MAY 2020

Convective Dynamics and the Response of Precipitation Extremes to Warming in

ABBOTT ET AL.

Radiative-Convective Equilibrium

TRISTAN H. ABBOTT AND TIMOTHY W. CRONIN

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusetts

ToM BEUCLER

Department of Earth System Science, University of California, Irvine, Irvine, California, and Department
of Earth and Environmental Engineering, Columbia University, New York, New York

(Manuscript received 19 July 2019, in final form 14 February 2020)

ABSTRACT

Tropical precipitation extremes are expected to strengthen with warming, but quantitative estimates re-
main uncertain because of a poor understanding of changes in convective dynamics. This uncertainty is
addressed here by analyzing idealized convection-permitting simulations of radiative—convective equilibrium
in long-channel geometry. Across a wide range of climates, the thermodynamic contribution to changes in
instantaneous precipitation extremes follows near-surface moisture, and the dynamic contribution is positive
and small but is sensitive to domain size. The shapes of mass flux profiles associated with precipitation ex-
tremes are determined by conditional sampling that favors strong vertical motion at levels where the vertical
saturation specific humidity gradient is large, and mass flux profiles collapse to a common shape across cli-
mates when plotted in a moisture-based vertical coordinate. The collapse, robust to changes in microphysics
and turbulence schemes, implies a thermodynamic contribution that scales with near-surface moisture despite
substantial convergence aloft and allows the dynamic contribution to be defined by the pressure velocity at a
single level. Linking the simplified dynamic mode to vertical velocities from entraining plume models reveals
that the small dynamic mode in channel simulations (<2% K ') is caused by opposing height dependences of
vertical velocity and density, together with the buffering influence of cloud-base buoyancies that vary little
with surface temperature. These results reinforce an emerging picture of the response of extreme tropical
precipitation rates to warming: a thermodynamic mode of about 7% K~ ! dominates, with a minor contri-
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bution from changes in dynamics.

1. Introduction

Tropical precipitation extremes are expected to in-
tensify under global warming (e.g., IPCC 2013; Allen
and Ingram 2002; Pendergrass and Hartmann 2014a).
To first order, the intensification is driven by changes in
the thermodynamic structure of the atmosphere. If
moisture is converged into updrafts primarily near the
surface, then approximate expressions for condensa-
tion rates suggest that—absent significant changes in
convective dynamics—peak precipitation rates should
scale with boundary layer saturation specific humid-
ity and increase with surface temperatures at about
7% K~ ! (e.g., O’Gorman and Schneider 2009b; Muller
et al. 2011). However, the baseline 7% K ' sensitivity
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of peak precipitation rates to warming can be modi-
fied by convective dynamics. If convective storms
converge moisture throughout an inflow layer that
extends several kilometers above the surface—as
has been observed in Amazonian convection (Schiro
etal. 2018)—precipitation rates may scale with lower-
troposphere-average water vapor, which increases
with warming faster than boundary layer water vapor.
Furthermore, changes in updraft speeds affect con-
densation rates and thus precipitation extremes (e.g.,
Emori and Brown 2005; O’Gorman and Schneider
2009b; Muller et al. 2011; Romps 2011; Pendergrass
et al. 2016), introducing a dynamic contribution to
changes in precipitation extremes in addition to the
thermodynamic dependence. Given the potentially
severe social and economic consequences of extreme
rain events, understanding the influence of convective
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dynamics on changes in precipitation extremes in a
warming climate is crucial for our ability to prepare
for the impacts of future hydrologic change.

A common scaling for assessing the impact of dynamic
and thermodynamic changes on precipitation extremes
equates a high-percentile precipitation rate P to the
product of a column-integrated condensation rate C
and a precipitation efficiency £ (O’Gorman and Schneider
2009b; Muller et al. 2011):

P=¢C. (1)

Depending on the time scale considered, C may be
spatiotemporally collocated with extreme precipitation
events (as in Muller et al. 2011; Fildier et al. 2017) or
may be a high percentile of the column-integrated con-
densation rate distribution (as in Singh and O’Gorman
2014). The condensation rate in an adiabatically lifted
parcel can then be used to rewrite column condensa-
tion in terms of pressure-coordinate vertical velocity @
and saturation specific humidity ¢* (O’Gorman and
Schneider 2009b):

Psw (dg*
I
o0&\ dp e;kp @

In Eq. (2), p is pressure, p, is surface pressure, g is the
acceleration from gravity, and the change in satura-
tion specific humidity with pressure (dg*/dp) o (here-
inafter referred to as the “moisture lapse rate”) is
calculated following a moist adiabat (i.e., holding satu-
rated equivalent potential temperature 6, fixed).

The scaling can then be used to relate the response of
precipitation extremes to warming to changes in precip-
itation efficiency, changes in the moisture lapse rate (the
“thermodynamic mode”), and changes in pressure ve-
locity profiles (the “‘dynamic mode”) (Muller et al. 2011):

—| Zs(=) ap | §(= d
SP Se Jog (dp g*p o \&/\dp e*p
_%_J,- e + e
P & C C

Thermodynamic mode

Dynamic mode
A3)

Here, 6 indicates a change between two climates, and
terms that include products of changes have been
dropped. Throughout this paper, we use the terms
thermodynamic mode and dynamic mode to refer to
contributions to changes in precipitation extremes cor-
responding to the two terms labeled in Eq. (3).
Previous modeling studies have found, empirically,
that the thermodynamic mode at temperatures close
to Earth’s present-day tropics is close (within about
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2% K ') to the ~7% K~! Clausius—Clapeyron (CC) scaling
of saturation specific humidity with surface temperature,
regardless of whether the studies use global simulations
with parameterized convection (O’Gorman and Schneider
2009b,a; Chen et al. 2019), global simulations with super-
parameterized convection (Fildier et al. 2017), or limited-
area radiative—convective equilibrium (RCE) simulations
with convection-permitting models (Muller et al. 2011;
Romps 2011; Muller 2013). A CC scaling for the thermo-
dynamic mode can also be derived theoretically by making
three assumptions: that 1) w/g is constant between the
surface and the tropopause, 2) ¢* is near zero at the tro-
popause, and 3) the temperature profile is moist adiabatic
(O’Gorman and Schneider 2009a; Muller et al. 2011). If all
three assumptions hold, the thermodynamic mode reduces
approximately to a CC scaling of §(g¥)/q¥, where g¥ is the
near-surface saturation specific humidity.

In the tropics, where the tropopause is cold and
convection maintains nearly moist adiabatic stratifica-
tion (Xu and Emanuel 1989), assumptions 2 and 3 are
clearly justified, but assumption 1 is not. On both large
scales and convective scales, vertical motion profiles
associated with heavy tropical rainfall are far from
constant with height (Back and Bretherton 2006; Torri
et al. 2017; Moore et al. 2014). Moreover, although the
empirical success of the CC scaling might suggest that
the thermodynamic mode is insensitive to the shape of
the mass flux profiles, simple calculations with syn-
thetic mass flux profiles indicate otherwise. In moist
adiabatic atmospheres, moisture lapse rates increase
with warming most rapidly high in the atmosphere,
particularly in warm climates (Fig. 1a; see appendix A
for a discussion of the upper-tropospheric amplifica-
tion). As a result, column-integrated condensation
produced by top-heavy vertical motion profiles in-
creases with warming more quickly than condensation
produced by bottom-heavy mass flux profiles. For top-
heavy vertical motion profiles, the thermodynamic
mode can be nearly 11% K ' in cold climates, and for
bottom-heavy vertical motion profiles, the thermody-
namic mode can be as low as 3% K~ in warm climates
(Figs. 1b,c). The sensitivity of the thermodynamic
mode to the shape of mass flux profiles prompts the first
question addressed in this paper: What constrains the
shape of pressure velocity profiles associated with
precipitation extremes, and are the constraints consis-
tent with a near-CC thermodynamic mode across a
wide range of climates?

Empirical results from previous work using convection-
permitting models also suggest that the dynamic mode is
likely to be small. On both hourly and daily time scales,
the dynamic mode in idealized convection-permitting
model simulations rarely exceeds ~2% K™ ', and the
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FI1G. 1. (a) Moisture lapse rate profiles for moist adiabatic atmospheres with four surface temperatures. (b) Top-heavy (blue), neutral
(black), and bottom-heavy (red) pressure velocity profile shapes. (c) Thermodynamic modes as a function of surface temperature for top-
heavy, neutral, and bottom-heavy pressure velocity profiles. The dashed black line indicates a CC scaling with surface temperature.

sign varies between studies (Muller et al. 2011; Romps
2011; Muller 2013). Global simulations with the super-
parameterized Community Atmosphere Model
(SP-CAM) also produce a small (=2% K™') dynamic
mode for precipitation extremes aggregated across the
tropics (Fildier et al. 2017). We lack a similar empirical
consensus from global simulations with parameterized
convection, but we believe the wide spread of dynamic
modes in individual models—which largely owes to large
intermodel differences in vertical velocities (O’Gorman
and Schneider 2009a,b; Norris et al. 2019; Pendergrass
and Hartmann 2014a)—should be treated with skepti-
cism. Twentieth century simulations show large differ-
ences in precipitation extremes between different models
(Kharin et al. 2007), and many models contain dispro-
portionate increases in extreme precipitation rates rela-
tive to the rest of the precipitation distribution because of
increases in precipitation linked to artificial gridpoint
storms (Pendergrass and Hartmann 2014a,b).

