.

Fig. 12 shows the average generation costs for four simulation
settings we run in this paper:

Set. 1: current Economic Dispatch with no action to fix major
Inertia violation (blue curve);

Set. 2: Economic Dispatch with our Augmented Dispatch for Iner-
tia (ADi) Algorithm, paying a premium to select Convs to maintain
system Inertia (purple curve);

Set. 3: our Balanced Dispatch with no other action, which pro-
duces only minor Inertia violations (olive curve); and

Set. 4: our Balanced Dispatch with our ADi Algorithm that pre-
vents all Inertia violations (gold curve).

Economic Dispatch without Augmented Usage (Set. 1) has the
highest average generation cost and also results in the least stable
Inertia condition. Without external action, it often does not prevent
Inertia violations.

In comparing the purple and olive curves (Set. 2 & 3), we can
see that even though Economic Dispatch with Augmented Usage
produces a lower average cost than without it, the cost is still much
higher than if we planned ahead and saved some Convs using
Balanced Dispatch.
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Figure 12: Average generation cost: Current Economic Dis-
patch (with / without Augmented Usage) versus Balanced
Dispatch (with / without Augmented Usage).

The olive and gold curves (Set. 3 & 4) almost overlap, indicating
the extra cost to ensure Inertia for Balanced Dispatch at f = 85%
is negligible. With only a few violation days to fix under Balanced
Dispatch, this is in alignment with the results in Table 2 and Fig. 11.
The detailed plant progression for Set. 4 is displayed in Fig. 13.
The Augmented Usage (violet bars between the orange and blue
bars) is barely visible. By comparing to the cost of Balanced Dis-
patch without Augmented Usage in Fig. 12, we can see that there
is almost no additional cost for applying the ADi Algorithm to
Balanced Dispatch at f = 85%. It proves the ADi (Alg. 1) used with
current Economic Dispatch benefits the system with both cheaper
long-term costs and fixed grid Inertia. Also, Balanced Dispatch
(Alg. 2) alone near-optimally ensures both cheap long-term cost
and consistent grid Inertial resilience, but together Alg. 1 and Alg. 2
(Augmented Balanced Dispatch) produce the best results.
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Figure 13: Detailed plant usage at § = 85% with Augmented
Balanced Dispatch.

In summary, the ADi method leads to a visible improvement over
the current Economic Dispatch. Balanced Dispatch though goes
even further, achieving the lowest average long-term generation
cost of all the methods while at the same time largely improving grid
resilience. Furthermore, the ADi method coupled with Balanced
Dispatch, yields yet another improvement as the system is able to
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both minimize its generation cost and guarantee itself stable system
Inertia.

In future work, it would be interesting to investigate the effects of
large solar penetration, as well as conduct simulations with datasets
from other regions.

8 CONCLUSION

This paper has investigated the consequences of current Economic
Dispatch on the long-term generation cost and on grid Inertia
stability. Current Economic Dispatch largely operates under the
assumption that a free market will discover the best generation
mix at the best price. We have shown this base assumption to be
incorrect with the current Economic Dispatch method actually
unnecessarily leading to both notably escalated generation cost and
severely inadequate grid Inertia stability.

On the other hand, our proposed Balanced Dispatch and ADi
solutions have demonstrated that a more systematic approach via a
healthy generation mix is very effective in achieving both a notable
reduction in long-term generation cost and a systematic improve-
ment in grid resilience.
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A INERTIA CONSTANTS

ERCOT provides inertia constants for different generation types. Ta-
ble 3 indicates that Combined-Cycle Gas, Combustion Gas Turbines
and Nuclear have larger inertia constants than Coal, Gas Steam and
Hydro; while non-synchronous, inverter-based resources like Wind
and Solar do not contribute at all to ‘synchronous’ Inertia [18].
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Inertia constant range

Nuclear 3.8-4.34
Coal 2.9-45
Combustion Turbine 1-12.5
Gas Steam 1-54
Combined Cycle 1.1-9
Hydro 2-3
Wind 0
Solar 0

Table 3: Inertia constant ranges by resource type [18].
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gives us $34-$39. For Nuclear, following a similar method, we start
with $27-$31 and add $5 above marginal cost, coming to $32-$36.

10
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Table 4 shows the baseline energy mix of ERCOT in 2019. We
added the capacities of newly installed plants in 2018 and 2019 from
ERCOT [19] to the already summarized 2017 baseline statistics [7].

As one can see, most gas generators are combined-cycle.

Generator type

[ Installed capacities (MW)

Nuclear 4,960
Coal 14,225
Gas Comb. Turbine 5,901
Gas Steam 6,200
Gas Combined-Cycle 32,572
Gas Engine 700
Hydropower 557
Biomass 186
Wind (inland) 19,228
Wind (coastal) 2,821
Solar 1,861
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Soue: Larard estiates. (SUbSiGZed)’

Solar PV—Thi Fim Usity  Solr PV—Thin Film Usiy Coal Nugear
Scale (Subsided)”

Figure 14: Levelized cost comparison: Renewables v.s. Convs

[9].

