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ABSTRACT

Tropical precipitation extremes are expected to strengthen with warming, but quantitative estimates re-

main uncertain because of a poor understanding of changes in convective dynamics. This uncertainty is

addressed here by analyzing idealized convection-permitting simulations of radiative–convective equilibrium

in long-channel geometry. Across a wide range of climates, the thermodynamic contribution to changes in

instantaneous precipitation extremes follows near-surface moisture, and the dynamic contribution is positive

and small but is sensitive to domain size. The shapes of mass flux profiles associated with precipitation ex-

tremes are determined by conditional sampling that favors strong vertical motion at levels where the vertical

saturation specific humidity gradient is large, and mass flux profiles collapse to a common shape across cli-

mates when plotted in a moisture-based vertical coordinate. The collapse, robust to changes in microphysics

and turbulence schemes, implies a thermodynamic contribution that scales with near-surfacemoisture despite

substantial convergence aloft and allows the dynamic contribution to be defined by the pressure velocity at a

single level. Linking the simplified dynamic mode to vertical velocities from entraining plume models reveals

that the small dynamic mode in channel simulations (&2%K21) is caused by opposing height dependences of

vertical velocity and density, together with the buffering influence of cloud-base buoyancies that vary little

with surface temperature. These results reinforce an emerging picture of the response of extreme tropical

precipitation rates to warming: a thermodynamic mode of about 7% K21 dominates, with a minor contri-

bution from changes in dynamics.

1. Introduction

Tropical precipitation extremes are expected to in-

tensify under global warming (e.g., IPCC 2013; Allen

and Ingram 2002; Pendergrass and Hartmann 2014a).

To first order, the intensification is driven by changes in

the thermodynamic structure of the atmosphere. If

moisture is converged into updrafts primarily near the

surface, then approximate expressions for condensa-

tion rates suggest that—absent significant changes in

convective dynamics—peak precipitation rates should

scale with boundary layer saturation specific humid-

ity and increase with surface temperatures at about

7% K21 (e.g., O’Gorman and Schneider 2009b; Muller

et al. 2011). However, the baseline 7% K21 sensitivity

of peak precipitation rates to warming can be modi-

fied by convective dynamics. If convective storms

converge moisture throughout an inflow layer that

extends several kilometers above the surface—as

has been observed in Amazonian convection (Schiro

et al. 2018)—precipitation rates may scale with lower-

troposphere-average water vapor, which increases

with warming faster than boundary layer water vapor.

Furthermore, changes in updraft speeds affect con-

densation rates and thus precipitation extremes (e.g.,

Emori and Brown 2005; O’Gorman and Schneider

2009b; Muller et al. 2011; Romps 2011; Pendergrass

et al. 2016), introducing a dynamic contribution to

changes in precipitation extremes in addition to the

thermodynamic dependence. Given the potentially

severe social and economic consequences of extreme

rain events, understanding the influence of convectiveCorresponding author: Tristan H. Abbott, thabbott@mit.edu
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dynamics on changes in precipitation extremes in a

warming climate is crucial for our ability to prepare

for the impacts of future hydrologic change.

A common scaling for assessing the impact of dynamic

and thermodynamic changes on precipitation extremes

equates a high-percentile precipitation rate P to the

product of a column-integrated condensation rate C

and a precipitation efficiency « (O’Gorman and Schneider

2009b; Muller et al. 2011):

P5 «C . (1)

Depending on the time scale considered, C may be

spatiotemporally collocated with extreme precipitation

events (as in Muller et al. 2011; Fildier et al. 2017) or

may be a high percentile of the column-integrated con-

densation rate distribution (as in Singh and O’Gorman

2014). The condensation rate in an adiabatically lifted

parcel can then be used to rewrite column condensa-

tion in terms of pressure-coordinate vertical velocity v

and saturation specific humidity q* (O’Gorman and

Schneider 2009b):

C52

ðps
0
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�
dq*
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�
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dp . (2)

In Eq. (2), p is pressure, ps is surface pressure, g is the

acceleration from gravity, and the change in satura-

tion specific humidity with pressure (dq*/dp)ue*
(here-

inafter referred to as the ‘‘moisture lapse rate’’) is

calculated following a moist adiabat (i.e., holding satu-

rated equivalent potential temperature ue* fixed).

The scaling can then be used to relate the response of

precipitation extremes to warming to changes in precip-

itation efficiency, changes in the moisture lapse rate (the

‘‘thermodynamic mode’’), and changes in pressure ve-

locity profiles (the ‘‘dynamic mode’’) (Muller et al. 2011):
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(3)

Here, d indicates a change between two climates, and

terms that include products of changes have been

dropped. Throughout this paper, we use the terms

thermodynamic mode and dynamic mode to refer to

contributions to changes in precipitation extremes cor-

responding to the two terms labeled in Eq. (3).

Previous modeling studies have found, empirically,

that the thermodynamic mode at temperatures close

to Earth’s present-day tropics is close (within about

2%K21) to the’7%K21 Clausius–Clapeyron (CC) scaling

of saturation specific humidity with surface temperature,

regardless of whether the studies use global simulations

with parameterized convection (O’Gorman and Schneider

2009b,a; Chen et al. 2019), global simulations with super-

parameterized convection (Fildier et al. 2017), or limited-

area radiative–convective equilibrium (RCE) simulations

with convection-permitting models (Muller et al. 2011;

Romps 2011; Muller 2013). A CC scaling for the thermo-

dynamicmode can also be derived theoretically bymaking

three assumptions: that 1) v/g is constant between the

surface and the tropopause, 2) q* is near zero at the tro-

popause, and 3) the temperature profile is moist adiabatic

(O’Gorman and Schneider 2009a; Muller et al. 2011). If all

three assumptions hold, the thermodynamicmode reduces

approximately to a CC scaling of d(qs*)/qs*, where qs* is the

near-surface saturation specific humidity.

In the tropics, where the tropopause is cold and

convection maintains nearly moist adiabatic stratifica-

tion (Xu and Emanuel 1989), assumptions 2 and 3 are

clearly justified, but assumption 1 is not. On both large

scales and convective scales, vertical motion profiles

associated with heavy tropical rainfall are far from

constant with height (Back and Bretherton 2006; Torri

et al. 2017; Moore et al. 2014). Moreover, although the

empirical success of the CC scaling might suggest that

the thermodynamic mode is insensitive to the shape of

the mass flux profiles, simple calculations with syn-

thetic mass flux profiles indicate otherwise. In moist

adiabatic atmospheres, moisture lapse rates increase

with warming most rapidly high in the atmosphere,

particularly in warm climates (Fig. 1a; see appendix A

for a discussion of the upper-tropospheric amplifica-

tion). As a result, column-integrated condensation

produced by top-heavy vertical motion profiles in-

creases with warming more quickly than condensation

produced by bottom-heavy mass flux profiles. For top-

heavy vertical motion profiles, the thermodynamic

mode can be nearly 11% K21 in cold climates, and for

bottom-heavy vertical motion profiles, the thermody-

namic mode can be as low as 3% K21 in warm climates

(Figs. 1b,c). The sensitivity of the thermodynamic

mode to the shape of mass flux profiles prompts the first

question addressed in this paper: What constrains the

shape of pressure velocity profiles associated with

precipitation extremes, and are the constraints consis-

tent with a near-CC thermodynamic mode across a

wide range of climates?

Empirical results fromprevious work using convection-

permitting models also suggest that the dynamic mode is

likely to be small. On both hourly and daily time scales,

the dynamic mode in idealized convection-permitting

model simulations rarely exceeds ;2% K21, and the
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sign varies between studies (Muller et al. 2011; Romps

2011; Muller 2013). Global simulations with the super-

parameterized Community Atmosphere Model

(SP-CAM) also produce a small (#2% K21) dynamic

mode for precipitation extremes aggregated across the

tropics (Fildier et al. 2017). We lack a similar empirical

consensus from global simulations with parameterized

convection, but we believe the wide spread of dynamic

modes in individual models—which largely owes to large

intermodel differences in vertical velocities (O’Gorman

and Schneider 2009a,b; Norris et al. 2019; Pendergrass

and Hartmann 2014a)—should be treated with skepti-

cism. Twentieth century simulations show large differ-

ences in precipitation extremes between different models

(Kharin et al. 2007), and many models contain dispro-

portionate increases in extreme precipitation rates rela-

tive to the rest of the precipitation distribution because of

increases in precipitation linked to artificial gridpoint

storms (Pendergrass and Hartmann 2014a,b).

Although convection-permitting models provide little

reason to expect a large dynamic mode, there is no

simple scaling that predicts a small dynamic mode.

Moreover, zero-buoyancy plume models constrained by

the observation that the tropical stratification is set by

strongly entraining updrafts (Kuang and Bretherton

2006; Romps and Kuang 2010; Singh and O’Gorman

2013) predict strong increases in convective available

potential energy (CAPE) and peak vertical velocities

with warming (Singh and O’Gorman 2015; Seeley and

Romps 2015; Romps 2016).Muller et al. (2011) point out

that the dynamic mode for changes in precipitation ex-

tremes can be negative despite increases in peak vertical

velocities if vertical motion weakens near the surface,

and Fildier et al. (2017) argue that near-CC increases in

CAPE with warming (Seeley and Romps 2015; Romps

2016) provide a 1/2-CC upper bound on the dynamic

mode. Nevertheless, the relationship between increases

in CAPE, peak vertical velocities, and precipitation

extremes remains unclear, prompting the second ques-

tion addressed in this paper: Can a better understanding

of controls on the shapes of vertical motion profiles as-

sociated with precipitation extremes provide insight into

the relationship between changes in peak updraft ve-

locities and the dynamic mode?