Although convection-permitting models provide little
reason to expect a large dynamic mode, there is no
simple scaling that predicts a small dynamic mode.
Moreover, zero-buoyancy plume models constrained by
the observation that the tropical stratification is set by
strongly entraining updrafts (Kuang and Bretherton
2006; Romps and Kuang 2010; Singh and O’Gorman
2013) predict strong increases in convective available
potential energy (CAPE) and peak vertical velocities
with warming (Singh and O’Gorman 2015; Seeley and
Romps 2015; Romps 2016). Muller et al. (2011) point out
that the dynamic mode for changes in precipitation ex-
tremes can be negative despite increases in peak vertical
velocities if vertical motion weakens near the surface,
and Fildier et al. (2017) argue that near-CC increases in

CAPE with warming (Seeley and Romps 2015; Romps
2016) provide a '>-CC upper bound on the dynamic
mode. Nevertheless, the relationship between increases
in CAPE, peak vertical velocities, and precipitation
extremes remains unclear, prompting the second ques-
tion addressed in this paper: Can a better understanding
of controls on the shapes of vertical motion profiles as-
sociated with precipitation extremes provide insight into
the relationship between changes in peak updraft ve-
locities and the dynamic mode?

In this paper, we address these questions by analyz-
ing instantaneous precipitation extremes in idealized
RCE simulations with a convection-permitting model
in a 12000-km nonrotating channel over sea surface
temperatures (SSTs) between 280 and 305 K. Section 2
documents the simulations, shows that they produce
precipitation rate probability density functions (PDFs)
similar to PDFs calculated from optical rain gauges in
the tropical western Pacific, and defines the extreme
events analyzed in this paper. Thereafter, the paper is
organized into three main sections. In section 3, we
decompose changes in precipitation extremes with SST
into contributions from changes in precipitation effi-
ciency, thermodynamic modes, and dynamic modes.
Consistent with previous work, we find a near-CC
thermodynamic mode and a small but positive dy-
namic mode. We also find that contributions from
changes in precipitation efficiency are comparable in
magnitude to the dynamic mode, although this is not
the focus of the paper. A novel result is that pressure
velocity profile shapes associated with high-percentile
column-integrated condensation collapse across cli-
mates when plotted in a moisture-based vertical coor-
dinate. We show that this collapse implies a near-CC
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thermodynamic mode, and use the collapse to derive a
simplified expression for the dynamic mode. In section 4,
we combine the simplified expression for the dynamic
mode with an entraining plume model to explain why
the dynamic mode is small. In section 5, we use a sim-
plified version of the entraining plume model to derive a
theoretical model for the dynamical mode that is valid so
long as the pressure velocity profile shape collapse
holds. This model predicts a dynamic mode that is about
1% K ! at temperatures close to the modern day tropics
and decreases, albeit weakly, with increasing SST. We
conclude in section 6 by discussing remaining questions
and directions for future work.

2. Long-channel simulations of
radiative—convective equilibrium

a. Simulation setup

The long-channel RCE simulations analyzed in this
paper use the System for Atmospheric Modeling
(SAM), version 6.8.2 (Khairoutdinov and Randall
2003), in an elongated 12288 km X 192km channel
with 3 km horizontal resolution. The lower boundary
is a sea surface with uniform fixed temperature, varied
between simulations from 280 to 305K in increments
of 5K. Each simulation is 75 days long, and large-scale
overturning circulations that emerge during convec-
tive self-aggregation are fully developed after day 50.
Both the humidity contrast between moist and dry
regions and the length scale of overturning circula-
tions vary between simulations (Wing and Cronin
2016; Beucler and Cronin 2019), but neither vary
strongly or monotonically with SST, making it difficult
to clearly link changes in the degree of aggregation
with changes in precipitation extremes. The simula-
tions are documented in more detail in Wing and
Cronin (2016), with an emphasis on the processes that
drive convection self-aggregation, and Cronin and
Wing (2017) describe clouds, large-scale circulations,
and climate sensitivity in a similar set of channel
simulations. Wing and Cronin (2016) include an ad-
ditional 310-K SST simulation in their analysis, but we
choose to exclude that simulation from this paper
because, without increasing the height of the model
top, convection impinges on the bottom of a sponge
layer at the top of the model domain.

The analysis in this paper focuses on instantaneous
rather than hourly or daily precipitation extremes. The
reasons for this decision are twofold. First, previous
studies on changes in CAPE and updraft velocities with
warming have focused on instantaneous updraft veloc-
ities, and analyzing the dynamic mode for instantaneous
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precipitation extremes provides a closer link with that
work. Second, archived output from many convection-
permitting model simulations (including our channel
simulations) only includes instantaneous snapshots of
the three-dimensional fields required to diagnose ther-
modynamic and dynamic modes, and focusing on in-
stantaneous precipitation allows us to repurpose data
from past modeling studies. The instantaneous three-
dimensional snapshots on which we base our analyses
are output from the channel simulations once every six
hours. We analyze precipitation extremes over the last
25 days of each simulation, a time period during which
convection is aggregated into moist and dry bands and
all simulations are in a statistically steady state.

We have chosen to focus our analysis on channel sim-
ulations rather than general circulation model (GCM)
simulations with parameterized convection or small-
domain simulations of unaggregated RCE for two rea-
sons. First, our channel simulations explicitly simulate
motions from the convective scale [O(1) km] to the
planetary scale [O(10000) km] and can produce convec-
tive precipitation extremes without relying on parameter-
izations of convection—unlike GCM simulations. Second,
our channel simulations produce convective systems or-
ganized at scales similar to the real tropics and to global
cloud-resolving models (Cronin and Wing 2017; Beucler
et al. 2019)—unlike small-domain RCE. While convective
organization makes the channel simulations more complex
than small-domain RCE, the lack of convective orga-
nization means that small-domain RCE simulations are
unable to represent the organized convective systems
that produce a large fraction of real-world tropical
rainfall (e.g., Nesbitt et al. 2006).

In appendix B, we briefly document some important
similarities and differences between convective dynamics
in channel versus small-domain RCE. One conspicuous
difference is that the dynamic mode is often smaller in
small-domain RCE than in channel simulations (section ¢
of appendix B). Given this discrepancy, we should em-
phasize that the results in this paper are specific to a
particular class of RCE simulations (i.e., RCE in an
elongated channel), albeit one that we feel is of particular
relevance for the study of precipitation extremes.

b. Defining instantaneous precipitation extremes

As in previous work, we define precipitation extremes
based on quantiles of the precipitation rate distribution.
In long-channel RCE simulations, instantaneous pre-
cipitation rate PDFs have a delta function at zero rain
rate, decay like a power law at low rain rates, and roll off
into an exponential tail at high rain rates. This structure
is consistent with observed PDFs (Martinez-Villalobos
and Neelin 2019): the instantaneous rain rate PDF from
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in SAM simulations.

our 305-K SST simulation is very similar to a 1-min-
average rain rate PDF calculated from optical rain
gauge measurements at Nauru Island (in the tropical
western Pacific, with surrounding SSTs typically be-
tween 300 and 305 K) (Fig. 2a). The 99.9th-percentile
instantaneous precipitation rates' lie on the edge of
the power-law range, which means that the likelihood
of observing a particular precipitation rate falls rela-
tively slowly as the rain rate increases above the 99.9th
percentile. On the other hand, 99.99th-percentile in-
stantaneous precipitation rates fall firmly within the
exponential tail of the rain rate PDF, which means
that the likelihood of observing a particular rain rate
drops very quickly above the 99.99th percentile. A
closer examination of events that produce rain near
the 99.9th and 99.99th percentiles reveals significant
differences in underlying dynamics: while 99.99th-
percentile instantaneous precipitation rates almost
always occur within deep convective systems, 99.9th-
percentile instantaneous precipitation rates often
occur in relatively shallow clouds that terminate
far below the tropopause. In other words, 99.99th-
percentile instantaneous precipitation is associated
with statistically and dynamically extreme events in a
way that 99.9th-percentile precipitation is not. Because
our simulation output contains many events at and
above the 99.99th percentile (over 2500 total, and on

! Our definition of percentiles includes “events” with rain rates
of zero, so that the rain rate r(p) at a percentile p is defined by
[P P(') dr' = p, where P(r) is the rain rate PDF and includes the
delta function at r = 0.

average 26 per snapshot), allowing analysis with rela-
tively little sample error, we focus the remainder of this
paper on 99.99th-percentile precipitation rates.

The choice to focus on a specific quantile warrants
some discussion of the potential quantile dependence of
changes in precipitation extremes. Previous studies dis-
agree on whether changes in precipitation extremes
converge with increasing quantile, although conver-
gence generally seems more common in simulations
with resolved convection [e.g., Muller et al. (2011),
Muller (2013), and the SP-CAM simulations in Fildier
et al. (2017)] and less common in simulations with pa-
rameterized convection [see, e.g., Pendergrass and
Hartmann (2014a) and the CAM simulations in Fildier
et al. (2017)]. Our simulations, which model convection
explicitly, are consistent with this trend in that they
show convergence at high quantiles: precipitation ex-
tremes increase more quickly with warming at the
99.99th percentile than at the 99th or 99.9th percentiles,
but the rate of change is similar between the 99.99th
and 99.999th percentiles (Fig. 2b). Decomposing these
changes into dynamic and thermodynamic modes (not
shown) reveals that the dynamic mode also converges
with warming to typical values of around +2% K at
the 99.99th percentile and above, although we do not
analyze the processes that control the dynamic mode in
detail for percentiles other than the 99.99th.

