1801.08219v2 [math.AG] 22 Oct 2019

.
.

arxiv

Epijournal de Géométrie Algébrique ) ‘
epiga.episciences.org

Volume 3 (2019), Article Nr. 14 EPIGA

Chern classes of automorphic vector bundles, II

Héléne Esnault and Michael Harris

Abstract. We prove that the -adic Chern classes of canonical extensions of automorphic vector
bundles, over toroidal compactifications of Shimura varieties of Hodge type over Qp, descend to
classes in the £-adic cohomology of the minimal compactifications. These are invariant under the
Galois group of the p-adic field above which the variety and the bundle are defined.

Keywords. Automorphic bundles, Chern classes, Shimura varieties, perfectoids

2010 Mathematics Subject Classification. 11G18; 14G35
[Frangais]
Titre. Classes de Chern des fibrés vectoriels automorphes, II

Résumé. Nous démontrons que, sur les compactifications toroidales des variétés de Shimura de
type Hodge sur Qp, les classes de Chern £-adiques des extensions canoniques des fibrés vectoriels
automorphes descendent en des classes de cohomologie {-adique sur les compactifications min-
imales. Elles sont invariantes sous l'action du groupe de Galois du corps p-adique sur lequel la
variété et le fibré sont définis.

Received by the Editors on July 25, 2018, and in final form on July 25, 2019.
Accepted on September 2, 2019.

Héléne Esnault

Freie Universitit Berlin, Mathematik, Arnimallee 3, 14195 Berlin, Germany

e-mail: esnault@math.fu-berlin.de

Michael Harris

Department of Mathematics, Columbia University, 2090 Broadway New York, New York 10027, USA
e-mail: harris@math.columbia.edu

The research leading to these results has received funding from the European Research Council under the European Community’s

Seventh Framework Programme (FP7/2007-2013) / ERC Advanced Grants 22224001 and 290766 (AAMOT), the Einstein Founda-
tion, the NSF grants DMS-1404769 and DMS-1701651.

© by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/


http://epiga.episciences.org/
epiga.episciences.org
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Introduction . . . . . . . . L 2
1. Generalities on automorphicbundles . . . . ... ... ... ... ... ... . 0 ... 4
2. Chern classes for compactified Shimura varieties . . . . .. ... ... ... .. ... ..... 5
3. Construction of perfectoid covers . . . . . . . ... ... . L Lo 13
4. Construction of {-adic Chernclasses . . . . . ... .. ... ... .. ... ... .. ... ... 16
5. Comparisonof torsors . . . . . . . . ... .. 22
Appendix A. Geometry . . . . . . ... L 24
References . . . . . . . . .. ... e 26
Introduction

Let S be a Shimura variety. It is defined over a number field [Del71, Corollaire 5.5], called the reflex field
E, and carries a family of automorphic vector bundles &, defined (collectively) over the same number field
(Har85, Theorem 4.8]; the rationality conventions of [EHI17, §1] are recalled in §1 below). The Shimura
variety has a minimal compactification S < S™in
the sense that each of the toroidal compactifications Si°", subject to the extra choice of a fan ¥, admits a
birational proper morphism S;*" — S™n_which is an isomorphism on S and (under additional hypotheses
on the choice of fan and level subgroup, that we will make systematically) is a desingularization of S™".
The automorphic bundle £ admits a canonical extension £“" on Sf\jor constructed by Mumford [Mum?77,
Theorem 3.1] and more generally in [Har89]; £%" is locally free and defined over a finite extension of
the reflex field. On S™7, on the other hand, there is generally no locally free extension of £, except in
dimension 1 when S{°" — S™in s an isomorphism. In [EH17] we studied the continuous {-adic Chern

which in dimension > 2 is singular. This is minimal in

classes of £ in case S is proper. In particular, we proved that the higher Chern classes in continuous ¢-adic
cohomology die if £ is flat [EH17, Theorem 0.2]. A key ingredient in the proof is the study of the action of
Hecke algebra on continuous ¢-adic cohomology, and the fact that Chern classes lie in the eigenspace for
the volume character [EH17, Corollary 1.18]. When S is not proper, the Hecke algebra does not act on any
cohomology of S)t:or . Thus we cannot apply the methods of loc.cit. to prove the analogous theorem for the
canonical extensions of flat automorphic bundles on S*.

On the other hand, the Hecke algebra does act on the ¢-adic cohomology of S™". In addition, over the
field of complex numbers C, Goresky-Pardon [GP02, Theorem| used explicit estimates on differential forms
to construct classes ¢, (£)°F € H**(S™", C) which descend the Chern classes of £" in Betti cohomology
HZ”(Stzor, Q(n)). They do not come from classes in H?"(S™™, Q(n)); precisely this fact enabled Looijenga
[Lool7, Theorem 5.1] to construct mixed Tate extensions in the Hodge category on the Siegel modular
variety (see also the result announced by Nair in [Nail4, §0.4]).

Our main theorem gives an {-adic version of the Goresky-Pardon construction.

Theorem 0.1 (Theorem 4.9, Theorem 4.13). Let S be a Shimura variety of Hodge type. Let € be a prime

number, E,, the completion of E at a place w dividing the prime p different from {, and E,, — Q, be an

algebraic closure. Then the Chern classes of E<" in H 2”(5;’5—2 ,Qp(n)) descend to well defined classes c,(E) in
7=<p

HZ”(Sgin, Q¢(n)). The c,,(E) are contravariant for the change of level and of Shimura data, verify the Whitney
P
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product formula, lie in the eigenspace for the volume character of the Hecke algebra, and are invariant under the
action of the Galois group of E,, on H2"(ng, Q(n)). Their pullback under
P

2n [ ¢min 2n [ qtor _ 1y2n( qtor
H2" (537, Quln)) — HP" (S$%,Qelm)) = H>" (S5, Qc()
are the Chern classes of £ which are invariant under the Galois group of E.

Here, as in [EH17, Lemma 1.15], the volume character is the character by which the Hecke algebra acts
on the constant functions. The theorem can easily be extended to Shimura varieties of abelian type (see
Remarks 4.19) but we leave the precise statement to the reader.

As the classes of £ are even defined in continuous ¢-adic cohomology of Sgr, where E < Q is an
algebraic closure, they are in particular invariant under the Galois group of E. The classes we construct
rely on p-adic geometry and have no reason a priori not to depend on the chosen p, let alone to lie in

HZ”(Sgi“, Qq(n))C¢ via the isomorphism HZ"(SE;H, Q(n)) = H2"(sgin, Qq(n)).

We now describe the method of proof. The main tool used is the existence of a perfectoid space P™"
above! S™M which has been constructed by Peter Scholze in [Schl5, Theorem 4.L1] for Shimura varieties of
Hodge type, together with a Hodge-Tate period map 7tg7 : P™™ — X (see [CS17, Theorem 2.3] for the final
form) with values in the adic space of the compact dual variety defined over the completion of (Dp. This
allows us to define vector bundles 11;;1(€) on P™in where £ are equivariant vector bundles on X defining
the automorphic bundles. So while the bundles £ do not extend to S™", they do on Scholze’s limit space
pmln‘

On the other hand, suppose S is the Siegel modular variety. Then Pilloni and Stroh [PS16, Corollaire 1.6]
have constructed a perfectoid space P'" above S'". On P™" one has the pullback of the bundles 7t},7(£)
and the pullback via the tower defining the perfectoid space of the canonical extensions £". Theorem 2.22
asserts that the two pullbacks on P™T are the same. This argument generalizes to Shimura varieties
satisfying a certain technical Hypothesis 2.18. We expect Hypothesis 2.18 to hold in general; however, for
general Shimura varieties of Hodge type we provide a more indirect route in §3 to the same comparison
(Theorem 3.12), following a suggestion of Bhargav Bhatt.

Descent for cohomology with torsion coefficients enables one to construct the classes as claimed in
Theorem 0.1, see Appendix A.

The classes ¢,(€) € Hzn(Sgin, Q¢(n)) map in particular to well-defined classes in ¢-adic intersection
P

cohomology IH 2”(Sgin, Qq(n)). On intersection cohomology of S™" over Q, we identify the eigenspace
P

under the volume character with the cohomology of the compact dual X of S (Proposition 4.16). If the
classes in IHZ”(ng, Q(n)), identified with IHZ”(ng, Q(n)), descended to continuous ¢-adic intersec-
P

tion cohomology, we could try to apply the method developed in [EHI7] to show that the classes of £“" in
continuous ¢-adic cohomology on S$'* over E die when & if flat. This would be in accordance with [EV(2,
Theorem 1.1] where it is shown that the higher Chern classes of £%" in the rational Chow groups on the
Siegel modular variety vanish when £ is flat. However, we are not yet able to work with continuous £-adic
intersection cohomology. We prove in Lemma 4.18 the vanishing ¢, (£) = 0 for all n > 0 when £ is flat.

While we were writing the present note, it was brought to our attention that Nair in the unpublished
manuscript [Nail4] independently mentioned the possibility of using Scholze’s Hodge-Tate morphism to
construct Chern classes in the cohomology of minimal compactifications, see loc. cit. §0.4.

Acknowledgements: This note is based on Peter Scholze’s construction of a perfectoid space above the
minimal compactification of Shimura varieties of Hodge type together with the Hodge-Tate period map.