In this paper, we address these questions by analyz-

ing instantaneous precipitation extremes in idealized

RCE simulations with a convection-permitting model

in a 12 000-km nonrotating channel over sea surface

temperatures (SSTs) between 280 and 305K. Section 2

documents the simulations, shows that they produce

precipitation rate probability density functions (PDFs)

similar to PDFs calculated from optical rain gauges in

the tropical western Pacific, and defines the extreme

events analyzed in this paper. Thereafter, the paper is

organized into three main sections. In section 3, we

decompose changes in precipitation extremes with SST

into contributions from changes in precipitation effi-

ciency, thermodynamic modes, and dynamic modes.

Consistent with previous work, we find a near-CC

thermodynamic mode and a small but positive dy-

namic mode. We also find that contributions from

changes in precipitation efficiency are comparable in

magnitude to the dynamic mode, although this is not

the focus of the paper. A novel result is that pressure

velocity profile shapes associated with high-percentile

column-integrated condensation collapse across cli-

mates when plotted in a moisture-based vertical coor-

dinate. We show that this collapse implies a near-CC

FIG. 1. (a) Moisture lapse rate profiles for moist adiabatic atmospheres with four surface temperatures. (b) Top-heavy (blue), neutral

(black), and bottom-heavy (red) pressure velocity profile shapes. (c) Thermodynamic modes as a function of surface temperature for top-

heavy, neutral, and bottom-heavy pressure velocity profiles. The dashed black line indicates a CC scaling with surface temperature.
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thermodynamic mode, and use the collapse to derive a

simplified expression for the dynamicmode. In section 4,

we combine the simplified expression for the dynamic

mode with an entraining plume model to explain why

the dynamic mode is small. In section 5, we use a sim-

plified version of the entraining plumemodel to derive a

theoretical model for the dynamical mode that is valid so

long as the pressure velocity profile shape collapse

holds. This model predicts a dynamic mode that is about

1%K21 at temperatures close to the modern day tropics

and decreases, albeit weakly, with increasing SST. We

conclude in section 6 by discussing remaining questions

and directions for future work.

2. Long-channel simulations of
radiative–convective equilibrium

a. Simulation setup

The long-channel RCE simulations analyzed in this

paper use the System for Atmospheric Modeling

(SAM), version 6.8.2 (Khairoutdinov and Randall

2003), in an elongated 12 288 km 3 192 km channel

with 3 km horizontal resolution. The lower boundary

is a sea surface with uniform fixed temperature, varied

between simulations from 280 to 305K in increments

of 5K. Each simulation is 75 days long, and large-scale

overturning circulations that emerge during convec-

tive self-aggregation are fully developed after day 50.

Both the humidity contrast between moist and dry

regions and the length scale of overturning circula-

tions vary between simulations (Wing and Cronin

2016; Beucler and Cronin 2019), but neither vary

strongly or monotonically with SST, making it difficult

to clearly link changes in the degree of aggregation

with changes in precipitation extremes. The simula-

tions are documented in more detail in Wing and

Cronin (2016), with an emphasis on the processes that

drive convection self-aggregation, and Cronin and

Wing (2017) describe clouds, large-scale circulations,

and climate sensitivity in a similar set of channel

simulations. Wing and Cronin (2016) include an ad-

ditional 310-K SST simulation in their analysis, but we

choose to exclude that simulation from this paper

because, without increasing the height of the model

top, convection impinges on the bottom of a sponge

layer at the top of the model domain.

The analysis in this paper focuses on instantaneous

rather than hourly or daily precipitation extremes. The

reasons for this decision are twofold. First, previous

studies on changes in CAPE and updraft velocities with

warming have focused on instantaneous updraft veloc-

ities, and analyzing the dynamic mode for instantaneous

precipitation extremes provides a closer link with that

work. Second, archived output from many convection-

permitting model simulations (including our channel

simulations) only includes instantaneous snapshots of

the three-dimensional fields required to diagnose ther-

modynamic and dynamic modes, and focusing on in-

stantaneous precipitation allows us to repurpose data

from past modeling studies. The instantaneous three-

dimensional snapshots on which we base our analyses

are output from the channel simulations once every six

hours. We analyze precipitation extremes over the last

25 days of each simulation, a time period during which

convection is aggregated into moist and dry bands and

all simulations are in a statistically steady state.

We have chosen to focus our analysis on channel sim-

ulations rather than general circulation model (GCM)

simulations with parameterized convection or small-

domain simulations of unaggregated RCE for two rea-

sons. First, our channel simulations explicitly simulate

motions from the convective scale [O(1) km] to the

planetary scale [O(10 000) km] and can produce convec-

tive precipitation extremes without relying on parameter-

izations of convection—unlike GCM simulations. Second,

our channel simulations produce convective systems or-

ganized at scales similar to the real tropics and to global

cloud-resolving models (Cronin and Wing 2017; Beucler

et al. 2019)—unlike small-domain RCE.While convective

organizationmakes the channel simulationsmore complex

than small-domain RCE, the lack of convective orga-

nization means that small-domain RCE simulations are

unable to represent the organized convective systems

that produce a large fraction of real-world tropical

rainfall (e.g., Nesbitt et al. 2006).

In appendix B, we briefly document some important

similarities and differences between convective dynamics

in channel versus small-domain RCE. One conspicuous

difference is that the dynamic mode is often smaller in

small-domainRCE than in channel simulations (section c

of appendix B). Given this discrepancy, we should em-

phasize that the results in this paper are specific to a

particular class of RCE simulations (i.e., RCE in an

elongated channel), albeit one that we feel is of particular

relevance for the study of precipitation extremes.

b. Defining instantaneous precipitation extremes

As in previous work, we define precipitation extremes

based on quantiles of the precipitation rate distribution.

In long-channel RCE simulations, instantaneous pre-

cipitation rate PDFs have a delta function at zero rain

rate, decay like a power law at low rain rates, and roll off

into an exponential tail at high rain rates. This structure

is consistent with observed PDFs (Martinez-Villalobos

and Neelin 2019): the instantaneous rain rate PDF from
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our 305-K SST simulation is very similar to a 1-min-

average rain rate PDF calculated from optical rain

gauge measurements at Nauru Island (in the tropical

western Pacific, with surrounding SSTs typically be-

tween 300 and 305K) (Fig. 2a). The 99.9th-percentile

instantaneous precipitation rates1 lie on the edge of

the power-law range, which means that the likelihood

of observing a particular precipitation rate falls rela-

tively slowly as the rain rate increases above the 99.9th

percentile. On the other hand, 99.99th-percentile in-

stantaneous precipitation rates fall firmly within the

exponential tail of the rain rate PDF, which means

that the likelihood of observing a particular rain rate

drops very quickly above the 99.99th percentile. A

closer examination of events that produce rain near

the 99.9th and 99.99th percentiles reveals significant

differences in underlying dynamics: while 99.99th-

percentile instantaneous precipitation rates almost

always occur within deep convective systems, 99.9th-

percentile instantaneous precipitation rates often

occur in relatively shallow clouds that terminate

far below the tropopause. In other words, 99.99th-

percentile instantaneous precipitation is associated

with statistically and dynamically extreme events in a

way that 99.9th-percentile precipitation is not. Because

our simulation output contains many events at and

above the 99.99th percentile (over 2500 total, and on

average 26 per snapshot), allowing analysis with rela-

tively little sample error, we focus the remainder of this

paper on 99.99th-percentile precipitation rates.

The choice to focus on a specific quantile warrants

some discussion of the potential quantile dependence of

changes in precipitation extremes. Previous studies dis-

agree on whether changes in precipitation extremes

converge with increasing quantile, although conver-

gence generally seems more common in simulations

with resolved convection [e.g., Muller et al. (2011),

Muller (2013), and the SP-CAM simulations in Fildier

et al. (2017)] and less common in simulations with pa-

rameterized convection [see, e.g., Pendergrass and

Hartmann (2014a) and the CAM simulations in Fildier

et al. (2017)]. Our simulations, which model convection

explicitly, are consistent with this trend in that they

show convergence at high quantiles: precipitation ex-

tremes increase more quickly with warming at the

99.99th percentile than at the 99th or 99.9th percentiles,

but the rate of change is similar between the 99.99th

and 99.999th percentiles (Fig. 2b). Decomposing these

changes into dynamic and thermodynamic modes (not

shown) reveals that the dynamic mode also converges

with warming to typical values of around 12% K21 at

the 99.99th percentile and above, although we do not

analyze the processes that control the dynamic mode in

detail for percentiles other than the 99.99th.