3. Scaling of simulated precipitation extremes

Because the time lag between condensation and pre-
cipitation fallout prevents us from applying the con-
densation integral scaling directly to columns with
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FIG. 3. (a) The 99.99th-percentile precipitation and column condensation in each SAM simulation. Gray contours
slope upward following a CC scaling with SST. (b) Changes in 99.99th-percentile instantaneous hydrologic ex-
tremes in SAM simulations. Black lines indicate changes in precipitation, blue lines indicate changes in column-
integrated condensation, and red and green lines respectively indicate thermodynamic and dynamic contributions
to changes in column-integrated condensation. The gray line shows the contribution to changes in precipitation
extremes from changes in precipitation efficiency. Black dashed lines show a CC scaling with surface temperature
and zero rate of change. Error bars show sampling uncertainty estimates calculated by repeating the analysis
1000 times after resampling (with replacement) all snapshots saved during the final 25 days of the simulations.

99.99th-percentile surface precipitation, we instead ap-
ply the scaling to columns where the column conden-
sation rate is near the 99.99th percentile. Although
99.99th-percentile column condensation rates are higher
than 99.99th-percentile precipitation rates by about a
factor of 2 (indicating a typical precipitation efficiency
for extreme events of ¢ ~ 0.5), both increase with
warming at close to a CC scaling (Fig. 3a). When cal-
culating condensation integrals, we set pressure velocities
to zero in regions where the atmosphere is unsaturated.
(This has little impact on our analysis of 99.99th-percen-
tile condensation extremes, as these typically occur in
columns where the air is saturated over the entire depth
of the troposphere.) We calculate the pressure velocity
profile w used to decompose changes in condensation
integrals into dynamic and thermodynamic modes as an
average over the 1000 columns with condensation rates
closest to the 99.99th-percentile column condensation
rate, and we calculate the moisture lapse rate (dg*/dp)s
based on time- and domain-average temperature profiles
over the last 25 days of simulation. When calculating the
moisture lapse rate, we follow the saturation vapor
pressure formulation from the SAM single-moment mi-
crophysics scheme (Khairoutdinov and Randall 2003)
(which the channel simulations use) and scale saturation
vapor pressure linearly from the vapor pressure over
liquid at 273.16 K to the vapor pressure over ice at
253.16 K. This makes the temperature derivative of
saturation vapor pressure discontinuous at 273.16 and
253.16 K, which introduces small discontinuities in the
moisture lapse rate that appear as minor kinks when the
profiles are plotted. Choosing to calculate moisture

lapse rates based on local rather than mean temperature
profiles has a negligible impact on our results.

The decomposition into dynamic and thermodynamic
modes is easiest to visualize by plotting rates of change
as a function of surface temperature (Fig. 3b). Doing so
reveals that both condensation and precipitation rates
increase with warming at a rate close to (but, for column
condensation, consistently higher than) a CC scaling.
Changes in precipitation efficiency between climates
vary in sign, and a simple estimate of sampling uncer-
tainty” suggests that much of the variation may be a
result of sampling error. Unlike Singh and O’Gorman
(2014), we find no evidence of a strong microphysical
influence on changes in precipitation extremes in rela-
tively cold climates, likely because the SAM single-
moment microphysics scheme we use (Khairoutdinov
and Randall 2003) produces fairly slow increases in hy-
drometeor fall speed with warming (Lutsko and Cronin
2018). The thermodynamic mode follows a CC scaling
nearly exactly over the entire range of simulated cli-
mates; the dynamic mode is positive, generally smaller
than the thermodynamic mode, and largest in cold
climates.

Rather than defining the decomposition using pres-
sure velocity and pressure coordinates, we could instead

2 We estimate the sampling uncertainty for changes with warm-
ing by bootstrapping. Specifically, we repeat our calculations
1000 times after resampling individual snapshots with replacement
and take the minimum and maximum rates of change from the 1000
sets of calculations as the minimum and maximum of our uncer-
tainty intervals.
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have defined a dynamic mode in height coordinates (z)
based on height-coordinate vertical velocity (w) by re-
writing the condensation integral as

C=- — | d 4
Jopw(dz>e;!< ¢ @

and decomposing changes as

8C=—J dw p(ﬁ) dZ—J wé p(@> dz.
0 dz 0% 0 dz 0%

The choice to calculate changes in profiles at fixed
pressure [as is implied by Eq. (3)] versus fixed height [as
is implied by Eq. (5)] has a negligible impact on the
decomposition (pressures at fixed heights change by not
more than 15hPa between adjacent simulations). The
choice to calculate the dynamic mode in terms of
changes in w versus w, on the other hand, obviously af-
fects the partitioning of changes between dynamic and
thermodynamic modes. We chose a decomposition that
separates w and (dq*/dp)eik primarily because it ex-
presses the thermodynamic mode in terms of changes in
the moisture lapse rate alone, which is consistent with
and allows for easy comparison with previous studies
(e.g., O’Gorman and Schneider 2009a,b; Muller et al.
2011; Muller 2013; Fildier et al. 2017).

Our results (Fig. 3) support the robustness of a CC
scaling for the thermodynamic mode, but exactly why
the CC scaling is so robust remains unclear. In the
following section, we examine pressure velocity and
moisture lapse rate profiles to understand how changes
in the vertical structure of extreme events combine to
produce a near-CC thermodynamic mode over a wide
range of climates.

a. Role of vertical structure

Pressure velocity profiles associated with high conden-
sation rates are far from constant with height (Fig. 4a), so
the thermodynamic mode could in theory differ consider-
ably from CC-scaling (as in Fig. 1). Unlike the profiles used
to create Fig. 1, however, the simulated pressure velocity
profiles shift upward as SST increases, with a bottom-
heavy vertical structure in cold climates and a more top-
heavy vertical structure in warm climates (Fig. 4a). The
upward shift with warming is crucial for maintaining a
near-CC thermodynamic mode: thermodynamic modes
calculated across the entire SST range using the pressure
velocity profile from the coldest simulation (280K) are
sub-CC in warm climates; likewise, thermodynamic modes
calculated using the pressure velocity profile from the
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warmest simulation (305K) are super-CC in cold cli-
mates (Fig. 4c).

Because the radiative tropopause moves upward with
warming in RCE (Seeley et al. 2019), deep convection
occupies a deeper layer of the atmosphere in warmer
simulations, and this alone could contribute to an up-
ward shift in the level of peak pressure velocities with
warming. Additionally, though, moisture lapse rates are
bottom-heavy in cold climates and become increasingly
top-heavy with warming (Fig. 4b). Changes in the ver-
tical structure of the moisture lapse rate could also drive
an upward shift in pressure velocity profiles when those
profiles are conditionally sampled from columns with
large column-integrated condensation rates.

We can probe the impact of the shapes of moisture
lapse rate profiles on the shapes of conditionally
sampled pressure velocity profiles by asking the fol-
lowing question: what pressure velocity profile shapes
would we find in columns with 99.99th-percentile
condensation if the moisture lapse rate were constant
with height? This is equivalent to calculating profiles
of w conditionally averaged over columns with near—
99.99th-percentile column-integrated mass flux,

P
M=—J ap, (6)
08

because the true condensation integral C depends only
on o and moisture lapse rate profiles [recall Eq. (2)]. If
similar w profiles emerged when conditionally averaging
on high-percentile condensation C and high-percentile
mass flux M, this would indicate that vertical variations
of the moisture lapse rate do not constrain w profiles in
columns with high-percentile condensation. If differ-
ent o profiles emerged when conditioning on high-
percentile Crelative to M, however, this would indicate
that vertical structure in the moisture lapse rate acts to
constrain w profiles that lead to C extremes. In fact, we
find that pressure velocity profiles conditioned on ex-
treme M shift upward less dramatically with warming
than those conditioned on extreme C (cf. Figs. 5a and
5b). This indicates that the vertical structure of the
moisture lapse rate does play an important role in
driving the upward shift of w profiles with warming, and
therefore must influence the shapes of w profiles in
strongly condensing columns.

How exactly does the vertical structure of the mois-
ture lapse rate influence the shape of pressure velocity
profiles when conditionally averaged on strong column
condensation? The key is that the (explicitly simulated)
convective dynamics in our simulations produce a di-
versity of individual pressure velocity profiles—some
very bottom-heavy, some very top-heavy, and some in

020z AInr G| uo 3senb Aq ypd- 261061 PSE/ L2 L261/.91/G/LL/3Ppd-lonE/Sel/B10-00s}8WE S|RUINOI/:dRY WOy papeojumoq



1644 JOURNAL OF THE ATMOSPHERIC SCIENCES

a b
= 285K
— 290K
200 — 995k 200
& — 300K
£ 400 305K 400
o
5
g 600 600 |
o
800 800 t
1000 = 1000
0 50 0 001 0.02 003
-w (Pas™ dq*/dp (g/kg/hPa)

VOLUME 77
(c)
10 |
‘TK L
2 -
o 5T
o
o
S
g —6— True therm. mode —6— 295K w
g 0 —e—280Kw —6— 300K w
— —O— 285K w 305K w
—O— 290K w
5 . . . . '
280 285 290 295 300 305
SST (K)

FIG. 4. (a) Simulated conditional-average pressure velocity profiles. (b) Moisture lapse rate profiles for each simulation. (c) Thermodynamic
modes calculated while using a fixed pressure velocity profile (purple through yellow colors) compared with the true thermodynamic mode
(red). The dashed black line shows a CC scaling with SST, and the dashed gray lines show 1.4 times and 0.65 times the CC scaling. The

y-axis limits are identical to Fig. 3.

between. Although many different profile shapes can
produce large convective mass fluxes, large conden-
sation rates are only produced when mass fluxes are
large at levels of the atmosphere where the moisture
lapse rate is also large. In cold climates, on the one
hand, the moisture lapse rate is only large close to the
surface, so only pressure velocity profiles with strong
vertical motion near the surface are capable of pro-
ducing large condensation rates. As a result, pressure
velocity profiles conditionally averaged on high-percentile
column condensation are bottom-heavy. In warm cli-
mates, on the other hand, the moisture lapse rate remains
large much farther from the surface, so somewhat more

top-heavy pressure velocity profiles often produce large
column-integrated condensation rates. As a result,
pressure velocity profiles conditionally averaged on ex-
treme column condensation shift upward relative to cold
climates.