I'T We are using a simplified notation here for the space denoted gpS(G, X)Min

bundles are also denoted [£] rather than £, and the superscript '°F

in the body of the text. Automorphic vector
is absent in most cases.
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1. Generalities on automorphic bundles

If G is a reductive algebraic group over Q, by an admissible irreducible representation of G(A) we mean an
irreducible admissible (g, K) x G(A f)-module, where g is the complexified Lie algebra of G, K C G(R) is a
connected subgroup generated by the center of G(IR) and a maximal compact connected subgroup, G(A)
(G(Ay)) is the group of (finite) adéles of G. If 7t is such a representation then we write

T T ®Tf

where 77, is an irreducible admissible (g, K)-module and 7ts is an irreducible admissible representation of
G(Ay).

Let (G, X) be a Shimura datum: G is a reductive algebraic group over Q, and X is a (finite union of)
hermitian symmetric spaces, endowed with a transitive action of G(IR) satisfying a familiar list of axioms.
The compact dual X of X is a (prOJectlve) flag variety for G. Thus one can speak of the category Vectg(X)
of G-equivariant vector bundles on X; the choice of a base point & € X € X determines an equivalence of
categories Rep(P;) =~ Vectg(X), where B, C G is the stabilizer of /1, a maximal parabolic subgroup of G,
and for any algebraic group H, Rep(H) denotes the tensor category of its representations. Let K} be the
Levi quotient of Py; the group Kj, o, := K;(C) N G(RR) can be identified with a maximal Zariski connected
subgroup of G(RR) that is compact modulo the center of G. If K C G(A) is an open compact subgroup, we
let xS(G, X) denote the Shimura variety attached to (G, X) at level K; it has a canonical model over the
reflex field E(G, X) which is a number field (see [Del7l, Corollaire 5.5]). We always assume that K is neat;
then g S(G, X) is a smooth quasi-projective variety.

Furthermore, we use the notation and conventions of [EHI7, §L.1-1.2], specifically £ € Vect(X) the
notation for the vector bundle on the compact dual, [£]x € Vect(xS(G, X)) for the automorphic vector
bundle associated to the underlying representation of the compact (mod center) group Kj, ., C G(IR), the
stabilizer of a chosen point h € X. As in [EHI7]|, we always assume that K}, is defined over a CM field and
that every irreducible representation of Kj has a model rational over the CM field E;; in particular, P, is
also defined over E;. For the purposes of constructing Chern classes, we need only consider semisimple
representations of P, which necessarily factor through representations of Kj,.

The action of the Hecke algebra Hg ={T(g),g € G(Ay)} is recalled in Section 4. The Chern character

chy : Vectg(X) — CH(X)q — &;H* (X,Q(i))
induces isomorphisms

Ko (Rep(Kp)) ®k,(rep(c) Q — >CH(X)q — — @H* (X, Qi) (LY
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and analogously in ¢-adic cohomology. On the other hand, the construction of automorphic vector bundles
gives rise to a homomorphism

ChK:{VectG(X) —  CH(kS(G,X))g, 12)

E ch([€]k)

where , indicates the eigenvectors for the volume character. If £ € Vectg(X) is in the image of Rep(G) via
the factorization
Rep(G) — Rep(Kj,) — Vectg(X),

then [£] is endowed with a natural flat connection, so its higher Chern classes in &;H% (xS(G, X), Q(i))
are equal to 0. We obtain a morphism

Ko(Rep(Ky)) ®k, (rep(c) Q = & H* (kS(G, X),Q(i)), C &:H* (xS(G,X),Q(i)), (1.3)

analogous to (L1), where the subscript , denotes a certain eigenspace for the action of the unramified Hecke
algebra.

2. Chern classes for compactified Shimura varieties

2.A. Toroidal and minimal compactifications, and canonical extensions of automorphic
vector bundles

Henceforward we assume the Shimura variety xS(G, X) is not projective; equivalently, the derived subgroup
G9¢* of G is isotropic over Q. In this case the automorphic theory naturally gives information about Chern
classes of canonical extensions on toroidal compactifications on the one hand; on the other hand, the v-
eigenspace most naturally appears in intersection cohomology of the minimal compactification. This has
been worked out in detail in the C* and the L, theory by Goresky and Pardon in [GP02]. In what follows, we
let jg : kS(G,X) < xS(G,X)™" denote the minimal (Baily-Borel-Satake) compactification. The minimal
compactification is functorial, thus if K’ C K, there is a unique morphism g S(G,X)™" — ¢S(G,X)min
extending the natural map of open Shimura varieties, and if § € G(Ay), then the Hecke correspondence
T(g) extends canonically to a correspondence on g S(G,X)™" x xS(G,X)™" where the product is taken
over the reflex field. In particular, for any cohomology theory H as above, we have Hecke operators

T(g) € End(H*(xS(G, X)™™)).

The minimal compactification is always singular, except when G°? is a product of copies of PGL(2),
and the automorphic vector bundles do not in general extend as bundles to xS(G, X)™", Thus the classical
theory does not automatically attach Chern classes to automorphic vector bundles on non-proper Shimura
varieties in some cohomology theory H;(KS(G,X)min,*).

On the other hand, there is a large collection of toroidal compactifications S(G,X) — xS(G,X)y
indexed by combinatorial data ¥ (see [AMRTY75, III, §6, Main Theorem| for details; the adelic construction
is in [Har89, Pin90]). The set of ¥ is adapted to the level subgroup K. It is partially ordered by refinement:
if ¥’ is a refinement of ¥, then there is a natural proper morphism

pyy  kS(G, X))y — kS(G, X)y

extending the identity map on the open Shimura variety. Any two X and X’ can be simultaneously refined
by some ¥”. Further, the open embedding g S(G, X) < xS(G, X)y, is completed to a diagram

' kS(G, X)y
e l%: (2.1)

kS(G, X)— ¢ 5(G, x)min
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where @y is a proper morphism, which is an isomorphism on g S(G, X). Now assume that K is a neat open
compact subgroup of G(Ay), in the sense of [Har89] or [Pin90, 0.6]. In that case, we can choose ¥ so that
kS(G,X)y is smooth and projective, and the boundary divisor has normal crossings. We do so unless we
specify otherwise. With these conventions, @y is always a desingularization of the minimal compactification,
which is constructed as in [AMRT75], loc.cit.; moreover, for any refinement ¥’ of ¥, ¢ S(G, X)y/ is again
smooth and projective.

Mumford proved in [Mum?77, Theorem 3.1] that, if £ € VectsGS(X ) (recall from [EH17] that the upper index
stands for semi-simple) the automorphic vector bundle [€]x on gS(G,X) admits a canonical extension
[E]E" to kS(G, X)y; we write [£ ]I% if we want to emphasize the toroidal data. The adelic construction is
carried out in Section 4 of [Har89], where Mumford’s result was generalized to arbitrary £ € Vectg(X). In
particular it was shown there that if £ = (GxW)/P,, where W is the restriction to P, of a representation of G,
the action of P, is diagonal, and we have identified G/P, with X, then [€]k is a vector bundle on g S(G, X)
with a flat connection, and its canonical extension [E]F" on gS(G,X)y is exactly Deligne’s canonical
extension. In particular, the connection has logarithmic poles along xS(G, X)y \ ¢S(G, X). Moreover, if 3’

is a refinement of ¥, then

SS

Py xl€lk = [Elk
(see [Har90, Lemma 4.2.4]), which in particular implies

prsAE1% = Rpy 5 [E]% = [E]%-

Finally, for any fixed %,
e

is a monoidal functor from Vects(X) to the category of vector bundles on g S(G, X)y.

Unfortunately, the ¢ € G(Ay) generally permute the set of ¥ and thus the Hecke correspondences T'(g)
in general do not extend to correspondences on a given g S(G,X)y. Thus the arguments of [EHI17], which
are based on the study of the v-eigenspace for the Hecke operators in the cohomology of ¢ S(G, X), cannot
be applied directly to prove vanishing of higher Chern classes of [£]F" in continuous £-adic cohomology
of ¢S(G, X)y over its reflex field, when [£]g is a flat automorphic vector bundle.

One can obtain information about the classes of [E]g on the open Shimura variety, but these lose
information. From the standpoint of automorphic forms, the natural target of the topological Chern classes
of automorphic vector bundles should be the intersection cohomology of the minimal compactification. We
fix cohomological notation: H*(Z,Q), resp. IH*(Z,Q) denotes Betti resp. intersection cohomology of a
complex variety Z, while H*(Z, Qy), resp. IH*(Z,Qy) denote Q,-étale cohomology.

Remark 2.2. The action of Hecke correspondences on Betti intersection cohomology IH(xS(G,X), Q)
are defined analytically by reference to Zucker’s conjecture. For a purely geometric construction of the
action of Hecke correspondences on IH(gS(G,X),Q) and thus on IH(gS(G,X), Q) see [GMO03, (13.3)]
(the argument applies more generally to weighted cohomology as defined there).

The following statement generalizes Proposition 1.20 of [EHI17] and is proved in the same way.
Proposition 2.3. There is a canonical isomorphism of algebras
H'(X,Q) = >IH' (xS(G, X)™", Q),
H'(X, Q) = =TH" (xS(G, X)™", Q).