3. Scaling of simulated precipitation extremes

Because the time lag between condensation and pre-

cipitation fallout prevents us from applying the con-

densation integral scaling directly to columns with

FIG. 2. (a) Precipitation rate PDFs from the SAM simulation with 305-K SST (blue) and from the Nauru optical

rain gauge (black). Gray shading indicates the range of events included in analyses of 99.99th-percentile precipi-

tation rates for the 305-K SAM simulation, the gray line shows the 99.9th-percentile precipitation rate from the

305-K SAM simulation, and the dashed black line shows the 99.99th-percentile precipitation rate from the Nauru

optical rain gauge. (b) Changes in 99th-, 99.9th-, 99.99th-, and 99.999th-percentile precipitation rates with warming

in SAM simulations.

1 Our definition of percentiles includes ‘‘events’’ with rain rates

of zero, so that the rain rate r(p) at a percentile p is defined byÐ r(p)
0

P(r0) dr0 5 p, where P(r) is the rain rate PDF and includes the

delta function at r 5 0.
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99.99th-percentile surface precipitation, we instead ap-

ply the scaling to columns where the column conden-

sation rate is near the 99.99th percentile. Although

99.99th-percentile column condensation rates are higher

than 99.99th-percentile precipitation rates by about a

factor of 2 (indicating a typical precipitation efficiency

for extreme events of « ’ 0.5), both increase with

warming at close to a CC scaling (Fig. 3a). When cal-

culating condensation integrals, we set pressure velocities

to zero in regions where the atmosphere is unsaturated.

(This has little impact on our analysis of 99.99th-percen-

tile condensation extremes, as these typically occur in

columns where the air is saturated over the entire depth

of the troposphere.) We calculate the pressure velocity

profile v used to decompose changes in condensation

integrals into dynamic and thermodynamic modes as an

average over the 1000 columns with condensation rates

closest to the 99.99th-percentile column condensation

rate, and we calculate the moisture lapse rate (dq*/dp)ue*
based on time- and domain-average temperature profiles

over the last 25 days of simulation. When calculating the

moisture lapse rate, we follow the saturation vapor

pressure formulation from the SAM single-moment mi-

crophysics scheme (Khairoutdinov and Randall 2003)

(which the channel simulations use) and scale saturation

vapor pressure linearly from the vapor pressure over

liquid at 273.16K to the vapor pressure over ice at

253.16K. This makes the temperature derivative of

saturation vapor pressure discontinuous at 273.16 and

253.16K, which introduces small discontinuities in the

moisture lapse rate that appear as minor kinks when the

profiles are plotted. Choosing to calculate moisture

lapse rates based on local rather than mean temperature

profiles has a negligible impact on our results.

The decomposition into dynamic and thermodynamic

modes is easiest to visualize by plotting rates of change

as a function of surface temperature (Fig. 3b). Doing so

reveals that both condensation and precipitation rates

increase with warming at a rate close to (but, for column

condensation, consistently higher than) a CC scaling.

Changes in precipitation efficiency between climates

vary in sign, and a simple estimate of sampling uncer-

tainty2 suggests that much of the variation may be a

result of sampling error. Unlike Singh and O’Gorman

(2014), we find no evidence of a strong microphysical

influence on changes in precipitation extremes in rela-

tively cold climates, likely because the SAM single-

moment microphysics scheme we use (Khairoutdinov

and Randall 2003) produces fairly slow increases in hy-

drometeor fall speed with warming (Lutsko and Cronin

2018). The thermodynamic mode follows a CC scaling

nearly exactly over the entire range of simulated cli-

mates; the dynamic mode is positive, generally smaller

than the thermodynamic mode, and largest in cold

climates.

Rather than defining the decomposition using pres-

sure velocity and pressure coordinates, we could instead

FIG. 3. (a) The 99.99th-percentile precipitation and column condensation in each SAMsimulation.Gray contours

slope upward following a CC scaling with SST. (b) Changes in 99.99th-percentile instantaneous hydrologic ex-

tremes in SAM simulations. Black lines indicate changes in precipitation, blue lines indicate changes in column-

integrated condensation, and red and green lines respectively indicate thermodynamic and dynamic contributions

to changes in column-integrated condensation. The gray line shows the contribution to changes in precipitation

extremes from changes in precipitation efficiency. Black dashed lines show a CC scaling with surface temperature

and zero rate of change. Error bars show sampling uncertainty estimates calculated by repeating the analysis

1000 times after resampling (with replacement) all snapshots saved during the final 25 days of the simulations.

2We estimate the sampling uncertainty for changes with warm-

ing by bootstrapping. Specifically, we repeat our calculations

1000 times after resampling individual snapshots with replacement

and take theminimumandmaximum rates of change from the 1000

sets of calculations as the minimum and maximum of our uncer-

tainty intervals.
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have defined a dynamic mode in height coordinates (z)

based on height-coordinate vertical velocity (w) by re-

writing the condensation integral as

C52

ð‘
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�
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ue*
dz (4)

and decomposing changes as
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The choice to calculate changes in profiles at fixed

pressure [as is implied by Eq. (3)] versus fixed height [as

is implied by Eq. (5)] has a negligible impact on the

decomposition (pressures at fixed heights change by not

more than 15hPa between adjacent simulations). The

choice to calculate the dynamic mode in terms of

changes in v versus w, on the other hand, obviously af-

fects the partitioning of changes between dynamic and

thermodynamic modes. We chose a decomposition that

separates v and (dq*/dp)ue*
primarily because it ex-

presses the thermodynamic mode in terms of changes in

the moisture lapse rate alone, which is consistent with

and allows for easy comparison with previous studies

(e.g., O’Gorman and Schneider 2009a,b; Muller et al.

2011; Muller 2013; Fildier et al. 2017).

Our results (Fig. 3) support the robustness of a CC

scaling for the thermodynamic mode, but exactly why

the CC scaling is so robust remains unclear. In the

following section, we examine pressure velocity and

moisture lapse rate profiles to understand how changes

in the vertical structure of extreme events combine to

produce a near-CC thermodynamic mode over a wide

range of climates.

a. Role of vertical structure

Pressure velocity profiles associated with high conden-

sation rates are far from constant with height (Fig. 4a), so

the thermodynamic mode could in theory differ consider-

ably fromCC-scaling (as in Fig. 1).Unlike the profiles used

to create Fig. 1, however, the simulated pressure velocity

profiles shift upward as SST increases, with a bottom-

heavy vertical structure in cold climates and a more top-

heavy vertical structure in warm climates (Fig. 4a). The

upward shift with warming is crucial for maintaining a

near-CC thermodynamic mode: thermodynamic modes

calculated across the entire SST range using the pressure

velocity profile from the coldest simulation (280K) are

sub-CC in warm climates; likewise, thermodynamicmodes

calculated using the pressure velocity profile from the

warmest simulation (305K) are super-CC in cold cli-

mates (Fig. 4c).

Because the radiative tropopause moves upward with

warming in RCE (Seeley et al. 2019), deep convection

occupies a deeper layer of the atmosphere in warmer

simulations, and this alone could contribute to an up-

ward shift in the level of peak pressure velocities with

warming. Additionally, though, moisture lapse rates are

bottom-heavy in cold climates and become increasingly

top-heavy with warming (Fig. 4b). Changes in the ver-

tical structure of the moisture lapse rate could also drive

an upward shift in pressure velocity profiles when those

profiles are conditionally sampled from columns with

large column-integrated condensation rates.

We can probe the impact of the shapes of moisture

lapse rate profiles on the shapes of conditionally

sampled pressure velocity profiles by asking the fol-

lowing question: what pressure velocity profile shapes

would we find in columns with 99.99th-percentile

condensation if the moisture lapse rate were constant

with height? This is equivalent to calculating profiles

of v conditionally averaged over columns with near–

99.99th-percentile column-integrated mass flux,

M52

ðps
0

v

g
dp , (6)

because the true condensation integral C depends only

on v and moisture lapse rate profiles [recall Eq. (2)]. If

similar v profiles emerged when conditionally averaging

on high-percentile condensation C and high-percentile

mass flux M, this would indicate that vertical variations

of the moisture lapse rate do not constrain v profiles in

columns with high-percentile condensation. If differ-

ent v profiles emerged when conditioning on high-

percentileC relative toM, however, this would indicate

that vertical structure in the moisture lapse rate acts to

constrain v profiles that lead to C extremes. In fact, we

find that pressure velocity profiles conditioned on ex-

treme M shift upward less dramatically with warming

than those conditioned on extreme C (cf. Figs. 5a and

5b). This indicates that the vertical structure of the

moisture lapse rate does play an important role in

driving the upward shift of v profiles with warming, and

therefore must influence the shapes of v profiles in

strongly condensing columns.

How exactly does the vertical structure of the mois-

ture lapse rate influence the shape of pressure velocity

profiles when conditionally averaged on strong column

condensation? The key is that the (explicitly simulated)

convective dynamics in our simulations produce a di-

versity of individual pressure velocity profiles—some

very bottom-heavy, some very top-heavy, and some in
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between. Although many different profile shapes can

produce large convective mass fluxes, large conden-

sation rates are only produced when mass fluxes are

large at levels of the atmosphere where the moisture

lapse rate is also large. In cold climates, on the one

hand, the moisture lapse rate is only large close to the

surface, so only pressure velocity profiles with strong

vertical motion near the surface are capable of pro-

ducing large condensation rates. As a result, pressure

velocity profiles conditionally averaged on high-percentile

column condensation are bottom-heavy. In warm cli-

mates, on the other hand, the moisture lapse rate remains

large much farther from the surface, so somewhat more

top-heavy pressure velocity profiles often produce large

column-integrated condensation rates. As a result,

pressure velocity profiles conditionally averaged on ex-

treme column condensation shift upward relative to cold

climates.