An important component of the argument in the
previous paragraph is the fact that the deepest and
strongest vertical motion profiles do not necessarily
produce the strongest condensation rates. This result is
reminiscent of the observation by Hamada et al. (2015)
that TRMM radar reflectivity profiles are typically
much more bottom-heavy for pixels with the heaviest
surface rainfall than for pixels with the highest 40-dBZ

L@ e, O L © N
— 285K
— 290K
200 — 295K 200
= — 300K =
305K
Z 00} Z 00}
g e
=] =}
@ 600t @ 600t
<] o
— —
A 2l
800 t 800 t
1000 * 1000 1 . ! 1v . ]
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

w (norm.) w (norm.) dg*/dp (norm.)

FIG. 5. Simulated conditional-average pressure velocity profiles from (a) columns with 99.99th-percentile condensation rates and
(b) columns with 99.99th-percentile column-integrated mass fluxes, both plotted in pressure coordinates. (c) Moisture lapse rates plotted
in g coordinates. (d) Conditional-average pressure velocity profiles from columns with 99.99th-percentile condensation rates plotted in g
coordinates.

w (norm.)
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echo-top heights typically associated with extremely
strong convection.

b. Collapse in a moisture-based vertical coordinate

A succinct way to summarize the link between mois-
ture lapse rate and pressure velocity profile shapes is to
say that strongly condensing pressure velocity profile
shapes are determined in large part by solving an opti-
mization problem: given a moisture lapse rate, what
pressure velocity shapes are best able to produce large
column-integrated condensation rates? In cold climates,
these shapes tend to be bottom-heavy, in warm climates,
less so. Because we have shown in section 3a that the
moisture lapse rate is the dominant parameter in this
optimization problem, we expect the solution—that is,
the pressure velocity profile shape—to depend largely
on the moisture lapse rate itself. This motivates looking
at the shapes of pressure velocity profiles in a vertical
coordinate based on the moisture lapse rate.

A vertical coordinate defined as a normalized integral
of the moisture lapse rate,

?(dg* /
J 0 ( dp )a;k ap
(),
o \ dp 0%
is a convenient choice for four reasons. First, it has a rel-
atively simple interpretation: if temperature profiles are
moist adiabatic, then (dg*/dp),s (the rate at which satu-
ration specific humidity changes under adiabatic expan-
sion) is equal to the vertical gradient of saturation specific
humidity dg*/dp and ¢ simplifies to g*/q¥, that is, satura-
tion specific humidity normalized by surface saturation
specific humidity. Second, g has a climate-invariant range:
it is always equal to 1 at the surface and decreases to a
minimum value of 0 within the troposphere. Third, the use
of g simplifies the condensation integral, which can be
expressed as a g-coordinate integral of pressure velocity
alone rather than a pressure-coordinate integral of the
product of pressure velocity and the moisture lapse rate.
Fourth, the moisture lapse rate is close to its maximum
value over a similar range of ¢ coordinates across a wide
range of climates (Fig. 5c). Because w profiles in strongly
condensing columns tend to be large at levels where the
moisture lapse rate is also large, this suggests that the
shapes of w profiles may vary less across climates in g co-
ordinates than in pressure coordinates. Indeed, if we plot
the shapes of pressure velocity profiles as functions of g,
they nearly collapse on top of each other (Fig. 5d).

We should emphasize that although we expect g to
be a convenient vertical coordinate, our finding that

q(p) = ™)
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w profile are nearly climate invariant in g coordinates
is largely an empirical rather than a theoretical result.
Nonetheless, the collapse appears to be reasonably ro-
bust across a range of model configurations; it also oc-
curs in small-domain RCE simulations with a range of
microphysics and subgrid-scale turbulence schemes (see
appendix B, section b). Additionally, the collapse dra-
matically simplifies both the dynamic and thermody-
namics modes, and we leverage these simplifications
throughout the rest of this paper.

In particular, it is possible to show that an exact col-
lapse of w in g coordinates implies an exactly CC ther-
modynamic mode if the temperature profile is moist
adiabatic. For moist adiabatic temperature profiles,
(dg*/dp) o is equal to the vertical gradient of saturation
specific humidity dg*/dp. The assumption of moist adi-
abatic temperature profiles allows us to rewrite the
condensation integral in terms of g*:

Psw (dg*
e~ J3(),
08 \dp /g P

_ _Jpsw aq*

&,
—d=—J—d* 8
g q ®)

08

and to simplify g to g = g*/q¥. If the collapse is exact,
then w = ®Q(§), where & is the maximum pressure ve-
locity attained along the profile and (§) is a universal
function across climates. The condensation scaling can
then be simplified to

C=—-aqg 'y, )

where

1
y= Ln@ di (10)

is a unitless parameter that depends on the shape of
pressure velocity profiles. Because an exact collapse
implies that vy is constant across climates, changes in the
condensation scaling can be written as

8C 6w  OqF
< 2 + q*;' (11)

w

This gives a thermodynamic mode that scales exactly
with changes in surface saturation specific humidity
and a dynamic mode that depends on changes in the
pressure velocity at a single level rather than on
moisture-lapse-rate-weighted changes in entire pres-
sure velocity profiles. Fildier et al. (2017) also decom-
pose the dynamic mode into a contribution from a
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characteristic pressure velocity and a residual contri-
bution from changes in vertical structure. However,
they use a characteristic pressure velocity based on
column-integrated pressure velocity profiles; unlike
our decomposition, this results in a residual term that is
comparable in magnitude to the overall dynamic mode.

We end this section by providing some physical in-
terpretation of our results. Past derivations of a CC
scaling (e.g., O’Gorman and Schneider 2009b; Muller
et al. 2011) have frequently relied on the assumption
that strong updrafts converge moisture near the surface
and diverge moisture only at levels where the saturation
specific humidity is near zero. The pressure velocity
profiles implied by this assumption would have (g) =0
below the LCL (g = surface relative humidity) and
Q(§) = 1 above it, and therefore have y equal to surface
relative humidity. For peaked mass flux profiles, on the
other hand, vy is strictly smaller than surface relative
humidity (y =~ 0.5 in our simulations) and can be thought
of as a convergence-related efficiency factor: it is re-
duced either by converging moisture as levels where
q* < g or by diverging moisture at levels where g*/q; is
nonnegligible. Thus, we obtain a near-CC scaling not
because strong updrafts consistently condense most
near-surface water vapor, but rather because profiles of
convergence and divergence reduce condensation by the
same factor over a wide range of climates. This recon-
ciles the success of the CC scaling with previous work
that has found that convective precipitation is frequently
associated with significant moisture convergence aloft
(Moore et al. 2014).

In the next section, we use a simple entraining plume
model to understand changes in @ between climates;
given the collapse in w profiles this amounts to a model
for the dynamic mode.

4. Controls on peak pressure velocity

The collapse of pressure velocity profile shapes in a
moisture-based vertical coordinate allows us to write the
dynamical mode in terms of changes in the pressure
velocity at the peak of the pressure velocity profile. In
turn, changes in the peak pressure velocity can be
decomposed into changes in density p and height-
coordinate vertical velocity w:

b _dp  ow

O p 0w
In the channel simulations, changes in height coordinate
vertical velocities contribute between 0% and +5% K !
to the dynamic mode, while changes in density contrib-
ute between 0% and —3% K™ ! (Fig. 6). The dynamic
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composed into change in height coordinate vertical velocities

(dashed green line) and densities (dash—dotted green line). Black

dashed lines show a CC scaling with surface temperature and zero
rate of change.

mode remains small (between about 0% and +2% K™ ')
because increases in vertical velocities are consistently
offset by decreases in density.

The reductions in density at the level of peak pressure
velocity can largely be understood in terms of changes in
density at fixed g in a moist adiabatic atmosphere. As the
surface warms, levels with fixed ¢ shift to lower pres-
sures and density at fixed g drops as a result (Fig. 7a).
At levels where g =~ 0.3-0.4 (where conditional-average
pressure velocity profiles peak), density decreases with
surface temperature at rates between 1% and 3% K™!
(Fig. 7b), roughly consistent with the changes in density
shown in Fig. 6.