Proof. The second statement is deduced directly from the first one by the comparison isomorphism [BBD82,
Section 6]. As in the proof of the analogous fact in [EH17], it suffices to prove the corresponding statement
over C. By Zucker’s Conjecture [Loo88, SS90], IH*(xS(G,X)™",C) is computed using square-integrable
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automorphic forms and Matsushima’s formula [Bor83, 3.6, formula (1)]. Say the space .A()(G) of square-
integrable automorphic forms on G(Q)\G(A) decomposes as the direct sum

A(2)(G) = @rm(m)m

where 7t runs over irreducible admissible representations of G(A) and m(7) is a non-negative integer, which
is positive for a countable set of 7t 2. Then

[H' (xS(G,X)™",C) - — & m(n)(Hi(g,Kh;noo)@)n?).

This implies ‘ '
IH'(S(G,X),C), —— & m(r)(H'(g,Ky; Tteo) ® (1)), (24)

where (T(}If )y is the eigenspace in 7‘(]1(< for the volume character of Hg. Write 7tp = ®,;nq, where g runs

over rational primes. Now if g is unramified for K then njlf = 0 unless 7, is spherical. Now the trivial
representation of G(Q,) has the property that it equals its spherical subspace and the corresponding
representation of the local Hecke algebra is the (local) volume character. By the Satake parametrization
the trivial representation is the only spherical representation of G(Qq) with this property. Thus (n}( )y 20
implies that 77, is the trivial representation for all 4 that are unramified for K. It then follows from weak
approximation that 7t is in fact the trivial representation. Thus for all i,

IH (¢S(G,X),C), — —H'(g,Ky; C). (2.5)

But this is equal to H(X,C)=IH(X,C) by a standard calculation; see [GP02, Remark 16.6]. The rest of
the proof follows as in the proof of [EHI7, Proposition 1.20]. O

The point of the preceding proposition is that the Chern classes of automorphic vector bundles on
the non-proper Shimura variety xS(G,X) are represented by square-integrable automorphic forms, more
precisely, by the differential forms on G(Q)\G(A) that are invariant under the action of G(A). In other
words, the only 7t that contributes is the space of constant functions on G(Q)\G(A), which are square
integrable modulo the center of G(IR). Thus TH*(xS(G, X)™",Q(*)), can be viewed as L,-Chern classes
of automorphic vector bundles. In addition IH?>*!(xS(G, X)™", Q(*)), = 0. Although most automorphic
vector bundles do not extend as bundles to the minimal compactification g S(G,X)™™, it was proved by
Goresky and Pardon in [GP02, Main Theorem| that under the natural homomorphism

H*(xS(G, X)™" C), — IH*(xS(G,X)™",C). (2.6)

the classes in IH*(x S(G, X)™", C), lift canonically, as differential forms, to ordinary singular cohomology

H*(xS(G, X)™in, C),.

We use the notation of the diagram (2.1). Let K be a neat open compact subgroup of G(Ay), as above.
Let [£]g be the automorphic vector bundle on gS(G,X) attached to the homogeneous vector bundle
£ € Vectg(X). Let

cu([E1F™) € H™(xS(G, X)x, Q(n), c,u([E]x) € H*(kS(G, X),Q(n))

be the Chern classes in Betti cohomology. The following theorem summarizes the main results of the article

[GP02].
Theorem 2.7. (i) There are canonical classes c,,([€]x)°" € H*(xS(G, X)™,C) such that

P5(ca([E]K)T) = ca([E]E™) € H(xS(G, X)x, Q(n)).

21 Automorphic forms are understood to be C* and K}, -finite, and to satisfy the remaining conditions introduced by Harish-
Chandra, hence no completion is needed.
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(ii) In particular
ik (ea([E1K)°T) = eu([E]x) € H*(kS(G, X), Q(n)).

(iti) The classes c,([E])CF (we drop the subscript K) are represented by square integrable automorphic forms.
More precisely, the image of c,,([E])°F under the morphism of (2.6) is contained in the subspace of intersec-
tion cohomology that corresponds, under the isomorphism (2.4), to the relative Lie algebra cohomology of ®1t
with trivial archimedean component 1.

(iv) Suppose GI*(R) = [1, G; is a product of simple Lie groups, all of which are of the form Sp(2n,R),
SU(p,q), SO*(2n), or SO(p, 2) with p odd >. The Q-subalgebra

HEern(kS(G, X)™) € H¥ (¢S(G,X)™", €)

generated by the c,([£])CF, as £ varies over Vect(X), is endowed with a naturally defined surjective
homomorphism

Hé;ern(KS(G'X)min) i Hz*(X: Q(*))

such that for any n the diagram

HE(xS(G,X)min) —— - ——__ EH22(5(G, X)™in, Q(n)),

natural map

hl _~_>TProp.2.3

H(X,Q(n)  ———-- - H™X,Q(n)
commutes. In other words, the isomorphism of Proposition 2.3 tensor C factors through

natural map

H?(¢S(G,X)™",€) — -~ =~~~ HH22(x:$4G, X)™, C).

In the next sections, we use Peter Scholze’s perfectoid geometry and his Hodge-Tate morphism to prove
an analogue of the Goresky-Pardon theorem for {-adic cohomology of Shimura varieties of abelian type.

2.A.a. Even-dimensional quadrics

Theorem 2.7 excludes the case where GI¢'(IR) contains a factor isomorphic to SO(2k — 2,2) with k > 2.
Assuming Gder s Q-simple, there is then a totally real field F, with [F : Q] = d, say, such that Xq: is
isomorphic to a product Q% of d smooth projective complex quadrics Q,,, each of dimension 1 = 2k — 2.
The reason for this exclusion is explained in §16.6 of [GP02]. Following §16.5 of [BH58], we consider the
cohomology algebra A := H*(Q,,,C) of a complex quadric Q,, = SO(n + 2)/SO(n) x SO(2) of dimension
n, with C = C or Q. Then A contains a subalgebra A* isomorphic to C[c; ]/(C?+1), with ¢; € H*(Q,, C)
given by the Chern class of the line bundle corresponding to the standard representation of SO(2). (There
is a misprint in [GP02]; the total dimension of A* as C-vector space is 1+ 1, not n.) Moreover there is an
isomorphism

A=A"[e]/(e* ) (2.8)

with e the Euler class of the the vector bundle arising from the standard representation of SO(#n). In [BH58],
the class ¢; is denoted x; and the class e is denoted []i_, x;; the equation e?
for formula (6) of [BH58].

More generally, if X is isomorphic to Q% as above, we denote by c1, € H?(X¢, C(1)) the class of the
line bundle defined above corresponding to the r-th factor of Qﬁ, r=1,...,d, and let e, correspond to

= c{ then follows immediately

3T Some of the G; can also be of the form SO(2,2), as in the statement of [GP02].
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the Euler class in the r-th factor. The isomorphism of Proposition 2.3 is valid in all cases, and Goresky

and Pardon showed that the image in TH? (xS(G,X)™",Q(j)), of the classes CJl,r e H%(X¢, C(j)) lift
canonically to the cohomology of the minimal compactification (the twist j here is unnecessary for C = C,
we write it for the case C = Q). However, when n = 2k — 2 > 2, they were unable to show that the e, lift.
We can extend the statement of Theorem 2.7 with the following definition.

Definition 2.9. (i) Suppose G4¢' is Q-simple and G4¢'(RR) ~ SO(2k - 2,2) for some integer d, with k > 2.
Suppose C = C, Qy, or Q. Define
H*(X,C)* c H'(X,C);

. . (2.10)
IH"(kS(G, X)™",Q(n)), € IH (xS(G,X)™",Q(n)),

to be the subalgebras generated respectively by the classes ¢; ,, ¥ = 1,...,d, and their images under the
isomorphism of Proposition 2.3. We similarly define

[Ko(Rep(Kp)) ®k,(rep(G)) C1™ C Ko(Rep(Kp)) @k, (rep(c)) C (2.11)

to be the inverse image of H*(X,C)* under the isomorphism (L1).
(ii) If G satisfies condition (iv) of Theorem 2.7, we let

H*(X,C)" =H*(X,C);
TH"(kS(G, X)™,Q(n)); = IH*(xS(G, X)™™, Q(n)),;
[Ko(Rep(Kp)) ®k,(rep(G)) C1™ = Ko(Rep(Kp)) ®k,(rep(G)) C-

(iii) In either case, we define
Vectg(X)" = chy! (H*(X,C)*) C Ko(Vectg(X)).
We continue to use the notation £ to denote (virtual) bundles in Vectg(X)*.

Theorem 2.12. Suppose G satisfies either (i) or (ii) of Definition 2.9. Then the conclusions of Theorem 2.7 hold
with H*(X, C), Vectg(X), and IH*(xS(G, X)™",Q(n)), replaced by the versions with superscript *, and for

A

EeVectg(X)*.

The theorem, and its application in Proposition 4.16 below, naturally extend to groups G such that GI¢*
is a product of groups of type (i) and (ii) in Definition 2.9. We omit the details.

2.B. Perfectoid Shimura varieties and the Hodge-Tate morphism

The results of the present section are entirely due to Scholze [Schl5], then to Caraiani-Scholze [CS17] and
Pilloni-Stroh [PS16].