An important component of the argument in the

previous paragraph is the fact that the deepest and

strongest vertical motion profiles do not necessarily

produce the strongest condensation rates. This result is

reminiscent of the observation by Hamada et al. (2015)

that TRMM radar reflectivity profiles are typically

much more bottom-heavy for pixels with the heaviest

surface rainfall than for pixels with the highest 40-dBZ

FIG. 4. (a) Simulated conditional-average pressure velocity profiles. (b) Moisture lapse rate profiles for each simulation. (c) Thermodynamic

modes calculated while using a fixed pressure velocity profile (purple through yellow colors) comparedwith the true thermodynamicmode

(red). The dashed black line shows a CC scaling with SST, and the dashed gray lines show 1.4 times and 0.65 times the CC scaling. The

y-axis limits are identical to Fig. 3.

FIG. 5. Simulated conditional-average pressure velocity profiles from (a) columns with 99.99th-percentile condensation rates and

(b) columns with 99.99th-percentile column-integrated mass fluxes, both plotted in pressure coordinates. (c) Moisture lapse rates plotted

in ~q coordinates. (d) Conditional-average pressure velocity profiles from columns with 99.99th-percentile condensation rates plotted in ~q

coordinates.
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echo-top heights typically associated with extremely

strong convection.

b. Collapse in a moisture-based vertical coordinate

A succinct way to summarize the link between mois-

ture lapse rate and pressure velocity profile shapes is to

say that strongly condensing pressure velocity profile

shapes are determined in large part by solving an opti-

mization problem: given a moisture lapse rate, what

pressure velocity shapes are best able to produce large

column-integrated condensation rates? In cold climates,

these shapes tend to be bottom-heavy, in warm climates,

less so. Because we have shown in section 3a that the

moisture lapse rate is the dominant parameter in this

optimization problem, we expect the solution—that is,

the pressure velocity profile shape—to depend largely

on the moisture lapse rate itself. This motivates looking

at the shapes of pressure velocity profiles in a vertical

coordinate based on the moisture lapse rate.

A vertical coordinate defined as a normalized integral

of the moisture lapse rate,

~q(p)5

ðp
0

�
dq*

dp

�
ue*
dp0

ðps
0

�
dq*
dp

�
ue*
dp0

, (7)

is a convenient choice for four reasons. First, it has a rel-

atively simple interpretation: if temperature profiles are

moist adiabatic, then (dq*/dp)ue* (the rate at which satu-

ration specific humidity changes under adiabatic expan-

sion) is equal to the vertical gradient of saturation specific

humidity ›q*/›p and ~q simplifies to q*/qs*, that is, satura-

tion specific humidity normalized by surface saturation

specific humidity. Second, ~q has a climate-invariant range:

it is always equal to 1 at the surface and decreases to a

minimum value of 0 within the troposphere. Third, the use

of ~q simplifies the condensation integral, which can be

expressed as a ~q-coordinate integral of pressure velocity

alone rather than a pressure-coordinate integral of the

product of pressure velocity and the moisture lapse rate.

Fourth, the moisture lapse rate is close to its maximum

value over a similar range of ~q coordinates across a wide

range of climates (Fig. 5c). Because v profiles in strongly

condensing columns tend to be large at levels where the

moisture lapse rate is also large, this suggests that the

shapes of v profiles may vary less across climates in ~q co-

ordinates than in pressure coordinates. Indeed, if we plot

the shapes of pressure velocity profiles as functions of ~q,

they nearly collapse on top of each other (Fig. 5d).

We should emphasize that although we expect ~q to

be a convenient vertical coordinate, our finding that

v profile are nearly climate invariant in ~q coordinates

is largely an empirical rather than a theoretical result.

Nonetheless, the collapse appears to be reasonably ro-

bust across a range of model configurations; it also oc-

curs in small-domain RCE simulations with a range of

microphysics and subgrid-scale turbulence schemes (see

appendix B, section b). Additionally, the collapse dra-

matically simplifies both the dynamic and thermody-

namics modes, and we leverage these simplifications

throughout the rest of this paper.

In particular, it is possible to show that an exact col-

lapse of v in ~q coordinates implies an exactly CC ther-

modynamic mode if the temperature profile is moist

adiabatic. For moist adiabatic temperature profiles,

(dq*/dp)ue*
is equal to the vertical gradient of saturation

specific humidity ›q*/›p. The assumption of moist adi-

abatic temperature profiles allows us to rewrite the

condensation integral in terms of q*:

C52

ðps
0

v

g

�
dq*
dp

�
ue*
dp

52

ðps
0

v

g

›q*
›p

dp52

ðqs*
0

v

g
dq* (8)

and to simplify ~q to ~q5q*/qs*. If the collapse is exact,

then v5 v̂V(~q), where v̂ is the maximum pressure ve-

locity attained along the profile and V(~q) is a universal

function across climates. The condensation scaling can

then be simplified to

C52v̂q
s
*g21g , (9)

where

g5

ð1
0

V(~q) d~q (10)

is a unitless parameter that depends on the shape of

pressure velocity profiles. Because an exact collapse

implies that g is constant across climates, changes in the

condensation scaling can be written as

dC

C
5

dv̂

v̂
1

dq
s
*

q
s
*
. (11)

This gives a thermodynamic mode that scales exactly

with changes in surface saturation specific humidity

and a dynamic mode that depends on changes in the

pressure velocity at a single level rather than on

moisture-lapse-rate-weighted changes in entire pres-

sure velocity profiles. Fildier et al. (2017) also decom-

pose the dynamic mode into a contribution from a
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characteristic pressure velocity and a residual contri-

bution from changes in vertical structure. However,

they use a characteristic pressure velocity based on

column-integrated pressure velocity profiles; unlike

our decomposition, this results in a residual term that is

comparable in magnitude to the overall dynamic mode.

We end this section by providing some physical in-

terpretation of our results. Past derivations of a CC

scaling (e.g., O’Gorman and Schneider 2009b; Muller

et al. 2011) have frequently relied on the assumption

that strong updrafts converge moisture near the surface

and diverge moisture only at levels where the saturation

specific humidity is near zero. The pressure velocity

profiles implied by this assumption would haveV(~q)5 0

below the LCL (~q5 surface relative humidity) and

V(~q)5 1 above it, and therefore have g equal to surface

relative humidity. For peaked mass flux profiles, on the

other hand, g is strictly smaller than surface relative

humidity (g’ 0.5 in our simulations) and can be thought

of as a convergence-related efficiency factor: it is re-

duced either by converging moisture as levels where

q*, qs* or by diverging moisture at levels where q*/qs* is

nonnegligible. Thus, we obtain a near-CC scaling not

because strong updrafts consistently condense most

near-surface water vapor, but rather because profiles of

convergence and divergence reduce condensation by the

same factor over a wide range of climates. This recon-

ciles the success of the CC scaling with previous work

that has found that convective precipitation is frequently

associated with significant moisture convergence aloft

(Moore et al. 2014).

In the next section, we use a simple entraining plume

model to understand changes in v̂ between climates;

given the collapse in v profiles this amounts to a model

for the dynamic mode.

4. Controls on peak pressure velocity

The collapse of pressure velocity profile shapes in a

moisture-based vertical coordinate allows us to write the

dynamical mode in terms of changes in the pressure

velocity at the peak of the pressure velocity profile. In

turn, changes in the peak pressure velocity can be

decomposed into changes in density r and height-

coordinate vertical velocity w:

dv̂

v̂
5

dr

r
1

dw

w
.

In the channel simulations, changes in height coordinate

vertical velocities contribute between 0% and15%K21

to the dynamic mode, while changes in density contrib-

ute between 0% and 23% K21 (Fig. 6). The dynamic

mode remains small (between about 0% and12%K21)

because increases in vertical velocities are consistently

offset by decreases in density.

The reductions in density at the level of peak pressure

velocity can largely be understood in terms of changes in

density at fixed ~q in amoist adiabatic atmosphere. As the

surface warms, levels with fixed ~q shift to lower pres-

sures and density at fixed ~q drops as a result (Fig. 7a).

At levels where ~q’ 0:3–0:4 (where conditional-average

pressure velocity profiles peak), density decreases with

surface temperature at rates between 1% and 3% K21

(Fig. 7b), roughly consistent with the changes in density

shown in Fig. 6.

The increases in height-coordinate vertical velocities

can be explained in terms of changes in buoyancy inte-

grals produced by an entraining plume model (based on

Singh and O’Gorman 2015). To do so, we assume that

the vertical velocity w of an ascending parcel at a

physical height z scales with the integral of the buoyancy

b experienced by the parcel during ascent from cloud-

base height zb such that (e.g., Holton and Hakim 2013)

w(z)5

"
2h

ðz
zb

b(z0) dz0
#1/2

. (12)

h is an empirically chosen proportionality factor that we

set to 0.14 for a good fit to simulated vertical velocities.