The increases in height-coordinate vertical velocities
can be explained in terms of changes in buoyancy inte-
grals produced by an entraining plume model (based on
Singh and O’Gorman 2015). To do so, we assume that
the vertical velocity w of an ascending parcel at a
physical height z scales with the integral of the buoyancy
b experienced by the parcel during ascent from cloud-
base height z, such that (e.g., Holton and Hakim 2013)

12
r4
w(z) = [ZnJ b(z') dz/} . (12)
Zp
71 is an empirically chosen proportionality factor that we
set to 0.14 for a good fit to simulated vertical velocities.
The relatively coarse horizontal resolution of our sim-
ulations may be part of the reason that a good fit is
provided by n much smaller than 1: in updrafts that are
wide relative to their height, nonhydrostatic pressure
gradients cancel a substantial part of parcel buoyancy
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FIG. 7. (a) Density and (b) rate of change in density with surface temperature for a moist adiabatic atmosphere with
80% surface relative humidity. In (a), black dots show the levels at which conditional-average pressure velocity profiles
peak. Major and minor contours are spaced by 0.1 and 0.02kgm ™ in (a) and by 0.5% and 0.1% K" in (b).

(Jeevanjee and Romps 2016). Form drag, which is an
important component of the momentum budget of
thermals (Romps and Oktem 2015; Jeevanjee and
Romps 2015; Morrison and Peters 2018) may also help
to keep m small.

We calculate buoyancy profiles by integrating equa-
tions for liquid/ice water static energy /; and moisture g
within an entraining plume:

dh
L=—g(h, —h;) and (13)

o

T elg-q). (14
Liquid/ice water static energy is a moist-static-energy-
like variable used as a prognostic thermodynamic
variable by SAM and is defined as h; = ¢, T + gz —
L,q; — Lsg; (Khairoutdinov and Randall 2003), where
cp is the heat capacity at constant pressure of dry air, T’
is temperature, L, is the latent heat of vaporization, Ly
is the latent heat of fusion, g, is the mass concentration
of liquid water, and g, is the mass concentration of ice
water; g is the total water mass concentration (in-
cluding vapor, liquid, and ice phases)—our plume
model assumes no condensate fallout. We define the
environmental energy profile 4, based on the time-
and domain-mean temperature profile 7, from the
simulations so that ;. = ¢, T, + gz, and we define the
environmental water profile based on the time and
domain-mean saturation specific humidity profile g
and a constant environmental relative humidity of
90%. When combined with information about satu-
ration specific humidity as a function of pressure and
temperature, #; and g can be inverted for plume
temperature 7, specific humidity ¢,, and condensate

mass concentration g; + g;. We then calculate buoy-
ancy following its definition in SAM as

b=g[(T—T,)I/T,+0.608(q,—q,) —(q,+4q,)]

We initialize the plume at a cloud-base height of z, =
1 km by finding an initial plume /; and q that gives an in-
plume relative humidity of 100% with no condensed
water and produces a buoyancy equal to the 99.99th-
percentile buoyancy at the model level closest to 1km.
We integrate the plume equations upward using an en-
trainment rate of ¢ = 0.15km ™!, chosen for a good
overall fit to simulated buoyancy profiles and buoyancy
integrals.

Buoyancy integrals calculated from entraining plume
model buoyancy profiles have similar magnitude to
integrals based on level-by-level 99.99th-percentile
buoyancies® (Fig. 8a). When integrated from cloud
base to the height where conditional-average pressure
velocity profiles peak, both versions of the buoyancy
integral increase with warming, from about 70 J kg !
in the coldest simulation to about 275Jkg ! in the
warmest. Accordingly, vertical velocities predicted
based on the plume model buoyancy integrals in-
crease with warming, and if we choose n = 0.14, they
agree well with the height-coordinate vertical veloci-
ties in conditional-average pressure velocity profiles
at the levels where the pressure velocity profiles peak
(Fig. 8b). The plume model vertical velocities also

3 The 99.99th-percentile level-by-level buoyancies are calculated
from all samples taken at each level. However, we set buoyancies to
zero unless they are collocated with ascending cloudy air in an
attempt to separate large buoyancies in convective updrafts from
large buoyancies in gravity waves.
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FIG. 8. (a) Buoyancy integrals from 1 km to the level at which conditional-average pressure velocity profiles peak.
The black curve shows integrals over buoyancy profiles calculated with the entraining plume model (details are in the
text), and the red curve shows integrals over a profile constructed from level-by-level 99.99th-percentile buoyancies
from simulations (details in text). (b) Height-coordinate vertical velocities at the level at which conditional-average
pressure velocity profiles peak. The black curve shows the estimate from the entraining plume model (assuming w?/2
scales with the plume model buoyancy integral with a constant of proportionality chosen empirically to be 0.14), the
green curve shows the height coordinate vertical velocity from the peak of the conditional-average pressure velocity
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profiles, and the blue curve shows the 99.99th-percentile vertical velocity at that level.

provide good predictions for the 99.99th-percentile ver-
tical velocity taken over all samples from the level where
conditional-average pressure velocity profiles peak.

Examining buoyancy profiles in more detail can
provide some qualitative understanding of the gen-
eral smallness of the dynamic contribution to changes
in precipitation extremes. As noted by Singh and
O’Gorman (2015), buoyancy in weakly entraining
plumes increases with warming primarily in the upper
troposphere. In our simulations and in our plume
model calculations, warming produces only minor
changes in buoyancy at fixed heights below about
Skm (Figs. 9a,b)—a feature of RCE that is discussed
in detail by Seeley and Romps (2015). Note that peaks
in simulated buoyancy above the above the tropo-
pause in Fig. 9a are not associated with convective
plumes that originate in the troposphere, and so
are not reproduced by the plume model in Fig. 9b.
Because bottom-heavy moisture lapse rate profiles
only allow bottom-heavy pressure velocity profiles to
produce large column-integrated condensation rates,
conditional-average pressure velocity profiles peak at
or below 5km from the surface in all simulations
(recall, e.g., Fig. 4). As a result, increases in buoyancy
integrals and height-coordinate vertical velocities come
primarily from an upward shift in the heights at which
pressure velocity profiles peak. However, this upward shift
also results in decreases in density at the level of peak
pressure velocity. As a result, the contributions to peak
conditional-average pressure velocities from changes in
height-coordinate vertical velocities and densities offset to
produce a consistently small dynamic mode.

The buoyancy profiles produced by the plume model
also emphasize the importance of the cloud-base buoy-
ancy. The diagnosed buoyancy is on the order of 0.05ms >
across all SSTs (Fig. 9¢), and alternative plume model
integrations with zero cloud-base buoyancy significantly
underestimate lower-tropospheric buoyancy compared to
simulations (Fig. 9d).

5. Theoretical model for changes in precipitation
extremes

In section 3, we showed that simulated pressure ve-
locity profiles in columns with high-percentile column
condensation rates collapse to a climate-invariant shape
when plotted in g coordinates. In section 4, we provided
a simple explanation for the magnitude of the dy-
namic mode by combining calculations of density
along moist adiabatic temperature profiles with ver-
tical velocities calculated with an entraining plume
model. In this section, we build on those two results
by constructing a simple, self-contained model for
the dynamic mode. This model assumes that the
g-coordinate collapse holds in all climates (more
specifically, that conditional-average pressure velocity
profiles peak at g =0.35) and calculates peak pressure
velocities using a simplified entraining plume model
based on Singh and O’Gorman (2013, 2015). The rea-
sons for constructing this model are twofold. First, it
provides a prediction for the dynamic mode (and thus
for changes in condensation extremes themselves)
for a wider range of climates than the simulations
alone. Second, and potentially more importantly, it
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FIG. 9. Buoyancy profiles from (a) simulations and (b) plume model calculations used to calculate the
buoyancy integrals shown in Fig. 8; (c) diagnosed cloud-base buoyancy used in the plume model calculations;
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temperature.

provides a way to probe the processes that control the
dynamic mode within the simulated range of climates
without the sampling errors introduced by analyzing a
finite-duration simulation, without the full complexity
of chaotic convective dynamics, and without noisiness
introduced by nonmonotonic changes in large-scale
organization with warming (Wing and Cronin 2016).

AT = b sz
" 2q*(2) |° c
14+ el »
c,R,T; ()

This equation is modified slightly from Eq. (10) of Singh
and O’Gorman (2015) to include a cloud-base moist
static energy (MSE) anomaly Ah,. Here, ¢, is the en-
trainment rate of the weakly entraining plume, Ae is the
difference in entrainment rate between the weakly en-
training plume and the more common strongly entraining
plumes that set environmental temperature profiles, g (z)

1 Ah,  Ae(1—RH)L,

a. Derivation

The starting point for the model is Eq. (10) from
Singh and O’Gorman (2015), which relates the tem-
perature anomaly AT, in a weakly entraining plume
to the plume entrainment rate and environmental
parameters:

Z
j e Ngx(z) dz’} . (15)

c z,

p

is the environmental saturation specific humidity, RH is
the environmental relative humidity, R, is the specific gas
constant for water vapor, T,(z) is the environmental tem-
perature profile, and z,, is the cloud-base height.