Fix a level subgroup K C G(Ay). Let G(Af) — G(Qp), k — k, be the projection. Denote by K,, its
projection to G(Q,). For r > 0 we let K, , C K, be a decreasing family of subgroups of finite index, with
K, D Kp 4y for all 7, and such that (1, K, , = {1}. Let K, ={k € K | k, € K, ;}, and let KP =N,K,. We
identify KP with its projection to the prime-to-p adéles G(A?); then K? is an open compact subgroup of
G(AI}) called a “tame level subgroup”.

We assume that the Shimura datum (G, X) is of Hodge type. Thus, up to replacing K by a subgroup of
finite index, g S(G, X) admits an embedding of Shimura varieties in a Siegel modular variety of some level
attached to the Shimura datum (GSp(2g), X5,) for some g, where X, is the union of the Siegel upper and

lower half-spaces. We let ng denote the compact dual flag variety of X;,. Let C denote the completion of
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an algebraic closure Ep of Qp. Denote by g S(G, X), resp. ,S (G, X)™" the adic space over C attached
to k,S(G, X), resp. g S(G,X )™in - We assume that KP is contained in the principal congruence subgroup
of level N for some N > 3, in the sense explained in §4 of [Schl5]. We restate one of the main theorems
of Scholze’s article. In §4.1 of loc. cit. it is shown that there is a level K] for (GSp(2g), X5¢) such that

K, = K;NG(Ay), and such that the scheme theoretic image of KYS(G,X)min in K;S(GSp(Zg),X2g)min does

not depend on the choice of K;. We denote it by KyS(G,X)min, and by KyS(G,X)min its associated C-adic
space.

Theorem 2.13 (Theorem 4.1.1 in [Sch15]). There is a commutative diagram of morphisms of adic spaces *

KPS(GIX) ~ EEL‘K,S(G’X)

j lim jr (2.14)
——————min . ——————min
krS(G, X) ~ lim g 8(G,X)

Here, on the left side, | is an open embedding of perfectoid Shimura varieties over C, on the right side, £i_m_’4 Jr
denotes the formal inverse system of open embeddings of adic spaces over C, and the notation ~ is defined precisely
in [SW13, Definition 2.4.1]. Moreover, there is a G(Q,)-equivariant Hodge-Tate morphism

min

TTHT ZKpS(G,X) i .)ezg
which is compatible with change of tame level subgroup KP.

Discussion 2.15. Here we use the notation )22g for the adic space over C attached to the flag variety
Xag- In loc. cit. the notation Xy, is used for the perfectoid Shimura variety xrS(G, X)™n, The notation
~ indicates that the right hand side of (2.14) is not to be viewed as a projective limit in the category of
adic spaces, which in general does not make sense. Rather, what is meant is that, for each r, there is a
commutative diagram

krS(G,X) kS(G X)

j‘[ [] (2.16)

min —————min

KPS(GIX) éK,S(G’X) p

that these are compatible with the natural maps from level K, to level K,; and that the objects on the left
have the properties indicated in [SW13, Definition 2.4.1].

The target of the Hodge-Tate morphism was clarified in [CS17]. Let X C /'\?zg be the closed embedding
of C-adic spaces corresponding to the closed embedding X C ng of the compact duals of X and Xp,.

Theorem 2.17 (Theorem 2.1.3 in [CS17]). The Hodge-Tate morphism mcyr in Theorem 2.13 factors through the
inclusion X C Xy, yielding a G(Q,)- equivariant Hodge-Tate morphism

TTHT * KpS(G,X)mln g /\?
Proof. The existence of 7ty is stated for the gpen perfectoid Shimura variety g»S(G, X) with values in X.

Since X is closed in )22g, the extension to the boundary then follows from Theorem 2.13 by continuity, as
in [C+6, Theorem 3.3.4]. O

4T The projective limits on the right-hand side are not literally adic spaces; see Discussion 2.15 for the precise meaning of this
statement.
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Assume for the moment that (G, X) = (GSp(2g), X5¢). Fix K, C GSp(2¢,Af) a neat compact open
subgroup, with K, = GSp(2g,Z,) and write Kg'Ag instead of KgS(GSp(2g),X2g) for the Siegel modular
variety of genus g and level K, viewed as an adic space over C. Let K, . C K, be the principal congruence
subgroup of K, of level p". Let KgAtgor = k,Agx, be a smooth projective toroidal compactification of
KgAg for some combinatorial datum X, as above. Following Pilloni-Stroh in [PS16], §1.3, but with a change
of notation, we let KgJ.Atgor denote the corresponding toroidal compactification of Kg,rAg for each r, with
the same X,. The Kgm.Atgor form a projective system of adic spaces over C. The authors construct a
projective system of normal models g Ator over Spec(O¢) for each r, and define a perfectoid space

Kp.Ator which is the generic fiber of the prOJectlve limit of the g Atgo(ro , in the sense of [SWI13, Section 2.2].
See [PS16, Section A.12 and Corollaire A.19] for the statement that the projective limit, which they denote
X (p®)tor-mod s indeed perfectoid. There is a natural map

. tor min

Let (G, X) be any Shimura datum of Hodge type, with 1: (G, X) < (GSp(2g), X5,) a fixed symplectic
embedding. In the remainder of this section we make the following hypothesis, which (as we have seen) is
true for the Shimura datum (GSp(2g), X5,):

Hypothesis 2.18. The projective system of x S(G, X) has a compatible projective system of toroidal compactifi-
cations g, S(G, X)y such that, if x S(G, X)y is the associated adic space over C, then there is a perfectoid space
xrS(G, X))y such that

krS(G, X)y ~ limg S(G, X)y

in the sense of [SW13, Section 2.2].

It is likely the Hypothesis 2.18 is valid, but its proof is probably as elaborate as the construction of
integral toroidal compactifications in [Lanl3] >. Thus we will provide an alternative proof of our main
theorems, that does not depend on this hypothesis, in section §3. However, the proof assuming Hypothesis
2.18 is considerably simpler, and it is valid, by [PS16], in the Siegel modular case.

Under Hypothesis 2.18, there is automatically a map

q: xrS(G, X)y — grS(G, X)™in

as well as the maps

a1 k. S(G,X)y > k,S(G,X)™"

at finite level (the existence of which does not depend on the hypothesis).
By [Har85, Section 3.4], there is a correspondence

kI(G, X)—=X

b’t (2.19)
kS(G,X)

where b’ is a family of G-torsors, functorial with respect to inclusions K’ C K and translation by elements
g € G(Ay), and a’ is a G-equivariant morphism. For any G-equivariant vector bundle £ over X, the
pullback a™(€) is G-equivariant, and thus descends to the automorphic vector bundle [£] over g S(G, X).
The G —torsor gI(G,X) is constructed as the moduli space Isom®([V,], V) of trivializations of a flat
automorphic vector bundle [V, ] attached to a faithful representation p : G — GL(V); the superscript ®
indicates that the isomorphisms respect absolute Hodge cycles. Thus the construction requires a priori the

571 Ana Caraiani has informed us that a proof of Hypothesis 2.18, for the case of a Shimura variety attached to a quasi-split
unitary similitude group of even dimension, will appear in her forthcoming joint work with Scholze.
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existence of the automorphic vector bundle [V,]. When g S(G, X) is of Hodge type, one can take p to be a
symplectic embedding p : G — GSp(V'), and define [V, ] to be the pullback to gS(G, X) of the (dual of the)
relative de Rham H! of the universal abelian scheme over the Siegel modular variety attached to GSp(V).
Then the morphism a is defined by transferring the Hodge filtration on [V, ] to the constant vector bundle
defined by V. That this construction is canonically independent of the choice of symplectic embedding p
is explained in [Har85, Remark 4.9.1]; see also [CS17, Lemma 2.3.4].

Choose a base point 1 € X C X as in Section I; we may as well assume / to be a CM point. Recall
that P, denotes the stabilizer of h and K}, its Levi quotient (in [CSI7] this group is denoted M,). Any
faithful representation a : K, — GL(W),) defines by pullback to P, a G-equivariant vector bundle W, over
X, and thus an automorphic vector bundle [W,] over xS(G,X) that varies functorially in K. We can
then define a family (depending on K) of Kj-torsors b: T = g T;,(G, X) — ¢ S(G, X) with a Kj-equivariant
morphism a : g T;,(G, X) — X as the moduli space of trivializations of [W;,] as above. More precisely,
letting R, P, denote the unipotent radical of P, the natural morphism X, == G/R,P, — X is canonically
a G-equivariant Kj-torsor, whose pullback a’~1X;, descends to a Kj,-torsor over gS(G, X), over the reflex
field of the CM point h, that is naturally identified with T defined above. Moreover, the construction is
canonically independent of the choice of base point. This is also constructed in Section 2.3, especially
Lemma 2.3.5, of [CS17].

The pullback of T via the ringed space morphism X — X is denoted by 7. The Kj-torsor b has a
Mumford extension T" — ¢ S(G, X)y as a G-torsor. See [HZ94], specifically Lemma 4.4.2 and pages 320-
321, where the Mumford extension of the G-torsor b’ in (2.19) is constructed; the Kj-torsor is constructed
in the same way. One denotes by M®“" = p M the pullback of T®" via the ringed space morphism
kS(G, X)y = kS(G, X)sy.