The relatively coarse horizontal resolution of our sim-

ulations may be part of the reason that a good fit is

provided by h much smaller than 1: in updrafts that are

wide relative to their height, nonhydrostatic pressure

gradients cancel a substantial part of parcel buoyancy

FIG. 6. The simplified dynamical mode (solid green line) de-

composed into change in height coordinate vertical velocities

(dashed green line) and densities (dash–dotted green line). Black

dashed lines show a CC scaling with surface temperature and zero

rate of change.
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(Jeevanjee and Romps 2016). Form drag, which is an

important component of the momentum budget of

thermals (Romps and Öktem 2015; Jeevanjee and

Romps 2015; Morrison and Peters 2018) may also help

to keep h small.

We calculate buoyancy profiles by integrating equa-

tions for liquid/ice water static energy hL and moisture q

within an entraining plume:

dh
L

dz
52«(h

L
2h

Le
) and (13)

dq

dz
52«(q2 q

e
) . (14)

Liquid/ice water static energy is a moist-static-energy-

like variable used as a prognostic thermodynamic

variable by SAM and is defined as hL 5 cpT 1 gz 2
Lyql 2 Lfqi (Khairoutdinov and Randall 2003), where

cp is the heat capacity at constant pressure of dry air, T

is temperature,Ly is the latent heat of vaporization,Lf

is the latent heat of fusion, ql is the mass concentration

of liquid water, and qi is the mass concentration of ice

water; q is the total water mass concentration (in-

cluding vapor, liquid, and ice phases)—our plume

model assumes no condensate fallout. We define the

environmental energy profile hLe based on the time-

and domain-mean temperature profile Te from the

simulations so that hLe 5 cpTe 1 gz, and we define the

environmental water profile based on the time and

domain-mean saturation specific humidity profile qe*

and a constant environmental relative humidity of

90%. When combined with information about satu-

ration specific humidity as a function of pressure and

temperature, hL and q can be inverted for plume

temperature T, specific humidity qy, and condensate

mass concentration ql 1 qi. We then calculate buoy-

ancy following its definition in SAM as

b5 g[(T2T
e
)/T

e
1 0:608(q

y
2 q

e
)2 (q

l
1 q

i
)].

We initialize the plume at a cloud-base height of zb 5
1 km by finding an initial plume hL and q that gives an in-

plume relative humidity of 100% with no condensed

water and produces a buoyancy equal to the 99.99th-

percentile buoyancy at the model level closest to 1 km.

We integrate the plume equations upward using an en-

trainment rate of « 5 0.15 km21, chosen for a good

overall fit to simulated buoyancy profiles and buoyancy

integrals.

Buoyancy integrals calculated from entraining plume

model buoyancy profiles have similar magnitude to

integrals based on level-by-level 99.99th-percentile

buoyancies3 (Fig. 8a). When integrated from cloud

base to the height where conditional-average pressure

velocity profiles peak, both versions of the buoyancy

integral increase with warming, from about 70 J kg21

in the coldest simulation to about 275 J kg21 in the

warmest. Accordingly, vertical velocities predicted

based on the plume model buoyancy integrals in-

crease with warming, and if we choose h 5 0.14, they

agree well with the height-coordinate vertical veloci-

ties in conditional-average pressure velocity profiles

at the levels where the pressure velocity profiles peak

(Fig. 8b). The plume model vertical velocities also

FIG. 7. (a) Density and (b) rate of change in density with surface temperature for amoist adiabatic atmosphere with

80%surface relative humidity. In (a), black dots show the levels at which conditional-average pressure velocity profiles

peak. Major and minor contours are spaced by 0.1 and 0.02 kgm23 in (a) and by 0.5% and 0.1% K21 in (b).

3 The 99.99th-percentile level-by-level buoyancies are calculated

from all samples taken at each level.However, we set buoyancies to

zero unless they are collocated with ascending cloudy air in an

attempt to separate large buoyancies in convective updrafts from

large buoyancies in gravity waves.

MAY 2020 ABBOTT ET AL . 1647

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/77/5/1637/4927427/jasd190197.pdf by guest on 15 July 2020



provide good predictions for the 99.99th-percentile ver-

tical velocity taken over all samples from the level where

conditional-average pressure velocity profiles peak.

Examining buoyancy profiles in more detail can

provide some qualitative understanding of the gen-

eral smallness of the dynamic contribution to changes

in precipitation extremes. As noted by Singh and

O’Gorman (2015), buoyancy in weakly entraining

plumes increases with warming primarily in the upper

troposphere. In our simulations and in our plume

model calculations, warming produces only minor

changes in buoyancy at fixed heights below about

5 km (Figs. 9a,b)—a feature of RCE that is discussed

in detail by Seeley and Romps (2015). Note that peaks

in simulated buoyancy above the above the tropo-

pause in Fig. 9a are not associated with convective

plumes that originate in the troposphere, and so

are not reproduced by the plume model in Fig. 9b.

Because bottom-heavy moisture lapse rate profiles

only allow bottom-heavy pressure velocity profiles to

produce large column-integrated condensation rates,

conditional-average pressure velocity profiles peak at

or below 5 km from the surface in all simulations

(recall, e.g., Fig. 4). As a result, increases in buoyancy

integrals and height-coordinate vertical velocities come

primarily from an upward shift in the heights at which

pressure velocity profiles peak. However, this upward shift

also results in decreases in density at the level of peak

pressure velocity. As a result, the contributions to peak

conditional-average pressure velocities from changes in

height-coordinate vertical velocities and densities offset to

produce a consistently small dynamic mode.

The buoyancy profiles produced by the plume model

also emphasize the importance of the cloud-base buoy-

ancy. The diagnosed buoyancy is on the order of 0.05ms22

across all SSTs (Fig. 9c), and alternative plume model

integrations with zero cloud-base buoyancy significantly

underestimate lower-tropospheric buoyancy compared to

simulations (Fig. 9d).

5. Theoretical model for changes in precipitation
extremes

In section 3, we showed that simulated pressure ve-

locity profiles in columns with high-percentile column

condensation rates collapse to a climate-invariant shape

when plotted in ~q coordinates. In section 4, we provided

a simple explanation for the magnitude of the dy-

namic mode by combining calculations of density

along moist adiabatic temperature profiles with ver-

tical velocities calculated with an entraining plume

model. In this section, we build on those two results

by constructing a simple, self-contained model for

the dynamic mode. This model assumes that the

~q-coordinate collapse holds in all climates (more

specifically, that conditional-average pressure velocity

profiles peak at ~q5 0:35) and calculates peak pressure

velocities using a simplified entraining plume model

based on Singh and O’Gorman (2013, 2015). The rea-

sons for constructing this model are twofold. First, it

provides a prediction for the dynamic mode (and thus

for changes in condensation extremes themselves)

for a wider range of climates than the simulations

alone. Second, and potentially more importantly, it

FIG. 8. (a) Buoyancy integrals from 1 km to the level at which conditional-average pressure velocity profiles peak.

The black curve shows integrals over buoyancy profiles calculated with the entraining plumemodel (details are in the

text), and the red curve shows integrals over a profile constructed from level-by-level 99.99th-percentile buoyancies

from simulations (details in text). (b) Height-coordinate vertical velocities at the level at which conditional-average

pressure velocity profiles peak. The black curve shows the estimate from the entraining plume model (assuming w2/2

scales with the plume model buoyancy integral with a constant of proportionality chosen empirically to be 0.14), the

green curve shows the height coordinate vertical velocity from the peak of the conditional-average pressure velocity

profiles, and the blue curve shows the 99.99th-percentile vertical velocity at that level.
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provides a way to probe the processes that control the

dynamic mode within the simulated range of climates

without the sampling errors introduced by analyzing a

finite-duration simulation, without the full complexity

of chaotic convective dynamics, and without noisiness

introduced by nonmonotonic changes in large-scale

organization with warming (Wing and Cronin 2016).

a. Derivation

The starting point for the model is Eq. (10) from

Singh and O’Gorman (2015), which relates the tem-

perature anomaly DTw in a weakly entraining plume

to the plume entrainment rate and environmental

parameters:

DT
w
5

1

11
L2

yqe
*(z)

c
p
R

y
T2
e (z)

"
e2«w(z2zb)

Dh
b

c
p

1
D«(12RH)L

y

c
p

ðz
zb

e2«w(z
2z0)q

e
*(z) dz0

#
. (15)

This equation is modified slightly from Eq. (10) of Singh

and O’Gorman (2015) to include a cloud-base moist

static energy (MSE) anomaly Dhb. Here, «w is the en-

trainment rate of the weakly entraining plume, D« is the
difference in entrainment rate between the weakly en-

training plume and themore common strongly entraining

plumes that set environmental temperature profiles, qe*(z)

is the environmental saturation specific humidity, RH is

the environmental relative humidity, Ry is the specific gas

constant for water vapor, Te(z) is the environmental tem-

perature profile, and zb is the cloud-base height.

To calculate environmental profiles Te(z) and qe*(z),

we use a zero-buoyancy plume model following Singh

and O’Gorman (2013). This model integrates

FIG. 9. Buoyancy profiles from (a) simulations and (b) plume model calculations used to calculate the

buoyancy integrals shown in Fig. 8; (c) diagnosed cloud-base buoyancy used in the plume model calculations;

(d) buoyancy profiles from alternative plume model calculations with cloud-base buoyancy set to 0. Dots on

buoyancy profiles show the levels at which conditional-average pressure velocity profiles peak, and multipli-

cation signs show the level at which average temperatures first drop below 220 K, approximately the tropopause

temperature.
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dh

dz
52«

s
L

y
(12RH)q

e
*,

where h is the plume MSE and «s 5 «w 1 d« is the zero-

buoyancyplumeentrainment rate, fromcloudbaseupward.