To calculate environmental profiles T,(z) and g#(z),
we use a zero-buoyancy plume model following Singh
and O’Gorman (2013). This model integrates
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% =—¢ L (1-RH)q?,

where £ is the plume MSE and ¢, = ¢,, + 8¢ is the zero-
buoyancy plume entrainment rate, from cloud base upward.
At each vertical level, the plume temperature can be ob-
tained from /4 and the assumption that the plume is satu-
rated, and the zero-buoyancy assumption then allows us to
calculate g¥ at that level by assuming that the plume and
environmental temperatures are equal. We initialize the
zero-buoyancy plume model at a cloud-base height diag-
nosed assuming a surface relative humidity of 0.8, and we
use g, = 0.5km™ L

Once T, is known, calculating buoyancy integrals akin to
those used in section 4 requires numerically evaluating two
integrals: one to calculate AT,, as a function of height,
and a second to calculate buoyancy integrals from AT,,(z).
For this model, we neglect the impact of water vapor vir-
tual effects and condensate loading and use gAT,,/T, as an
estimate of plume buoyancy. As in section 4, we use 1km
as a proxy for cloud-base height, and motivated by the
relatively small variations in cloud-base buoyancy anom-
alies with SST found in Fig. 9c, we diagnose cloud-base
MSE anomalies that result in climate-invariant buoyancies
at cloud base. We assume RH = 0.9 (again, as in section 4),
and we repeat the calculation for several cloud-base
buoyancies between 0 and 0.1 ms ™2 and several entrain-
ment rates g, between 0 and 03km ™. We set g, to
0.15km ! (as in section 4) for calculations where we vary
cloud-base buoyancy, and we set the cloud-base buoyancy
to 0.05ms 2 (close to typical values from Fig. 9c) for sets
of calculations where we vary .

After calculating buoyancy integrals from cloud base
up to the height where g = 0.35, we then assume that the
height-coordinate vertical velocity at that level scales
with the buoyancy integral as in section 4:

SG=OI)AT (4 172
Ing j W2 )dz’} : (16)

W = —_—
2, T,(2)

with n = 0.14. Last, we combine the vertical velocity
with the density at ¢ = 0.35 to calculate a pressure ve-
locity w = —pgw. By repeating this calculation for many
different surface temperatures, we can obtain values for
the dynamic mode (i.e., d Inw/dSST, assuming the shape
collapse holds) over a wide range of climates.

b. Results

Both height-coordinate and pressure-coordinate verti-
cal velocities increase with warming in the simple model,
but offsetting changes in density mean that pressure ve-
locity increases less quickly (Figs. 10a,b). At low tem-
peratures, the impact of density changes is relatively
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minor, and pressure-coordinate vertical velocities in-
crease only slightly less quickly than height-coordinate
vertical velocities. As temperatures increase, however,
density decreases more and more rapidly at fixed g (as in
Fig. 7b), and pressure velocities start to plateau at surface
temperatures around 310-320 K. As a result, the dynamic
mode decreases as surface temperature increases (Fig. 10c).
The cloud-base buoyancy has a major impact on the ver-
tical velocities and pressure velocities predicted by the
simple model: larger cloud-base buoyancies produce
stronger vertical motion, and a cloud-base buoyancy of
0.05ms ™ (similar to the values diagnosed from simula-
tions in Fig. 9¢) provides a good fit to simulated vertical
velocities. Cloud-base buoyancy also affects the dynamic
mode, with larger cloud-base buoyancies producing a
smaller dynamic mode, particularly in cold climates. This
occurs largely because vertical velocities are very small in
cold climates when cloud-base buoyancy is weak, and
even small absolute increases in vertical velocity with
warming translate into large relative increases and con-
tribute to a large dynamic mode. As for vertical velocities
and pressure velocities, the simulated dynamic mode is fit
well by a cloud-base buoyancy anomaly of 0.05ms 2.

In contrast with the sensitivity to the cloud-base
buoyancy, the dynamic mode in the simple model is
relatively insensitive to the entrainment rate of the
weakly entraining plume (Fig. 10d). Larger entrainment
rates produce slightly more negative dynamic modes,
consistent with the lower rate of increase of vertical
velocities with warming when entrainment is stronger
(Singh and O’Gorman 2015). However, entrainment
rates between 0 and 0.3km ™' all provide reasonably
good fits to the simulated dynamic mode. This sug-
gests that the boundary layer processes that influence
cloud-base buoyancy may play a more important role in
setting the dynamic mode than the processes that con-
trol mixing between convective updrafts and their
environment.

Because the shape collapse assumed by this simple
model implies a near-CC thermodynamic mode, the tem-
perature dependence of the dynamic mode implies a
super-CC increase in condensation extremes with warming
in cold climates and an approach to a near-CC or slightly
sub-CC increase in very warm climates. Assumptions
about cloud-base buoyancy and, to a lesser extent, en-
trainment have a quantitative impact on the rate at which
the dynamic mode decreases as temperature increases, but
the qualitative result that the dynamic mode decreases in
very warm climates is robust to changes in both parame-
ters. Whether the structural assumptions in the simple
model remain valid for SSTs above 305K is an open
question, however, and the simple model could break
down if the pressure velocity profile collapse fails to hold or
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FIG. 10. (a) Height coordinate vertical velocities and (b) pressure velocities at § = 0.35 from the simple model for
the dynamic mode and (c) resulting dynamic modes for four values of a climate-invariant cloud-base buoyancy
anomaly B,,. (d) The dynamic mode from the simple model with a cloud-base buoyancy anomaly of 0.05 m s~ 2 and
four values of the plume entrainment rate ¢,. Green dots in (a) and (b) show simulated vertical velocities and
pressure velocities from the peak of conditional-average pressure velocity profiles. Green dots and error bars in
(c) and (d) show the dynamic mode reproduced from Fig. 3, but calculated and plotted using average air tem-

perature from the lowest model level rather than SST.

the entraining plume calculation no longer provides a good
model for peak pressure velocities.

c. Discussion

This simple model differs in important ways from
the entraining-plume-based model for precipitation
extremes from Loriaux et al. (2013). In the model
from Loriaux et al. (2013), entire vertical velocity
profiles are calculated by integrating an entraining
plume model upward from the surface, with envi-
ronmental profiles taken from midlatitude observa-
tions rather than from a zero-buoyancy plume model.
This approach provides a single vertical velocity
profile, with vertical velocity profile shapes that are
unaffected by conditional sampling, and produces a
super-CC thermodynamic mode. Like our model,
their model produces a dynamic mode of around
2% K~' at surface temperatures around 300K, al-
though Loriaux et al. (2013) explore a much smaller

temperature range (*+3 K only). Because our simple
model agrees well with RCE simulations while the
entraining plume model of Loriaux et al. (2013)
agrees well with midlatitude observations of convective
precipitation extremes, a more detailed comparison of
predictions from the two models may provide a way to
probe differences between the response of tropical
versus midlatitude convective precipitation to warming.

Last, the dynamic mode predicted by this simple
model can violate the /2-CC upper bound proposed by
Fildier et al. (2017) based on the Clausius—-Clapeyron
scaling of CAPE with warming. In RCE, contributions
to increases in CAPE with warming come largely from
the upper troposphere (Singh and O’Gorman 2013;
Seeley and Romps 2015, 2016) and so primarily affect
upper-tropospheric vertical velocities. In contrast, the
dynamic mode in our simple model is more closely
linked to vertical velocities in the low- to midtropo-
sphere and can increase more rapidly than CAPE with
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warming because changes in the upper limit of buoyancy
integrals alter the fraction of CAPE accessed by high-
condensation updrafts. Although opposing changes in
vertical velocities and densities with height and the
buffering effects of large cloud-base buoyancies gener-
ally keep the dynamic mode small, the dynamic mode
can nevertheless exceed a 2-CC scaling with surface
temperature in cold climates.

6. Conclusions

In an effort to better understand how convective
dynamics influence changes in tropical precipitation
extremes in a warming world, we analyzed changes
in 99.99th-percentile instantaneous precipitation ex-
tremes in long-channel simulations of RCE across a
wide range of climates. We focused on two primary
questions: first, on how the shape of convective pres-
sure velocity profiles mediates the response of precip-
itation extremes to atmospheric moisture content (the
thermodynamic mode); and second, on how precipita-
tion extremes are affected by changes in pressure ve-
locity profiles between climates (the dynamic mode).
Our analysis produced four primary results:

1) The shapes of pressure velocity profiles associated
with precipitation extremes result from a conditional
sampling of convective dynamics, and the conditional
sampling favors profiles with large pressure velocities
at levels in the atmosphere where the vertical satura-
tion specific humidity gradient is large (Fig. 4).

2) Because of this conditional sampling, the shapes of
pressure velocity profiles collapse across climates
when plotted using a moisture-based vertical coordi-
nate ¢ = g*/q¥ (Fig. 5). Because of this collapse, the
thermodynamic mode follows a Clausius—Clapeyron
scaling with surface temperature across a wide range
of climates, and the dynamic mode reduces to changes
in profile-maximum pressure velocities.

3) The simplification to the dynamic mode enabled by the
g-coordinate collapse allows us to link the magnitude of
the dynamic mode to changes in vertical velocities
predicted by entraining plume models (Fig. 8). This, in
turn, allows us to argue that the smallness of the dy-
namic mode (compared to the thermodynamic mode)
is linked to the insensitivity of lower-tropospheric
convective buoyancy to warming (Fig. 9) and to de-
creases in density as the level of peak conditional-
average ascent shifts upward (Fig. 7).

4) Taking the g-coordinate collapse as a given allows us to
develop a self-contained simple model for changes in
condensation extremes. This simple model highlights
that, in addition to opposing changes in vertical ve-
locities and densities with height, climate-invariant
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cloud-base buoyancies help to maintain a small dy-
namic mode. For a cloud-base buoyancy that provides
a good fit to simulations, the simple model predicts a
dynamic mode that is largest (~+2% K ') in climates
much colder than today’s tropics, small but positive
(~+1% K™ ') at temperatures close to the present-
day tropics, and weakest (from ~0% to —1% K~ ') in
very warm climates (Fig. 10).