We define the Kj,-torsor

Mp =nyrT

on g»S(G,X)™", which coincides by definition with the Kj-torsor defined in [CS17, Lemma 2.3.8]. We
define the Kj,-torsor

Mg s,k = T o (KRM™") (2.20)
on KpS(G, X)):

Proposition 2.21 (Proposition 2.3.9 in [CS17]). For any neat level subgroup K, there is a canonical isomor-
phism

My = =iy Mar 3k
of Ky, -torsors over pS(G, X).

Although the article [CS17] is written for compact Shimura varieties, the argument developed there
for this point is valid for any Shimura variety of Hodge type. Strictly speaking, as explained in [CS17], the
torsors M, and M 5 x have natural extensions to G-torsors by pullback to torsors for opposite parabolics,
followed by pushforward to G, so the comparison only applies to semisimple automorphic vector bundles.

The following theorem is essentially due to Pilloni and Stroh.

Theorem 2.22. Assume Hypothesis 2.18. Then, for any neat level subgroup K, the isomorphism of Proposition
2.21 extends to a canonical isomorphism

g M, —— Mgy

of Ky, -torsors over xpS(G, X)y. As KP varies, these isomorphisms are equivariant under the action ofG(Af).
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In [PS16] this is proved for the Siegel modular variety, although it is not stated in this form. In Section 5
we explain their result and show how to obtain Theorem 2.22 for general Shimura varieties of Hodge type,
under Hypothesis 2.18. In the following section, we show how to dispense with Hypothesis 2.18 and prove
Theorem 3.12 as an alternative to Theorem 2.22. In Section 4 we construct £-adic Chern classes using
either Theorem 2.22 (when it is available) or Theorem 3.12 for general Shimura varieties of Hodge type.

3. Construction of perfectoid covers

Let (G, X) be any Shimura datum of Hodge type, with 1 : (G, X) < (GSp(2g), X3,) a fixed symplectic
embedding. Choose a combinatorial datum ¥ for xS(G, X) that is compatible with the fixed ¥y chosen
above, so that there is a morphism

[1]: kS(G, X))y =k, Ag 3,
which factors through

min

kS(GX)s = K, Agy, X, apn kS(GX) - (3.0)

We denote the corresponding C-adic spaces by xS(G,X)y and gS(G, X)y.

If we admitted Hypothesis 2.18 then we would be able to replace xS(G,X)y by xS(G,X)y in what
follows; however, we will not assume Hypothesis 2.18 in the remainder of this section. By [Schl2, Prop. 6.18]
the fibre product

krS(G Xy 1= gr A" X g AT wSG X)) (3.2)

exists in the category of perfectoid spaces. We denote by

§:1S(G X)y = rS(GX) (3.3)
the projection on the second factor, and by

_ min

gr kv S(G, X)y — g, S(G, X)

—————min ———————min

the composition with the canonical map of x»S(G,X)  to g S(G,X) . By definition, in the sense of

[SW13, Definition 2.4.1], one has

g ALE ~Lim g A, AT lim e AT, G S(G X ~ lim g S(GX)
r r r
One deduces

k(G X)y ~lim S(G, X)s. (3.4)

r

In particular, by [Schl2, Corollary 7.1.8], one has the relation

H* (xS(G, X)5, Z/") = lim H* (x,5(G X)s, 2/C"). (3.5)

r

On the other hand, Scholze’s Hodge-Tate map yields the composite map

xS(G X)y — KgAfgnin — Xy,
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which by definition is the same as the composite map

min Tyt

kS(G,X)s = rS(G X)) ———8— X
This defines a map
S(G,X)y » X (3.6)

in the category of C-adic spaces. It is G(Q,)-equivariant.

In what follows the idea to use the space denoted PN Perf 6 define a perfectoid space above g S(G, X)y
is due to Bhargav Bhatt. We fix a natural number s. Associated to it we have the normalization morphism
vs 1k, S(G, X)y = k,S(G, X)y. It is a finite morphism, thus it factors as

projection

N —a o —
Vs 1 k. S(G,X)y —x.S(G, X)p xc PN ——=——— SEX)y
for some natural number N, where 7, is a closed embedding. We set
Y; = Image(7;).

By definition 77, induces an isomorphism between g S(G, X)y and Y. For any p > 0 we also define

Y5+p = Ys Xm Ks+pS(G’X)E‘ (37)
We fix coordinates (X : ... : xy) of PN and define for p € N the finite flat morphisms ¢,, : PN — PN
by ¢p(xg:...:xN) = (xgp T xf\]p) Over C, a perfectoid space IPN'Pe'f is associated to (IPN,(j)p) [Schl4,

Section 17], such that
N,perf _ q:
P lin_(j)p.
p

Then the fiber product
krS(G, X)5,N = krS(G, X)y xc PN Per!

exists as a perfectoid space, by [Schl2, Proposition 6.18], and we have

krS(G, X)p N ~limg  S(G, X)y xc PY, (3.8)
p

where the map
k.. S(G,X)x xc PV — k S(G,X)y xc PV

s+p

is given by the natural projection in the first factor and ¢, in the second factor.
Proposition 3.9. There is a closed perfectoid subspace
Zs CxpS(G, X)y,N
such that
Z;~ liHm_YHp.
p>0
Proof. We define Z; C x»S(G, X)y y by the pullback of the ideal of Y; in g S(G, X)y x¢ PN via (3.8)
KPS(GlX)Z,N - KSS(GJX)Z Xc IPN.

It follows from [Bhal7, Proposition 9.4.1] that Z; is perfectoid. O
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min
)

By construction, Z; maps to g»S(G, X)y which itself maps to g, S(G,X) , and to g S(G, X)y, but not
necessarily to g S(G, X)y for r >s. On the other hand, g S(G, X)y naturally maps to KSS(G,X)min, and
thus we have a composite diagram

¢ min

Z, 5k S(G,X)y 5 ¢ S(G,X)™ 55 1 S(G, X) (3.10)

We let Q denote the composite of the three maps, and let g = u; o g; denote the composite of the last two
=5
maps.

Proposition 3.11. The perfectoid space Z; has the following properties.

(i) There are morphisms

0: 7. Y0 8(G X)y 1o S(G, X)

¢:Z; > . S(GX)y

min

such that the following diagram commutes

(ii) ZThe homomorphism on cohomology
¢": H* (Y, Fp) = H*(Z, IFy),

induced from (i), is injective, where € is a prime different from p. The injectivity holds also true with
Qg -coefficients when s = 0.

Proof. In what follows we assume G®@ contains no Q-simple factor isomorphic to PGL(2) - in other words,
that S(G, X) contains no factor isomorphic to the elliptic modular curve - since in that case the minimal
and toroidal compactifications coincide and there is nothing to prove. The point (i) is just a restatement of
the above construction. We prove (ii). By Proposition 3.9 together with [Schl2, Corollary 7.18], we have

H*(Z,[F,) = I_iEn_I)_I.(Ys+p:H:€)'
p=0

On the other hand, the proper maps Y, , — Y, 1 for p > 1 are finite, of degree a p-power for s > 1.
Indeed, the finiteness of this map is reduced by Definition (3.7) to the corresponding assertion for the maps

K..,S(G, X)y = g S(G, X)s.

s+p

This in turn is reduced by (3.1) to the well known fact that the corresponding morphisms for change of
level in the toroidal compactification Kg'Ag,Eg and the compactifications g S(G, X)mm are finite. Indeed, let
wg denote the determinant of the relative cotangent bundle of the universal abelian scheme over KgAg; in
other words, wy is the line bundle whose global sections are Siegel modular forms of weight 1 and level K.
Then it is well known (from the theory of the minimal compactification, and because we have excluded the

case of modular curves) that w, extends to an ample line bundle over KgAg‘in, and that the pullback of this

extension to xS(G, X)™" is ample as well. Thus - although we have been told there is a problem with the
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injectivity claim in Corollary 10.2.3 of [SW17] - the map from xS(G, X)™" to its image in Kg.Agﬁn is finite,
mi
)

and the morphisms from xS(G, X)™" to xS(G, X

n
are finite, and from the commutative square

S(G, x)min Anite "5 (G 3"

o |

kS(G,X)min A S(G, X)

min
’

for s > r we conclude that the the level-changing maps xS(G, X );mn - kS(G, X )rrnln are finite.
This implies (ii) for s > 1 - and also for s = 0, after replacing IF, by Q, in case the order of the group

Ky/Kj is divisible by £. |
The analogue of Theorem 2.22 is

Theorem 3.12. For any neat level subgroup K and any s > 0, the isomorphism of Proposition 2.21 extends to a
canonical isomorphism

QM) — >¢" Mg s ,
of Ky, -torsors over Zg. As KP varies, these isomorphisms are equivariant under the action ofG(Af).

The proof is given in Section 5.

4. Construction of {-adic Chern classes

As in the previous sections, all level subgroups K are neat and all toroidal compactifications are smooth
and projective. The constructions in the present section depend in an essential way on on Theorem 3.12 -
or on Theorem 2.22, if we assume Hypothesis 2.18. Proofs are given without assuming Hypothesis 2.18; to
pass from the situation with Hypothesis 2.18, we just formally set Q = g.