At each vertical level, the plume temperature can be ob-

tained from h and the assumption that the plume is satu-

rated, and the zero-buoyancy assumption then allows us to

calculate qe* at that level by assuming that the plume and

environmental temperatures are equal. We initialize the

zero-buoyancy plume model at a cloud-base height diag-

nosed assuming a surface relative humidity of 0.8, and we

use «s 5 0.5km21.

OnceTe is known, calculating buoyancy integrals akin to

those used in section 4 requires numerically evaluating two

integrals: one to calculate DTw as a function of height,

and a second to calculate buoyancy integrals from DTw(z).

For this model, we neglect the impact of water vapor vir-

tual effects and condensate loading and use gDTw/Te as an

estimate of plume buoyancy. As in section 4, we use 1km

as a proxy for cloud-base height, and motivated by the

relatively small variations in cloud-base buoyancy anom-

alies with SST found in Fig. 9c, we diagnose cloud-base

MSE anomalies that result in climate-invariant buoyancies

at cloud base.We assumeRH5 0.9 (again, as in section 4),

and we repeat the calculation for several cloud-base

buoyancies between 0 and 0.1ms22 and several entrain-

ment rates «w between 0 and 0.3km21. We set «w to

0.15km21 (as in section 4) for calculations where we vary

cloud-base buoyancy, and we set the cloud-base buoyancy

to 0.05ms22 (close to typical values from Fig. 9c) for sets

of calculations where we vary «w.

After calculating buoyancy integrals from cloud base

up to the height where ~q5 0:35, we then assume that the

height-coordinate vertical velocity at that level scales

with the buoyancy integral as in section 4:

w5

"
2hg

ðz(~q50:35)

zb

DT
w
(z0)

T
e
(z0)

dz0
#1/2

, (16)

with h 5 0.14. Last, we combine the vertical velocity

with the density at ~q5 0:35 to calculate a pressure ve-

locity v52rgw. By repeating this calculation for many

different surface temperatures, we can obtain values for

the dynamic mode (i.e., d lnv/dSST, assuming the shape

collapse holds) over a wide range of climates.

b. Results

Both height-coordinate and pressure-coordinate verti-

cal velocities increase with warming in the simple model,

but offsetting changes in density mean that pressure ve-

locity increases less quickly (Figs. 10a,b). At low tem-

peratures, the impact of density changes is relatively

minor, and pressure-coordinate vertical velocities in-

crease only slightly less quickly than height-coordinate

vertical velocities. As temperatures increase, however,

density decreases more and more rapidly at fixed ~q (as in

Fig. 7b), and pressure velocities start to plateau at surface

temperatures around 310–320K.As a result, the dynamic

modedecreases as surface temperature increases (Fig. 10c).

The cloud-base buoyancy has a major impact on the ver-

tical velocities and pressure velocities predicted by the

simple model: larger cloud-base buoyancies produce

stronger vertical motion, and a cloud-base buoyancy of

0.05ms22 (similar to the values diagnosed from simula-

tions in Fig. 9c) provides a good fit to simulated vertical

velocities. Cloud-base buoyancy also affects the dynamic

mode, with larger cloud-base buoyancies producing a

smaller dynamic mode, particularly in cold climates. This

occurs largely because vertical velocities are very small in

cold climates when cloud-base buoyancy is weak, and

even small absolute increases in vertical velocity with

warming translate into large relative increases and con-

tribute to a large dynamicmode. As for vertical velocities

and pressure velocities, the simulated dynamicmode is fit

well by a cloud-base buoyancy anomaly of 0.05ms22.

In contrast with the sensitivity to the cloud-base

buoyancy, the dynamic mode in the simple model is

relatively insensitive to the entrainment rate of the

weakly entraining plume (Fig. 10d). Larger entrainment

rates produce slightly more negative dynamic modes,

consistent with the lower rate of increase of vertical

velocities with warming when entrainment is stronger

(Singh and O’Gorman 2015). However, entrainment

rates between 0 and 0.3 km21 all provide reasonably

good fits to the simulated dynamic mode. This sug-

gests that the boundary layer processes that influence

cloud-base buoyancy may play a more important role in

setting the dynamic mode than the processes that con-

trol mixing between convective updrafts and their

environment.

Because the shape collapse assumed by this simple

model implies a near-CC thermodynamic mode, the tem-

perature dependence of the dynamic mode implies a

super-CC increase in condensation extremeswithwarming

in cold climates and an approach to a near-CC or slightly

sub-CC increase in very warm climates. Assumptions

about cloud-base buoyancy and, to a lesser extent, en-

trainment have a quantitative impact on the rate at which

the dynamicmode decreases as temperature increases, but

the qualitative result that the dynamic mode decreases in

very warm climates is robust to changes in both parame-

ters. Whether the structural assumptions in the simple

model remain valid for SSTs above 305K is an open

question, however, and the simple model could break

down if the pressure velocity profile collapse fails to hold or
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the entraining plume calculation no longer provides a good

model for peak pressure velocities.

c. Discussion

This simple model differs in important ways from

the entraining-plume-based model for precipitation

extremes from Loriaux et al. (2013). In the model

from Loriaux et al. (2013), entire vertical velocity

profiles are calculated by integrating an entraining

plume model upward from the surface, with envi-

ronmental profiles taken from midlatitude observa-

tions rather than from a zero-buoyancy plume model.

This approach provides a single vertical velocity

profile, with vertical velocity profile shapes that are

unaffected by conditional sampling, and produces a

super-CC thermodynamic mode. Like our model,

their model produces a dynamic mode of around

2% K21 at surface temperatures around 300K, al-

though Loriaux et al. (2013) explore a much smaller

temperature range (63K only). Because our simple

model agrees well with RCE simulations while the

entraining plume model of Loriaux et al. (2013)

agrees well with midlatitude observations of convective

precipitation extremes, a more detailed comparison of

predictions from the two models may provide a way to

probe differences between the response of tropical

versus midlatitude convective precipitation to warming.

Last, the dynamic mode predicted by this simple

model can violate the 1/2-CC upper bound proposed by

Fildier et al. (2017) based on the Clausius–Clapeyron

scaling of CAPE with warming. In RCE, contributions

to increases in CAPE with warming come largely from

the upper troposphere (Singh and O’Gorman 2013;

Seeley and Romps 2015, 2016) and so primarily affect

upper-tropospheric vertical velocities. In contrast, the

dynamic mode in our simple model is more closely

linked to vertical velocities in the low- to midtropo-

sphere and can increase more rapidly than CAPE with

FIG. 10. (a) Height coordinate vertical velocities and (b) pressure velocities at ~q5 0:35 from the simplemodel for

the dynamic mode and (c) resulting dynamic modes for four values of a climate-invariant cloud-base buoyancy

anomaly Bb. (d) The dynamic mode from the simple model with a cloud-base buoyancy anomaly of 0.05m s22 and

four values of the plume entrainment rate «w. Green dots in (a) and (b) show simulated vertical velocities and

pressure velocities from the peak of conditional-average pressure velocity profiles. Green dots and error bars in

(c) and (d) show the dynamic mode reproduced from Fig. 3, but calculated and plotted using average air tem-

perature from the lowest model level rather than SST.
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warming because changes in the upper limit of buoyancy

integrals alter the fraction of CAPE accessed by high-

condensation updrafts. Although opposing changes in

vertical velocities and densities with height and the

buffering effects of large cloud-base buoyancies gener-

ally keep the dynamic mode small, the dynamic mode

can nevertheless exceed a 1/2-CC scaling with surface

temperature in cold climates.

6. Conclusions

In an effort to better understand how convective

dynamics influence changes in tropical precipitation

extremes in a warming world, we analyzed changes

in 99.99th-percentile instantaneous precipitation ex-

tremes in long-channel simulations of RCE across a

wide range of climates. We focused on two primary

questions: first, on how the shape of convective pres-

sure velocity profiles mediates the response of precip-

itation extremes to atmospheric moisture content (the

thermodynamic mode); and second, on how precipita-

tion extremes are affected by changes in pressure ve-

locity profiles between climates (the dynamic mode).

Our analysis produced four primary results:

1) The shapes of pressure velocity profiles associated

with precipitation extremes result from a conditional

sampling of convective dynamics, and the conditional

sampling favors profiles with large pressure velocities

at levels in the atmosphere where the vertical satura-

tion specific humidity gradient is large (Fig. 4).

2) Because of this conditional sampling, the shapes of

pressure velocity profiles collapse across climates

when plotted using a moisture-based vertical coordi-

nate ~q5 q*/qs* (Fig. 5). Because of this collapse, the

thermodynamic mode follows a Clausius–Clapeyron

scaling with surface temperature across a wide range

of climates, and the dynamicmode reduces to changes

in profile-maximum pressure velocities.

3) The simplification to the dynamicmode enabled by the
~q-coordinate collapse allows us to link themagnitude of

the dynamic mode to changes in vertical velocities

predicted by entraining plume models (Fig. 8). This, in

turn, allows us to argue that the smallness of the dy-

namic mode (compared to the thermodynamic mode)

is linked to the insensitivity of lower-tropospheric

convective buoyancy to warming (Fig. 9) and to de-

creases in density as the level of peak conditional-

average ascent shifts upward (Fig. 7).