Given that many of these results rely on the
g-coordinate collapse, for which we currently have
only a qualitative explanation, some discussion of the
robustness of our results is in order. One of the over-
arching themes of this paper is that ¢ coordinates are a
natural vertical coordinate for thinking about hydro-
logic extremes, and that this coordinate allows for a
potentially cleaner separation of dynamic and thermo-
dynamic changes than more conventional vertical co-
ordinates. In our case, viewing the vertical structure of
instantaneous extremes in ¢ coordinates led to signifi-
cant simplifications to the thermodynamic and dynamic
modes because of a collapse of pressure velocity profile
shapes in those coordinates. It is entirely possible that a
similar collapse will fail to hold on other time scales, in
other types of models, or for other types of precipitation.
For example, ascent profiles in orographic precipitation
extremes may be controlled primarily by topography
and may therefore fail to shift upward with warming to
the extent required for a ¢g-coordinate collapse.
Similarly, the collapse may fail to occur in models with
convective parameterizations that place strong con-
straints on the vertical structure of updraft mass flux
profiles. Nevertheless, viewing the dynamics of extreme
events in a moisture-based vertical coordinate may
provide useful insight into how the interplay between
dynamics and thermodynamics affects the strength of
precipitation extremes, and may suggest novel theoret-
ical constraints to one or both of the thermodynamic and
dynamic modes.

Even more generally, framing precipitation extremes
as an optimization problem (‘‘generate as much con-
densation as possible, subject to thermodynamic and
dynamic constraints’) could be adapted to a diverse
range of scenarios to better understand and constrain
precipitation extremes in a changing climate. Doing so
might appear to add an additional layer of complexity to
an already difficult problem, but we found that it al-
lowed us to connect the vertical structure of convective
updrafts (which are difficult to constrain in general) to
the thermodynamic structure of the tropical atmosphere
(which, in contrast, is fairly well understood). Although
the dominant constraints in the optimization problem
may vary in different situations, simply identifying what
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those constraints are may reveal hidden connections
between precipitation extremes and their environment.

Our results also prompt a number of questions that
could motivate future work. One obvious question is
whether the predictions from the simple model for the
dynamic mode presented in section 5 hold in RCE sim-
ulations of very cold or very warm climates. Additionally,
the sensitivity of the simple model’s dynamic mode to
cloud-base buoyancy raises the question of what sets
cloud-base buoyancy in extreme precipitation or con-
densation events in the real world—a subject that might
be amenable to observational study. Another set of
questions revolves around whether the shapes of vertical
motion profiles associated with tropical precipitation ex-
tremes are as strongly constrained by moisture lapse rate
profiles on longer time scales or larger spatial scales. If the
moisture lapse rate constraint remains strong on larger
spatial scales and longer time scales, does this mean that
time- and space-averaged pressure velocity profiles con-
tinue to collapse in g coordinates? Or, if the collapse does
not hold on larger spatial scales and longer time scales,
does this lead to significant deviations of the thermody-
namic mode from a Clausius—Clapeyron scaling? Last,
observational data may provide an additional avenue for
probing the robustness of the g-coordinate collapse.
When combined with sufficiently accurate estimates of
atmospheric temperature profiles, the convective vertical
motion profiles retrieved by radar wind profilers provide
the information required to compute condensation inte-
grals from observational data. If observed vertical motion
profiles associated with high-percentile condensation in-
tegrals also collapse across different temperatures in g
coordinates, this would provide evidence that the collapse
is a robust emergent property of the dynamics that pro-
duce convective precipitation extremes.

We want to finish by discussing how we view this work
in the broader context of research on the response of
precipitation extremes to warming. In our view, the main
contributions of this paper are 1) to show that the ther-
modynamic mode is near CC and the dynamic mode is
small in long-channel RCE simulations, consistent with
the emerging consensus from simulations that explicitly
resolve convection, and 2) to explain why this is the case
in our channel RCE simulations specifically. Because the
dynamic mode in the real tropics is likely to be affected by
features (e.g., land-ocean contrasts, rotation, and topog-
raphy) that the channel simulations lack, it is very un-
likely that our results will generalize directly to every
model configuration, and comprehensive simulations will
play a leading role in improving constraints on future
changes in precipitation extremes. Nevertheless, insights
gained from idealized studies of precipitation extremes in
RCE are valuable. Process-oriented analysis of idealized
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models improves our understanding of how the world
works and, in doing so, influences how we view it. By
highlighting several mechanisms that help to produce a
near-CC thermodynamic mode and a small dynamic
mode, this paper provides a foundation for using 7% K '
as a baseline estimate for the rate at which tropical pre-
cipitation extremes intensify with warming.
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APPENDIX A

Shapes of Moisture Lapse Rate Profiles

The moisture lapse rate profiles shown in Figs. 1a and
4b have three important features: first, they decline
more slowly with height than either saturation vapor
pressure or saturation specific humidity; second, they
increase at fixed pressure with increasing surface tem-
perature; and third, the increase is amplified in the upper
troposphere in warm climates.

We can get some intuition for these features by writ-
ing down and analyzing an expression for the moisture
lapse rate:

dgx\ _ M [d(e*lp)] _ M, |1 (de*\  e*
dp Hik Ma dp oF Ma p dp 6%( p g

(A1)

where M, and M, are the molecular weights of water
vapor and dry air and e* is the saturation vapor pressure.

We can use an approximate version of the Clausius—
Clapeyron relation (Pierrehumbert 2010) to rewrite the
derivative of saturation vapor pressure as
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have the same value as M,e*/(M,p?) at the surface. See Eq. (A4) for details.

de* L e* dT L E*R T
W) RT\dp) s R cp ?T A2
(dp)ﬁ* R T? (dp)(,* RT cp &(T,p), (A2)
where
k
1+_I£
¢(T,p) = c[0.1] (A3)

1 + g+ CPV + Lv Lu
Tl TeT\R T
PP v
is the ratio between the moist and dry adiabatic tempera-
ture lapse rates (e.g., Pierrehumbert 2010) and ¢,y is

the heat capacity at constant pressure of water vapor.
Substituting Eq. (A2) into Eq. (Al) and rearranging gives

dg* M |1Le*RT e*

() LRt

p ] g M, PR T? c,p p
_Mve*

{%w,m - 1} , (A4)

M, p?

where Ty ~ 1550K is a temperature scale given by
T — LvRa

O Rc¢ '’

vp

(AS)

Equation (A4) shows that the moisture lapse rate is set by
the product of two profiles: M, e*/(M,p?), which mostly
decreases with height but does so less quickly than satu-
ration specific humidity (Fig. Ala), and (To/T)¢ — 1,
which always increases with height along moist adiabats
(Fig. Alb). The combined influence of these two profiles
produces the three features noted at the start of this section:

1) The moisture lapse rate decreases away from the
surface much less quickly than saturation vapor

pressure does. When the surface is warm and the
water vapor scale height is sufficiently large, the
moisture lapse rate can even increase with height.

2) As the surface warms, e*/p” increases while (7y/T)¢p — 1
decreases. Although these changes offset, they combine
to produce an increase in the moisture lapse rate at
all levels and all surface temperatures between 280
and 310K.

3) In warm climates, increases in e*/p* are largest in the
upper troposphere. Simultaneously, (7o/T)¢ — 1
decreases below 1 near the surface. Together, these
changes produce large increases in the moisture lapse
rate away from the surface while limiting increases
close to the surface. As a result, increases in the
moisture lapse rate with warming are amplified in the
upper troposphere in warm climates.

APPENDIX B

Small-Domain RCE Simulations

We used several sets of small-domain simulations to
test the robustness of two results:

1) Pressure velocity profile shapes collapse in ¢ coordi-
nates, which allowed us to simplify the thermody-
namic and dynamic modes.

2) Height-coordinate vertical velocities at the peaks of
conditional-average pressure velocity profiles scale
with 99.99th-percentile vertical velocities at the same
level, which allowed us to connect the dynamic mode
to theory for changes in peak vertical velocities.

We found that the w profile collapse was robust across a
suite of small-domain simulations (appendix B section a),
but that height-coordinate vertical velocities at the peaks
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of conditional-average pressure velocity profiles increased
less quickly than 99.99th-percentile vertical velocities in
small-domain simulations (appendix B section b).

a. Small-domain simulation setup

Our small-domain simulations span the same SST
range as the channel simulations and use a 128 X 128 km?
domain with 1-km horizontal resolution. The model
configuration follows the RCE model intercomparison
project (RCEMIP) protocol (Wing et al. 2018) as closely
as possible; the primary difference is that we extend the
initial specific humidity profiles to our SST range by
diagnosing a near-surface specific humidity that gives a
relative humidity of exactly 80%. We ran the simulations
for 100 days, allowed 60 days for the model to equilibrate,
collected statistics from instantaneous snapshots taken
every 6h over the last 40 days of simulation, and calcu-
lated condensation integrals from those snapshots in the
same way as for channel simulations.