D CAPACITY FACTORS AND DEMAND

We create two empirical distributions for ‘inland’ Wind and Coastal
Wind capacity factors to reflect the variable capacity of wind gen-
eration. Both distributions are generalized from the Wind factor
distribution of a wind farm located in North Texas (purple curve in
Fig.15). For the inland Wind factor, we use a mean of 0.38 and for
coastal a mean of 0.42.

0.09

—— wind

0.08 -

0.07 -

—8— coastal wind
—o— wind factor from a wind farm

Table 4: The installed capacity of each generator type in ER-
COT for the 2019 baseline scenario [7, 19].

C LEVELIZED COSTS FOR DIFFERENT
PLANT TYPES

Lazard conducted an LCOE (levelized cost of energy) analysis in
2019. Fig.14 shows a table from this report comparing the LCOE
of newly-built Renewable generation (onshore Wind and utility
Solar) to the marginal cost of existing Conventional generation
(Coal and Nuclear) [9]. LCOE Tax Subsidies, LCOE Low End and
LCOE High End in this Lazard report were also utilized as a basis
to derive the prices in Table 1. Note that: i) from writer’s inside
industry knowledge, ERCOT plants are usually on average priced a
bit cheaper than the rest of the country and ii) for the most part,
plant prices in Table 1 are set around $5 above their marginal costs,
due to plants need to make some profit to justify staying in business.

Example: We derive the Coal cost range in Table 1 by taking
the Lazard number of $26-$41 from Fig. 14 and tighten the band to
get rid of outliers, resulting in $29-$37. Then we drop the top 1/4
due to ERCOT being overall a bit cheaper than other US regions,
which comes to $29-$35. Lastly, we add $5 assuming that generators
would want to make some profit above their marginal cost. This

probability
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N w B w o

o
o
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Wind group capacity factor

Figure 15: Distributions of Wind and Coastal Wind.

For Solar generation, the capacity factor follows a truncated
normal distribution centered at 0.5 with a standard deviation of
0.2. Additionally, all capacity factors are bounded below by 0.1 and
above by 0.75. This being due to the fact that in large geographical
areas (i.e. ERCOT), cumulative Wind or Solar production never
stops, nor does it ever reach 100% on all plants at the same time.

For demand, we use ERCOT’s monthly peak demand as the up-
per bound and since ERCOT does not specify lower demands, we
assume the lower bound of the demand is at 80% of the provided
average monthly demands [20]. We justify this with the fact (based
on ERCOT 24 hour demand data) that within a given day, the min-
imum demand is approximately 60% of the same day’s peak on
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Figure 18: Detailed plant usage Balanced Dispatch for § =
115%.
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Figure 19: Detailed plant usage Balanced Dispatch for f =
150%.

Horn et al.

average throughout the year and second, that average monthly
demand is relatively centered between the peak and lower values.
Further, with no ERCOT demand data after year 2029, we assume
the demand increase to be at the rate of 1% for each year after 2029.
We select the later years growth value from the expectation that the
current 2+% growth rate, mainly from industry (largely oil devel-
opment) and population growth, is unsustainable and second, from
the expectation that energy efficiency within modern construction
practices will also help subdue future demand growth.

E OPTIMAL CHOICE OF

To find the optimal threshold of Balanced Dispatch, we calculate
the average generation cost (over the entire time horizon T) for
different values of . For our simulation setting, the result is shown
in Fig. 16. As one can see, there is a significant reduction in the
average generation cost compared to the standard Economic Dis-
patch when f is chosen appropriately. In general, the optimal value
of f§ can be efficiently found by binary search.

—8— Balanced Dispatch
——=- Economic Dispatch
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Figure 16: Average generation costs at different threshold pa-
rameter f’s for Balanced Dispatch.

F MORE PLOTS ON PLANT USAGE
PROGRESSION

The detailed plant use with Balanced Dispatch for various additional
B’s is shown in Fig. 17-19. As f increases from 0% to 150% (in Fig. 5,
17, 11 (optimal), 18, 19), Peaker use is reduced, mainly due to the
lower use of Renewables, and Convs use increases. The red, yellow,
blue, orange and green bars in the Figures are Peakers, new Convs,
initial Convs, new Renewables and initial Renewables respectively.

While these larger f8 scenarios (> 100%) in Fig. 18-19 save more
Convs and are more resistant to variability factors, they fail to utilize
a healthy balance of cheaper Renewables and therefore result in a
higher average generation cost than the optimal § = 85%.

It is also worth noting in Fig. 17-19 that: i) "less active" Convs (the
light blue & light yellow bars) are much more common in higher
PB’s (> 100%) than in lower ones (< 80%) and ii) Renewables are
extremely and unnecessarily suppressed in higher §’s (> 100%).
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