4.A. Construction using 7ty
As in [CS17, Theorem 2.1.3 (2)], the existence of the Kj-torsor M, over KpS(G,X)mm

a functor

implies that there is

. r ——————min
Vectg (X)[ = RepKh] —  {Vector bundles over g, S(G,X) '} (41)
E = [&],
Similarly, the existence of the Kj, torsor Mg y g over xS(G, X)y gives rise to a functor
A r
Vect$(X)[ ~Repg,] —  {Vector bundles over xS(G, X)s} (4.2)

E > [En],
With the notation of Theorem 3.12, we define

[Elpzk, = Q[ [Elarzk, = ¢ [E"]. (4.3)

Let Z = x»pS(G, X) X, 5(G,x)min Zs, Js + Z§ <> Z the canonical map. The isomorphism of torsors in
Proposition 2.21 gives rise to a canonical isomorphism of tensor functors over Z?

(€ = J5([€lpx.k)) = =€ = T5([Elar x k) (4.4)

From Theorem 3.12 one immediately obtains the following corollary.
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Corollary 4.5. There is a canonical isomorphism of tensor functors

(€= [Elprk) —=AE = [Elary k)
over Z, lifting the isomorphism (4.4) over Z?.

We return to this theme in the next paragraph. Recall briefly how the Hecke algebra acts on auto-
morphic bundles on gS(G,X). See [EHI7, Section 1.2]. Fix K C G(Ay). Let h € G(Ay) and consider

K, = KNhKh™' C K. Right multiplication by h defines an isomorphism 7y, : g1 S(G, X) — >k S(G,X).
One defines

T(h)[E]K = rh*OT(hKh‘l,K;,*OTC;(,Kh[g]K' (46)
The projection formula implies
T(h)[€]k = [€]k ® Tk k2O, 5(G,x).

As one has pullbacks and push-downs for K ¢ and for £-adic cohomology, one has on them an action of
the Hecke algebra Hy, spanned by the T'(h) for h € G(Ay), with h trivial at p and at ramified places for K.
In particular, formula (4.6) implies the formula

class of T(h)[€]g = class of [5]¥<:K’1] in Ky(xS(G, X))q. (4.7)

Recall that the volume character of the Hecke algebra spanned by the T(h) with values in a ring R, is the
character sending T'(h) to [K : K] viewed as an element in R [EHI7, Lemma 1.15]. Thus (4.7) is saying
that classes of automorphic bundles in Ky(xS(G, X))q are eigenvectors for the volume character under the
action of Hg.

Let ¢ # p be a prime number.
Lemma 4.8. The isomorphism 1y, induces an isomorphism
s g S(G, X)™M =y S(G, X))
The finite morphism 1tg k, : k,S(G, X) = kS(G, X) extends to a finite morphism
TR K, S(G,X)™" — g S(G, X)™"
and the action of Hx on H*"(xS(G,X), Z¢(n)) extends to an action on H*" (g S(G, X)™", Z,(n)).

Proof. When G = GL(2)q the Shimura varieties are finite unions of modular curves, and the result in that
case is standard. We may thus assume G4 contains no factor isomorphic to PGL(2)g. Then we know by
Theorem 10.14 of [BB66] that HO(xS(G, X), w") is finite dimensional for any 7 > 0, where w is the dualizing
sheaf. The isomorphism r;, induces an algebra isomorphism

®n€NHO(KS(GrX)!wn) - BeN I_IO(hKlrl 5(G,X), 0").
Similarly the finite cover 7tk g, induces an injective algebra morphism
®uenH (kS(G, X), 0") = @,enH(k, S (G, X), @").

Since g S(G,X)™" (resp. K, S (G, X)™i") is Proj of the left-hand side (resp. right-hand side) of the last
diagram [BB66, Theorem 10.11], the induced map on the Proj defines the extensions r;lnin and n?i;(‘h. On
the other hand, pullback on cohomology is defined, while the trace map Tr : 7tg x,.Z¢ — Z¢ extends to

min

JKsTK KLt = TR R, JKyw Lot = TR K, L = jksZ¢ = Zg¢. This proves the second part. O
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Let E(G, X) =: E be the reflex field. Fix an embedding E <> Q. We choose a place w of E dividing the
prime p which we assume to be different from €. We extend E < Q to the completion E,, — Qp. We denote
by Gg ,Gg the Galois groups of E,, E. We add a subscript on the lower right to indicate the field over
which we regard the varieties considered. We denote by Hi(KS(G,X)gin, Q) = Hi(KS(G,X)g;n, Qy), the
eigenspace under the volume character of the action of Hg.

Through the end of this section, we set Ko = K for the neat subgroup K C G(Ay) and use the notation
H'(A(j)) for étale cohomology with coefficients A, which are either Z, or Q.

Theorem 4.9. Let (G, X) be a Shimura datum of Hodge type. For any prime € # p, any £ € Vect%s()A(E), we
define €-adic Chern classes

A Gr,,
enel€lp)k, € H?"(1S(G, X AGm) ™, 0 e N

v

where A = Qq forr =0 and Z; forr > 1, with the following properties:

1) j}r(cn,g([E]p)Kr) =cne([€]k,) € HZ”(K,S(G,X)Q,A(n)), where the right hand side is the {-adic Chern
class of [€] on g S(G, X).

(2) IfK' CK then n]%{%(cn,Z([g]p)K,) = Cn,€([€]p)K,"

(3) rﬁnin*(cn,g([é']p)Kr) = Cue([Elpnk, i1 for h € G(Af) with trivial component at p and at places ramified
for K.

(4) Whitney product formula: If 0 — & — €& — £, — 0 is an exact sequence in VectSGS(XE), then
Cn,f([g]p)Kr) = 69a+b:ncu,€([81]p)K,) : Cb,f([EZ]p)Kr)-

(5) If (G, X’) = (G, X) is a morphism of Shimura data of Hodge type, K’ — K is a compatible level, with K,
and K| compatibly chosen, and

f i S(GL XM — ¢ S(G,X)™n

the corresponding morphism of Shimura varieties, then
f*(cn,f([g]p)Kr) = (Cn,f([f*g]p)K,’) € HZH(K;S(G/,X/)S:)H,A(H))V

Proof. We first construct ¢, ¢([£],)k, without the v invariance. The vector bundle [£], from (4.1) has Chern
classes in
Cne([E],) € Ligl_Hzn(KPS(G,X) ,Z/€M(n)), ne N

m
by Proposition A.l. On the other hand, [£], is defined as 7};&, where € is viewed as a vector bundle on
the C-adic space X. But £ is already defined on Xg. In particular, with K, defined as in Section 2.B, the
classes ¢, ¢([€],) are invariant under the action of K, , C G(Q,) for all  and by Gg . By Proposition A.4
it follows that the classes ¢, ¢([€],) uniquely define classes

min

Cn,Z([g]p) € H2n(K,S(G:X)Qp ’

for r > 1. Since K/K; is finite, we can descend to Qg-cohomology at level K. We thus have descended

classes .
——Mmin
GEW .

Cne([Elp)k, € Hzn(KS(G:X)QP ,Q¢(n))
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)m

Letting u, : KrS(G,X)min - g, S(G X

Cn,€([£]p)K,. = u:(frt,Z([E]p )Kr)

"™ denote the natural map, as in (3.10), the classes

are the desired ones.

Property (1) is then a direct consequence of Proposition 2.21. Property (2) follows directly from the
construction using descent via Proposition A.4. As for Property (3), using descent again, it is enough to see
that r;lnin extends to an isomorphism

r}l:l)erf,min , K,S(sz)min N hK,h’lS(GIX)min
of perfectoid spaces, which respects [£],. (See [Schl5, Theorem 4.11(iv)] for the Siegel modular case; the
general case is identical.) Our notation [€], does not refer to K,. One should replace the notation [£],
perf,rnim[g]th}f1 _

with [€ ]II;’] . Then the compatibility means r, p = [E]Kp , which follows from Theorem 2.13
together with the addendum Theorem 2.17. Property (4) follows directly from the Whitney product formula
for the Chern classes of [£], and Property (5) of the functoriality of the construction of krS(G, X)min
(ISchl1d], loc.cit., comes from the construction, even if this is not explicitly mentioned). It remains to see that
cne([Elp)k, € Hzn(KrS(G,X)gin,A(n))v. By construction, this follows from

Ene([€]p) € im H?" (S(G, X)™™,2/€"(n)) , neN,

which again follows by the projection formula from the trivial relation

T(g)[g]p = [E]p ®OKpS(G,X)mi“ OKES(G,X)mi“.