To test robustness to model configuration, we ran
four sets of simulations with different combinations of
microphysics and subgrid-scale turbulence schemes.
Like the channel simulation, the default small-domain
simulations used the SAM single-moment microphys-
ics scheme (Khairoutdinov and Randall 2003) and a
first-order Smagorinsky scheme. In addition, we ran
small-domain simulations with the single-moment mi-
crophysics scheme replaced by the double-moment
Morrison scheme (Morrison et al. 2005), with the
Smagorinsky scheme replaced by a 1.5-order turbu-
lence closure that treats subgrid-scale kinetic energy
prognostically rather than diagnostically, and with
both the single-moment microphysics and first-order
turbulence schemes replaced by the double-moment
microphysics and 1.5-order turbulence schemes.
Like the channel simulations, all small-domain simu-
lations calculate radiative heating rates interactively
using the radiation code from the National Center
for Atmospheric Research CAM, version 3 (Collins
et al. 2006).

b. Robustness of the pressure velocity profile collapse

The collapse of conditional-average pressure velocity
profiles in g coordinates is fairly robust across all four
sets of small-domain simulations (Fig. B1): as in the
channel simulations, pressure velocity profiles consis-
tently peak at g ~ 0.35, and normalized pressure velocity
profile shapes are close to climate invariant. Some minor
exceptions include pressure velocity profiles from the
280-K simulations with single-moment microphysics,
which are shifted slightly downward relative to pro-
files from warmer simulations; and pressure velocity
profiles from the 285-, 290-, and 295-K simulations
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FI1G. B1. Conditional-average pressure velocity profiles in small-
domain simulations with (a) the SAM single-moment microphysics
scheme and first-order Smagorinsky subgrid-scale turbulence clo-
sure, (b) the 1.5-order turbulence closure, (c) the Morrison double-
moment microphysics scheme, and (d) both the 1.5-order turbulence
closure and the Morrison microphysics scheme.

with double-moment microphysics, which are slightly more
bottom-heavy than profiles from warmer simulations.

The robustness of the collapse is supported by a
“collapse error’” metric that quantifies the degree to
which profiles collapse in a given coordinate. The error
metric is defined for two profiles w, and w, and a verti-
cal coordinate c as

J|w1 —w,|dc

(s s

In all five sets of simulations, mean collapse errors are
around 0.5 when measured in pressure coordinates and
are smaller by about a factor of 5 when measure in ¢
coordinates (Table B1), consistent with the visual im-
pression that pressure velocity profile shapes are much

E(v,,0,;¢c) = (B1)

020z AInr G| uo 3senb Aq ypd- 261061 PSE/ L2 L261/.91/G/LL/3Ppd-lonE/Sel/B10-00s}8WE S|RUINOI/:dRY WOy papeojumoq



1656 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 77

TABLE B1. Collapse metrics for conditional-average pressure velocity profiles in the channel simulations (see Fig. 5) and small-domain
simulations (see Fig. B1) and in pressure coordinates (first row) and ¢ coordinates (second row). The first value in each cell is the mean
collapse error over all pairs of profiles, and the second and third values (in parentheses) are the maximum and minimum collapse errors
between any two pairs of profiles. The ‘“default” configuration refers to simulations with the SAM single-moment microphysics scheme
and first-order Smagorinsky turbulence closure, ““M2005” denotes simulations using the Morrison double-moment microphysics scheme,

and “1.5-TKE” denotes simulations using a 1.5-order turbulence closure.

Channel (12288 X 192 km?)

Small-domain (128 X 128 km?)

Default Default

M2005 1.5-TKE M2005 + 1.5-TKE

0.42 (0.91,0.11)
0.08 (0.12, 0.02)

0.52 (1.17,0.16)
0.11 (0.22, 0.04)

ESTias}

0.52 (1.05,0.18) 0.56 (1.20, 0.19)
0.11 (0.18, 0.04) 0.11 (0.23,0.03)

0.50 (1.01, 0.15)
0.11 (0.17, 0.02)

closer to climate invariant in ¢ coordinates than in
pressure coordinates.

c. Vertical velocities in small-domain RCE

In the channel simulations, we found that changes in
height-coordinate vertical velocities at the peaks of
conditional-average pressure velocity profiles closely
followed changes in 99.99th-percentile vertical veloci-
ties at the same level (Fig. 8b). This allowed us to
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construct a simple model for the dynamic mode based
on an entraining plume model originally formulated to
understand controls on high-percentile vertical veloci-
ties in RCE. In the small-domain simulations, however,
height-coordinate vertical velocities at the peaks of
conditional-average pressure velocity profiles increase
much less with warming than 99.99th-percentile verti-
cal velocities (Fig. B2). This alters the dynamic mode
relative to channel simulations and, between many sets
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F1G. B2. Height-coordinate vertical velocities at the level where conditional-average pressure velocity profiles
peak in small-domain simulations with (a) the SAM single-moment microphysics scheme and first-order
Smagorinsky subgrid-scale turbulence closure, (b) the 1.5-order turbulence closure, (c¢) the Morrison double-
moment microphysics scheme, and (d) both the 1.5-order turbulence closure and the Morrison microphysics
scheme. Green curves show height coordinate vertical velocities from the peaks of conditional-average pressure
velocity profiles, and blue curves show 99.99th-percentile vertical velocities at that level.
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F1G. B3. Conditional-average pressure velocity profiles (thick black lines) superimposed on the individual pro-
files averaged over to compute them (translucent gray lines) from channel and small-domain simulations at 280 and
305 K. Black circles show w calculated from 99.99th-percentile vertical velocities wog 99 (w0 = pgwoo 90) at the level at

which conditional-average w profiles peak.

of simulations, produces a dynamic mode from —1%
to —2% K ! rather than the +2% K~ ! seen in channel
simulations.

We do not have a complete explanation for the dy-
namic mode in the small-domain simulations, but we can
offer some speculation as to why vertical velocities at the
peaks of conditional-average profiles increase less quickly
relative to vertical velocity extremes than we found in
channel simulations. Conditional-average pressure ve-
locity profiles are constructed by averaging over many
individual “member” profiles. Plotting individual mem-
bers of conditional-average profiles suggests that typical
member profiles have strong upward motion over a much
larger depth in channel simulations than in small-domain
simulations. The presence of deep upward motion in
member profiles lessens the chance that any individual
member profile will have near-zero vertical velocity at the
level where conditional-average profiles peak. This results
in noticeable differences in the structure of individual
member profiles relative to conditional-average profiles
in channel versus small-domain simulations (Fig. B3).
At 280-K SST in both channel and small-domain

simulations, very few member profiles have weak
vertical motion at levels close to the peak of the
conditional-average pressure velocity profiles. At
305-K SST, the channel simulation still has relatively few
member profiles with weak vertical motion at the level
where the conditional-average profile peaks. However,
there is somewhat less coherence between different
member profiles in 305-K small-domain simulations, and
many member profiles show weak vertical motion at the
level where the conditional-average profile peaks.

Differences in coherence in the 305-K simulations
are most apparent at the level where conditional-
average profiles peak: the gray shading indicating the
density of member profiles is lighter at small w and
darker at large w in the 305-K channel simulation than
in the 305-K small-domain simulation. Additionally,
these differences can be quantified by calculating a
mean collapse error between each member profile and
the conditional-average profile as

1 N
ﬁ; E(w;, 099 993 P)s (B2)
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FIG. B4. Average differences between individual and conditional-
average w profiles in columns with 99.99th-percentile condensa-
tion, as measured by the mean collapse metric in Eq. (B2). The
solid line shows channel simulations, the dashed line shows small-
domain simulations, and smaller mean collapse errors indicate
greater coherence between individual and conditional-average
profiles.

where w; are the N member profiles and wgg 99 is the
conditional-average profile. The mean collapse error is
larger and increases more quickly with warming in
small-domain simulations compared to channel simula-
tions (Fig. B4), consistent with the lack of coherence
that is evident in Fig. B3.

We can use these profiles to construct a heuristic ar-
gument for why vertical velocities at the peaks of
conditional-average profiles increase less quickly than
99.99th-percentile vertical velocities in small-domain
simulations:

1) Differences between individual member profiles
and conditional-average profiles are larger and in-
crease more quickly with warming in small-domain
simulations.

2) Larger differences between member profiles mean that
velocities at or near 0 are sampled more often at warm
temperatures from the levels where conditional-average
profiles peak.

3) Sampling vertical velocities significantly above the
99.99th percentile is uncommon; more specifically,
the vertical velocity sampled from member profiles
only very rarely exceeds twice the 99.99th-percentile
vertical velocity (cf. peaks of member profiles with
circles in Fig. B3).

4) This makes it difficult to compensate for frequently
sampling vertical velocities much less than the
99.99th percentile by also frequently sampling verti-
cal velocities much larger than the 99.99th percen-
tile. As a result, the sample mean (i.e., the vertical
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velocity at the peak of the conditional-average
profile) cannot increase as quickly as the 99.99th
percentile (cf. peaks of conditional-average profiles
with circles in Fig. B3).

In other words, we speculate that differences in the
relationship between 99.99th-percentile vertical velocities
and vertical velocities at the peak of conditional-average
profiles in channel versus small-domain simulations are
linked to differences in the morphology of individual
updrafts (which, in turn, may be linked to differences
between organized and unorganized convection). In
small-domain simulations, entraining plume models re-
main capable of reproducing changes in 99.99th-percentile
vertical velocities (not shown). Because changes in
vertical velocities at peaks of conditional-average pro-
files no longer follow changes in 99.99th-percentile
vertical velocities, however, we should not expect
entraining plume models to reproduce the small-domain
dynamic mode.
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