4) Taking the ~q-coordinate collapse as a given allows us to

develop a self-contained simple model for changes in

condensation extremes. This simple model highlights

that, in addition to opposing changes in vertical ve-

locities and densities with height, climate-invariant

cloud-base buoyancies help to maintain a small dy-

namicmode. For a cloud-base buoyancy that provides

a good fit to simulations, the simple model predicts a

dynamicmode that is largest (;12%K21) in climates

much colder than today’s tropics, small but positive

(;11% K21) at temperatures close to the present-

day tropics, and weakest (from;0% to21%K21) in

very warm climates (Fig. 10).

Given that many of these results rely on the
~q-coordinate collapse, for which we currently have

only a qualitative explanation, some discussion of the

robustness of our results is in order. One of the over-

arching themes of this paper is that ~q coordinates are a

natural vertical coordinate for thinking about hydro-

logic extremes, and that this coordinate allows for a

potentially cleaner separation of dynamic and thermo-

dynamic changes than more conventional vertical co-

ordinates. In our case, viewing the vertical structure of

instantaneous extremes in ~q coordinates led to signifi-

cant simplifications to the thermodynamic and dynamic

modes because of a collapse of pressure velocity profile

shapes in those coordinates. It is entirely possible that a

similar collapse will fail to hold on other time scales, in

other types of models, or for other types of precipitation.

For example, ascent profiles in orographic precipitation

extremes may be controlled primarily by topography

and may therefore fail to shift upward with warming to

the extent required for a ~q-coordinate collapse.

Similarly, the collapse may fail to occur in models with

convective parameterizations that place strong con-

straints on the vertical structure of updraft mass flux

profiles. Nevertheless, viewing the dynamics of extreme

events in a moisture-based vertical coordinate may

provide useful insight into how the interplay between

dynamics and thermodynamics affects the strength of

precipitation extremes, and may suggest novel theoret-

ical constraints to one or both of the thermodynamic and

dynamic modes.

Even more generally, framing precipitation extremes

as an optimization problem (‘‘generate as much con-

densation as possible, subject to thermodynamic and

dynamic constraints’’) could be adapted to a diverse

range of scenarios to better understand and constrain

precipitation extremes in a changing climate. Doing so

might appear to add an additional layer of complexity to

an already difficult problem, but we found that it al-

lowed us to connect the vertical structure of convective

updrafts (which are difficult to constrain in general) to

the thermodynamic structure of the tropical atmosphere

(which, in contrast, is fairly well understood). Although

the dominant constraints in the optimization problem

may vary in different situations, simply identifying what
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those constraints are may reveal hidden connections

between precipitation extremes and their environment.

Our results also prompt a number of questions that

could motivate future work. One obvious question is

whether the predictions from the simple model for the

dynamic mode presented in section 5 hold in RCE sim-

ulations of very cold or very warm climates. Additionally,

the sensitivity of the simple model’s dynamic mode to

cloud-base buoyancy raises the question of what sets

cloud-base buoyancy in extreme precipitation or con-

densation events in the real world—a subject that might

be amenable to observational study. Another set of

questions revolves around whether the shapes of vertical

motion profiles associated with tropical precipitation ex-

tremes are as strongly constrained by moisture lapse rate

profiles on longer time scales or larger spatial scales. If the

moisture lapse rate constraint remains strong on larger

spatial scales and longer time scales, does this mean that

time- and space-averaged pressure velocity profiles con-

tinue to collapse in ~q coordinates? Or, if the collapse does

not hold on larger spatial scales and longer time scales,

does this lead to significant deviations of the thermody-

namic mode from a Clausius–Clapeyron scaling? Last,

observational data may provide an additional avenue for

probing the robustness of the ~q-coordinate collapse.

When combined with sufficiently accurate estimates of

atmospheric temperature profiles, the convective vertical

motion profiles retrieved by radar wind profilers provide

the information required to compute condensation inte-

grals from observational data. If observed vertical motion

profiles associated with high-percentile condensation in-

tegrals also collapse across different temperatures in ~q

coordinates, this would provide evidence that the collapse

is a robust emergent property of the dynamics that pro-

duce convective precipitation extremes.

We want to finish by discussing how we view this work

in the broader context of research on the response of

precipitation extremes to warming. In our view, the main

contributions of this paper are 1) to show that the ther-

modynamic mode is near CC and the dynamic mode is

small in long-channel RCE simulations, consistent with

the emerging consensus from simulations that explicitly

resolve convection, and 2) to explain why this is the case

in our channel RCE simulations specifically. Because the

dynamicmode in the real tropics is likely to be affected by

features (e.g., land–ocean contrasts, rotation, and topog-

raphy) that the channel simulations lack, it is very un-

likely that our results will generalize directly to every

model configuration, and comprehensive simulations will

play a leading role in improving constraints on future

changes in precipitation extremes. Nevertheless, insights

gained from idealized studies of precipitation extremes in

RCE are valuable. Process-oriented analysis of idealized

models improves our understanding of how the world

works and, in doing so, influences how we view it. By

highlighting several mechanisms that help to produce a

near-CC thermodynamic mode and a small dynamic

mode, this paper provides a foundation for using 7%K21

as a baseline estimate for the rate at which tropical pre-

cipitation extremes intensify with warming.
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APPENDIX A

Shapes of Moisture Lapse Rate Profiles

The moisture lapse rate profiles shown in Figs. 1a and

4b have three important features: first, they decline

more slowly with height than either saturation vapor

pressure or saturation specific humidity; second, they

increase at fixed pressure with increasing surface tem-

perature; and third, the increase is amplified in the upper

troposphere in warm climates.

We can get some intuition for these features by writ-

ing down and analyzing an expression for the moisture

lapse rate:
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where My and Ma are the molecular weights of water

vapor and dry air and e* is the saturation vapor pressure.

We can use an approximate version of the Clausius–

Clapeyron relation (Pierrehumbert 2010) to rewrite the

derivative of saturation vapor pressure as
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is the ratio between the moist and dry adiabatic tempera-

ture lapse rates (e.g., Pierrehumbert 2010) and cpv is

the heat capacity at constant pressure of water vapor.

Substituting Eq. (A2) into Eq. (A1) and rearranging gives
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where T0 ’ 1550K is a temperature scale given by
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Equation (A4) shows that themoisture lapse rate is set by

the product of two profiles: Mye*/(Map
2), which mostly

decreases with height but does so less quickly than satu-

ration specific humidity (Fig. A1a), and (T0/T)f 2 1,

which always increases with height along moist adiabats

(Fig. A1b). The combined influence of these two profiles

produces the three features noted at the start of this section:

1) The moisture lapse rate decreases away from the

surface much less quickly than saturation vapor

pressure does. When the surface is warm and the

water vapor scale height is sufficiently large, the

moisture lapse rate can even increase with height.

2) As the surfacewarms, e*/p2 increaseswhile (T0/T)f2 1

decreases. Although these changes offset, they combine

to produce an increase in the moisture lapse rate at

all levels and all surface temperatures between 280

and 310K.

3) In warm climates, increases in e*/p2 are largest in the

upper troposphere. Simultaneously, (T0/T)f 2 1

decreases below 1 near the surface. Together, these

changes produce large increases in themoisture lapse

rate away from the surface while limiting increases

close to the surface. As a result, increases in the

moisture lapse rate with warming are amplified in the

upper troposphere in warm climates.

APPENDIX B

Small-Domain RCE Simulations

We used several sets of small-domain simulations to

test the robustness of two results:

1) Pressure velocity profile shapes collapse in ~q coordi-

nates, which allowed us to simplify the thermody-

namic and dynamic modes.

2) Height-coordinate vertical velocities at the peaks of

conditional-average pressure velocity profiles scale

with 99.99th-percentile vertical velocities at the same

level, which allowed us to connect the dynamic mode

to theory for changes in peak vertical velocities.

We found that thev profile collapse was robust across a

suite of small-domain simulations (appendix B section a),

but that height-coordinate vertical velocities at the peaks

FIG. A1. (a) Moisture lapse rate profiles and (b) profiles of (T0/T)f2 1 in moist adiabatic atmospheres with two

different surface temperatures. In (a), thin solid lines showMye*/(Map
2) and thin dashed lines show e* rescaled to

have the same value as Mye*/(Map
2) at the surface. See Eq. (A4) for details.
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of conditional-average pressure velocity profiles increased

less quickly than 99.99th-percentile vertical velocities in

small-domain simulations (appendix B section b).

a. Small-domain simulation setup

Our small-domain simulations span the same SST

range as the channel simulations and use a 1283 128km2

domain with 1-km horizontal resolution. The model

configuration follows the RCE model intercomparison

project (RCEMIP) protocol (Wing et al. 2018) as closely

as possible; the primary difference is that we extend the

initial specific humidity profiles to our SST range by

diagnosing a near-surface specific humidity that gives a

relative humidity of exactly 80%.We ran the simulations

for 100 days, allowed 60 days for themodel to equilibrate,

collected statistics from instantaneous snapshots taken

every 6h over the last 40 days of simulation, and calcu-

lated condensation integrals from those snapshots in the

same way as for channel simulations.