Notation 4.10. The functor

Repg(Ky) —  {Vector Bundles on g»S(G, X)™in)
& = [&] ,

is a tensor functor, which sends Repg(G) to trivial bundles. It induces the Chern character

hy . G(Ey) ) . min "
Ko(Repo(Ki)®repyc)@) - —H (xS (G, )3, Qu(+)) c(lgn_w (kS(G,X)™, 276" (1)) o2

v m

4B. The image of H*(xS(G,X)™") in H*(xS(G, X))

We now return to the topological setting. In this section, g S(G, X)™" and g S(G, X)y. are identified with the
analytic spaces underlying their C-valued points. We fix ¥, use the notation (2.1) and let ¢ := @y denote
the desingularization map @y : ¢S(G,X)y — gS(G,X)™". It is a projective morphism. Recall from the
general theory [dCMO05, Theorem 2.8.1] that the choice of a polarization £ for ¢ induces a factorization

natural map

Hi (KS(G,X)min,Q) IHI (KS(G,X)min,Q)

x [ i (4.11)

H' (kS(G,X)5, Q)
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in which all morphisms are compatible with the polarized Hodge structure, and ¢ is injective (see e.g.
[dCMO05, Corollary 2.8.2]). For a prime ¢ # p and any s > 0, the diagram (4.11) has an ¢-adic version

natural map

H' (¢, S(G, X)™", Q) TH' (g, S(G, X)™In, Qq(j))

\ [ﬁ (4.12)
4

H' (k.5(G,X)s5, Q(j))

Thus by the comparison isomorphism [BBD82, Section 6], we conclude that ¢} in the diagram (4.12)
is injective as well. The image of ¢} might depend on the choice of L, see [dCM05, Example 2.9].
Furthermore, IH!(x S(G, X)™", Q), thus

¢ (TH (xS(G, X)™™,Q)) € H (¢ S(G, X)5, Q),

is pure of weight 7, and @ (H (xS(G,X)™",Q)) € H (¢ S(G, X)y, Q) is the maximal pure weight i quotient
of H (¢ S(G, X)™", Q) by [Del74, Proposition 8.2.5].

Theorem 4.13. For any £ € Vecty (X X), any neat level subgroup K C G(Ay) and all s > 0, we have

0 (Cne([E]p)ic) = ene[E1™)ic) € H (. S(G, X5, 0 Alm))

Here A = Qg fors =0 and Z; fors > 1, as in Theorem 4.9.

Proof- We place ourselves in the situation of Theorem 3.12 which we use; in particular we fix the natural
number s. The proof assuming Hypothesis 2.18 is the same without fixing s. It suffices to check the claims
with ¢, ¢([€],)k, replaced by ¢, ¢([€],)k,-

Notation is as in Section 3. For s > 0 we have the diagram with commutative squares

Q
Zs l,b/\ W—KpS(G,X)mm
(4.14)
¢J HKS,KPj j?‘[g‘:}p

min

kS(G X)y —=k,S(G, X)y —>,S(G, X)

Here 6 o ¥ = ¢ and 9, come from the definitions (3.1) and (3.2).
By Theorem 3.12 one has

(TR %p © Q) (Cnel[E]p))k,) = ¢* (807 (Enel[E]p)k.)
= Q Cn€ [8] ) ¢*(5n€([£]can))
€ Q'H" (kS(G, X)™™, A(n)) € H™(Z,, A(n)).

Since (4.14) commutes, and since ¢* is injective by Proposition 3.11, we thus have

Cue([E177) = (00 ) (Cue([E]p)k,) = ™ ((Cne([E]p )k, ), (4.15)
as classes in HZ”(KSS(G,X)E’Q,A(H)). On the other hand,

H?" (k. 8(G, X)y, 0, A(n)) = H*" (¢ S(G, X)5, 0, A(m))

by the comparison isomomorphism [Hub98, Theorem 4.2]. In addition, the automorphic bundles [£]%"
are defined over E. Thus the classes in (4.15) lie in H2”(KSS(G,X)EIQ,A(71))GE. This finishes the proof. O
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Let

Hherm (KS(G X", Q1) € H (cS(G,X)5™, Q(+))

denote the Q-subalgebra generated by the images of c, ¢([£],)k, and

Hiem(kS(G, X5, Qel+) € H* (kS (G, X)y 6, Qe(+))

denote the Q-subalgebra generated by the images of c, ([E]E") k. Here, when G satisfies (i) of Definition
2.9, we take £ to belong to Vectg(X)™".

Proposition 4.16. The commutative diagram (4.12) restricts to the commutative diagram of Qg -algebras

[Ko Repg(Kpy)) ®k, (Repg(G Qe]

~(ch ofL1)
h, ~ (o +
ch, H? (XQP,QZ(*))

~(Prop. 2.3) (4.17)

natural map ~

Hehenn (15(G. 037, ©c(+)) TH (kS (G, X", Qu(4);

- P~
(p ~

H(zfltlern (KS(G' X)E,Qpl Q€(*))

in which ¢, chy, the natural map and @* are isomorphisms of Q,-algebras. In particular

@ (TH>(<S (G XM, Q)% ) € HP (kS(G, X)s. 0, Qu(4)
is a Qg -sub-vectorspace which does not depend on the choice of the relative polarization L.

Proof: By Theorem 2.12, the image of the Goresky-Pardon Chern classes c,([£] x)¢" in the algebra
TH?> (g S(G, X)™n, Q(+)) lies in IH?*(x S(G, X)™™, Q(+))? and spans this subalgebra over Q. In particular,

the image of
natural map

H>(kS(G,X)™", Q) ————~~- HP(5:5(G, X)™", Q(+))

contains [H?(xS(G, X), Q(+))}, and the map

¢ TH? (kS(G,X),Q(+))y = Hiform (kS(G, X)5, Q(x)*

is surjective. By comparison with ¢-adic intersection cohomology, the image of

natural map

H>(kS(G, X)g, Qe(+)) —==~=- H(x8(G, X)q, Qe(+)),

contains IHZ*(KS(G,X)QPI Qq(+));, and

@ TH (£S(G, X)g, Q). = Haorn (kS(G X1, Q)

is surjective as well.
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We have no direct way to compare the Goresky-Pardon classes to our classes from Theorem 4.9 on
KS(G,X)QP. However, applying Proposition 4.13 for s = 0, i.e. for Ky = K, one has

O (Hhern (3G X5, Q) ) = HEorn (x5(G X) ., Qo)

As @} is injective, we deduce that the natural map sends the Qg-subalgebra Hé’f]em(KS(G,X)gin, Qu(#))
P

onto [H?*( KS(G,X)%lin,QZ(*));r . This proves that the natural map in the proposition and ¢* are surjec-
P

tive. It remains to prove that they are injective as well. The Chern character has by definition values in

H(Z:; e (KS(G X )8;“, Q/(*)) and the whole diagram commutes. This proves that ¢ is injective. It follows

that the homomorphisms chy, ¢* and the natural map are isomorphisms. Finally, the image of ¢* being
equal to the image of ¢}, the latter does not depend on L. This finishes the proof. O

Lemma 4.18. The classes

. Gg,
cncl€lp)x, € H k, S(G.X)3", Q)

v

constructed in Theorem 4.9 vanish for all n > 0 when £ is flat, that is when £ comes from a G-representation.

Proof. Under the assumption of the lemma, [€], is trivial (see Notation 4.10). The construction of Theo-
rem 4.9 thus implies the lemma. |

Remarks 4.19. (i) If we ignore the action of the Galois group, the Chern classes constructed above depend
only on the connected components of xS(G,X)™™". Thus the results above extend to general Shimura
varieties of abelian type. We leave the precise formulation to the reader.

(ii) We naturally expect that Proposition 4.16 remains true without the superscripts *, which in any case
change nothing when G satisfies condition (iv) of Theorem 2.7. In the excluded case, it is easy to see that
the classes denoted e, in §2.A.a have non-trivial images in IH”(KS(G,X)B;H,QA*)); indeed, this follows

from the results of [GP02] and the equality e? = ¢} , for each r. However, we also have

k—1\2
(Cl,r ) = Cilq,r'

so it is possible that c; , and +e, have the same image in IH". We have not attempted to prove that this is
not the case.

5. Comparison of torsors

Let (G, X) = (GSp(2g), Xag), write ng for the compact dual of X5, fix a base point h € X5, C ng, and let

(2}, denote the fiber at /1 of the cotangent bundle to X2g. Let V, denote the vector group Gs. Let KpgCcG
denote the stabilizer of h. Then K}, , can be identified with GL(g) X G, = Aut(Vy) X Gy, in such a way that

the restriction to GL(g) of the isotropy action of K} ; on (j, is equivalent to Sym2 (Vg). We take St to be
the standard representation Kj o — Aut(Vy), and let E; be the corresponding equivariant vector bundle

on ng. Fix K, =K, -Kg a neat open compact subgroup of GSp(2¢)(Ay), and fix a toroidal datum ¥ for
K. As in §2, we write .

qg :Kg Afgor N Kgp Argmn
for the morphism denoted g above.

Proposition 5.1 ([PS16]). There is a canonical isomorphism

Og : 0g[Estlp — —lEstlarx

tor
of vector bundles over K§Ag .
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Proof. This is essentially equivalent to Corollaire 1.16 of [PS16]. More precisely, the generic fiber of the
bundle denoted a)ITOd in [PS16] is exactly [Es] g ». Indeed, with our notation, the restriction of [£g]“*" to
the open Siegel modular variety in (neat) finite level K is the sheaf of relative sections of the relative 1-forms
of the universal polarized abelian scheme, and its canonical extension to the toroidal compactification is
isomorphic to the sheaf of relative sections of the relative invariant 1-forms on the corresponding semi-
abelian scheme; see [Lanl2, Proposition 6.9] or [Lanl7, (1.3.3.15)]; the comparison between the algebraic and
analytic constructions is Theorem 5.2.12 of [Lanl2a). O

We now restrict the information to Shimura varieties of Hodge type. Let (G, X) be a Shimura datum of
Hodge type, with compact dual X. We fix a symplectic embedding

11 (G, X) — (GSp(2g), X2)-

Let h € X be a base point, let Kj, C G be its stabilizer, let Kj ; C GSp(2g) be the stabilizer of i(h), and
denote by 1, the inclusion of K}, in Kj,o. Let St; = Stouy, : Ky — Aut(V,), with St the standard faithful

representation of Kj, ;. Finally, let &;, be the equivariant vector bundle on X with isotropy representation
Stj,. Let K = K, - KP be a neat open compact subgroup of G(Ay).

Corollary 5.2. We fix a natural number s. The morphism O, induces by pullback for any s a canonical isomor-
phism
9(5) : Q*[gSth ]p - _)[gsth]dR,E,Ks

of vector bundles over Z;.

Proof of Theorem 3.12. We fix s as in Section 3. As Sty is faithful, any irreducible representation V of K,

defined over Q is a direct factor of the representation Stfm ®St;{®” for some pair of natural numbers (1, 1)
[DMOS82, I, Proposition 3.1(a), II, Proposition 2.23]. Write

v 282" @ Sty o LoV
for the splitting. The isomorphism of vector bundles 6(s) induces an isomorphism of vector bundles
0(s)®" ®0O(s)"®" fljg ([5Sth ]?m ® [5Sth];;/®n) —~—>[5sth]?1’§fz,1<s ® [&q]ﬁ%xs

while ¢ and 7 induce the splittings of vector bundles over g,S(G,X)™" and over Z;

0, T,
Vlp =, 15" ®[Es1, 1" —],

OdR,3,r

TdRY,Ks
WVlarzk, —— - st 17x s, k. ®[Est, %" —— == lary k..
This yields the following morphisms of coherent sheaves over Z;
a:=1tary K, 00()" ®0(s)"®" 0 Q0 : Q" [V]p = Vlarr.k,
B:=Q'1,0(0(s)*"®6(s)"®")  ooury k. : [Vlars,s = Q[V],

which pull back to inverse isomorphisms on Z¢ under jg (see (4.4)). Thus
Boa-Idg), : Q'V], > Q'V],, aop-Idp,, . [Vlrrk, = [Vlarsk,

are homomorphisms of coherent sheaves which pull back to zero on Z7. As Q*[V], and [V]sr 3k, are
vector bundles, thus are both torsion free, we conclude that both maps are 0.

This finishes the proof of Theorem 3.12. As for Theorem 2.22, the proof is identical, except that we do
not have to fix s in the beginning and we replace Q by g everywhere. O
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Appendix A. Geometry

We collect here the statements of some standard results in the theory of schemes, in versions adapted to
perfectoid spaces. The proofs are due to Peter Scholze.

Proposition A.l (Scholze). Let W be a vector bundle of rank r over a perfectoid space X over C. Let IP(WV)
denote the corresponding projective bundle over X, viewed as an adic space over C (see Remark A.2 below). Then
Opow)(1) has a first Chern class
(2,,) € Lim H? (P(W), Z/£"(1))
m

such that the homomorphism

lim HY(P(W), Z/€"(a)) — &[Lim H* (X, Z/£"(a - i) - (z,)’

m m

is an isomorphism.

Remark A.2. One of the referees asked how IP(WW) can be defined as an adic space. We forwarded the
question to Laurent Fargues and David Hansen, who sent essentially identical replies. Here is an (almost
literal) paraphrase of Hansen’s argument. First, without loss of generality, we may localize on X and
assume that X is affinoid perfectoid, say Spa(R,R*), and that W is the trivial bundle. Thus we need to
define Spa(R, R*) x IP"~! as an adic space. Next, by the usual covering of IP"~! by r affinoid balls, we are
reduced to showing that the ring R(Tj,..., T,_1) (power series with coefficients in R that tend to 0) is sheafy
[SW17, Definition 3.1.11]. In fact, R(Ty,..., T,_1) is sousperfectoid, in the terminology of Hansen and Kedlaya,
and in particular is sheafy; see §6.3 of [SW17] for the proofs. Moreover, R(T7,..., T,_1) is analytic [SW17,
Definition 4.4.2].

We are warned, however, that there is as yet no reference for the étale cohomology in the generality
of sousperfectoid spaces. We have seen that IP()V) is an analytic adic space; thus, in order to define the
étale cohomology spaces used in Proposition A.l, one can pass to the associate locally spatial diamond (see
[Sch17, §15]), and apply the cohomological formalism developed in [Schl7].

We define the Chern class c;(VV) by Grothendieck’s standard equation

lim H'(POV), Z/€"(r)) 2 ) (=) (W) (z0) " =0, (ci(W),n) € im H (POV), Z/€" (i)

m i=0 m
Proof. One defines z as usual, as the projective limit over m of the images z,, € H*(IP(W), Z/£™(1)) of
the class of Op(y)(1) in HY(IP(W),G,,) via the connecting homomorphism of the étale Kummer exact

€H’l
sequence 1 — ypm — G, ——&,, — 1. To prove the statement, it is enough to prove that the map

HY(P(W), Z/¢™(a)) < &/  H" 2/ (X, 2/ (a~ i) - 2!

m

is an isomorphism. This is a local property on X, reduced by [CS17, Lemma 4.4.1] to the computation of
the étale cohomology of P(WW) over a geometric point X = Spa(C(%), C(%)"), which then is the standard
computation. O

Remark A.3. We avoid here the delicate question whether the surjection

HI(X,Z,(i)) - lim H/ (X, Z/¢" (i)

m

is an isomorphism as it is irrelevant for our purpose.
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Recall that we have level subgroups K, , C G(Q,). We denote by ¥H the invariants under a group H
acting on the set ¥. We use this notation for cohomology invariants.

Proposition A.4 (Scholze). The morphisms of ringed spaces

min

min

kvS(GX)  —kek,, S(G X)

induce for all pairs of integers (i,]) and all v > 1 homomorphisms

——n

H (KpS(G,X) i“,Z/zm(i))Kp” S H (Kp.KWS(G,X%;“,Z/Z’”(i))

and
; —————min Kor : —————min Ky, . .
y_;n_Hf (KpS(G,X) ,Z/zm(i)) :%an] (KpS(G,X) ,Z/em(i))] L H (KP,KWS(G,X)%;“,Zg(i)).

Proof. As before, we write K, = K? - K, ;. By Theorem 2.13 and [Sch12, Corollary 7.18], one has
11 (10 S(G X", 2/6" ()| =lim B ( STG,X)™", 2/€" (i) = lim H (1, STG, Xy, 2/€" (1))
r r

The second equality comes from the comparison isomorphism [Hub98, Theorem 4.2].
On the other hand, for r’ > r > 1 one has K,/K,, = K,,/Kp,, which is a p-group. It follows that the

min min
transition maps in the inductive system are injective as g S(G,X)  — g S(G,X)  is finite surjective

of degree prime to {. This implies

) . K,, ) ; K, /K,
H (08(GX)™", 2/0"(0)| " = lim I (, ST6, )" 2z (i)) "
r/
. . ———  min .
~lim ([ £, S(G,X) ]/[KP,T/KP,,,],Z/em(z)) (A.5)

r/

if r > 1, because K, ,/K,, is a p-group. Here [Kr,S(G,X)mm]/[Kp,r/prr/] denotes the quotient of the

(projective) scheme K,,S(G,X)mm by the finite p-group K, /K, ;.

If r = 0, the last two groups are equal up to finite error that is bounded independently of 7" and m; we
return to this case below. i

For any 1’ > r, the quotient g ,5(G,X)  /[K,,/Kp, ] lies in a sequence of finite morphisms

———min ——min

K, S(G,X)™" > ¢ 8(G,X)  /[K,,/K,] = k,S(G,X)

Indeed, the minimal compactification is normal, which explains the left arrow, and the right one is just the
image of the middle term in the minimal compactification of the Siegel space at level K. Define
———min,# ——min

K,S(GJX) = y_rn_K,rS(G;X) /[Kp,r/Kp,r’]'

’

r

This is a scheme of finite type as it is dominated by g S (G, X)™", Again we have a sequence of finite

morphisms
min

min,#

k. S(G,X)™" — ¢ (G, X) — k. S(G,X)
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It follows from the above considerations that, for any m1, j, and i, we have

. —  min . Ky, . . —————min,# .
HJ(KPS(G,X) ,Z/zm(l)) :hmHJ([KYS(G,X) ],Z/em(z))

—_—>
r

if r > 1, and with finite error independent of m if r = 0.
So composing with the natural map

H* (x,S(G,X)™™, Z/€™ (1)) — H*(k,S(G, X)™", 2/¢" (i)
one obtains the homomorphism

. _  mi K,‘r . . . .
H (Kpg((;, X)m‘“,z/fm(i)) " HI (. S(G,X)™", 2/0"(i)) = HY (KYS(G,X)%“‘,Z/K’”(i)) (A.6)
P
(see again [Hub98|, loc.cit., for the comparison isomorphism), if r > 1.
Finally, by definition, one has

m

K
: j min my: Kp,r : i min my: -
lim H/ (i S(G, X)™™, 2/€"(i)) :[@_H](KpS(G,X) \Z/C (1))] ,

m

which thus maps to

: j min me\\ _ 17j min :
lim H (KrS(G,X)@ Z/t (z))_H (KrS(G,X)@ ,zg(z)).

m
O

If r = 0 this remains true with Z/¢™(i) replaced by Q(i): the maps in (A.5) are not necessarily
isomorphisms but the kernels and cokernels are of order bounded independently of 7 and i.
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