To test robustness to model configuration, we ran

four sets of simulations with different combinations of

microphysics and subgrid-scale turbulence schemes.

Like the channel simulation, the default small-domain

simulations used the SAM single-moment microphys-

ics scheme (Khairoutdinov and Randall 2003) and a

first-order Smagorinsky scheme. In addition, we ran

small-domain simulations with the single-moment mi-

crophysics scheme replaced by the double-moment

Morrison scheme (Morrison et al. 2005), with the

Smagorinsky scheme replaced by a 1.5-order turbu-

lence closure that treats subgrid-scale kinetic energy

prognostically rather than diagnostically, and with

both the single-moment microphysics and first-order

turbulence schemes replaced by the double-moment

microphysics and 1.5-order turbulence schemes.

Like the channel simulations, all small-domain simu-

lations calculate radiative heating rates interactively

using the radiation code from the National Center

for Atmospheric Research CAM, version 3 (Collins

et al. 2006).

b. Robustness of the pressure velocity profile collapse

The collapse of conditional-average pressure velocity

profiles in ~q coordinates is fairly robust across all four

sets of small-domain simulations (Fig. B1): as in the

channel simulations, pressure velocity profiles consis-

tently peak at ~q’ 0:35, and normalized pressure velocity

profile shapes are close to climate invariant. Someminor

exceptions include pressure velocity profiles from the

280-K simulations with single-moment microphysics,

which are shifted slightly downward relative to pro-

files from warmer simulations; and pressure velocity

profiles from the 285-, 290-, and 295-K simulations

with double-momentmicrophysics, which are slightlymore

bottom-heavy than profiles from warmer simulations.

The robustness of the collapse is supported by a

‘‘collapse error’’ metric that quantifies the degree to

which profiles collapse in a given coordinate. The error

metric is defined for two profiles v1 and v2 and a verti-

cal coordinate c as

E(v
1
,v

2
; c)5

ð
jv

1
2v

2
j dc��ð

jv
1
j dc

��ð
jv

2
j dc

��1/2 . (B1)

In all five sets of simulations, mean collapse errors are

around 0.5 when measured in pressure coordinates and

are smaller by about a factor of 5 when measure in ~q

coordinates (Table B1), consistent with the visual im-

pression that pressure velocity profile shapes are much

FIG. B1. Conditional-average pressure velocity profiles in small-

domain simulations with (a) the SAM single-moment microphysics

scheme and first-order Smagorinsky subgrid-scale turbulence clo-

sure, (b) the 1.5-order turbulence closure, (c) the Morrison double-

momentmicrophysics scheme, and (d) both the 1.5-order turbulence

closure and the Morrison microphysics scheme.
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closer to climate invariant in ~q coordinates than in

pressure coordinates.

c. Vertical velocities in small-domain RCE

In the channel simulations, we found that changes in

height-coordinate vertical velocities at the peaks of

conditional-average pressure velocity profiles closely

followed changes in 99.99th-percentile vertical veloci-

ties at the same level (Fig. 8b). This allowed us to

construct a simple model for the dynamic mode based

on an entraining plume model originally formulated to

understand controls on high-percentile vertical veloci-

ties in RCE. In the small-domain simulations, however,

height-coordinate vertical velocities at the peaks of

conditional-average pressure velocity profiles increase

much less with warming than 99.99th-percentile verti-

cal velocities (Fig. B2). This alters the dynamic mode

relative to channel simulations and, between many sets

TABLE B1. Collapse metrics for conditional-average pressure velocity profiles in the channel simulations (see Fig. 5) and small-domain

simulations (see Fig. B1) and in pressure coordinates (first row) and ~q coordinates (second row). The first value in each cell is the mean

collapse error over all pairs of profiles, and the second and third values (in parentheses) are the maximum and minimum collapse errors

between any two pairs of profiles. The ‘‘default’’ configuration refers to simulations with the SAM single-moment microphysics scheme

and first-order Smagorinsky turbulence closure, ‘‘M2005’’ denotes simulations using the Morrison double-moment microphysics scheme,

and ‘‘1.5-TKE’’ denotes simulations using a 1.5-order turbulence closure.

Channel (12 288 3 192 km2) Small-domain (128 3 128 km2)

Default Default M2005 1.5-TKE M2005 1 1.5-TKE

p 0.42 (0.91, 0.11) 0.52 (1.17, 0.16) 0.52 (1.05, 0.18) 0.56 (1.20, 0.19) 0.50 (1.01, 0.15)
~q 0.08 (0.12, 0.02) 0.11 (0.22, 0.04) 0.11 (0.18, 0.04) 0.11 (0.23, 0.03) 0.11 (0.17, 0.02)

FIG. B2. Height-coordinate vertical velocities at the level where conditional-average pressure velocity profiles

peak in small-domain simulations with (a) the SAM single-moment microphysics scheme and first-order

Smagorinsky subgrid-scale turbulence closure, (b) the 1.5-order turbulence closure, (c) the Morrison double-

moment microphysics scheme, and (d) both the 1.5-order turbulence closure and the Morrison microphysics

scheme. Green curves show height coordinate vertical velocities from the peaks of conditional-average pressure

velocity profiles, and blue curves show 99.99th-percentile vertical velocities at that level.
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of simulations, produces a dynamic mode from 21%

to 22% K21 rather than the12% K21 seen in channel

simulations.

We do not have a complete explanation for the dy-

namicmode in the small-domain simulations, but we can

offer some speculation as to why vertical velocities at the

peaks of conditional-average profiles increase less quickly

relative to vertical velocity extremes than we found in

channel simulations. Conditional-average pressure ve-

locity profiles are constructed by averaging over many

individual ‘‘member’’ profiles. Plotting individual mem-

bers of conditional-average profiles suggests that typical

member profiles have strong upwardmotion over a much

larger depth in channel simulations than in small-domain

simulations. The presence of deep upward motion in

member profiles lessens the chance that any individual

member profilewill have near-zero vertical velocity at the

level where conditional-average profiles peak. This results

in noticeable differences in the structure of individual

member profiles relative to conditional-average profiles

in channel versus small-domain simulations (Fig. B3).

At 280-K SST in both channel and small-domain

simulations, very few member profiles have weak

vertical motion at levels close to the peak of the

conditional-average pressure velocity profiles. At

305-K SST, the channel simulation still has relatively few

member profiles with weak vertical motion at the level

where the conditional-average profile peaks. However,

there is somewhat less coherence between different

member profiles in 305-K small-domain simulations, and

many member profiles show weak vertical motion at the

level where the conditional-average profile peaks.

Differences in coherence in the 305-K simulations

are most apparent at the level where conditional-

average profiles peak: the gray shading indicating the

density of member profiles is lighter at small v and

darker at large v in the 305-K channel simulation than

in the 305-K small-domain simulation. Additionally,

these differences can be quantified by calculating a

mean collapse error between each member profile and

the conditional-average profile as

1

N
�
N

i51

E(v
i
,v

99:99
;p), (B2)

FIG. B3. Conditional-average pressure velocity profiles (thick black lines) superimposed on the individual pro-

files averaged over to compute them (translucent gray lines) from channel and small-domain simulations at 280 and

305K. Black circles showv calculated from 99.99th-percentile vertical velocitiesw99.99 (v5 rgw99.99) at the level at

which conditional-average v profiles peak.
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where vi are the N member profiles and v99.99 is the

conditional-average profile. The mean collapse error is

larger and increases more quickly with warming in

small-domain simulations compared to channel simula-

tions (Fig. B4), consistent with the lack of coherence

that is evident in Fig. B3.

We can use these profiles to construct a heuristic ar-

gument for why vertical velocities at the peaks of

conditional-average profiles increase less quickly than

99.99th-percentile vertical velocities in small-domain

simulations:

1) Differences between individual member profiles

and conditional-average profiles are larger and in-

crease more quickly with warming in small-domain

simulations.

2) Larger differences between member profiles mean that

velocities at or near 0 are sampled more often at warm

temperatures from the levels where conditional-average

profiles peak.

3) Sampling vertical velocities significantly above the

99.99th percentile is uncommon; more specifically,

the vertical velocity sampled from member profiles

only very rarely exceeds twice the 99.99th-percentile

vertical velocity (cf. peaks of member profiles with

circles in Fig. B3).

4) This makes it difficult to compensate for frequently

sampling vertical velocities much less than the

99.99th percentile by also frequently sampling verti-

cal velocities much larger than the 99.99th percen-

tile. As a result, the sample mean (i.e., the vertical

velocity at the peak of the conditional-average

profile) cannot increase as quickly as the 99.99th

percentile (cf. peaks of conditional-average profiles

with circles in Fig. B3).

In other words, we speculate that differences in the

relationship between 99.99th-percentile vertical velocities

and vertical velocities at the peak of conditional-average

profiles in channel versus small-domain simulations are

linked to differences in the morphology of individual

updrafts (which, in turn, may be linked to differences

between organized and unorganized convection). In

small-domain simulations, entraining plume models re-

main capable of reproducing changes in 99.99th-percentile

vertical velocities (not shown). Because changes in

vertical velocities at peaks of conditional-average pro-

files no longer follow changes in 99.99th-percentile

vertical velocities, however, we should not expect

entraining plumemodels to reproduce the small-domain

dynamic mode.
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